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Abstract

Model predictive control (MPC) has been widely applied to the process

industry in the past decades, and it has kept evolving and showing great

potential in robotics, automobile, power electronics, aerospace, and var-

ious industries. The major challenge of MPC comes from solving the

arising optimization problems at every sampling instant. This thesis ex-

plores novel numerical optimization methods that enable the use of MPC

to control applications with high sampling rates, complex and large-scale

dynamics, and resource-limited hardware.

For linear MPC, we present a combined first- and second-order method,

which requires only first-order derivatives of value functions and incorpo-

rates fixed second-order information. The convergence is guaranteed un-

der the framework of the majorization-minimization principle. Numerical

experiments indicate that the proposed method can obtain a moderately

accurate solution with a small number of cheap iterations.

For nonlinear MPC (NMPC), we present two fast optimization meth-

ods: a parallel Newton-type method and a Jacobi-type method. The

parallel method splits the NMPC problem into subproblems along the

prediction horizon so that these subproblems can be computed simultane-

ously, and only a very limited communication is conducted between these

subproblems. The parallel method is not only highly parallelizable but

shows a superlinear rate of convergence. An efficient implementation of

the parallel method tailored to multi-core processors is presented. The

implementation shows a significant speedup in computation time with re-

spect to other state-of-the-art toolkits. The Jacobi method is designed

for large-scale NMPC problems, which are generally sparse. The upper-

and lower-layer sparsities arising in the NMPC problem are exploited in

the Jacobi method. In particular, we concentrate on systems governed by

partial differential equations, and a speedup of two orders of magnitude

is observed in the numerical example.
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Notation

For vectors x ∈ Rn and y ∈ Rm, a matrix A ∈ Rn×n, and a differentiable function

f(x, y) : Rn × Rm → Rp, we have the following notation:

Notation Meaning
x(i) i-th component of x
xk k-th iteration of x
x∗ Optimal value of x
|x| Element-wise absolute value of x
xT Vector transpose of x
‖x‖ Euclidean norm of x (`2 norm of x)
‖x‖1

∑n
i=1 |x(i)| (`1 norm of x)

‖x‖A
√
xTAx (weighted norm of x)

AT Matrix transpose of A
A > 0 A is positive-definite
A ≥ 0 A is positive-semidefinite
‖A‖ Frobenius norm of A
ρ(A) Spectral radius of A

f(i)(x, y) i-th component of f(x, y)
∇xf Jacobian matrix of f(x, y) with respect to x (∇xf ∈ Rp×n)
∇2
xxf Second-order derivative of f(x, y) (∇2

xxf ∈ Rp×n×n)
∇2
xyf Second-order derivative of f(x, y) (∇2

xyf ∈ Rp×n×m)

R≥0 Set of non-negative real numbers
I, In Identity matrix, identity matrix with n rows and columns
0, 0n Zero or zero matrix, zero matrix with n rows and columns
� Element-wise product
� Element-wise division

1



Chapter 1

Introduction

1.1 Motivation

In the recent years, industrial systems are becoming more and more complex and so-

phisticated, which brings great challenges to the control methods in order to deal with

these complexities, such as multiple variables, nonlinearities, constraints, and uncer-

tainties. Among the emerging advanced control methods, model predictive control

(MPC) has demonstrated its ability and potential in the complex industrial applica-

tions. In the process industry, MPC has been widely used in the areas of refining,

petrochemicals, chemicals, paper making, etc. (see, e.g., Qin and Badgwell (2003)).

The automobile industry has reported the first mass production (Bemporad, Bernar-

dini, Long, & Verdejo, 2018) of MPC for engine torque control. The first use of MPC

in outpatient wearable artificial pancreas can be found in Del Favero et al. (2014).

Moreover, MPC has found applications in autonomous driving, robotics, aerospace,

etc. One of the major reasons for the success of MPC is that the MPC problem

formulation is unified in the optimization framework, which is powerful enough to

handle the complexities. The inherent constraint handling ability of MPC allows

safety guarantees and close operations to constraints and hence increases profit. The

solution details of the underlying optimization problem are hidden from the users

such that the MPC controller can be easily designed and implemented. Moreover,

there are several extra reasons for MPC to be successful in multiple industries:

- It does not require deep mathematical knowledge and is easy to understand.

- Its design and implementation procedures are systematic.

- It is easy to tune, maintain, and upgrade.

2



1.1. Motivation

MPC is an optimization-based control method that optimizes the future behavior

of a system by finding a sequence of the optimal control inputs along the predic-

tion horizon, and only the first control input is implemented. In the early stages of

MPC, there are two classical formulations: dynamic matrix control (DMC) (Cutler

& Ramaker, 1980) and generalized predictive control (GPC) (Clarke, Mohtadi, &

Tuffs, 1987). In DMC, a quadratic cost is minimized along the prediction horizon

and the future behavior is predicted based on non-parametric step response models,

where the open-loop stability of the system is assumed. To tackle the limitations

on the system, GPC uses parameterized prediction models, such as auto-regressive

and moving-average models (Clarke et al., 1987) and state-space models (Ordys &

Clarke, 1993). Note that DMC and GPC introduce no constraints and formulate un-

constrained least-square problems so that the sequence of the optimal control inputs

can be explicitly calculated. Although DMC and GPC deliver excellent control per-

formance for unconstrained optimal control problems, they cannot handle constraints,

e.g., the physical limitations of actuators. Garcia and Morshedi (1986) addressed this

problem by integrating constraint handling in DMC, which forms the modern MPC

problem structures, i.e., with costs, dynamical models, and constraints. Specifically,

MPC problems with quadratic costs, linear dynamical models, and linear constraints,

such as DMC, GPC and constrained DMC, are called linear MPC, which has been

widely used (see Qin and Badgwell (2003) for the industrial application survey).

Since MPC is formulated in the optimization framework, it offers high degrees

of freedom to customize the cost function, dynamical model, and constraints. The

generalization of MPC, or nonlinear MPC (NMPC), deals explicitly with nonlinear

dynamics and constraints. Furthermore, non-quadratic costs, e.g., the economic cost

that directly maximizes the profit, can be imposed. Due to the flexibility of NMPC,

NMPC is significantly more powerful than linear MPC and meanwhile, more compu-

tationally expensive. Compared with linear MPC, the computational difficulties of

NMPC come from the following aspects:

- Linear MPC problems are essentially quadratic programs (QPs), while NMPC

problems are nonlinear programs (NLPs), which are generally nonconvex. Extra

steps, e.g., line search, need to be made to handle the nonconvexity such that

the convergence to at least a local minimum can be guaranteed.

- When a continuous-time nonlinear dynamical system is discretized, there is

always some amount of discretization error. Different discretization methods

need to be considered in different contexts.

3



Chapter 1. Introduction

- The nonlinear functions and their Jacobian and Hessian matrices need to be

evaluated along the prediction horizon at every sampling instant. Moreover,

Hessian approximation techniques need to be applied when the exact Hessian

matrices are difficult to obtain.

- The behavior of a nonlinear system is difficult to predict and evaluate unless a

long prediction horizon is chosen, which leads to a large-scale optimization prob-

lem. Moreover, for NMPC problems with long prediction horizons, simulation

of the system dynamics might diverge easily for unstable systems.

With these difficulties, real-time optimization for NMPC is much more challenging

than linear MPC. Although real-time optimization for both linear MPC and NMPC

has been achieved on high performance computers for most of the applications, there

is no end to find more efficient and numerically robust solution methods to broaden

the range of application of MPC to low-cost hardware and fast-sampled, complicated,

and large-scale systems.

The aim of this thesis is to provide fast optimization methods that push the

boundaries of real-time optimization for linear MPC and NMPC.

1.2 Overview of real-time optimization methods

for MPC

Since linear MPC and NMPC problems are essentially QPs and NLPs, respectively,

off-the-shelf solvers for general optimization problems can in principle be used. How-

ever, general-purpose solvers do not exploit the particular structure of MPC, and

thus are not efficient. Considerable efforts and progress have been made toward the

real-time optimization methods for MPC in recent years. The optimization methods

tailored to MPC can be generally categorized into explicit and iterative methods as

shown in Fig. 1.1.

Using the fact that the underlying QP in linear MPC is parametric to the ini-

tial state and the optimal control input is an affine function of the initial state (see,

e.g., Bemporad, Morari, Dua, and Pistikopoulos (2002)), the so-called explicit linear

MPC (Bemporad et al., 2002) solves the underlying QP offline and stores the affine

functions in different regions in a look-up table. As for online computing, only linear

functions have to be evaluated, which makes explicit linear MPC easy-to-implement,

reliable, and efficient. However, explicit linear MPC is limited to small-scale problems

since its memory requirement as well as the computation time grows exponentially

4



1.2. Overview of real-time optimization methods for MPC

Optimization

methods

Explicit methods Iterative methods

First-order

methods

Second-order

methods

Figure 1.1: Classification of optimization methods for MPC.

with the number of inequality constraints in the worst case. To address such limita-

tions, suboptimal methods, such as merging regions (Geyer, Torrisi, & Morari, 2008),

keeping only a subset of critical regions (Pannocchia, Rawlings, & Wright, 2007), and

relaxing optimality (Bemporad & Filippi, 2003), can reduce the complexity of explicit

linear MPC. An excellent survey on explicit linear MPC and its approximation can

be found in Alessio and Bemporad (2009). Although the underlying NLP in NMPC is

also parametric to the initial state, unlike linear MPC, NMPC does not have a general

explicit state feedback law. Grancharova and Johansen (2012) locally approximates

the parametric NLP with a parametric QP, the solution of which can be obtained and

stored offline. However, the stored piecewise linear functions are only approximate

solutions to the NMPC problem.

On the contrary, implicit methods or iterative methods, as its name indicates,

solve the optimization problem online in an iterative manner. Due to the advantages

in its scalability and flexibilities in optimality control and online parameter modifying,

iterative methods have received tremendous attention in both industry and academia.

The reviews of iterative methods for linear MPC and NMPC are given as follows.

Iterative methods for linear MPC

Depending how each iteration is performed, iterative methods can be further catego-

rized into first- and second-order methods. First-order methods such as Nesterov’s

fast gradient projection method (Nesterov, 1983) and the operator splitting methods

(Douglas & Rachford, 1956) perform cheap iterations that mainly consist of matrix-

5



Chapter 1. Introduction

vector multiplications or require only first-order information. In comparison, second-

order methods such as the interior-point method and the active-set method require

solving a linear equation at each iteration. We first describe the first-order methods

for linear MPC. The fast gradient projection method applied to linear MPC problems

can be found in Richter, Jones, and Morari (2009) and Kögel and Findeisen (2011a),

and cold start, warm start, preconditioning in the context of MPC are discussed. The

fast gradient projection method directly applied to the primal problem is limited only

to MPC problems with bounded input constraints. To solve linear MPC problems

with both input and state constraints, methods such as the combination of the fast

gradient projection method and the augmented Lagrangian method (Kögel & Find-

eisen, 2011b), the fast gradient projection method with Lagrange relaxation (Richter,

Morari, & Jones, 2011), and the dual fast gradient projection method (Patrinos &

Bemporad, 2013), are proposed. An alternative first-order method to solve the input

and state constrained linear MPC problems is the operator splitting method, e.g., the

alternating direction method of multipliers (ADMM). Linear MPC based on ADMM

can be found in O’Donoghue, Stathopoulos, and Boyd (2013) and Jerez et al. (2014).

When Nesterov’s acceleration is applied to ADMM, the resulting method is called

the fast ADMM method (Goldstein, O’Donoghue, Setzer, & Baraniuk, 2014), which

is applied to solve the linear MPC problem in Pu, Zeilinger, and Jones (2016) and

Ghadimi, Teixeira, Shames, and Johansson (2014).

Second-order methods are also referred to as Newton-type methods, in which a

Newton step is performed by solving a linear equation at every iteration. Newton-

type methods tailored to MPC, such as the active-set and interior-point methods, have

been developed. By utilizing warm start and the property of the parametric nature

of MPC, the so-called “online active-set method” by Ferreau, Bock, and Diehl (2008)

shows better performance compared with a general-purpose QP solver. Wright (1996),

Wang and Boyd (2010), and Domahidi, Zgraggen, Zeilinger, Morari, and Jones (2012)

propose methods that exploit the banded structure of the coefficient matrix in the

Newton step, and a linear computational complexity in the prediction horizon can be

obtained. Generally speaking, second-order methods have faster rates of convergence

and can deal with more general class of problems than first-order methods, however,

with higher memory requirements and computational costs per iteration.

Iterative methods for NMPC

Iterative methods for NMPC can also be categorized into first- and second-order

methods. There have been several attempts on solving directly the NMPC prob-

6



1.3. Outline and contributions

lem by using first-order methods. For NMPC problems with only input constraints,

the gradient projection method based on Pontryagin’s minimum principle (Pontrya-

gin, Boltyanskii, Gamkrelidze, & Mishchenko, 1961) can be applied (Käpernick &

Graichen, 2014). In order to handle state or general constraints, the gradient pro-

jection method can be extended to combine with the augmented Lagrangian method

(Englert, Völz, Mesmer, Rhein, & Graichen, 2019) or project the gradient step onto

a linearization of the constraints (Torrisi, Grammatico, Smith, & Morari, 2018).

Second-order methods for NMPC, such as the sequential quadratic programming

(SQP) method and the interior-point method, solve QP subproblems with linearized

dynamics and constraints at each iteration. Apparently, as proposed in Kouzoupis,

Ferreau, Peyrl, and Diehl (2015) and Kalmari, Backman, and Visala (2015), the idea

of solving these QP subproblems by using first-order methods can be adopted. How-

ever, it should be noted that for convexity-dependent first-order methods, such as

the dual gradient method and ADMM, special care should be taken in the Hessian

matrices to ensure the convexities of the QP subproblems. Hessian approximation

techniques, such as the generalized Gauss-Newton method for nonlinear least-squares

NLPs (Bock, 1983; Houska, Ferreau, & Diehl, 2011b) and the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) (see, e.g., Nocedal and Wright (2006)) method can be

applied to ensure the convexity. Apart from the first-order methods, the particu-

lar banded structures of the subproblems are exploited in Glad and Jonson (1984),

Rao, Wright, and Rawlings (1998), Jørgensen, Rawlings, and Jørgensen (2004), and

Frasch, Sager, and Diehl (2015) such that the search direction can be calculated effi-

ciently. An excellent review of Newton-type methods can be found in Diehl, Ferreau,

and Haverbeke (2009). For seeking a suboptimal solution of the NMPC problem,

Ohtsuka (2004) proposes a Jacobian-free method that traces the solution by contin-

uation. Another approximate method is the real-time iteration scheme (Diehl, Bock,

& Schlöder, 2005), which can be seen as the SQP method with only one QP iteration

performed each sampling instant. A comprehensive review of suboptimal solution

methods can be found in Wolf and Marquardt (2016).

1.3 Outline and contributions

This thesis presents fast numerical optimization algorithms for both linear MPC and

NMPC. Chapter 2 introduces some preliminaries of numerical optimization and for-

mulates the MPC problem. Chapter 3 presents a fast optimization method for linear
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MPC. Chapters 4, 5, and 6 present fast optimization methods and an efficient imple-

mentation for NMPC for different contexts. We conclude the thesis and present an

outlook in Chapter 7. We shortly discuss the main contributions of each chapter as

follows.

Chapter 2 – Model predictive control. This chapter formulates the continuous-

time MPC problem and gives the discretized form of the MPC problem, which is used

throughout the thesis. The discretized MPC problem is obtained by using the so-

called reverse-time discretization method, which leads to a well-structured discretized

MPC problem so that succinct descriptions of the proposed methods in the remaining

chapters can be achieved. Since the inequality constraints in this thesis are trans-

ferred into barrier functions under the framework of the interior-point method, the

basics of numerical optimization and the interior-point method are introduced in this

chapter.

Chapter 3 – Combined first- and second-order method for linear MPC.

This chapter presents a simple iterative method that combines first- and second-order

approaches for linear MPC. Approximate value functions requiring only first-order

derivatives and incorporating fixed second-order information are employed, which

leads to a method that splits the MPC problem into subproblems along the predic-

tion horizon, and only the states and costates (Lagrange multipliers corresponding to

the state equations) are exchanged between consecutive subproblems during iteration.

The convergence is guaranteed under the framework of the majorization-minimization

principle. For efficient implementation, practical details are discussed, and the per-

formance is assessed against both first- and second-order methods with two numerical

examples. The results indicate that the proposed method can obtain a moderately

accurate solution with a small number of cheap iterations.

Chapter 4 – Highly parallelizable Newton-type method for NMPC –

Algorithm. This chapter presents a highly parallelizable Newton-type method for

NMPC by exploiting the particular structure of the Karush-Kuhn-Tucker (KKT) con-

ditions. These equations are approximately decoupled into single-step subproblems

along the prediction horizon for parallelization. The coupling variable of each sub-

problem is approximated to its optimal value using a simple, efficient, and effective

method at each iteration. The rate of convergence of the proposed method is proved

to be superlinear under mild conditions. Numerical simulation of using the proposed

method to control a quadrotor shows that the proposed method is highly paralleliz-

able and converges in only a few iterations, even to a high accuracy. Comparison
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1.3. Outline and contributions

of the proposed method’s performance with that of several state-of-the-art methods

shows that it is faster.

Chapter 5 – Highly parallelizable Newton-type method for NMPC –

Implementation. The highly parallelizable method for NMPC introduced in Chap-

ter 4 does not specify a particular method to handle the inequality constraints. This

chapter presents an efficient implementation, which is called ParNMPC, of the highly

parallelizable method under the framework of the primal-dual interior-point method.

The implementation details of ParNMPC are introduced, including a framework that

unifies search direction calculation done using Newton’s method and the parallel

method, line search methods for guaranteeing convergence, and a warm start strategy

for the interior-point method. To assess the performance of ParNMPC under different

configurations, three experiments including a closed-loop simulation of a quadrotor,

a real-world control example of a laboratory helicopter, and a closed-loop simulation

of a robot manipulator are shown. These experiments show the effectiveness and

efficiency of ParNMPC both in serial and parallel.

Chapter 6 – Sparsity-exploiting Jacobi method for NMPC. This chapter

presents an efficient Jacobi optimization method for NMPC by exploiting the tem-

poral sparsity of the KKT matrix and lower-layer problem-dependent sparsity. The

NMPC problem is solved by the Jacobi method, in which the temporal couplings of

either the state or costate (Lagrange multiplier corresponding to the state equation)

equations are ignored so that the lower-layer sparsity is preserved. Convergence anal-

ysis indicates that the convergence of the proposed method is related to the prediction

horizon and regularization. To demonstrate its efficiency of the proposed method, we

concentrate on the NMPC control of partial differential equation (PDE) systems.

The NMPC problem to be solved is formulated by discretizing the PDE system in

space and time by using the finite difference method, which results in a large-scale

and sparse problem. A lower-layer Jacobi method is proposed to exploit the lower-

layer sparsity (spatial sparsity of the PDE-constrained NMPC problem). Numerical

experiment of controlling a heat transfer process shows that the proposed method is

two orders of magnitude faster than the conventional structure-exploiting Newton’s

method.

Appendix A – Explicitly discretized MPC. The MPC problem used through-

out the thesis is formulated on the basis of the so-called reverse-time discretization

method, which is an implicit discretization method. In this appendix, we discuss the

extensions of the proposed methods in the previous chapters to the MPC problem

based on the explicit discretization method.
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Chapter 2

Model Predictive Control

Numerical optimization plays a central role on finding the optimal control input

in the context of model predictive control (MPC). In this chapter, we provide a

basic introduction to optimization and formulate the discrete-time MPC problem

used throughout the thesis.

This chapter is organized as follows. Section 2.1 introduces the basics of numer-

ical optimization and the interior-point method. In Section 2.2, the continuous-time

MPC problem is formulated, a particular discretization method called the reverse-

time discretization method is introduced, and the discretized MPC problem is given.

2.1 Preliminaries

2.1.1 Numerical optimization

Consider the following optimization problem:

min
x

l(x)

s.t. c(x) = 0,

g(x) ≥ 0,

(2.1)

where x ∈ Rn is the optimization variable, l : Rn → R is the cost function to be

minimized, c : Rn → Rm is the equality constraint function, and g : Rn → Rw is the

inequality constraint function.

To characterize the optimization problem (2.1), we have the following definitions:

Definition 2.1. (Feasible set). The feasible set Ω is defined as the set of points x

that satisfy the constraints; that is,

Ω := {x|c(x) = 0, g(x) ≥ 0} . (2.2)
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Definition 2.2. (Feasibility). The optimization problem (2.1) is said to be feasible if

the feasible set Ω is not empty.

Definition 2.3. (Strict feasibility). The optimization problem (2.1) is said to be

strictly feasible if the set {x|c(x) = 0, g(x) > 0} is not empty.

Definition 2.4. (Local minimum). The point x∗ is said to be a local minimum of

(2.1) if x∗ ∈ Ω and there exists a neighborhood O of x∗ such that l(x∗) ≤ l(x) holds

for any x ∈ O ∩ Ω.

Definition 2.5. (Global minimum). The point x∗ is said to be a global minimum of

(2.1) if x∗ ∈ Ω and l(x∗) ≤ l(x) holds for any x ∈ Ω.

Definition 2.6. (Active set). The active set A(x) at any feasible x ∈ Ω is defined as

A(x) :=
{
i|g(i)(x) = 0

}
.

Definition 2.7. (Linear independence constraint qualification). Given a point x ∈ Ω,

the linear independence constraint qualification (LICQ) holds at x if the set of the

constraint gradients{
∇c(i)(x), i ∈ {1, · · · ,m}

}
∪
{
∇g(i)(x), i ∈ A(x)

}
is linearly independent.

Definition 2.8. (Convex function). A scalar-valued function, e.g., l(x), is said to be

convex if

l(θx1 + (1− θ)x2) ≤ θl(x1) + (1− θ)l(x2)

holds for any θ ∈ [0, 1] and points x1 and x2 in the domain of definition of l.

Definition 2.9. (Convex set). The set Ω is said to be convex if

θx1 + (1− θ)x2 ∈ Ω

holds for any θ ∈ [0, 1] and points x1 ∈ Ω and x2 ∈ Ω.

Definition 2.10. (Convex optimization problem). The optimization problem (2.1) is

said to be convex if the cost function l(x) is a convex function and the feasible set Ω

in (2.2) is a convex set.

The optimization problem (2.1) encodes a large class of optimization problems,

which can be categorized from the types of cost and constraints as follows.
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- Linear program (LP). LPs have a linear cost function and linear equality and

inequality constraints as follows.

min
x

vTx

s.t. Ax = a,

Bx ≥ b.

LPs are convex optimization problems.

- Quadratic programs (QP). QPs have a quadratic cost function and linear equal-

ity and inequality constraints as follows.

min
x
‖x‖2

P + vTx

s.t. Ax = a,

Bx ≥ b,

where P = P T . QPs are convex optimization problems if P ≥ 0. The dis-

cretized linear MPC problems are essentially QPs, and their convexities can be

guaranteed when the weighting matrices are chosen to be positive-semidefinite.

- Nonlinear program (NLP). NLPs are general optimization problems, e.g., with

nonlinear constraints. Nonlinear MPC (NMPC) problems under the constraints

of nonlinear dynamics are examples of NLPs.

Theorem 2.11. (Karush-Kuhn-Tucker conditions). Consider the optimization prob-

lem defined in (2.1). Assume that the optimization problem (2.1) is feasible, that x∗

is a local minimum of (2.1), that the functions l, c, and g are continuously differen-

tiable, and that the LICQ holds at x∗. Then, there exist unique vectors λ∗ ∈ Rm and

z∗ ∈ Rw such that the following conditions hold:

c(x∗) = 0, (2.3a)

∇l(x∗)T +∇c(x∗)Tλ∗ −∇g(x∗)T z∗ = 0, (2.3b)

z∗(i)g(i)(x
∗) = 0, i = {1, · · · , w}, (2.3c)

g(x∗) ≥ 0, (2.3d)

z∗ ≥ 0. (2.3e)

The conditions (2.3) are known as the Karush-Kuhn-Tucker (KKT) conditions,

which are the first-order necessary conditions for optimality. The vectors λ and z

are known as the Lagrange multipliers corresponding to the constraints c(x) = 0 and

g(x) ≥ 0, respectively, and the LICQ guarantees the uniqueness of the optimal La-

grange multipliers at x∗. Note that the KKT conditions are the equivalent conditions

(Boyd & Vandenberghe, 2004) for the global minimum if (2.1) is convex.
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2.1.2 Interior-point method

In this section, we introduce the interior-point method to solve the optimization

problem (2.1) and show the updates of the optimization variable and the Lagrange

multipliers. Since the interior-point method depends on second-order derivatives and

introduces a barrier function for the inequality constraint, we make the following

assumptions:

Assumption 2.1. The functions l, c, and g are twice continuously differentiable.

Assumption 2.2. The optimization problem (2.1) is strictly feasible.

Moreover, we make the following assumption so that the LICQ holds in the

interior-point method:

Assumption 2.3. The set of the constraint gradients
{
∇c(i)(x), i ∈ {1, · · · ,m}

}
is

linearly independent.

In the interior-point method, the inequality constraint g(x) ≥ 0 is transferred into

a logarithmic barrier function added to the cost. That is, we obtain the following

relaxed optimization problem:

min
x,s

l(x)− ρ
w∑
i=1

ln s(j)

s.t. c(x) = 0,

g(x) = s,

(2.4)

where ρ > 0 is the barrier parameter.

We denote λ ∈ Rm and z ∈ Rw as the Lagrange multipliers corresponding to the

constraints c(x) = 0 and g(x) = s, respectively. Let L(λ, z, x) be the Lagrangian

defined by

L(λ, z, x) := l(x) + λT c(x)− zTg(x).

The KKT conditions for (2.4) are

c(x) = 0, (2.5a)

s− g(x) = 0, (2.5b)

∇xL(λ, z, x)T = 0, (2.5c)

−ρS−1e+ z = 0, (2.5d)

where S := diag(s(1), · · · , s(w)) and e := [1, · · · , 1]. Note that (2.5) differs from (2.3)

only in (2.3c) and (2.5d). That is, the condition (2.3c) is relaxed by a positive value
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ρ in (2.5d). It can be easily checked from Assumption 2.3 that the LICQ holds at

(x∗, s∗), which indicates the (existence and) uniqueness of the Lagrange multipliers

λ∗ and z∗.

Note that the strategy of decreasing the barrier parameter ρ during iteration in

order to obtain an accurate solution is out the scope of this introduction. Next, we

only show how an iteration is performed in the primal and primal-dual interior-point

method with a fixed barrier parameter ρ.

Primal interior-point method

The primal interior-point method is to directly apply Newton’s method to solve the

KKT conditions (2.5d). The search direction (∆λ,∆z,∆x,∆s) is calculated by solv-

ing
0 0 ∇c(x) 0
0 0 −∇g(x) I

∇c(x)T −∇g(x)T ∇2
xxL(λ, z, x) 0

0 I 0 Σ




∆λ
∆z
∆x
∆s

 =


c(x)
s− g(x)
∇xL(λ, z, x)T

−ρS−1e+ z

 , (2.6)

where

Σ = ρS−2. (2.7)

Primal-dual interior-point method

The primal-dual interior-point method also applies Newton’s method to solve the

KKT conditions (2.5), however, with the condition (2.5d) replaced by

−ρe+ Sz = 0.

The search direction (∆λ,∆z,∆x,∆s) is calculated by solving
0 0 ∇c(x) 0
0 0 −∇g(x) I

∇c(x)T −∇g(x)T ∇2
xxL(λ, z, x) 0

0 S 0 Z




∆λ
∆z
∆x
∆s

 =


c(x)
s− g(x)
∇xL(λ, z, x)T

−ρe+ Sz

 , (2.8)

where and Z := diag(z(1), · · · , z(w)). By rewriting (2.8) into the symmetric form, we

obtain
0 0 ∇c(x) 0
0 0 −∇g(x) I

∇c(x)T −∇g(x)T ∇2
xxL(λ, z, x) 0

0 I 0 Σ




∆λ
∆z
∆x
∆s

 =


c(x)
s− g(x)
∇xL(λ, z, x)T

−ρS−1e+ z

 , (2.9)
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where

Σ = S−1Z. (2.10)

As can be seen from (2.6) and (2.9), the search direction calculation in the primal

interior-point method differs from that of the primal-dual method only in Σ.

After the search direction (∆λ,∆z,∆x,∆s) is calculated by using either the primal

method or the primal-dual method, the new iterate (λ+, z+, x+, s+) is computed by

(λ+, x+, s+) = (λ, x, s)− αs(∆λ,∆x,∆s),

and

z+ = z − αz∆z,

where αs ∈ (0, αmax
s ] and αz ∈ (0, αmax

z ] are the step sizes, which are determined by

line search methods, such as the merit-function-based line search method and the

filter line search method. Here, αmax
s and αmax

z are the maximum admissible step

sizes obtained by using the fraction-to-the-boundary rule (Nocedal & Wright, 2006):

αmax
s = max {α ∈ (0, 1] : s− α∆s ≥ (1− τ)s}

and

αmax
z = max {α ∈ (0, 1] : z − α∆z ≥ (1− τ)z} ,

where the fraction-to-the-boundary parameter τ is chosen to be τ = min{τmin, ρ}
with τmin = 0.005 (typical value).

2.2 MPC problem

2.2.1 Continuous-time MPC

Consider a continuous-time (nonlinear) system governed by the following differential

equation:

ẋ(t) = f (u(t), x(t)) , (2.11)

where u ∈ Rnu is the control input and x ∈ Rnx is the system state. The MPC

problem for (2.11) is formulated on the basis of the following finite-horizon optimal

control problem:

min
x(·),u(·)

∫ T

0

l (u(τ), x(τ)) dτ + ϕ (x(T ))

s.t. x(0) = x̄0,

ẋ(τ) = f (u(τ), x(τ)) , τ ∈ [0, T ],

C(u(τ), x(τ)) = 0, τ ∈ [0, T ],

G(u(τ), x(τ)) ≥ 0, τ ∈ [0, T ],

(2.12)

15



Chapter 2. Model Predictive Control

where x̄0 is the current state or initial state, l : Rnu × Rnx → R is the stage cost

function, ϕ : Rnx → R is the terminal cost function, C : Rnu × Rnx → Rnµ is the

equality path constraint function, and G : Rnu × Rnx → Rnz is the inequality path

constraint function.

2.2.2 Discretized MPC

MPC based on the direct approach (Stryk & Bulirsch, 1992) requires the continuous-

time system (2.11) to be discretized. Generally, different discretization methods lead

to different discretization accuracies, computational costs, and problem structures.

In this thesis, we consider a special discretization method that discretizes (2.11) into

x− + F(u, x) = 0, (2.13)

where x− is the predecessor state. The discretization method is herein called the

“reverse-time discretization method,” which is a class of implicit discretization meth-

ods. The reverse-time discretization method comes from the fact that the prede-

cessor state x− can be directly obtained from x. For a given explicit discretiza-

tion method, its reverse-time variation involves simply applying the discretization

backward in time, i.e., with a negative step size. For example, the backward Euler

method with xi = xi−1 + f(ui, xi)∆τ is a reverse-time discretization method with

F(ui, xi) = f(ui, xi)∆τ − xi, where ∆τ is the discretization step size. It corresponds

to the forward Euler method performed backward in time. Any explicit integration

method, e.g., the Runge-Kutta method, can be used backward in time to result in

the reverse-time discretization. It should be noted that in solving the MPC problem,

the state integration is still propagated forward in time; thus, stable dynamics stay

stable when the discretization accuracy is high.

Regarding the discretization accuracy, we show in the following proposition that

the discretization accuracy of an explicit method is preserved in its reverse-time vari-

ation.

Proposition 2.12. Let y(t) ∈ Rm and consider the ordinary differential equation

ẏ(t) = f(y(t), t).

Let h be the discretization step size and the differential equation be discretized by using

an explicit discretization method with a local truncation error of O(|h|n):

Y (t+ h) = F (y(t), h, t),
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that is, Y (t+ h) is the approximation to y(t+ h) satisfying

‖Y (t+ h)− y(t+ h)‖ = O(|h|n).

Let Ỹ (t) be obtained by using the corresponding reverse-time discretization method,

i.e.,

y(t− h) = F (Ỹ (t),−h, t).

Then, the local truncation error of the reverse-time discretization method is also

O(|h|n), that is,

‖Ỹ (t)− y(t)‖ = O(|h|n). (2.14)

Proof. Without loss of generality, we assume h > 0. It can also be obtained that

‖y(t− h)− Y (t− h)‖ = O(hn), (2.15)

where

Y (t− h) = F (y(t),−h, t).

According to the mean value theorem for vector-valued functions (McLeod, 1965),

the following equation holds:

F (Ỹ (t),−h, t)− F (y(t),−h, t) =
n∑
i=1

λi∇yF (ξi,−h, t)
(
Ỹ (t)− y(t)

)
, (2.16)

where ξi ∈ [y(t), Y (t)], λi ≥ 0, and
∑n

i=1 λi = 1. Since y(t− h) = F (Ỹ (t),−h, t) and

Y (t− h) = F (y(t),−h, t), by taking norms of both sides, we obtain

‖Ỹ (t)− y(t)‖ ≤

∥∥∥∥∥∥
(

n∑
i=1

λi∇yF (ξi,−h, t)

)−1
∥∥∥∥∥∥ ‖(y(t− h)− Y (t− h))‖ .

The result (2.14) then follows from (2.15) and the fact that ∇yF (ξi,−h, t)→ I when

h→ 0.

By using the reverse-time discretization method, we discretize the continuous-time

MPC problem (2.12) into the following N -stage MPC problem:

min
xi,ui

N∑
i=1

T

N
l(ui, xi) + ϕ(xN)

s.t. x0 = x̄0,

xi−1 + F(ui, xi) = 0, i ∈ {1, · · · , N},

C(ui, xi) = 0, i ∈ {1, · · · , N},

G(ui, xi) ≥ 0, i ∈ {1, · · · , N},

(2.17)
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where N is the number of the discretization grid points in the prediction horizon. By

introducing slack variables si, we can transfer (2.17) into

min
xi,ui,si

N∑
i=1

T

N
l(ui, xi) + ϕ(xN) (2.18a)

s.t. x0 = x̄0, (2.18b)

xi−1 + F(ui, xi) = 0, i ∈ {1, · · · , N}, (2.18c)

C(ui, xi) = 0, i ∈ {1, · · · , N}, (2.18d)

G(ui, xi)− si = 0, i ∈ {1, · · · , N}, (2.18e)

si ≥ 0, i ∈ {1, · · · , N}. (2.18f)

A more general and structured form of (2.18) can be expressed as

min
xi,ui

N∑
i=1

Li(ui, xi)

s.t. x0 = x̄0,

xi−1 + Fi(ui, xi) = 0, i ∈ {1, · · · , N},

Ci(ui, xi) = 0, i ∈ {1, · · · , N},

Gi(ui, xi) ≥ 0, i ∈ {1, · · · , N},

(2.19)

where the slack variables are combined into the input vector u, the equality constraints

(2.18d) and (2.18e) form the new equality constraints Ci(ui, xi) = 0, i ∈ {1, · · · , N},
and the problem is made time-dependent to deal with, e.g., time-dependent dynamics

and reference. Moreover, we assume thatGi(u, x) ≥ 0 is a general polytopic constraint

on u and x, that is, G can be expressed as Gi(u, x) = Diu + Eix + bi, where Di and

Ei are matrices and bi is a vector. For the following reasons, we formulate the MPC

problem with a polytopic inequality constraint. First, the polytopic constraint can be

satisfied with a backtrack line search, i.e., the fraction-to-the-boundary rule. Second,

polytopic constraints, such as box or softened box constraints, are common in the

context of MPC, and therefore there is no need to introduce slack variables. MPC

problems with nonlinear inequality constraints can be reformulated into the form of

(2.19) by introducing slack input variables.

In order to use the interior-point method to solve the discretized MPC problem

(2.19), which is essentially a NLP, we make the following assumptions:

Assumption 2.4. The functions Li, Fi, Ci, and Gi, i ∈ {1, · · · , N}, are twice

continuously differentiable with respect to u and x.
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2.2. MPC problem

Assumption 2.5. The discretized MPC problem (2.19) is strictly feasible.

Assumption 2.6. The LICQ holds at the optimal solution for the discretized MPC

problem (2.19).

Remark 2.1. When the interior-point method is referred in the remaining chapters,

it is not to directly apply the interior-point method introduced in Section 2.1.2 to solve

the discretized MPC problem (2.19). Specifically, the inequalities are transferred into

barrier functions added to the cost, the primal or primal-dual interior-point method

in the remaining chapters means that the matrix Σ is calculated by (2.7) or (2.10),

but the search direction is not calculated by Newton’s method.
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Chapter 3

Combined First- and Second-Order
Method for Linear MPC

3.1 Introduction

Iterative methods for linear model predictive control (MPC) can be categorized into

first- and second-order methods. Second-order methods such as the interior-point

method and the active-set method require solving a linear equation at each iteration.

First-order methods such as Nesterov’s fast gradient method (Nesterov, 1983) and

the operator splitting methods (Douglas & Rachford, 1956) perform cheap iterations

that mainly consist of matrix-vector multiplications or require only first-order in-

formation. Compared with second-order methods, first-order methods have cheaper

computational costs per iteration, however, with slower rates of convergence; hence,

they require more iterations. Therefore, iterative methods suffer from the trade-off

between the computational cost per iteration and the rate of convergence or, conse-

quently, number of iterations (NOIs).

To tackle this, we propose an iterative method that requires only the first-order

derivatives of value functions and incorporates fixed second-order information to speed

up convergence. The linear MPC problem is first relaxed by using the interior-point

method. Iterations for solving the relaxed MPC problem are performed on the basis

of its approximate value function, where the value function is partially linearized and

regularized with fixed second-order derivatives. Convergence is guaranteed by choos-

ing an appropriate regularization term under the majorization-minimization principle

(Ortega & Rheinboldt, 1970). This method is herein called the “iterative horizon-

splitting method.” Moreover, the accuracy of the solution obtained by using the

iterative horizon-splitting method can be further improved with solution polishing.

For efficient implementation, we discuss practical details such as the selection of the

20



3.2. Problem statement

regularization parameter, limiting the NOIs, and the barrier strategy. The perfor-

mance of the practical implementation, without showing its convergence theoretically,

is assessed against both first- and second-order methods with two numerical examples.

This chapter is organized as follows. The MPC problem and its relaxed form under

the interior-point method are presented in Section 3.2. The iterative horizon-splitting

method and its convergence are shown in Section 3.3. The polishing procedure is

introduced in Section 3.4. Some practical implementation details are discussed in

Section 3.5. The numerical experiments are described and discussed in Section 3.6.

The key points are summarized, and future work is mentioned in Section 3.7.

3.2 Problem statement

In this chapter, we consider the linear form of (2.18), i.e., the following linear MPC

problem:

min
X,U

N∑
i=1

Li(xi, ui)

s.t. x0 = x̄0,

xi−1 + Axi +Bui = 0, ∀i ∈ {1, · · · , N},

Dxi + Eui + b ≥ 0, ∀i ∈ {1, · · · , N}.

(3.1)

Here, x ∈ Rnx is the state, u ∈ Rnu is the control input, x̄0 is the initial state,

U = (u1, · · · , uN) and X = (x0, · · · , xN) are the sequences of the control inputs and

states along the prediction horizon N , respectively, and Li(x, u) : Rnx × Rnu → R is

the stage cost function defined by

Li(x, u) :=
1

2

(
‖x− xri‖2

Qi
+ ‖u− uri‖2

Ri

)
with weighting matrices Qi > 0 and Ri > 0, where xri and uri are the state and input

references, respectively. Each inequality constraint has a dimensionality of nc.

We adopt the interior-point method to relax the MPC problem (3.1) by transfer-

ring the inequality constraint into a logarithmic barrier function added to the cost.

We obtain the following relaxed optimal control problem (OCP) with a barrier pa-

rameter ρ > 0:

min
X,U

N∑
i=1

{Li(xi, ui) + Φ(xi, ui, ρ)}

s.t. x0 = x̄0,

xi−1 + Axi +Bui = 0, ∀i ∈ {1, · · · , N},

(3.2)
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where Φ(x, u, ρ) : Rnx × Rnu × R≥0 → R is the barrier cost function defined as

Φ(x, u, ρ) := −ρ
nc∑
j=1

log
(
C(j)x+D(j)u+ c(j)

)
. (3.3)

3.3 Iterative horizon-splitting method

In this section, we derive a method that depends on the approximate value functions

of OCP (3.2) and analyze its convergence. We first give some definitions including

the value functions in the following subsection.

3.3.1 Preparations

To guarantee the existence of a feasible solution, we define the set of admissible states

as follows.

Definition 3.1. For i ∈ {1, · · · , N}, let Ai−1 ⊂ Rnx be the set of admissible xi−1

defined as

Ai−1 := {xi−1 : ∃xj, uj s.t. Dxj + Euj + b > 0,

xj−1 + Axj +Buj = 0, ∀j ∈ {i, · · · , N}}.

Definition 3.2. For i ∈ {1, · · · , N}, we define the i-th value function VN−(i−1)(xi−1, ρ) :

Ai−1 × R≥0 → R of the OCP (3.2) as

VN−(i−1)(xi−1, ρ) := min
xi,ui
Li(xi, ui, ρ)

s.t. xi−1 + Axi +Bui = 0,
(3.4)

where

Li(x, u, ρ) := Li(x, u) + Φ(x, u, ρ) + VN−i(x, ρ) (3.5)

is the cost function with V0(x, ρ) = 0. Let λi ∈ Rnx be the Lagrange multiplier

(costate) corresponding to the equality constraint in (3.4). We define SN−(i−1)(xi−1, ρ) :

Ai−1 × R≥0 → Rnx × Rnu × Rnx as the mapping that recovers the optimal solutions

denoted by x∗i , u
∗
i , and λ∗i for given values of xi−1 and ρ.

Remark 3.1. The value function VN−(i−1)(xi−1, ρ) is strongly convex in xi−1 ∈ Ai−1

for ρ ∈ R≥0, ∀i ∈ {1, · · · , N}.
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3.3. Iterative horizon-splitting method

Definition 3.3. We denote the regularized quadratic expansion of the barrier function

(3.3) at the k-th iteration by Φk(x, u, ρ, β) : Rnx × Rnu × R≥0 × (0, 1]→ R, that is,

Φk(x, u, ρ, β) := Φ(xk, uk, ρ) +

[
x− xk
u− uk

]T [ ∇T
xΦ(xk, uk, ρ)
∇T
uΦ(xk, uk, ρ)

]
+

1

2β

∥∥∥∥[ x− xku− uk
]∥∥∥∥2

HΦ(xk,uk,ρ)

,

where HΦ(xk, uk, ρ) denotes the Hessian matrix of Φ(x, u, ρ) with respect to (x, u)

evaluated at (xk, uk, ρ).

Definition 3.4. For i ∈ {1, · · · , N}, we denote the i-th primal regularization of the

linearized value function at the k-th iteration by V̂ k
N−(i−1)(xi−1, ρ,Λi) : Ai−1 × R≥0 ×

Rnx×nx → R, that is,

V̂ k
N−(i−1)(xi−1, ρ,Λi) := VN−(i−1)(x

k
i−1, ρ)+∇xi−1

VN−(i−1)(x
k
i−1, ρ)(xi−1 − xki−1)

+
1

2
‖xi−1 − xki−1‖2

Λi
.

(3.6)

Here, the regularization matrix satisfies Λi > 0.

3.3.2 Iterative horizon-splitting method

Under Definition 3.2, the relaxed problem (3.2) translates into calculating SN(x̄0, ρ),

i.e., solving the following problem:

min
x1,u1

{L1(x1, u1) + Φ(x1, u1, ρ) + VN−1(x1, ρ)}

s.t. x̄0 + Ax1 +Bu1 = 0.
(3.7)

Solving (3.7) with Newton’s method first approximates the cost function with its

second-order Taylor series. Then, the resulting quadratic program (QP) is solved

at each iteration. Calculating the second-order derivative of the value function

VN−1(x1, ρ) leads to a Riccati recursion, which has a computational complexity of

O(N(nx+nu)
3). Alternatively, when only the first-order derivative is involved during

iteration, the proximal regularization of the linearized value function, i.e.,

VN−1(xk1, ρ) +∇x1VN−1(xk1, ρ)(x1 − xk1) +
1

2γ
‖x1 − xk1‖2

2, (3.8)

is used. Here, the regularization matrix is simply an identity matrix scaled by a factor

of 1/γ, where γ > 0 is chosen to be sufficiently small. This method, which is based

on only the first-order derivative, is less computationally expensive than Newton’s
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method when performing one iteration. However, the regularization term does not

take the dynamics and cost function into consideration and therefore has a slower

rate of convergence; thus it needs more iterations.

We propose solving the following approximate problem iteratively:

min
x1,u1

{
L1(x1, u1) + Φk(x1, u1, ρ, β) + V̂ k

N−1(x1, ρ,Λ2)
}

s.t. x̄0 + Ax1 +Bu1 = 0,
(3.9)

where Φk and V̂ k
N−1 are defined in Definitions 3.3 and 3.4, respectively. As can be seen

from the expression of V̂ k
N−1(x1, ρ,Λ2) in (3.6), we choose the regularization matrix as

a general constant matrix Λ2 instead of 1/γI. The choice of Λ2 is discussed later in

Section 3.5.1 to account for the dynamics and cost function, and Λ2 therefore serves

as second-order information.

Note that the costate λ can be interpreted as the “sensitivity” of the value function

with respect to the current state (see, e.g., Nocedal and Wright (2006)), that is,

∇T
xi−1

VN−(i−1)(x
k
i−1, ρ) = λ∗i (x

k
i−1, ρ)

holds. Solving problem (3.9) requires the optimal costate λ∗2(xk1, ρ), which is obtained

from SN−1(xk1, ρ). In calculating SN−1(xk1, ρ), the same iterative method is applied

by solving a series of approximate problems as in (3.9), which requires λ∗3(x2, ρ) for

some given x2. Recursively, the approximation procedure is conducted until the

last problem, i.e., calculating S1(xN−1, ρ). This leads to a method with which only

approximate problems are needed to be solved. To simplify notation, we define the

approximate problem as follows.

Definition 3.5. For given values of β ∈ (0, 1] and Λi+1 > 0, an optimization problem

Pki , i ∈ {1, · · · , N}, which is parametric to xi−1, λi+1, and ρ, is defined as

Pki (xi−1, λi+1, ρ) : min
xi,ui
L̂ki (xi, ui, λi+1, ρ)

s.t. xi−1 + Axi +Bui = 0,
(3.10)

where

L̂ki (x, u, λ, ρ) :=Li(x, u) + Φk(x, u, ρ, β)

+ VN−i(x
k, ρ) + (x− xk)Tλ+

1

2
‖x− xk‖2

Λi+1

(3.11)

is the cost function.
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3.3. Iterative horizon-splitting method

Remark 3.2. The approximate problem (3.10) can be seen as a single-step OCP that

approximates the optimization problem in (3.4) and is essentially a QP, which can be

solved efficiently with a computational complexity of O(n3
u) by condensing to obtain

ui and an extra complexity of O(nxnu + n2
x) to recover xi and λi, i.e., O(n3

u + n2
x) in

total.

The resulting recursion for calculating SN−(i−1)(xi−1, ρ) is summarized in Algo-

rithm 3.1. Here, we denote the operation (xk+1
i , uk+1

i , λk+1
i ) ← Pki (xi−1, λ

k+1
i+1 , ρ) as

solving Pki . To simply illustrate the concept, we assume that the iterates always stay

in the interior of the space defined by the inequality constraints. This method splits

the OCP (3.2) into simple subproblems (3.10) along the prediction horizon, and only

the states and costates are shared between consecutive subproblems during iteration.

We herein call this the “iterative horizon-splitting (IHS) method.” IHS can be seen as

a combination of first- and second-order methods either from the fact that the first-

order iteration is incorporated with fixed second-order information Λ or from the fact

that each subproblem is solved with Newton’s method while the whole problem is

solved by exchanging only first-order information (states and costates). Notice that

the inner iteration of IHS involves calling itself for the next time step until computing

S1(xN−1, ρ), which indicates that IHS is a recursive method. To speed up each layer

of the recursion, the initial guesses x0
i and u0

i are warm started from their previous

optimal solutions.

Algorithm 3.1 IHS for (3.4) (xi, ui, λi)← SN−(i−1)(xi−1, ρ)

Input: (xi−1, ρ)
Output: (xi, ui, λi)
1: Initialize: k ← 0; initial guesses x0

i and u0
i satisfying Dx0

i + Eu0
i + b > 0

2: repeat:
3: (−,−, λk+1

i+1 )← SN−i(xki , ρ)
4: (xk+1

i , uk+1
i , λk+1

i )← Pki (xi−1, λ
k+1
i+1 , ρ)

5: k ← k + 1
6: until convergence criterion is met
7: (xi, ui, λi)← (xki , u

k
i , λ

k
i )

We then show that the steady iterates of IHS correspond to the solutions of

SN−(i−1)(xi−1, ρ) in the following lemma.

Lemma 3.1. For given xi−1 ∈ Ai−1 6= ∅ and ρ > 0, let {xki } and {uki } be the

iterates generated by IHS in Algorithm 3.1. If xki = xk+1
i and uki = uk+1

i hold, then

(xk+1
i , uk+1

i , λk+1
i ) = SN−(i−1)(xi−1, ρ).

25



Chapter 3. Combined First- and Second-Order Method for Linear MPC

Proof. Since xk+1
i and uk+1

i are the optimal solutions to the optimization problem Pki ,

the Karush-Kuhn-Tucker (KKT) conditions for Pki are stated as follows.

∇T
xi
L̂ki (xk+1

i , uk+1
i , λk+1

i+1 , ρ) + ATλk+1
i = 0 (3.12)

∇T
ui
L̂ki (xk+1

i , uk+1
i , λk+1

i+1 , ρ) +BTλk+1
i = 0 (3.13)

xi−1 + Axk+1
i +Buk+1

i = 0 (3.14)

Since λk+1
i+1 is recovered from VN−i(x

k
i , ρ), or equivalently, VN−i(x

k+1
i , ρ), we have

λk+1
i+1 = ∇T

xi
VN−i(x

k+1
i , ρ). (3.15)

Substituting (3.15) into (3.12) and (3.13), together with xki = xk+1
i and uki = uk+1

i ,

we obtain

∇T
xi
Li(x

k+1
i , uk+1

i ) +∇T
xi

Φ(xk+1
i , uk+1

i , ρ) +∇T
xi
VN−i(x

k+1
i , ρ) + ATλk+1

i = 0, (3.16)

and

∇T
ui
Li(x

k+1
i , uk+1

i ) +∇T
ui

Φ(xk+1
i , uk+1

i , ρ) +BTλk+1
i = 0. (3.17)

Note that equations (3.14), (3.16), and (3.17) correspond to the KKT conditions

for the optimization problem in (3.4), which is strongly convex. The result then

follows.

We show in the next subsection that the convergence of IHS can be guaranteed

by the selections of β and Λi+1.

3.3.3 Convergence

In this subsection, the convergence of IHS is analyzed under the framework of the

majorization-minimization principle, which was originally proposed by Ortega and

Rheinboldt (Ortega & Rheinboldt, 1970). The majorization-minimization principle

gives a guide to designing algorithms for convex optimization problems with conver-

gence guaranteed. The key idea is to find an approximate cost function that is easy

to be optimized and acts as the upper bound of the original cost function. In IHS,

approximate cost function (3.11) is used rather than the original one (3.5). Therefore,

the tuning parameters β and Λi+1 play an important role in the convergence of IHS.

In the following two lemmas, we show the existence of β and Λi+1, which result in

upper bound functions. The convergence of IHS is then given in Theorem 3.6.
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3.3. Iterative horizon-splitting method

Lemma 3.2. For any x > 0 and y > 0, there exists β ∈ (0, 1] such that − log(y) −
1
y
(x− y) + 1

2βy2 (x− y)2 ≥ − log(x).

Proof. The result follows from the second-order expansion of − log(x) at y.

Lemma 3.3. For a given ρ > 0, there exists Λi+1 > 0 such that V̂ k
N−i(xi, ρ,Λi+1) ≥

VN−i(xi, ρ) for any xi ∈ Ai.

Proof. For each i ∈ {0, · · · , N − 1}, from the fact that VN−i(xi, ρ) is smooth and

strongly convex in xi ∈ Ai for ρ > 0, we have the second-order expansion of VN−i(xi, ρ)

at xki ∈ Ai:

VN−i(xi, ρ) = VN−i(x
k
i , ρ) +∇xiVN−i(x

k
i , ρ)(xi − xki ) +

1

2
‖xi − xki ‖2

HVN−i (t,ρ), (3.18)

where HVN−i(t, ρ) > 0 is the Hessian matrix of VN−i(xi, ρ) with respect to xi evaluated

at (txi + (1− t)xki , ρ) for some t ∈ [0, 1]. Moreover, it can be known that HVN−i(t, ρ)

has finite entries for a given ρ > 0. Comparing the expression of V̂ k
N−i(xi, ρ,Λi+1)

with (3.18) and the finite property of HVN−i(t, ρ), the result follows if Λi+1 is selected

such that Λi+1 −HVN−i(t, ρ) ≥ 0.

Theorem 3.6. For given xi−1 ∈ Ai−1 6= ∅ and ρ > 0, let {xki } and {uki } be the

iterates generated by IHS in Algorithm 3.1. Then, there exist β ∈ (0, 1] and Λi+1 > 0

such that {xki } and {uki } converge with the descent cost

Li(xk+1
i , uk+1

i , ρ) ≤ Li(xki , uki , ρ) (3.19)

while satisfying xi−1 +Axki +Buki = 0 and xi−1 +Axk+1
i +Buk+1

i = 0 for k = 1, 2, · · · ,
and the equality holds only if xki = xk+1

i = x∗i and uki = uk+1
i = u∗i .

Proof. Since xki and uki are the optimal solutions to Pki and Ai−1 6= ∅, the constraint

xi−1 + Axki +Buki = 0 is satisfied inherently for k = 1, 2, · · · .
According to Lemma 3.2, we choose β ∈ (0, 1] such that

Φk(xi, ui, ρ, β) ≥ Φ(xi, ui, ρ). (3.20)

In Algorithm 3.1, since λk+1
i+1 is recovered from VN−i(x

k
i , ρ), λk+1

i+1 = λ∗i+1(xki , ρ) =

∇T
xi
VN−i(x

k
i , ρ) holds. Then, the summation of the last three terms of L̂ki (xi, ui, λk+1

i+1 , ρ)

in (3.11) satisfies

VN−i(x
k
i , ρ) + (xi − xki )Tλk+1

i+1 +
1

2
‖xi − xki ‖2

Λi+1
= V̂ k

N−i(xi, ρ,Λi+1).
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From Lemma 3.3, we choose Λi+1 > 0 such that

V̂ k
N−i(xi, ρ,Λi+1) ≥ VN−i(xi, ρ). (3.21)

Together with (3.20) and (3.21), we have

L̂ki (xi, ui, λk+1
i+1 , ρ) ≥ Li(xi, ui, ρ). (3.22)

Substituting xki and uki into both sides of (3.22) yields

L̂ki (xki , uki , λk+1
i+1 , ρ) = Li(xki , uki , ρ). (3.23)

It should be noted that xk+1
i and uk+1

i are the optimal solutions to Pki (xi−1, λ
k+1
i+1 , ρ).

Therefore, we have a descent cost:

L̂ki (xk+1
i , uk+1

i , λk+1
i+1 , ρ) ≤ L̂ki (xki , uki , λk+1

i+1 , ρ), (3.24)

and the equality holds only if xki = xk+1
i and uki = uk+1

i , which indicates optimal

solutions x∗i and u∗i from Lemma 3.1. The conclusion then follows from (3.22), (3.23),

and (3.24).

3.4 Polishing

When β and Λi+1 are chosen so that the convergence of IHS is guaranteed for a

sufficiently small ρ according to Theorem 3.6, IHS behaves like a first-order method

and therefore requires lots of iterations. When ρ > 0 is set to be not too small, a

solution with a low or medium accuracy can be obtained with a limited NOIs. For

this case, we discuss solution polishing in this section.

After obtaining an approximate solution using Algorithm 3.1, we can guess which

constraints are active and solve an optimization problem with only equality con-

straints. Alternatively, we can iteratively polish the solution by applying the IHS

algorithm to the inequality-constrained OCP (3.1).

Similarly to Definitions 3.2, 3.4, and 3.5, we have the following definitions of the

value function for the OCP (3.1), linearized primal regularization, and the subprob-

lem, respectively.

Definition 3.7. For i ∈ {1, · · · , N}, we define the i-th value function V
(AS)
N−(i−1)(xi−1) :

Ai−1 → R of the OCP (3.1) as

V
(AS)
N−(i−1)(xi−1) := min

xi,ui
Li(xi, ui) + V

(AS)
N−i (xi)

s.t. xi−1 + Axi +Bui = 0,

Dxi + Eui + b ≥ 0,

(3.25)
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where V
(AS)

0 (xN) = 0. Here, the superscript “AS” stands for “active set,” which

indicates that the inequality constraints are handled explicitly in (3.25), rather than

being transferred into a barrier function in (3.4). We define S(AS)
N−(i−1)(xi−1) : Ai−1 →

Rnx×Rnu×Rnx as the mapping that recovers the optimal solutions denoted by x
∗(AS)
i ,

u
∗(AS)
i , and λ

∗(AS)
i for a given value of xi−1. Here, λ

(AS)
i is the Lagrange multiplier

corresponding to the dynamic constraint in (3.25). It should be noted that λ
(AS)
i and

λi in the interior-point problem (3.4) generally have different values even when the

same optimal solution has been reached.

Definition 3.8. For i ∈ {1, · · · , N}, we denote the i-th primal regularization of the

linearized value function at the k-th iteration by V̂
k(AS)
N−(i−1)(xi−1,Λi) : Ai−1×Rnx×nx →

R, that is,

V̂
k(AS)
N−(i−1)(xi−1,Λi)

:= V
(AS)
N−(i−1)(x

k
i−1) + (xi−1 − xki−1)Tλ

∗(AS)
i (xki−1) +

1

2
‖xi−1 − xki−1‖2

Λi
,

(3.26)

where Λi > 0 holds, and λ
∗(AS)
i (xki−1) is obtained from S(AS)

N−(i−1)(x
k
i−1).

Definition 3.9. For a given value of Λi+1, an optimization problem Pk(AS)
i , i ∈

{1, · · · , N}, which is parametric to xi−1 and λi+1, is defined as follows.

Pk(AS)
i (xi−1, λi+1) : min

xi,ui
Li(xi, ui) + V

(AS)
N−i (xki ) + (xi − xki )Tλi+1 +

1

2
‖xi − xki ‖2

Λi+1

s.t. xi−1 + Axi +Bui = 0,

Dxi + Eui + b ≥ 0

(3.27)

Likewise, we perform IHS directly on the inequality-constrained problem in Algo-

rithm 3.2, which is also a recursive algorithm.

To show the convergence of Algorithm 3.2, we make an assumption on the quality

of the approximate solution as follows.

Assumption 3.1. The approximate solution obtained by Algorithm 3.1, i.e., x0
i in

Algorithm 3.2, is closed to x∗i such that there is no active set change after the first

iteration when solving Pk(AS)
j , j = i + 1, · · · , N . Meanwhile, we assume that the

constraints in the active set are strongly active.

From the point of view of guessing which constraints are active, Assumption 3.1

guarantees that the active set guess is exactly the optimal active set. It can be

shown similarly to Lemma 3.1 that the optimal solution to the inequality-constrained
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Algorithm 3.2 IHS for (3.25) (x
(AS)
i , u

(AS)
i , λ

(AS)
i )← S(AS)

N−(i−1)(xi−1)

Input: xi−1

Output: (x
(AS)
i , u

(AS)
i , λ

(AS)
i )

1: Initialize: k ← 0; x0
i and u0

i coming from the results returned by
Algorithm 3.1

2: repeat:
3: (−,−, λk+1(AS)

i+1 )← S(AS)
N−i (x

k
i )

4: (xk+1
i , uk+1

i , λ
k+1(AS)
i )← Pk(AS)

i (xi−1, λ
k+1(AS)
i+1 )

5: k ← k + 1
6: until convergence criterion is met
7: (x

(AS)
i , u

(AS)
i , λ

(AS)
i )← (xki , u

k
i , λ

k(AS)
i )

problem is approached if Algorithm 3.2 converges and the strongly active assumption

holds, which indicates that the approximate solution is polished. The convergence

of Algorithm 3.2 can be guaranteed under Assumption 3.1 as shown in the following

theorem.

Theorem 3.10. Let x0
i and u0

i be generated by Algorithm 3.1 and Assumption 3.1

hold. Then, there exists Λi+1 > 0 such that the iterates {xki } and {uki } converge to

x
∗(AS)
i and u

∗(AS)
i , respectively.

Proof. It can be known from Bemporad et al. (2002) that V
(AS)
N−i (xi) is a piecewise

quadratic function of xi. Since Assumption 3.1 holds, V
(AS)
N−i (xi) is differentiable (be-

cause of the strongly active property) at xki satisfying

∇T
xi
V

(AS)
N−i (xki ) = λ

∗(AS)
i+1 (xki ) (3.28)

and can be expanded as

V
(AS)
N−i (xk+1

i ) = V
(AS)
N−i (xki ) + (xk+1

i − xki )Tλ
∗(AS)
i+1 (xki ) +

1

2
‖xk+1

i − xki ‖2
Λ∗
i+1
, (3.29)

where Λ∗i+1 > 0 holds. Similarly to the proof of Theorem 3.6, if Λi+1 − Λ∗i+1 ≥ 0, the

result then follows.

3.5 Practical implementation

In this section, we discuss the details of the practical implementation of IHS. It should

be noted that these discussions apply to the polishing procedure as well.
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3.5.1 Choosing the regularization matrix

It is no doubt that the regularization matrix Λ plays an important role in the rate

of convergence of IHS. Motivated by the fact that the second-order derivatives of the

value functions for an unconstrained OCP are constants (see Lemma 3.4) and can be

computed offline, these constant second-order derivatives can be used when choosing

the regularization matrices to improve the rate of convergence while maintaining a

cheap iteration.

Lemma 3.4. Let

∇2
xi−1

VN−(i−1)(xi−1, ρ)

be the second-order derivative of VN−(i−1)(xi−1, ρ) with respect to xi−1 evaluated at

(xi−1, ρ). Then, ∇2
xi−1

VN−(i−1)(xi−1, 0) is a constant positive definite matrix denoted

by Wi for all xi−1 ∈ Ai−1 and i ∈ {1, · · · , N}.

Proof. From that facts that VN−(i−1)(xi−1, ρ) is strongly convex in xi−1 ∈ Ai−1 for

ρ ∈ R≥0 and VN−(i−1)(xi−1, 0) corresponds to the value function of the unconstrained

OCP, i.e., linear quadratic regulator, we can know that the statement holds and these

constant matrices can be computed by the recursion

Wi = (BR−1
i BT + A(Qi +Wi+1)−1AT )−1 (3.30)

with WN+1 = 0. Note that (3.30) is essentially the Riccati recursion performed for

the reverse-time system.

For example, we can choose the regularization matrices to be

Λi+1 =
1

γ
Wi+1, γ ∈ (0, 1], i ∈ {1, · · · , N}, (3.31)

where 1/γ is a scaling factor that guarantees convergence from Theorem 3.6.

Remark 3.3. The regularization matrices can be chosen considering the distances

to constraints’ boundaries. For example, Λi can be obtained from the negative of the

nx-th leading principal submatrix of the KKT matrix
0 0 0 B A
0 0 −I D C
0 −I ∆ 0 0
BT DT 0 Ri 0
AT CT 0 0 Qi + Λi+1


−1

,

where ∆ ∈ Rnc×nc is a positive semi-definite diagonal matrix with its i-th diagonal

entry indicating how close the i-th constraint approaches its boundary. When ∆ = 0,

i.e., the unconstrained case, Λi decays into Wi.
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Figure 3.1: Iterates of xi = xi(x
k+1
i−1 ) when calculating SN−(i−1)(x

k+1
i−1 , ρ) warm started

from its last optimal solution xpi (x
k
i−1).

3.5.2 Limiting NOIs

Note that IHS is a recursive method and requires solving a large number of the

subproblems (3.10). Let us assume that p iterations are needed in Algorithm 3.1 to

converge for each i ∈ {1, · · · , N − 1}. Then, the total number of the subproblems

solved in IHS has a complexity of O(pN), which is unacceptable when either p or N

is large.

To decrease the computation time (CT), the NOIs p can be limited to a small

number, which may result in a divergent algorithm. To tackle this problem, we

notice that, in IHS, the i-th subproblem Pki is visited p times more than the (i−1)-th

subproblem Pki−1 when i 6= N . This can be interpreted as the i-th subproblem taking

a shorter or more conservative step at every iteration than the (i− 1)-th subproblem

does, which is illustrated in Fig. 3.1. To mimic IHS while setting p = 1, we add

an artificial damping parameter α ∈ (0, 1] to limit the propagation of the state so

that the initial state of the later subproblem varies slowly and thus results in a small

update step. The approximate IHS (AIHS) method is summarized in Algorithm 3.3,

in which a basic barrier mechanism is integrated. Here, the fraction-to-the-boundary

(Nocedal & Wright, 2006) procedure is used to prevent the variables from approaching

their bounds too quickly. The barrier parameter is decreased at each iteration.

Compared with O(N(nx + nu)
3) for the method of Riccati recursion, the com-

putational complexity is reduced to O(N(n3
u + n2

x)) for AIHS as shown in Remark

3.2. The reduction in the computation is mainly caused by avoiding performing Ric-

cati recursion online. Moreover, the KKT matrices for {Pki }Ni=1 can be factorized in

parallel, reducing the computational complexity to O(n3
u +N(nxnu + n2

x)).

Remark 3.4. Similarly to AIHS in Algorithm 3.3, when performing only one itera-

tion for Algorithm 3.2 in the polishing procedure, a damping parameter α is needed

consequently, and the barrier strategy is no longer required.
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3.6. Numerical experiments

Algorithm 3.3 AIHS for (3.4) with i = 1 and x0 = x̄0

Input: x̄0

Output: X∗ and U∗

1: Initialize: k ← 0; α ∈ (0, 1]; barrier parameters ρ0 > 0, δ ≥ 1, ρmin > 0,
and τ ← 0.1; initial guesses X0 and U0 satisfying
Dx0

i + Eu0
i + b > 0, ∀i ∈ {1, · · · , N}

2: repeat:
3: xk0 ← x̄0, xk+1

0 ← x̄0, and λk+1
N+1 ← 0

4: for i = N to 1 do
5: (−,−, λk+1

i )← Pki (xki−1, λ
k+1
i+1 , ρ

k)
6: end for
7: for i = 1 to N do
8: (xk+1

i , uk+1
i ,−)← Pki (xk+1

i−1 , λ
k+1
i+1 , ρ

k)
9: (xk+1

i , uk+1
i )← (1− α)(xki , u

k
i ) + α(xk+1

i , uk+1
i )

10: end for
11: procedure fraction-to-the-boundary
12: for i = 1 to N do
13: Gk

i ← Dxki + Euki + b
14: Gk+1

i ← Dxk+1
i + Euk+1

i + b
15: end for
16: η = max{η ∈ (0, 1] : (1− η)Gk

i + ηGk+1
i ≥ τGk

i , ∀i ∈ {1, · · · , N}}
17: (Xk+1, Uk+1)← (1− η)(Xk, Uk) + η(Xk+1, Uk+1)
18: end procedure
19: ρk+1 ← max{ρmin, ρk/δ}
20: k ← k + 1
21: until convergence criterion is met
22: (X∗, U∗)← (Xk, Uk)

3.6 Numerical experiments

Two numerical examples were considered: an aircraft example with simple bound con-

straints and a quadrotor example with both bound and linear inequality constraints.

AIHS was compared with the method of Riccati recursion, the active-set (AS)

method implemented with qpOASES (Ferreau, Kirches, Potschka, Bock, & Diehl,

2014), and the alternating direction method of multipliers (ADMM) implemented

with OSQP (Banjac et al., 2017). The method of Riccati recursion was implemented

in the same way as AIHS in Algorithm 3.3, however, with α = β = 1 and the

second-order derivatives of the value functions computed at every iteration, which

is equivalent to performing Newton’s method on the relaxed problem (3.2). The

convergence criterion for AIHS and the method of Riccati recursion was chosen as

‖Uk − Uk−1‖2 ≤ ε, (3.32)
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where ε > 0 is the tolerance. We applied the algorithm discussed in Remark 3.4 for

solution polishing and used the same parameters as those in AIHS.

All state constraints were softened with an extra slack variable s introduced. For

example, a state constraint x ≤ 0 is softened into two constraints x−s ≤ 0 and s ≥ 0

with a quadratic penalty on s. For AIHS and the method of Riccati recursion, one

slack variable was introduced for each condensed subproblem, which leads to an OCP

with N(nu + 1) variables. For AS and ADMM, a condensed OCP with only Nnu + 1

variables was obtained.

For AS, all constraints were initialized to be inactive, and a pre-computed Cholesky

factor of the Hessian matrix was fed to the solver. For ADMM, a fixed NOIs, which

was chosen to be 100, was performed since up to thousands of iterations are needed

to reach a comparable accuracy to other methods, and only the CT per iteration was

compared. The initial guesses were chosen to be X0 = 0, U0 = 0, and s0 = 1 for all

methods.

All methods were implemented as MEX functions in MATLAB 2018a on a 3.40

GHz (Turbo Boost was disabled) Intel Core i7-6700 computer running Ubuntu 18.04.1.

To reduce the effect of the operating system on the CT, every MPC problem was

solved 100 times, and the minimal CT was chosen.

3.6.1 Aircraft

The aircraft considered here can be found in Kapasouris, Athans, and Stein (1988).

The state vector of the aircraft is x = [v, q, θ̇, θ]T ∈ R4, which represents the forward

velocity, angle of attack, pitch rate, and pitch angle. The input vector u = [δe, δf ]
T ∈

R2 represents the elevator angle and flaperon angle. The goal is to track given refer-

ences of q and θ under input and state constraints: [−25,−25]T ≤ u ≤ [25, 25]T and

−15 ≤ θ̇ ≤ 15. The weighting matrices were chosen as Qi = diag(0.01, 10, 0.01, 1)

and Ri = 0.01I, ∀i ∈ {1, · · · , N}. The quadratic penalty on the slack variable was

1000. The sampling interval was 0.05 s.

For AIHS, the following parameters were chosen: α = 0.9, β = 0.7, ρ0 = 10, δ = 2,

and ε = ρmin = 10−3. The regularization matrices {Λi+1}Ni=1 were computed following

(3.31) with γ = 0.7. For the method of Riccati recursion, we chose ρ0 = 1000, δ = 2,

and ε = ρmin = 10−3. We collected 1000 samples for the initial state x̄0 and reference

xri that were picked randomly from {x : [−10,−2,−15,−11]T ≤ x ≤ [10, 2, 15, 11]T}
and {x : [0,−2, 0,−11]T ≤ x ≤ [0, 2, 0, 11]T}, respectively. All of the sampled MPC

problems had feasible solutions, that is, x̄0 ∈ A0 for the corresponding xri . Fig. 3.2
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shows the average and maximum CT per iteration with different prediction horizons,

and the corresponding NOIs are shown in Fig. 3.3.

We denote U∗(IP) and U∗(AS) as the solution returned by Algorithm 3.3 and the

solution to the original MPC problem (3.1), respectively. The polished solution Uk(Pol)

is obtained following Remark 3.4 with k iterations. The average errors defined by

e∗(IP) := ‖U∗(IP) − U∗(AS)‖2

and

ek(Pol) := ‖Uk(Pol) − U∗(AS)‖2

are shown in Fig. 3.4.
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Figure 3.2: Average and maximum CT per iteration (aircraft).

3.6.2 Quadrotor

The state vector of the quadrotor is x = [X, Ẋ, Y, Ẏ , Z, Ż, θ, ϕ, ψ]T ∈ R9, where

(X, Y, Z) and (θ, ϕ, ψ) are the position and angles of the quadrotor, respectively. The

input vector is u = [a, ωX , ωY , ωZ ]T , where a represents the thrust and (ωX , ωY , ωZ)

the rotational rates. The model of the quadrotor is obtained by linearizing the fol-

lowing nonlinear model (Hehn & D’Andrea, 2011) at the equilibrium x = 0 and
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Figure 3.3: Average and maximum NOIs (aircraft).
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Figure 3.4: Errors after polishing with one and five iterations (aircraft).

u = [g, 0, 0, 0]T with g = 9.81.

Ẍ = a(cos θ sinϕ cosψ + sin θ sinψ)

Ÿ = a(cos θ sinϕ sinψ − sin θ cosψ)

Z̈ = a cos θ cosϕ− g

θ̇ = (ωX cos θ + ωY sin θ)/ cosϕ

ϕ̇ = −ωX sin θ + ωY cos θ

ψ̇ = ωX cos θ tanϕ+ ωY sin θ tanϕ+ ωZ

(3.33)

The goal is to track a given position reference under the following constraints: −0.2 ≤
θ, ϕ, ψ ≤ 0.2 to guarantee linearity, [0,−1,−1,−1]T ≤ u ≤ [11, 1, 1, 1]T , and a max-

imum power output constraint a + |ωX | + |ωY | + |ωZ | ≤ g + 2, which is transferred
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3.6. Numerical experiments

equivalently into eight linear inequality constraints. The weighting matrices were cho-

sen as Qi = diag(10, 1, 2, 1, 10, 1, 1, 1, 1) and Ri = I, ∀i ∈ {1, · · · , N}. The quadratic

penalty on the slack variable was 1000. The sampling interval was 0.05 s.

For AIHS, the following parameters were chosen: α = 0.7, β = 1, ρ0 = 10, δ = 2,

and ε = ρmin = 10−3. The same barrier parameters and ε were chosen for the method

of Riccati recursion. The regularization matrices {Λi+1}Ni=1 were given by (3.31) with

γ = 1. We collected 1000 samples for the initial state x̄0 and reference xri that were

chosen randomly from {x : −xmax ≤ x ≤ xmax} and {x : −xrmax ≤ x ≤ xrmax}, respec-

tively, where xmax = [1, 1, 1, 1, 1, 1, 0.2, 0.2, 0.2]T and xrmax = [1, 0, 1, 0, 1, 0, 0, 0, 0]T .

All of the sampled MPC problems had feasible solutions, that is, x̄0 ∈ A0 for the

corresponding xri . Fig. 3.5 shows the average and maximum CT per iteration with

different prediction horizons, and the corresponding NOIs are shown in Fig. 3.6. The

errors before and after polishing are shown in Fig. 3.7.
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Figure 3.5: Average and maximum CT per iteration (quadrotor).

The quadrotor example shows the performance of AIHS when approaching con-

strained solutions, which can be seen from the NOIs of AS in Fig. 3.6 (a similar result

can be observed for the aircraft example in Fig. 3.3). In addition, we demonstrate the

performance of AIHS under an aggressive problem setting for the quadrotor example.

Here, we chose the weighting matrices to beQi = diag(10, 1, 2, 1, 10, 1, 10−3, 10−3, 10−3)

and Ri = 10−3I so that the constraints could be easily active. The regularization

matrices {Λi+1}Ni=1 were chosen following Remark 3.3 with different values of ∆ for

comparison. We measured the suboptimality defined in (3.34) of AIHS during itera-
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Figure 3.6: Average and maximum NOIs for the quadrotor example (the maximum
NOIs of AS is scaled by a factor of 0.2).
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Figure 3.7: Errors after polishing with one and five iterations (quadrotor).

tion.

σk :=

∑N
i=1

{
Li(x

k
i , u

k
i )− Li(x

∗(AS)
i , u

∗(AS)
i )

}
∑N

i=1 Li(x
∗(AS)
i , u

∗(AS)
i )

× 100% (3.34)

The percentages of samples that satisfied σk < 1% with different values of ∆ are

shown in Fig. 3.8, and the maximum and average suboptimalities are shown in Table

3.1.
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Figure 3.8: Percentages of successful samples with different values of ∆ for the quadro-
tor example (N = 15).

Table 3.1: Maximum and average suboptimalities [%] with different values of ∆ at
different iterations (quadrotor).

∆
0 0.001I 0.1I 0.25I I

σ20 Max. 15.1 3.0 15.3 21.3 30.2
Aver. 0.44 0.16 0.38 0.50 0.65

σ40 Max. 101.0 3.8 3.2 4.4 6.1
Aver. 0.40 0.16 0.15 0.16 0.19

σ60 Max. 13.1 3.2 2.0 2.3 2.8
Aver. 0.32 0.15 0.13 0.13 0.14

σ80 Max. 10.1 6.4 1.8 1.9 2.0
Aver. 0.28 0.16 0.13 0.13 0.13

σ100 Max. 9.6 2.2 1.7 1.8 1.8
Aver. 0.31 0.15 0.13 0.13 0.13

3.6.3 Analysis

It should be noted that AS converges to the exact solution while the others can only

obtain suboptimal solutions to certain accuracies. AS and ADMM can take advantage

of warm start to have fewer NOIs when performing closed-loop simulations. However,

we demonstrated only the performance of these methods when iterating from scratch,

which can be seen in the assessments of their worst-case performance, e.g., when facing

a rapidly changing initial state or reference.

We can see from Fig. 3.2 and Fig. 3.5 that AIHS was much faster than the method

of Riccati recursion and AS in terms of the average and maximum CT per iteration,

even comparable to ADMM. Meanwhile, AIHS took just slightly more iterations than

the method of Riccati recursion as can be seen in Fig. 3.3 and Fig. 3.6, and both
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maximum values of these two methods are lower than that of AS when the prediction

horizon N is large. Note again that ADMM took hundreds of iterations in average.

Although only suboptimal solutions were obtained for AIHS, their accuracies could

be improved a lot with only several polishing iterations, which can be seen from Figs.

3.4 and 3.7. When the weighting matrices were chosen with a large condition number,

most of the samples could converge to the given tolerance with a small NOIs from Fig.

3.8. Even for those samples that could not converge, a small suboptimality could be

reached with a limited amount of iterations, as can be seen in Table 3.1, when ∆ was

chosen properly. It can be observed from the maximum suboptimalities in Table 3.1

that if ∆ is chosen with larger diagonal entries, AIHS can have slower but convergent

iterations.

3.7 Summary

This chapter presented an iterative method that depends on updating only the first-

order derivatives of value functions. Unlike the method of Riccati recursion, where

a backward recursion of updating second-order derivatives is required, the proposed

method decomposes the MPC problem into easy-to-solve single-step OCPs, and only

states and costates are exchanged between consecutive subproblems. Numerical ex-

periments showed that AIHS breaks the trade-off of implicit methods when converging

to a reasonable accuracy, that is, AIHS not only has a short CT per iteration but

also keeps a small NOIs. The convergence analysis was conducted only for IHS and

remains as future work for AIHS. Another direction is to construct subproblems that

consist of multiple steps to improve the rate of convergence.
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Chapter 4

Highly Parallelizable Newton-Type
Method for NMPC – Algorithm

4.1 Introduction

Due to the rapid development of parallel devices such as multi-core processors, graph-

ics processing units, and field-programmable gate arrays (FPGAs), there is growing

demand for tailored parallel nonlinear model predictive control (NMPC) methods.

However, most real-time methods can only be parallelized to a certain extent, such

as parallel system simulation in the context of multiple shooting (Bock & Plitt, 1984)

or parallel matrix operations. Although first-order methods such as the alternating

direction method of multipliers (Jerez et al., 2014; O’Donoghue et al., 2013) and the

fast gradient method (Jerez et al., 2014) can be easily parallelized and efficiently

implemented for linear model predictive control (MPC), they suffer from slow rates

of convergence compared with the Newton-type methods, dealing with complicated

constraints, and time-varying dynamics in the underlying linearized problems when

using sequential quadratic programming (SQP) for NMPC. Although the Newton-

type methods are basically able to deal with general constraints and have fast rates

of convergence, parallelization is still challenging. Methods based on parallel Ric-

cati recursion (Frasch et al., 2015; Nielsen & Axehill, 2015) have been proposed. A

computational complexity of O(logN) for N threads can be achieved, where N is

the number of prediction steps. Several tailored parallel methods for NMPC have

been reported. The advanced multi-step NMPC (Yang & Biegler, 2013), which is

parallelized along the time axis, concurrently solves several predicted optimal control

programs (OCPs) beforehand, and then the input is updated on the basis of the state

measurement. Particle swarm optimization (Xu, Chen, Gong, & Mei, 2016), with

its inherent parallelism, has been implemented on FPGA for NMPC. An augmented
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Lagrangian-based method tailored to nonlinear OCPs has been reported (Kouzoupis,

Quirynen, Houska, & Diehl, 2016) that concurrently solves subproblems along the

prediction steps and then solves a centralized consensus quadratic program (QP) to

update the dual variables at each iteration. This method has a linear rate of con-

vergence and its speed-up depends on the computation time of the consensus step in

accordance with Amdahl’s law (Amdahl, 1967).

In this chapter, a highly parallelizable Newton-type method is proposed. The

discretized NMPC problem based on the reverse-time discretization method is first

given. Then, a sequential method, which we call the backward correction method,

is formulated. The backward correction method is proved to be exactly identical to

Newton’s method but with a clearer structure for possibility of parallelization. In the

backward correction method, the coupling variable in each subproblem is calculated

recursively in a backward manner, which is time-intensive. Reasonable approxima-

tions of the coupling variables are used to break down the recursion process so that

the calculation can be done in parallel. The resulting algorithm is then proved to con-

verge superlinearly. Numerical simulation of controlling a quadrotor demonstrated

that the proposed method is highly parallelizable and can converge to a specified

tolerance in only a few iterations.

This chapter is organized as follows. First, the discretized NMPC problem is

given in Section 4.2. The backward correction method is formulated and proved to

be exactly identical to Newton’s method in Section 4.3. The proposed method and its

rate of convergence are shown in Section 4.4. The numerical experiment is described

and the results are discussed in Section 4.5. The key points are summarized and

future work is mentioned in Section 4.6.

4.2 Problem statement

In this chapter, we consider the NMPC problem (2.19), however, without considering

the inequality constraints Gi(ui, xi) ≥ 0, i ∈ {1, · · · , N}. The inequality constraints

can be transferred into barrier costs under the framework of the interior-point method

as introduced in Section 2.1.2 or into nonlinear algebraic equality constraints with

additional slack variables introduced (Ohtsuka, 2004). We thus consider solving the

42



4.2. Problem statement

following discretized NMPC problem with only equality constraints:

min
X,U

N∑
i=1

Li(ui, xi)

s.t. x0 = x̄0,

xi−1 + Fi(ui, xi) = 0, i ∈ {1, · · · , N},

Ci(ui, xi) = 0, i ∈ {1, · · · , N},

(4.1)

where X = (x0, x1, · · · , xN) and U = (u1, u2, · · · , uN) are, respectively, the sequences

of states and inputs along the horizon.

Note that we do not assume any particular discretization method in this chapter.

Any explicit integration method, e.g., the Runge-Kutta method, can be used back-

ward in time to result in the reverse-time discretization, and the obtained results,

including the parallelization and convergence, apply as well. Discretization using the

conventional explicit method is discussed in Remark 4.1.

4.2.1 KKT conditions

Let λi (costate) ∈ Rnx and µi ∈ Rnµ be the Lagrange multipliers corresponding to

the i-th state equation and the equality constraint Ci(ui, xi) = 0, respectively. For

the sake of brevity, we define

s := (λ, µ, u, x).

Let Hi(s) be the Hamiltonian defined by

Hi(s) := Li(u, x) + λTFi(u, x) + µTCi(u, x).

Let Ki(xi−1, si, λi+1) be defined by

Ki(xi−1, si, λi+1) :=


xi−1 + Fi(ui, xi)
Ci(ui, xi)
∇uHi(si)

T

λi+1 +∇xHi(si)
T

 .
The Karush-Kuhn-Tucker (KKT) conditions for the discretized NMPC problem (4.1)

are

Ki(x∗i−1, s
∗
i , λ
∗
i+1) = 0, ∀i ∈ {1, · · · , N}, (4.2)

with x∗0 = x̄0 and λ∗N+1 = 0.

Note that equations (4.2) are also called the discrete-time Euler-Lagrange equa-

tions, which are the first-order conditions for optimality of the optimization problem
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(4.1). The nonlinear model predictive controller is implemented at each sampling

instant by solving the KKT conditions (4.2) given current state x̄0, then using u∗1 as

the actual input.

Remark 4.1. Discretization using the reverse-time discretization method minimizes

the complexity of coupling between neighboring stages of the KKT conditions. Namely,

xi−1 and λi+1 enter the KKT conditions with index i linearly. In the case of explicit

discretization, e.g., using the forward Euler method, a similar structure with linear

couplings can also be obtained for the corresponding reordered KKT conditions (Biegler

& Thierry, 2018), and the results of parallelization and convergence can in principle

be extended. However, it can be seen from the similar linear coupling structure that

explicit discretization will not lead to better computational performance; thus, we

herein focus on the reverse-time discretization.

4.2.2 Notation

We define the following extra notations used in this chapter:

- si:j := (si, si+1, · · · , sj), Ki:j := (Ki,Ki+1, · · · ,Kj).

- Kki:j := Ki:j(xki−1, s
k
i:j, λ

k
j+1), Jki:j := ∇si:jKi:j(xki−1, s

k
i:j, λ

k
j+1), Kki := Kki:i, Jki :=

Jki:i.

- S := s1:N , K := K1:N , J(S) := ∇K(S).

- For a matrix A ∈ Rm×n, we denote by A[α, β] the submatrix of A consisting

of rows α and columns β. We define [A]Uk := A[1 : k, 1 : k] as the k-th leading

principal submatrix of A and define [A]Lk := A[m− k + 1 : m,n− k + 1 : n].

4.3 Backward correction method

Newton’s method for solving equations (4.2) is difficult to parallelize due to the cou-

pling between stages. In this section, we will take a look at the iteration of each stage

and investigate the coupling between stages. We formulate the backward correction

method and prove that it is exactly identical to Newton’s method.
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4.3.1 Motivation

Newton’s method is practical and powerful for solving the nonlinear algebraic equation

K(S) = 0 as it is simple to implement and converges quadratically in general. The

full-step Newton’s method performs the following iteration starting from an initial

guess S0 that is sufficiently close to S∗:

Sk+1 = Sk − J(Sk)−1K(Sk), k = 0, 1, · · · .

However, performing Newton’s iteration is computationally expensive because one

has to first evaluate K(Sk) and its Jacobian J(Sk) and then solve a linear equation.

The computational complexity of computing J(Sk)−1K(Sk), in terms of N , can be

made either O(N2) by condensing (Frison & Jorgensen, 2013), or O(N) by exploiting

the banded structure of J(S), as proposed in Rao et al. (1998). Due to the coupling

between stages (J(Sk) is not block-diagonal), parallelization is challenging. Although

methods using parallel Riccati recursion (Frasch et al., 2015; Nielsen & Axehill, 2015)

can have complexities of O(log(N)), they are still computationally expensive. Note

that, thanks to the reverse-time discretization of the state equation, the KKT condi-

tions (4.2) at stage i are coupled with the neighboring stages linearly, that is, xi−1 and

λi+1 enter Ki(xi−1, si, λi+1) = 0 linearly. Consequently, equation Ki(xi−1, si, λi+1) = 0

can be formulated as the necessary condition for a single-period OCP with initial state

xi−1 and terminal penalty function ϕ (xi) = λTi+1xi. Therefore, solving K(S) = 0 can

be parallelized by solving a series of equations Ki(x∗i−1, si, λ
∗
i+1) = 0 with respect to

si for i ∈ {1, · · · , N} if the coupling variables x∗i−1 and λ∗i+1 are given for each stage i

in advance. It should be noted that this resembles the principle of optimality, which

states that any part of the optimal trajectory itself must be optimal. Unfortunately,

x∗i−1 and λ∗i+1 cannot be known in advance, and only suboptimal values are given in

general. When iterative methods are used for convergence, the iterations at the stage

level should be investigated in order to parallelize them.

Consider the following Newton’s iteration for solving Ki(x̃i−1, si, λ̃i+1) = 0 approx-

imately:

sk+1
i = ski −∇siKi(x̃i−1, s

k
i , λ̃i+1)−1Ki(x̃i−1, s

k
i , λ̃i+1), (4.3)

where x̃i−1 and λ̃i+1 are the estimation of x∗i−1 and λ∗i+1, respectively. One of the

simplest methods takes x̃i−1 = xki−1 and λ̃i+1 = λki+1. This method has complexity

O(n3) in parallel but it might diverge. The Gauss-Seidel scheme performs (4.3)

recursively from i = 1 to N , with x̃i−1 = xk+1
i−1 and λ̃i+1, for example, estimated with

a coarse-grained high-level controller in advance, as proposed in Zavala (2016). The
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convergence of the Gauss-Seidel scheme cannot be guaranteed either, unless λ∗i+1 is

well estimated.

Next, we present a new method that estimates λ∗i+1 on the basis of the current k-

th iteration’s information. In the Gauss-Seidel method, stages 2, · · · , N are updated

after the update of stage 1, that is, sk+1
2:N is a function of x1:

sk+1
2:N (x1) = sk2:N −∇s2:N

K2:N(x1, s
k
2:N , λN+1)−1K2:N(x1, s

k
2:N , λN+1). (4.4)

As x1 enters K2:N linearly, the following equation holds:

K2:N(x1, s
k
2:N , λN+1) = K2:N(xk1, s

k
2:N , λN+1) +

[
(x1 − xk1)T 0T

]T
.

Therefore, the Jacobian matrix of K2:N with respect to s2:N does not depend on x1,

and the update of λ2 can be extracted from the first nx elements of (4.4) and expressed

as

λk+1
2 (x1) = λk2 +W k

2 (x1 − xk1)− dkλ2
, (4.5)

where W k
2 = −

[(
Jk2:N

)−1
]U
nx
∈ Rnx×nx and dkλ2

=
((
Jk2:N

)−1
)

[1 : nx, :] · Kk2:N ∈ Rnx .

Although λ∗2 cannot be known in advance, it can be regarded as the correction of λk2

by (4.5) so that the iteration of solving K1(x0, s1, λ
k+1
2 (x1)) = 0 with respect to s1 is

given by

sk+1
1 = sk1 −∇s1K1(x̄0, s

k
1, λ

k+1
2 (xk1))−1K1(x̄0, s

k
1, λ

k+1
2 (xk1))

= sk1 −
(
Jk1 +

[
0 0
0 W k

2

])−1(
Kk1 −

[
0
dkλ2

])
.

After xk+1
1 is obtained, stages 2, · · · , N can be further split and iterated recursively,

which results in the algorithm described in the next subsection.

4.3.2 Algorithm

As stage N is the last stage and cannot be further split, the update of λN as a function

of xN−1 can be directly formulated. After λk+1
N (xN−1) is obtained, λk+1

N−1(xN−2) can be

formulated. Recursively, the update of λi, i.e., λk+1
i (xi−1), is formulated on the basis

of W k
i and dkλi from i = N to 1. Then, si is updated from i = 1 to N following the

Gauss-Seidel scheme. The resulting method is called the backward correction method

(Algorithm 4.1), which has a computational complexity of O(Nn3).

Next, we show that the backward correction method results in exactly the same

update as Newton’s method.
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Algorithm 4.1 k-th iteration of backward correction method

Input: x̄0, Sk

Output: Sk+1

1: Initialize: xk0 = xk+1
0 = x̄0, λkN+1 = 0, W k

N+1 = 0, dkλN+1
= 0

2: for i = N to 1 do
3:

Hk
i ← ∇siKi(xki−1, s

k
i , λ

k+1
i+1 (xki ))

−1, (4.6)

where Ki = Ki
(
xi−1, si, λ

k+1
i+1 (xi)

)
, (4.7)

and λk+1
i+1 (xi) = λki+1 +W k

i+1(xi − xki )− dkλi+1
. (4.8)

W k
i ← −

[
Hk
i

]U
nx

(4.9)

dkλi ← Hk
i [1 : nx, :] · Ki

(
xki−1, s

k
i , λ

k+1
i+1 (xki )

)
(4.10)

4: end for
5: for i = 1 to N do
6:

sk+1
i ← ski −Hk

i · Ki
(
xk+1
i−1 , s

k
i , λ

k+1
i+1 (xki )

)
(4.11)

7: end for

Theorem 4.1. The backward correction method in Algorithm 4.1 is identical to New-

ton’s method, that is, starting from the same Sk at the k-th iteration, the updated value

obtained using Newton’s method denoted by Sk+1
(nt) is equal to the value obtained using

the backward correction method denoted by Sk+1
(bc) .

Proof. Define ∆Sk(nt) := Sk+1
(nt) − Sk and ∆Sk(bc) := Sk+1

(bc) − Sk. First, the calculation of

∆Sk(nt) is given. Note that stage i is coupled with only its neighboring stages linearly,

so we know that

∇s2K1 = ∇s3K2 = · · · = ∇sNKN−1 =

[
0 0
Inx 0

]
=: MU ∈ Rn×n (4.12)

and

∇s1K2 = ∇s2K3 = · · · = ∇sN−1
KN =

[
0 Inx
0 0

]
=: ML ∈ Rn×n. (4.13)

Thus, Jacobian J(S) is a block tridiagonal matrix with the form

J(S) =


J1 MU

ML J2
. . .

. . . . . . MU

ML JN

 . (4.14)
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The linear equation J(Sk)∆Sk(nt) + K(Sk) = 0 can be solved using block Gaussian

elimination, that is, by solving
Xk

1

ML Xk
2

. . . . . .

ML Xk
N




∆sk1(nt)

∆sk2(nt)
...

∆skN(nt)

 = −


Y k

1

Y k
2
...
Y k
N

 , (4.15)

where the recursions are given by

Xk
N = JkN , Y

k
N = KkN ,

Xk
i = Jki −MU(Xk

i+1)−1ML,

Y k
i = Kki −MU(Xk

i+1)−1Y k
i+1.

Then (4.15) is solved recursively from i = 1 to N using

∆ski(nt) = −(Xk
i )−1

(
Y k
i +ML∆ski−1(nt)

)
, (4.16)

where ∆sk0(nt) = 0.

Next, we show that the recursion in Algorithm 4.1 matches the one in the block

Gaussian elimination to prove the identity between ∆Sk(bc) and ∆Sk(nt). Combining

(4.6) and (4.9) results in the recursion for calculating Hk
i being given by

Hk
i =

(
Jki +

[
0 0
0 W k

i+1

])−1

=
(
Jki −MUH

k
i+1ML

)−1
. (4.17)

Note that Hk
N = (JkN)−1, which implies Hk

N = (Xk
N)−1. It then follows from the

definition of Xk
i and (4.17) that Hk

i = (Xk
i )−1 for any i ∈ {1, · · · , N}. From the

definition of λk+1
i+1 (xi) in (4.8), the following leftmost equation holds, and from (4.10),

the rightmost equation holds.

Ki
(
xki−1, s

k
i , λ

k+1
i+1 (xki )

)
= Kki −

[
0

dkλi+1

]
= Kki −MUH

k
i+1 · Ki+1

(
xki , s

k
i+1, λ

k+1
i+2 (xki+1)

)
Together withKN

(
xkN−1, s

k
N , λ

k+1
N+1(xkN)

)
= KkN = Y k

N , we haveKi
(
xki−1, s

k
i , λ

k+1
i+1 (xki )

)
=

Y k
i , i ∈ {1, · · · , N}. Then from (4.11), the recursion for calculating ∆ski(bc) is given

by

∆ski(bc) = −Hk
i · Ki

(
xk+1
i−1 , s

k
i , λ

k+1
i+1 (xki )

)
= −(Xk

i )−1(Y k
i +ML∆ski−1(bc)), i ∈ {1, · · · , N}.

(4.18)

A comparison of (4.16) with (4.18), together with the boundary condition ∆sk0(bc) =

∆sk0(nt) = 0, shows that ∆ski(bc) = ∆ski(nt) for i ∈ {1, · · · , N}. Thus, Sk+1
(bc) = Sk+1

(nt)

holds.
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The backward correction method is one of the methods exploiting the banded

structure of J(S) using block Gauss elimination. However, discretization of the

system dynamics using the reverse-time method leads to linear couplings between

neighboring stages in the KKT conditions (4.2), which makes the recursion in the

backward correction method extremely simple compared with that in other structure-

exploiting methods (see Glad and Jonson (1984), Rao, Wright, and Rawlings (1998),

and Jørgensen, Rawlings, and Jørgensen (2004)).

4.4 Parallel method

The backward correction method is inherently non-parallelizable due to the recursion

for calculating Hk
i in (4.6) from i = N to 1 in order to formulate the expression of

λk+1
i+1 (xi) in (4.8) for each stage, which is the most computationally expensive part.

Although the iterations are sequential, the iteration of each stage is clearly shown in

(4.11). We show next that the backward correction method can be parallelized by

using a reasonable approximation.

Recall that, in the iteration (4.3) for solving the KKT conditions (4.2), its con-

vergence depends on the estimation of the coupling variables x∗i−1 and λ∗i+1 for each

stage i. The estimation of λ∗i+1 in the backward correction method is performed using

(4.8) and can be seen as an accurate estimation of λ∗i+1. Consequently, a quadratic

rate of convergence can be obtained. A slower rate of convergence can be achieved

by using a relatively coarse estimation of λ∗i+1.

To visualize the small variations of W k
1,··· ,N as k increases, let us consider the situ-

ation in which the cost function L(u, x, p) is quadratic, F(u, x, p) and the constraint

C(u, x, p) are linear, and the time-varying parameter p is fixed. Under these con-

ditions, the Jacobian matrix of K with respect to S is constant, which means that

W k
1,··· ,N in (4.9) are always constant during iteration. As for general problems, we can

expect small variations of W k
1,··· ,N as k increases when the problem is less nonlinear

and p varies slowly. Therefore, we propose estimating λ∗i+1 on the basis of W k−1
i+1 at

the k-th iteration. That is, (4.8) in the backward correction method is replaced by

λk+1
i+1 (xi) = λki+1 +W k−1

i+1 (xi − xki )− dkλi+1
, i ∈ {1, · · · , N}. (4.19)

This removes the recursion for calculating Hk
i from i = N to 1, so Hk

1,··· ,N can be

calculated in parallel using

Hk
i =

(
Jki +

[
0 0
0 W k−1

i+1

])−1

. (4.20)
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4.4.1 Algorithm

Calculating Hk
1,··· ,N in parallel leads to an algorithm with complexity O(n3 + Nn2)

for N threads, where n3 is the complexity of the matrix inverse in (4.20), and Nn2

indicates the complexities of carrying out (4.10) and (4.11) backward and forward,

respectively.

Moreover, further parallelization is achieved by arranging the order of computa-

tions as shown in Algorithm 4.2. After Hk
1,··· ,N is obtained, an initial coarse update

is done using sk+1
i = ski −Hk

i · Kki (Step 1 of Algorithm 4.2). This coarse update in-

troduces approximations for coupling variables (xi−1 and λi+1) compared with (4.11).

The correction due to the approximation of λi+1 is conducted in a backward manner

(Step 2 of Algorithm 4.2). In the sequential part of Step 2, the approximation error

dλi+1
of λi+1 is calculated for all stages, and then the other variables are corrected on

the basis of the approximation error in the parallel part. Likewise, the correction due

to the approximation of xi−1 is conducted in a forward manner (Step 3 of Algorithm

4.2). As a result of these two correction steps, the further parallelized implemen-

tation produces exactly the same update as the proposed method and reduces the

complexity to O(n3 +Nn2
x) for N threads.

4.4.2 Convergence

In this subsection, the rate of convergence is shown for the proposed method by

measuring the distance to the backward correction method.

At the k-th iteration, the proposed method differs from the backward correction

method only in how λk+1
2,··· ,N+1 are formulated: λk+1

i+1 (xi) = λki+1 +W k
i+1(xi−xki )− dkλi+1

for the backward correction method, λk+1
i+1 (xi) = λki+1 + W k−1

i+1 (xi − xki ) − dkλi+1
for

the proposed method. To distinguish these two methods, let v(bc) be the variable in

the backward correction method for a variable v. It can be seen that the proposed

method approximates the backward correction method, where the approximation is

introduced by

hki := Θk−1
i −Θk

i(bc), i ∈ {1, · · · , N}, (4.21)

where

Θk
i(bc) :=

[
0 0
0 −W k

i(bc)

]
∈ Rn×n

and

Θk−1
i :=

[
0 0
0 −W k−1

i

]
∈ Rn×n.
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Algorithm 4.2 Proposed parallelized implementation of the backward correction
method (k-th iteration)

Input: x̄0, Sk, W k−1
1,··· ,N

Output: Sk+1, W k
1,··· ,N

1: Initialize: xk0 = x̄0, λkN+1 = 0, W k−1
N+1 = 0

2: Step 1. Coarse update:
3: for i = 1 to N do in parallel
4: Kki ← Ki(xki−1, s

k
i , λ

k
i+1)

5: Jki ← ∇siKi(xki−1, s
k
i , λ

k+1
i+1 )

6: Hk
i ←

(
Jki +

[
0 0
0 W k−1

i+1

])−1

7: W k
i ← −

[
Hk
i

]U
nx

8: sk+1
i ← ski −Hk

i · Kki
9: end for
10: Step 2. Backward correction due to approximation of λ:
11: for i = N − 1 to 1 do
12: dk+1

λi+1
← λk+1

i+1 − λki+1

13: λk+1
i ← λk+1

i −Hk
i [1 : nx, n− nx + 1 : n] · dk+1

λi+1

14: end for
15: for i = 1 to N − 1 do in parallel
16: sk+1

i [nx + 1 : n, :]← sk+1
i [nx + 1 : n, :]−Hk

i [nx + 1 : n, n− nx + 1 : n] · dk+1
λi+1

17: end for
18: Step 3. Forward correction due to approximation of x:
19: for i = 2 to N do
20: dk+1

xi−1
← xk+1

i−1 − xki−1

21: xk+1
i ← xk+1

i −Hk
i [n− nx + 1 : n, 1 : nx] · dk+1

xi−1

22: end for
23: for i = 2 to N do in parallel
24: sk+1

i [1 : n− nx, :]← sk+1
i [1 : n− nx, :]−Hk

i [1 : n− nx, 1 : nx] · dk+1
xi−1

25: end for

Theorem 4.1 has shown that the backward correction method is equivalent to New-

ton’s method, so the iteration can be written as

Sk+1
(bc) = Sk −H(Sk) · K(Sk),

where H(Sk) := J(Sk)−1. Let Dh1,··· ,N and DS be the open subsets of Rn×n and RnN ,

respectively. Denote h = (h1, h2, · · · , hN) ∈ Dh1 ×Dh2 × · · · ×DhN =: Dh. Assume

that 0 ∈ Dh and S∗ ∈ DS. The k-th iteration of the proposed method is expressed as

Sk+1 = Sk −G(Sk, hk),

51



Chapter 4. Highly Parallelizable Newton-Type Method for NMPC – Algorithm

where G : DS×Dh → RnN is a mapping that defines the increment with the proposed

method. We have the following assumptions:

Assumption 4.1. The solution S∗ is an isolated solution to K(S) = 0.

Note that Assumption 4.1 guarantees the nonsingularities for not only the Jaco-

bian matrix J1:N but the Jacobian matrices J2,··· ,N :N in a neighborhood of S∗.

Assumption 4.2. The function K : RnN → RnN is Lipschitz continuous on DS with

Lipschitz constant L. The norm ‖J(S)−1‖ is bounded on DS .

Recall that the proposed method has the same algorithm as the backward correc-

tion method, except that λ∗i+1 is estimated by (4.19) instead of (4.8). Therefore, in the

following proof, we refer to the equations in Algorithm 4.1 to show the convergence

of Algorithm 4.2 for convenience.

The proof is structured as follows. Lemma 4.3 shows that limk→∞ h
k
i = 0 for all

i ∈ {1, · · · , N} when the iteration converges. This implies that the proposed method

approaches the backward correction method when it converges. To further show this,

the explicit expression of G(S, h) is given in Lemma 4.4 by G(S, h) = P (S, h) · K(S),

and the distance between P (S, h)−1 and J(S) is shown to be arbitrarily boundable

in Lemma 4.4. Finally, it is shown in Theorem 4.2 that if S0 is chosen close to

S∗ and h0 close to 0, the convergence of the proposed method can be guaranteed.

Moreover, since the proposed method approaches the backward correction method,

which converges quadratically, the rate of convergence is shown to be superlinear in

Theorem 4.2.

Lemma 4.1. (Ortega & Rheinboldt, 1970) Let A ∈ Rn×n be nonsingular, E ∈ Rn×n,

and ‖A−1E‖ < 1. Then

‖(A+ E)−1‖ ≤ ‖A−1‖
1− ‖A−1E‖

.

Lemma 4.2. (Ortega & Rheinboldt, 1970) Let A ∈ Rn×n be nonsingular, E ∈ Rn×n,

and ‖A−1E‖ < 1. Then

‖(A+ E)−1 − A−1‖ ≤ ‖A−1‖ ‖A
−1E‖

1− ‖A−1E‖
.

Lemma 4.3. If the iterates {Sk} given by the proposed method converge to S∗, then

hk → 0 (k →∞).
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Proof. This lemma can be proved by showing that hki → 0 (k → ∞) for all i ∈

{1, · · · , N}. For each i ∈ {1, · · · , N}, denoteM := N−i+1 and β :=

∥∥∥∥([J(S∗)]LnM

)−1
∥∥∥∥.

Since Sk → S∗ as k → ∞, and J(S) is continuous, then, for any εJ ∈ (0, 2
2N+1

β−1),

there exists km > 0 such that, for k > km,∥∥∥[J(Sj)
]L
nM
− [J(S∗)]LnM

∥∥∥ < 1

2
εJ , for all j ∈ {k −M, · · · , k} (4.22)

holds. Hence, the following must hold:∥∥∥[J(Sj)
]L
nM
−
[
J(Sk)

]L
nM

∥∥∥ < εJ , for all j ∈ {k −M, · · · , k}. (4.23)

As the inequality (4.22) also holds for j = k, we can obtain, with the aid of Lemma

4.1 (A = [J(S∗)]LnM , E =
[
J(Sk)

]L
nM
−[J(S∗)]LnM , ‖A−1E‖ ≤ ‖A−1‖‖E‖ ≤ 1

2
βεJ < 1),∥∥∥∥([J(Sk)

]L
nM

)−1
∥∥∥∥ ≤ 2β

2− βεJ
=: η.

From the backward correction method, Θk
i(bc) is obtained from the last M stages

(stages i : N) by using

Θk
i(bc) =

[([
J(Sk)

]L
nM

)−1
]U
nx

=
[
MU 0

] ([
J(Sk)

]L
nM

)−1
[
ML

0

]

=
[
MU 0

]


Jki MU

ML Jki+1
. . .

. . . . . . MU

ML JkN


−1 [

ML

0

]
.

(4.24)

Alternatively, as Θk
i(bc) = MUH

k
i(bc)ML, together with (4.17), we can recursively cal-

culate Θk
i(bc) by using Θk

i(bc) = MU(Jki − Θk
i+1(bc))

−1ML. Similar to Θk
i(bc), Θk−1

i has

a recursive formulation: Θk−1
i = MU(Jk−1

i − Θk−2
i+1 )−1ML. Therefore, Θk−1

i can be

written as

Θk−1
i =

[
MU 0

]

Jk−1
i MU

ML Jk−2
i+1

. . .
. . . . . . MU

ML Jk−MN


−1 [

ML

0

]
. (4.25)

A comparison of (4.24) with (4.25) shows that Θk−1
i can be expressed as

Θk−1
i =

[
MU 0

] ([
J(Sk)

]L
nM

+ EεJ

)−1
[
ML

0

]
,
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where EεJ = diag(Jk−1
i −Jki , Jk−2

i+1 −Jki+1, · · · , Jk−MN −JkN). As EεJ is a block-diagonal

matrix, together with (4.23), the following inequalities hold:

‖EεJ‖ ≤
k−1∑

j=k−M

∥∥J jk+i−1−j − J
k
k+i−1−j

∥∥
≤

k−1∑
j=k−M

∥∥∥[J(Sj)
]L
nM
−
[
J(Sk)

]L
nM

∥∥∥
< MεJ ≤ NεJ .

On the other hand,

‖Θk−1
i −Θk

i(bc)‖ =

∥∥∥∥[ MU 0
](([

J(Sk)
]L
nM

+ EεJ

)−1

−
([
J(Sk)

]L
nM

)−1
)[

ML

0

]∥∥∥∥
≤
∥∥∥∥([J(Sk)

]L
nM

+ EεJ

)−1

−
([
J(Sk)

]L
nM

)−1
∥∥∥∥ .

By Lemma 4.2 (A =
[
J(Sk)

]L
nM

, E = EεJ , ‖A−1E‖ ≤ ‖A−1‖‖E‖ ≤ ηNεJ < 1),

‖hki ‖ = ‖Θk−1
i −Θk

i(bc)‖ ≤ η
NηεJ

1−NηεJ
=: εh.

Since εh monotonically increases with respect to εJ ∈ (0, 2
2N+1

β−1), and εh → 0 as

εJ → 0 and εh → ∞ as εJ → 2
2N+1

β−1, then εh ∈ (0,∞) for εJ ∈ (0, 2
2N+1

β−1). This

implies that, for any εh > 0, there exists km > 0 such that, for any k > km, ‖hki ‖ ≤ εh

holds for each i ∈ {1, · · · , N} when the iterates {Sk} converge to S∗. Therefore,

hk → 0 (k →∞) when {Sk} converge.

Lemma 4.4. G(S, h) can be expressed as G(S, h) = P (S, h) · K(S), where P (S, h) :

DS ×Dh → RnN×nN . Moreover, lim
h→0

P (S, h)−1 = J(S) holds for all S ∈ DS.

Proof. First, we find the expression of P (S, h). As the proposed method has the

same algorithm structure as the backward correction method, the iteration of si can

be found from (4.11):

sk+1
i = ski + ∆ski

= ski −Hk
i · Ki

(
xk+1
i−1 , s

k
i , λ

k+1
i+1 (xki )

)
= ski −Hk

i ·
(
Kki +ML∆ski−1 −

[
0T (dkλi+1

)T
]T)

,

(4.26)

and the recursion for calculating dkλi is given in (4.10) by[
0T (dkλi)

T
]T

= MUH
k
i ·
(
Kki −

[
0T (dkλi+1

)T
]T)

. (4.27)
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From (4.26) and (4.27), recursively, we can have

∆sk1 = −Hk
1 · Kk1 +Hk

1MUH
k
2 · Kk2 − · · ·

= −Hk
1

N∑
j=1

(−1)j−1

(
j∏
l=2

MUH
k
l

)
· Kkj ,

(4.28)

and

sk+1
i = ski −Hk

i

N∑
j=i

(−1)j−i

(
j∏

l=i+1

MUH
k
l

)
· Kkj −Hk

iML∆ski−1. (4.29)

Note that, from (4.28) and (4.29), for any i ∈ {1, · · · , N}, ∆ski is a linear function of

Kk1,··· ,N . That is, G(S, h) can be expressed as G(S, h) = P (S, h) ·K(S), where P (S, h)

is the coefficient matrix. Let us denote Pi,j(S
k, hk) and Hi,j(S

k) ∈ Rn×n as the (i, j)-

th block entries of the partitioned matrices P (Sk, hk) and H(Sk), i, j ∈ {1, · · · , N},
respectively. Again, from (4.28) and (4.29), we obtain the expression of P k

i,j(S
k, hk)

as the summation of the terms in (4.30), with a maximum number of terms N ,

αHk
r0

m∏
l=1

MlH
k
rl

(4.30)

where α ∈ {1,−1}, rl ∈ {1, · · · , N}, l ∈ {0, 1, · · · , 2N}, m ∈ {0, 1, · · · , 2N}, and

Ml ∈ {MU ,ML}. Since Hk
i = (Jki −Θk−1

i+1 )−1, Hk
i(bc) = (Jki −Θk

i+1(bc))
−1, and the pro-

posed method differs from the backward correction method only in Θi, i ∈ {1, · · · , N},
so Hi,j(S

k) has the same form as Pi,j(S
k, hk). For example, P1,1(Sk, hk) = Hk

1 ,

H1,1(Sk) = Hk
1(bc), P2,2(Sk, hk) = Hk

2 + Hk
2MLH

k
1MUH

k
2 , and H2,2(Sk, hk) = Hk

2(bc) +

Hk
2(bc)MLH

k
1(bc)MUH

k
2(bc).

We then prove

lim
h→0

P (S, h)−1 = J(S), (4.31)

for all S ∈ DS. It can be proved by induction on l, together with the boundedness

of ‖J(S)−1‖ in Assumption 4.2, that, for any ε > 0, there exists δh > 0 such that, if

hk ∈ {h|‖hi‖ < δh, i ∈ {1, · · · , N}} ⊂ Dh,∥∥∥∥∥αHk
r0

m∏
l=1

MlH
k
rl
− αHk

r0(bc)

m∏
l=1

MlH
k
rl(bc)

∥∥∥∥∥ < ε (4.32)

holds for any α ∈ {1,−1}, rl ∈ {1, · · · , N}, l ∈ {0, 1, · · · , 2N}, m ∈ {0, 1, · · · , 2N},
and Ml ∈ {MU ,ML}. Since Pi,j(S

k, hk) is the summation of terms of (4.30) with

maximum number N and satisfying (4.32), we obtain∥∥Pi,j(Sk, hk)−Hi,j(S
k)
∥∥ < Nε, i, j ∈ {1, · · · , N}.
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Hence, ∥∥P (Sk, hk)−H(Sk)
∥∥ ≤ N∑

i=1

N∑
j=1

∥∥P k
i,j(S

k, hk)−Hk
i,j(S

k)
∥∥ < N3ε.

Since ε > 0 is arbitrary, ‖P (Sk, hk) − H(Sk)‖ can be bounded arbitrarily. Thus,

‖P (Sk, hk)−1−J(Sk)‖ can also be bounded arbitrarily due to the continuity of matrix

inverse on DS, that is, (4.31) holds. This completes the proof. Moreover, (4.31) can

also be restated to show that P (S, h)−1 is a consistent approximation (Ortega &

Rheinboldt, 1970) to J(S) on DS.

Theorem 4.2. There are balls OS := {S|‖S−S∗‖ < δS} ⊂ DS and Oh := {h|‖hi‖ <
δh, i ∈ {1, · · · , N}} ⊂ Dh such that, for any S0 ∈ OS and h0 ∈ Oh, the iterates {Sk}
given by the proposed method remain in OS and converge to S∗ superlinearly.

Proof. Set β = ‖H(S∗)‖. For any ε ∈ (0, 1
2
β−1), there exists δ1 > 0 such that, if

Sk ∈ O1 := {S|‖S − S∗‖ < δ1} ⊂ DS, then

‖J(Sk)− J(S∗)‖ < 1

2
ε (4.33)

and

‖K(Sk)−K(S∗)− J(S∗)(Sk − S∗)‖ < L‖Sk − S∗‖2 (4.34)

hold by the continuity of J at S∗ and the Lipschitz continuity in Assumption 4.2,

respectively. For such ε, from Lemma 4.4, we can choose δ2 > 0 such that hk ∈ O2 :=

{h|‖hi‖ < δ2, i ∈ {1, · · · , N}} ⊂ Dh and

‖P (Sk, hk)−1 − J(Sk)‖ < 1

2
ε. (4.35)

From (4.33) and (4.35), we have

‖P (Sk, hk)−1 − J(S∗)‖ < ε.

Since β = ‖H(S∗)‖ = ‖J(S∗)−1‖, then ‖P (Sk, hk)‖ can be bounded using Lemma 4.1

(A = J(S∗), E = P (Sk, hk)−1 − J(S∗), ‖A−1E‖ ≤ ‖A−1‖‖E‖ < βε < 1/2) by

‖P (Sk, hk)‖ ≤ β

1− βε
< 2β. (4.36)

From (4.34) and (4.36),

‖Sk+1 − S∗‖ = ‖Sk − P (Sk, hk)K(Sk)− S∗‖

= ‖P (Sk, hk)[P (Sk, hk)−1(Sk − S∗)−K(Sk)]‖

≤ 2β
(
‖P (Sk, hk)−1 − J(Sk)‖+ ‖J(Sk)− J(S∗)‖

)
‖Sk − S∗‖

+ 2β‖K(Sk)−K(S∗)− J(S∗)(Sk − S∗)‖

< ω(Sk, hk)‖Sk − S∗‖,
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where

ω(Sk, hk) = 2β
(
‖P (Sk, hk)−1 − J(Sk)‖+ ‖J(Sk)− J(S∗)‖+ L‖Sk − S∗‖

)
is the upper bound on the rate of convergence. The result of Lemma 4.4 ensures

that ‖P (Sk, hk)−1 − J(Sk)‖ → 0 as hk → 0, and, due to the continuity of J at S∗,

‖J(Sk)− J(S∗)‖ → 0 as Sk → S∗. Therefore, there exist balls OS := {S|‖S − S∗‖ <
δS} ⊂ O1 ∩ O3 and Oh := {h|‖hi‖ < δh, i ∈ {1, · · · , N}} ⊂ O2 such that, for any

Sk ∈ OS and hk ∈ Oh, ω(Sk, hk) < 1 holds, where O3 is a subset of DS such that, if

Sk is in O3, then hk ∈ Oh always holds from Lemma 4.3. Therefore, if S0 ∈ OS and

h0 ∈ Oh, then the iterates {Sk} converge and remain in OS. Moreover, since Sk → S∗

as k → ∞, we have hk → 0 as k → ∞ from Lemma 4.3. Therefore, ω(Sk, hk) → 0

as k → ∞, which indicates that the proposed method has a superlinear rate of

convergence.

Remark 4.2. Theorem 4.2 gives only conditions of convergence for the update of

only one sampling instant. However, the convergence of the proposed method should

be guaranteed for every sampling instant. When the iteration at one sampling instant

converges, a sufficiently large number of iterations k can guarantee sufficiently small

‖hki ‖ for all i ∈ {1, · · · , N} from Lemma 4.3. Moreover, if the time-dependent pa-

rameter p varies smoothly with respect to time, a small sampling interval can ensure

that the new state x̄0 and the time-dependent parameter p are close to their previous

values even if there are model mismatches or disturbances in the actual system, which

implies that the initial guess S0 is close to the optimal value S∗ when warm-start is

used. Therefore, the conditions in Theorem 4.2 can always be satisfied in the next

sampling instant.

4.5 Numerical experiment

4.5.1 NMPC for a quadrotor

In order to demonstrate the computation time and rate of convergence of the proposed

method, reference tracking of a quadrotor is considered. The state vector of the

quadrotor is x = [X, Ẋ, Y, Ẏ , Z, Ż, γ, β, α]T ∈ R9, where (X, Y, Z) and (γ, β, α) are

the position and angles of the quadrotor, respectively. The input vector is u =

[a, ωX , ωY , ωZ ]T , where a represents the thrust and (ωX , ωY , ωZ) the rotational rates.

We use a previously defined nonlinear model in (3.33). The control input is bounded

with [0,−1,−1,−1]T ≤ u ≤ [11, 1, 1, 1]T . The system starts from the initial state x0 =
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[1, 0, 1, 0, 1, 0, 0, 0, 0]T . The state reference is set using the time-varying parameter p

with xref = 0 from 0 to 10 s and xref = [1.5, 0, 1.5, 0, 1.5, 0, 0, 0, 0]T from 10 to 20 s, and

uref = [g, 0, 0, 0]T . The stage cost function is L(u, x, p) = 1
2
(‖x−xref‖2

Q+‖u−uref‖2
R)

with Q = diag(10, 1, 2, 1, 10, 1, 1, 1, 1) and R = I4, and the terminal cost function

ϕ(x, p) is not imposed. The prediction horizon is T = 1 s and is divided into N =

8, 16, 24, 48, 96 steps for comparison. Simulation is performed for 20 s with a sampling

interval of 0.01 s.

4.5.2 Computation time

The proposed method was implemented using the open-source toolkit ParNMPC

(version Beta1.0) (https://github.com/deng-haoyang/ParNMPC), which can auto-

matically generate parallel C/C++ code with OpenMP (Dagum & Menon, 1998).

For comparison, the code generation tool (Houska et al., 2011b) in the ACADO

Toolkit (Houska, Ferreau, & Diehl, 2011a) and the AutoGenU (Ohtsuka, 2015) code

generation toolkit are used to perform closed-loop NMPC simulation. ACADO Code

Generation is based on the SQP method with Gauss-Newton Hessian approximation

(GNHA); the qpOASES (Ferreau et al., 2014) dense QP solver and the qpDUNES

(Frasch et al., 2015) sparse QP solver are used respectively to solve the underlying

QP problems. AutoGenU is based on the C/GMRES method. The simulation was

performed on a desktop computer with dual 2.2 GHz Intel Xeon E5-2650 V4 proces-

sors with 24 cores in total with the Hyper-Threading and Turbo Boost features are

disabled.

In principle, ACADO Code Generation is based on the real-time iteration (RTI)

scheme, in which only one SQP iteration is performed. The KKT tolerance is con-

trolled by performing several SQP iterations, and the computation time is the sum of

the CPU times returned by the solver. The KKT tolerances of the proposed method

and the SQP methods are set to 5 · 10−3, while in the C/GMRES method, only one

iteration is performed per update. It should be noted that these methods do not

converge to the same solution even when the same KKT tolerances are achieved be-

cause of the differences in handling inequality constraints. Namely, the SQP methods

converge to the optimal solution of the inequality constrained optimization problem

while the proposed method and C/GMRES only approximately take the inequality

constraints into account by introducing dummy inputs (Ohtsuka, 2004). The resulting

suboptimality is defined as

eo :=
‖U∗dummy − U∗ieq‖

‖U∗ieq‖
,
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where U∗dummy and U∗ieq denote the solutions of the control inputs sequences obtained

by introducing dummy inputs and by dealing directly with inequality constraints,

respectively.

The discretization within the SQP methods is based on the explicit Euler method

with multiple shooting. The QP problems solved by qpOASES is condensed, and

warm-start is enabled. Although SQP methods can, in principle, be parallelized to a

certain degree, e.g., for multiple shooting and the qpDUNES QP solver, they are run

in a fully sequential fashion. The explicit Euler method is used for the C/GMRES

method, and the number of iterations in GMRES is set to 7. The proposed method

is based on the implicit Euler method.

The approximation to the backward correction method is defined in (4.21). Let

us denote the relative approximation error by eh, which measures the distance to

Newton’s method:

eh := max
i∈{1,··· ,N}

‖hi‖
‖Θi(bc)‖

.

The simulation results for the inputs, position, suboptimality eo, and relative approx-

imation error eh after each update with the proposed method for N = 24 are shown in

Figs. 4.1, 4.2, 4.3, and 4.4, respectively. The results obtained by introducing dummy

inputs are almost the same as those with the SQP methods, i.e., active input bound

constraints can be achieved when tracking the position reference. Since the degree

-1

-0.5

0

0.5

1

Figure 4.1: Time histories of quadrotor’s inputs.

of parallelism of the proposed method is N , the program can be run on min{24, N}
cores concurrently. Table 4.1 lists the average computation time and number of iter-

ations per update. Although the computation time of the proposed method is long
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Figure 4.2: Time histories of quadrotor’s position (SP is position reference).
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Figure 4.3: Time histories of suboptimality eo.

when running on one core in a fully sequential fashion, it becomes faster than other

methods in the medium and high range of N when running on multiple cores.

As the computation time of the proposed method is in the µs range, the over-

head time is non-negligible. Let us denote tE as the average time per update running

on min{24, N} cores in practice and tp and ts as the times of the parallelizable and

sequential parts running on one core, respectively. The theoretical minimum execu-

tion time is given by tA := ts + tp/min{24, N} according to Amdahl’s law. From

Table 4.2, we can see that ts is less than 1% of the total elapsed time, indicating

that the proposed method is highly parallelizable. In this example, the overhead

time accounts for a substantial part of the total elapsed time, even greater than 60%.
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0 5 10 15 20
0

0.02

0.04

0.06

Figure 4.4: Time histories of relative approximation error eh after each update.

The overhead time can also be observed from the parallel scaling results in Table

4.3. Although a speed-up of more than 10× can be achieved, the efficiency (speed-up

per core) degenerates with the growth in the number of cores. One reason for these

overheads is the communication between the dual processors when carrying out the

backward and forward correction steps. This overhead can be reduced by running on

a single-processor-based computer. Also, interruptions by other threads on Windows

unbalance the parallel tasks, which also explains why the overhead time is propor-

tionately the highest for N = 24 in Table 4.2 and explains the lowest efficiency when

using all 24 cores in Table 4.3. These overhead time results show the potential of

the proposed method if it is run on platforms with less overhead to maximize its

efficiency.

Table 4.1: Average computation time [µs] (upper) and number of iterations (lower)
per update.

N 8 16 24 48 96
Proposed method 112 139 173 285 454
on min{24, N} cores 1.01 1.01 1.02 1.03 1.04
Proposed method

455 795 1171 2453 4666
on one core

SQP with qpOASES
95 349 866 5920 65745
1.09 1.13 1.14 1.17 1.24

SQP with qpDUNES
189 361 563 1142 2487
1.39 1.42 1.44 1.48 1.54

C/GMRES 201 335 470 868 1648
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Table 4.2: Practical and theoretical average computation times per update for pro-
posed method.

N 8 16 24 48 96
tp [µs] 452 790 1163 2433 4623
ts [µs] 2.8 5.4 8.1 20.2 43.3
ts/(ts + tp) · 100 [%] 0.61 0.67 0.69 0.82 0.93
tE [µs] 112 139 173 285 454
tA [µs] 59 55 57 122 236
(tE − tA)/tE · 100 [%] 47 61 67 57 48

Table 4.3: Speed-ups with different numbers of cores for N = 96.

Number of cores 1 2 4 6
speed-up 1.00 1.95 3.50 4.84
Number of cores 8 12 16 24
speed-up 6.26 8.35 9.72 10.29

4.5.3 Number of iterations for different tolerances

Although the proposed method is proven to converge superlinearly, the rate of con-

vergence is only characterized for k →∞. The proposed method was compared with

Newton’s method (the backward correction method) and the SQP method (qpOASES

was used) with GNHA. The proposed method and Newton’s method converge to the

same solution, and the suboptimalities eo for both methods under the set tolerances

are nearly the same as the suboptimality shown in Fig. 4.3. The numbers of iterations

shown in Fig. 4.5 are filtered using a 10-th order moving average filter to remove the

jitter that arose on the critical point of satisfying the KKT tolerance, so the numbers

of iterations become distinguishable for different methods. Fig. 4.5 shows that the

proposed method converge to the specified tolerance within several iterations, even

to a high accuracy. Moreover, it converges faster than the SQP method with GNHA.

The relative approximation error eh in Fig. 4.4 shows that the proposed method

is extremely close to Newton’s method. Therefore, the proposed method is slightly

slower than Newton’s method.

Examples handling inequalities using the interior-point method and with compli-

cated constraints, such as state and terminal constraints, can be found on the website

of the toolkit (https://github.com/deng-haoyang/ParNMPC).

4.6 Summary

This chapter presents a highly parallelizable Newton-type method for NMPC. First,

the original NMPC problem is discretized using the reverse-time integration method
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Figure 4.5: Filtered number of iterations for different tolerances (black solid line:
Newton’s method; blue dash-dot line: SQP with GNHA; red dashed line: proposed
method).

so that the Euler-Lagrange equations of the resulting subproblems are linearly coupled

between neighboring stages. Next, the backward correction method, by predicting the

coupling variables recursively from the last stage to the first, is formulated and proved

to be identical to Newton’s method. Since this method is computationally expensive,

it is approximated using the previous iteration’s information so that the recursion is

broken down. The proposed method (parallelized implementation) has a complexity

of O(n3+Nn2
x) running on N threads. The evaluations of functions {Kki }Ni=1 and their

Jacobian matrices {Jki }Ni=1 are done in parallel. Numerical simulation of controlling

a quadrotor shows that the proposed method is highly parallelizable (sequential code

running time ≤ 1%) and faster than conventional methods. Since the experimental

environment has inherently high overhead and a limitation on the number of cores,

implementation of the proposed method on other platforms, such as ones with FPGAs

and many-core processors, would improve its efficiency. This remains for future work.
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Chapter 5

Highly Parallelizable Newton-Type
Method for NMPC –
Implementation

5.1 Introduction

In the last chapter, we present a parallel method for solving the discretized nonlinear

model predictive control (NMPC) problem (4.1) without specifying the method that

deals with the inequality constraint G(u, x, p) ≥ 0. Obviously, different inequality

handling methods lead to different performance and algorithm structures. In this

chapter, we introduce an efficient implementation of the parallel method that explic-

itly uses the primal-dual interior-point method to handle the inequality constraint.

Although considerable effort has been devoted in recent years to the real-time

optimization software of NMPC, unfortunately, there is still a lack of efficient imple-

mentations for the parallel optimization of NMPC to the authors’ knowledge. Current

existing parallel algorithms either require a large problem size, e.g., long prediction

horizon, to surpass serial algorithms or depend on careful designs for parallelization,

which are not user-friendly for implementation and have difficulty incorporating ex-

isting nonlinear optimization techniques to achieve robust numerical performance. In

this chapter, ParNMPC, which is an effective and efficient parallel implementation

for the optimization of NMPC, is presented. ParNMPC is a MATLAB open-source

(https://github.com/deng-haoyang/ParNMPC) software, and the parallelization part

is implemented by using OpenMP (Dagum & Menon, 1998), which is designed for

shared-memory multi-core processors and supported by most of the operating sys-

tems. ParNMPC comes with the following features.

- The NMPC problem can be formulated symbolically as easily as other toolkits.
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- The degree of parallelism (DOP) is made configurable so that it can be adapted

to the rate of convergence and the number of cores, enabling deployment to

both single- and multi-core processors.

- Parallel code can be automatically generated.

Compared with Chapter 4, the main contributions of this chapter are:

- The parallel code generation toolkit ParNMPC is introduced. The primal-dual

interior-point method is inherently integrated in ParNMPC to deal with the

inequality constraints, and its warm start strategy in the context of NMPC is

introduced.

- The search direction calculation procedure is generalized from algebraic opera-

tions in Chapter 4 to nonlinear programs (NLPs) so that the existing nonlinear

optimization techniques, such as Hessian approximation, regularization, and

condensing, can be applied. As a consequence, the method can be applied to

a wider class of problems, and a speed up of more than 2× was observed in

Section 5.6.

The performance of ParNMPC is assessed with several challenging applications.

This chapter is organized as follows. The NMPC problem is introduced in Section

5.2. Search direction calculation done using Newton’s method and the parallel method

are given in a unified framework in Section 5.3. Section 5.4 introduces two commonly

used line search methods for guaranteeing convergence. Warm start and the barrier

strategy are discussed in Section 5.5. The performance evaluation of ParNMPC is

introduced in Section 5.6. Finally, this chapter is summarized in Section 5.7.

5.2 Problem statement

In this chapter, we consider the NMPC problem in the form of (2.19), i.e., the fol-

lowing discretized NMPC problem with polytopic inequality constraints:

min
X,U

N∑
i=1

Li(ui, xi)

s.t. x0 = x̄0,

xi−1 + Fi(ui, xi) = 0, i ∈ {1, · · · , N},

Ci(ui, xi) = 0, i ∈ {1, · · · , N},

Gi(ui, xi) ≥ 0, i ∈ {1, · · · , N},

(5.1)
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where x̄0 is the initial state, X := (x0, x1, x2, · · · , xN) and U := (u1, u2, · · · , uN) are

the state and input sequences along the horizon, respectively. We note again that

Gi(u, x) ≥ 0 is a polytopic constraint of u and x.

We adopt the interior-point method to relax the NMPC problem (5.1) by transfer-

ring the inequality constraint Gi(u, x) ≥ 0 into a logarithmic barrier function added

to the cost. Notice that the inequality constraint Gi(u, x) ≥ 0 is a single-side con-

straint, which may lead to an unbounded solution since the corresponding barrier

function tends to be −∞ as its argument goes to ∞. To prevent this, a linear damp-

ing term (Wächter & Biegler, 2006b) is added to the barrier function, and we obtain

the following relaxed NMPC problem:

min
X,U

N∑
i=1

Li(ui, xi) + ρΦi(ui, xi)

s.t. x0 = x̄0,

xi−1 + Fi(ui, xi) = 0, i ∈ {1, · · · , N},

Ci(ui, xi) = 0, i ∈ {1, · · · , N},

(5.2)

where ρ > 0 is the barrier parameter and

Φi(u, x) :=
nz∑
j=1

(
− ln(Gi(j)(u, x)) + σGi(j)(u, x)

)
with a fixed small damping constant σ > 0 (e.g., 10−4).

5.2.1 KKT conditions

Let λi (costate) ∈ Rnx , µi ∈ Rnµ , and zi ∈ Rnz be the Lagrange multipliers corre-

sponding to the i-th state equation, the equality constraint Ci(ui, xi) = 0, and the

inequality constraint Gi(ui, xi) ≥ 0, respectively. For the sake of brevity, we define

s := (λ, µ, u, x).

Let Hi(s) be the Hamiltonian defined by

Hi(s) := Li(u, x) + λTFi(u, x) + µTCi(u, x).

Let Ki(xi−1, si, λi+1) be defined by

Ki(xi−1, si, λi+1) :=


xi−1 + Fi(ui, xi)
Ci(ui, xi)
∇uHi(si)

T + ρ∇uΦi(ui, xi)
T

λi+1 +∇xHi(si)
T + ρ∇xΦi(ui, xi)

T

 . (5.3)
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The Karush-Kuhn-Tucker (KKT) conditions for relaxed NMPC problem (5.2) are

Ki(x∗i−1, s
∗
i , λ
∗
i+1) = 0, ∀i ∈ {1, · · · , N},

with x∗0 = x̄0 and λ∗N+1 = 0.

5.2.2 Notation

We define the following extra notations used in this chapter:

- U := (u1, · · · , uN), X := (x1, · · · , xN), S := (s1, · · · , sN), Z := (z1, · · · , zN).

- Kki := Ki(xki−1, s
k
i , λ

k
i+1), ∇uFki := ∇uFi(uki , xki ), etc.

5.3 Search direction calculation

Search direction calculation is the most computationally expensive part of real-time

optimization. In some particular algorithms dedicated for NMPC, such as the C/GM-

RES (Ohtsuka, 2004) method and the RTI scheme (Diehl et al., 2005), a full-step

iteration is performed each sampling time, requiring only the computation of the

search direction. In this section, search direction calculation performed using New-

ton’s method and the parallel method is given in a unified framework.

5.3.1 Newton’s method

For Newton’s method, the search direction (∆s1, · · · ,∆sN) is obtained by solving the

following regularized primal-dual (Nocedal & Wright, 2006) system:

. . . I
I 0 0

Jki0 −δCI

(Jki )T Mk
i I

I
. . .




...
∆si

...

 =


...
Kki
...

 , (5.4)

where

Jki :=

[
∇uFki ∇xFki
∇uC

k
i ∇xC

k
i

]
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and

Mk
i :=

[
∇2
uuHk

i ∇2
uxHk

i

∇2
xuHk

i ∇2
xxHk

i

]
︸ ︷︷ ︸

1

+δHI

+
[
∇uG

k
i ∇xG

k
i

]T
diag(zki �Gk

i )
[
∇uG

k
i ∇xG

k
i

]︸ ︷︷ ︸
2

,

(5.5)

with δC , δH ≥ 0. Apart from the regularization terms −δCI and δHI, solving system

(5.4) is equivalent to applying Newton’s method to KKT conditions (5.3) for relaxed

problem (5.2), however, with the Hessian of the barrier function ρΦi estimated by

2 in (5.5), which is in contrast with the primal system where the exact Hessian is

used. The primal-dual system is preferred against the primal system since the primal

system tends to perform poorly when a small barrier parameter ρ is chosen (Nocedal

& Wright, 2006). After obtaining the search direction (∆s1, · · · ,∆sN), the search

direction of z is obtained from

∆zi = (zki �Gk+1
i − ρe)�Gk

i , (5.6)

where Gk+1
i := Gi(u

k
i −∆ui, x

k
i −∆xi) and e := [1, · · · , 1]T .

It is generally easy to guarantee the full rank property of the Jacobian of Fi,
e.g., when the discretization step size ∆τ is small. We add a regularization term

δCI ≥ 0 to avoid singularity (Nocedal & Wright, 2006) of the primal-dual matrix in

(5.4) caused by the rank deficiency of [∇uC
k
i ∇xC

k
i ]. In ParNMPC, δC is chosen to

be sufficiently small (10−9).

To guarantee that the obtained search direction is a descent direction for cer-

tain merit functions, a regularization term δHI ≥ 0 is added to the Hessian so that

the primal-dual matrix has a desired inertia. The descent property is required to

guarantee convergence when the current iterate is distant from the optimal solution.

However, choosing a proper δH on-the-fly requires successive factorizations of the

primal-dual matrix, which is computationally heavy for real-time optimization. In

the context of NMPC, δH can be decided offline with prior knowledge of the NMPC

problem. We show in Section 5.3.3 that the descent property is ensured inherently if

the Hessian matrix is approximated properly, thus requiring no regularization proce-

dure, i.e., δH = 0.
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We show next that solving (5.4) can be interpreted as solving a series of subprob-

lems. We first define the following single-stage subproblem:

min
xi,ui

Li(ui, xi) + ρΦi(ui, xi) + (xi − xki )Tλi+1 +
1

2
‖xi − xki ‖2

Wi+1︸ ︷︷ ︸
1

s.t. xi−1 + Fi(ui, xi) = 0,

Ci(ui, xi) = 0,

(5.7)

where its regularized primal-dual matrix at the k-th iteration is given by
0 0

Jki0 −δCI

(Jki )T Mk
i +

[
0 0
0 Wi+1

]
 . (5.8)

Given a barrier parameter ρ, we denote

(si,Wi)← Pki (xi−1, λi+1,Wi+1) (5.9)

as the operation of performing a full-step primal-dual iteration of (5.7) at the k-th

iteration for given parameters of xi−1, λi+1, and Wi+1. Here, as in (4.8), Wi ∈ Rnx×nx

denotes the sensitivity matrix of λi with respect to the initial state xi−1 of subproblem

(5.7). Specifically, as in (4.9), Wi is the negation of the nx-th leading principal

submatrix of the inversion of (5.8), which is a by-product of iteration (5.9).

Notice that the primal-dual matrix in (5.4) is a block-tridiagonal matrix. It has

been shown in the last chapter that the backward correction method in Section 4.3 is

equivalent to solving (5.4) by using the block Gaussian elimination method, which is

also equivalent to performing the Riccati recursion for the linear quadratic problem

having regularized KKT conditions (5.4). Moreover, it can be shown by checking the

KKT conditions for (5.7) that the backward correction method, or equivalently, the

block Gaussian elimination method is equivalent to solving single-stage subproblems

(5.7) recursively as shown in Algorithm 5.1, which can be seen as a compact form of

Algorithm 4.1.

5.3.2 Parallel method

The search direction calculation done using Newton’s method in Algorithm 5.1 in-

volves a recursion of computing the sensitivity matrix Wi from i = N to 1. The

parallel method in Section 4.4 iterates on the basis of the information stored at the

previous iteration so that the recursion is broken, and the sensitivity matrices are then
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Algorithm 5.1 Search direction calculation using Newton’s method

Input: x̄0, Sk, Zk, ρ
Output: ∆S, ∆Z
1: Initialization: xk0 = xk+1

0 = x̄0, λk+1
N+1 = 0, W k

N+1 = 0
2: for i = N to 1 do
3: (sk+1

i ,W k
i )← Pki (xki−1, λ

k+1
i+1 ,W

k
i+1)

4: end for
5: for i = 1 to N do
6: (sk+1

i ,−)← Pki (xk+1
i−1 , λ

k+1
i+1 ,W

k
i+1)

7: ∆si = ski − sk+1
i

8: ∆zi ← (5.6)
9: end for

updated, which can be referred to as “first iterate, then update,” while in Newton’s

method, it is “first update, then iterate.” In the parallel method, the regularized

primal-dual matrices are independent of each other and can be factorized in parallel.

The parallel method is summarized in Algorithm 5.2, in which the parallelizable part

is explicitly given. As shown in Algorithm 5.2, not only are the function evaluations

performed in parallel, matrix factorizations, which are the most computationally ex-

pensive part of (5.9), are also done in parallel. The parallelization is not fully shown

in this chapter, and details can be found in Section 4.4, in which the non-parallelizable

part consists only of 2N matrix-vector multiplications with a complexity of O(Nn2
x).

Algorithm 5.2 Search direction calculation using parallel method

Input: x̄0, Sk, Zk, W k−1
1,··· ,N , ρ

Output: ∆S, ∆Z, W k
1,··· ,N

1: Initialize: xk0 = xk+1
0 = x̄0, λk+1

N+1 = 0, W k−1
N+1 = 0

2: for i = 1 to N do in parallel
3: Evaluate Kki (KKT function)
4: Evaluate Jki (Jacobian)
5: Evaluate Mk

i (Hessian)
6: Factorize (5.8) (KKT matrix)
7: end for
8: for i = N to 1 do
9: (sk+1

i ,W k
i )← Pki (xki−1, λ

k+1
i+1 ,W

k−1
i+1 )

10: end for
11: for i = 1 to N do
12: (sk+1

i ,−)← Pki (xk+1
i−1 , λ

k+1
i+1 ,W

k−1
i+1 )

13: ∆si = ski − sk+1
i

14: ∆zi ← (5.6)
15: end for
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Remark 5.1. Newton’s method and the parallel method have DOPs of one and N ,

respectively. It should be noted that, for each iteration, the parallel method has the

same total computational cost as Newton’s method, and parallelization is achieved

with no extra computational cost. Compared with the quadratic rate of convergence for

Newton’s method, a superlinear rate of convergence is shown in Section 4.4.2 for the

parallel method. It is therefore expected to have a faster rate of convergence when fewer

sensitivity matrices Wi are approximated by shifting between or combining these two

methods. In practice, depending on the number of cores, the DOP is made configurable

to speed convergence up without sacrificing the computational performance. When the

DOP is set to one, ParNMPC decays to Newton’s method in Algorithm 5.1 and behaves

exactly the same as the structure-exploiting primal-dual interior-point method. When

the DOP is set to N , a fully parallelized method that can use N cores is obtained as

shown in Algorithm 5.2.

The convergence of the parallel method is expected to behave like Newton’s

method when the system is fast-sampled, less parallelized (i.e., DOP is small), and the

dynamics and parameters are slowly varying. That is, the sensitivity matrices Wi can

be updated in real time. In practice, the parallel method was observed to also con-

verge fast even when it was fully parallelized (DOP = N) and for highly nonlinear sys-

tems, such as the robot manipulator in Section 5.6 and the double inverted pendulum

on a cart, which can be found on ParNMPC’s homepage (https://github.com/deng-

haoyang/ParNMPC).

Remark 5.2. Compared with Algorithm 4.2 in Section 4.4, where the parallelization

is given by algebraic operations , the parallel method is generalized in this chapter from

algebraic operations to NLPs (5.7) so that existing nonlinear optimization techniques,

such as regularization, condensing, Hessian approximation, and line search, can be

applied. These techniques broaden the range of application of ParNMPC and make the

algorithm numerically more efficient and robust. For example, the Hessian matrices

in robot applications have to be approximated to avoid time-consuming evaluations of

their exact values, and a large speed up was observed in Section 5.6 due to condensing.

In Newton’s method, the nonsingular and descent regularization procedures are

performed on the overall primal-dual matrix in (5.4), while, in the parallel method,

it is generally difficult to have an explicit form of the overall primal-dual matrix.

An interpretation of 1 in (5.7) is that 1 approximates the optimal cost-to-go in

a quadratic form (the constant term is ignored). Consequently, each subproblem

(5.7) approximates an NMPC problem consisting of stages i to N with an initial
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state of xi−1. When i = 1, (5.7) approximates the original relaxed problem (5.2)

locally. We require that, after regularizing each subproblem, its primal-dual matrix

(5.8) is nonsingular and has a desired inertia, that is, the lower-right submatrix is

positive-definite on the null space of Jki .

Instead of inverting (5.8) directly in Section 4.4 by using LU factorization, a more

efficient way of solving each subproblem is to condense the primal-dual system by

eliminating ∆xi and ∆λi. Compared with O((2nx + nµ + nu)
3) for inverting (5.8)

directly, condensing can lead to significant computational improvement and is used

by default in ParNMPC. It should be noted that the inherent implicit property of the

state and costate equations due to the use of the reverse-time discretization method

incurs an extra cost on equation solving, i.e., requiring ∇xFki to be inverted, which

is usually not needed for the sequential methods (Diehl et al., 2009) where a forward

and backward simulation is performed so that the state and costate equations are

eliminated. We show that this extra cost for inverting ∇xFki can be avoided by using

approximation. Consider, for example, the reverse-time Euler method with Fi(u, x) =

f(u, x)∆τ−x. We can have the following approximation based on truncated Neumann

series when the condition ‖∇xf
k
i ∆τ‖ ≤ 1 is satisfied:

(∇xFki )−1 ≈ −I −∇xf
k
i ∆τ,

where the truncation error is O(∆τ 2). It is not difficult to show that, for the family

of reverse-time Runge-Kutta methods, the approximation is obtained by

(∇xFki )−1 ≈ −2I −∇xFki . (5.10)

A good approximation can be obtained if (2.11) is not stiff and ∆τ is small. Approx-

imation (5.10) stays an option in ParNMPC.

5.3.3 Hessian approximation

Although 1 in (5.5) is evaluated in parallel as shown in Algorithm 5.2, it sometimes

still dominates the entire computation, e.g., when complicated dynamics and high-

order discretization schemes are involved. Moreover, even when the exact Hessian

is obtained, the descent property of the search direction is not guaranteed; thus, a

regularization procedure is potentially required. Hessian approximation plays an im-

portant role in both numerical efficiency and robustness. For example, the Hessian

of a high-order discretized problem can be approximated by that of a low-order dis-

cretized problem with a cheaper cost. We discuss in this subsection a commonly used

Hessian approximation method in NMPC.
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When the cost function is in the least-squares form:

Li(u, x) :=
1

2
‖li(u, x)‖2

2,

where li is a vector-valued function, the generalized Gauss-Newton method (Bock,

1983) approximates the Hessian matrix 1 in (5.5) by[
∇ul

k
i ∇xl

k
i

]T [ ∇ul
k
i ∇xl

k
i

]
. (5.11)

The Gauss-Newton method performs well if the least-square residual is small and

functions Fi(u, x) and Ci(u, x) are less nonlinear such that their second-order deriva-

tives are negligible. The Gauss-Newton Hessian approximation method is favoured in

the context of NMPC, where a quadratic cost function is commonly chosen, e.g., in

regulation and tracking control problems. Meanwhile, the positive definiteness of the

lower-right block of (5.8) can be guaranteed for any DOP settings, which is shown in

the following proposition.

Proposition 5.1. Assume δH = 0, δC > 0 is chosen such that (5.8) is nonsingular,

and the Jacobian of l is of full column rank. If Wi is initialized to satisfy Wi ≥ 0 for

i ∈ {1, · · · , N}, then the lower-right block of (5.8) generated by the Gauss-Newton

method is always positive-definite.

Proof. From the full rank property of the Jacobian of l, we know that (5.11), i.e., 1

in (5.5), is positive-definite. Since zki > 0 and Gk
i > 0, 2 in (5.5) always satisfies

2 ≥ 0. Consequently, we know that Mk
i > 0 always holds. In addition, due to the

fact that the initial value of Wi+1 satisfies Wi+1 ≥ 0, the lower-right block of (5.8) is

positive-definite for the initial value of Wi+1. We show next the definiteness of the

updated Wi for i ∈ {1, · · · , N}.
For each i ∈ {1, · · · , N}, the Schur complement of the lower-right block of matrix

(5.8) is nonsingular since we have shown that the lower-right block is positive-definite

and (5.8) is nonsingular from the choice of δC . Specifically, the upper-left block of

the inversion of (5.8) can be expressed as([
0 0
0 −δCI

]
− Jki

(
Mk

i +

[
0 0
0 Wi+1

])−1

(Jki )T

)−1

. (5.12)

For an arbitrary vector v ∈ Rnx+nµ , the inequality

vTJki

(
Mk

i +

[
0 0
0 Wi+1

])−1

(Jki )Tv ≥ 0 (5.13)
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holds. Considering that δC > 0, (5.13) holds, and (5.12) is nonsingular, we know

that (5.12) < 0. Since the updated Wi is the negation of the nx-th leading principal

submatrix of (5.12), Wi > 0 always holds for i ∈ {1, · · · , N}. In turn, the result then

follows.

Another type of Hessian approximation method is the quasi-Newton method,

e.g., the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (see, e.g., Nocedal and

Wright (2006)), which requires only the first-order derivatives of the Hamiltonian

to approximate the Hessian matrix and can estimate the curvature in the Hamilto-

nian. However, it is not easy to guarantee the positive definiteness of the Hessian

update, especially for constrained problems. Although there are methods, such as

the damped BFGS method (Nocedal & Wright, 2006), for guaranteeing the positive

definiteness, quasi-Newton Hessian approximation methods are less favoured in the

context of real-time optimization due to their fluctuating performance as reported by

Quirynen (2017).

5.4 Line search

After obtaining the search directions ∆S and ∆Z, we first determine the maximum

step size of an iteration so that the primal and dual feasibility conditionsGi(ui, xi) ≥ 0

and zi > 0 are satisfied for any i ∈ {1, · · · , N}. It is recommended by Nocedal and

Wright (2006) to have different step sizes for s and z (say, αmax
s and αmax

z ) to improve

performance. αmax
s and αmax

z are obtained by using the fraction-to-the-boundary rule

(Nocedal & Wright, 2006):

αmax
z = max{α ∈ (0, 1] : zki − α∆zi ≥ (1− τ)zki , ∀i ∈ {1, · · · , N}}

αmax
s = max{α ∈ (0, 1] : Gk

i − α∆Gi ≥ (1− τ)Gk
i , ∀i ∈ {1, · · · , N}}

where

∆Gi = Gk
i −Gi(u

k
i −∆ui, x

k
i −∆xi)

and the fraction-to-the-boundary parameter τ is chosen to be τ = min{τmin, ρ} with

τmin = 0.005 (typical value). The update of z is performed by

Zk+1 = Zk − αmax
z ∆Z.

Although ∆S is a descent direction, the convergence of a full feasible step iteration

cannot be guaranteed, especially when the current iterate is far from the optimal
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solution, e.g., a far reference. To ensure convergence, we perform the iterate

Sk+1 = Sk − αs∆S, αs ∈ (0, αmax
s ],

only when a specified merit function Q(U,X) has been decreased by trying a sequence

of values of αs with a constant decay rate or αs has reached its specified minimum

value, e.g., 10−3. The step size αs is accepted if

Q(Uk − αs∆U,Xk − αs∆X) ≤ Q(Uk, Xk) + ναsDQ(Uk, Xk; ∆U,∆X),

where ν ∈ (0, 1) and DQ(Uk, Xk; ∆U,∆X) denotes the directional derivative of Q in

the direction (∆U,∆X). At the k-th iteration, we choose the merit function to be

Q(U,X) =
N∑
i=1

{Li(ui, xi) + ρΦi(ui, xi)

+ (λmax)T |xi−1 + Fi(ui, xi)|

+ (µmax)T |Ci(ui, xi)|},

(5.14)

where x0 = x̄0, λmax ∈ Rnx , and µmax ∈ Rnz . We here choose the following heuristic

penalty coefficients for better practical performance:

λmax
(j) = max

i∈{1,··· ,N}
|λki(j) − αmax

s ∆λi(j)|

and

µmax
(j) = max

i∈{1,··· ,N}
|µki(j) − αmax

s ∆µi(j)|,

where λmax
(j) and µmax

(j) are the j-th component of λmax and µmax, respectively.

An alternative to ensure convergence (Wächter & Biegler, 2006a) is the filter line

search method (Fletcher & Leyffer, 2002), in which a trial step is accepted if it de-

creases the cost function or improves the constraint violation instead of a combination

of those two in (5.14). This method is favoured against the merit-function-based line

search method because it has a smaller computational cost per step and does not need

to maintain a merit function, which depends on the choices of the penalty terms λmax

and µmax. Both methods can be easily parallelized and are available in ParNMPC.

It should be noted that line search introduces an extra computational cost, which

is not favoured in the context of real-time optimization. Moreover, special care should

be taken with expensive computational costs, such as a feasibility restoration phase

(Nocedal & Wright, 2006) and second-order corrections (Nocedal & Wright, 2006),

when the step size becomes too small or the trial step has been rejected. Under what
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circumstances should we enable line search? Of course, line search is recommended

offline in the case where the very first NMPC problem is deterministic and can be

solved offline to provide an accurate initial guess. We discuss the online case in

Remark 5.3.

Remark 5.3. For NMPC, where successive optimization problems are solved, line

search can be avoided, i.e., by setting αs = αmax
s , if the initial state x̄0 varies smoothly

with respect to time. This strategy has been applied in many of the real-time opti-

mization methods for NMPC. For example, under certain conditions, the C/GMRES

method can trace a KKT solution without line search. For the case of a distant solu-

tion caused by, e.g., far reference, line search should be enabled so that the convergence

to a local optimum can be guaranteed (Yamashita, 1998) under certain assumptions.

5.5 Warm start and barrier strategy

In many optimization methods for MPC, such as the active-set method, warm start

can significantly reduce the number of iterations (NOI) since the optimal solution

stays close to that of the last sampling time. However, the warm start of the interior-

point method is less straightforward and remains challenging. In the interior-point

method, relaxed problem (5.2) is solved successively with a decreasing barrier pa-

rameter ρ > 0, and an accurate solution is obtained when the barrier parameter ρ is

decreased to be sufficiently small. The difficulty of warm start for the interior-point

method is that the barrier parameter has to return back to its initial value at the next

sampling time, which makes the optimization problem no longer close to its previous

one.

One solution is to choose a fixed value (Wang & Boyd, 2010) of ρ, i.e., to obtain

an approximate solution. This method is pretty acceptable in the context of MPC,

where we care more about the closed-loop performance or cost. However, when a

small value of ρ is chosen, it always leads to poor performance since the optimization

problem is highly nonlinear at the boundary of the constraints. The iterates can

hardly escape from the boundary due to the large entries of 2 in (5.5).

To resolve the problem of warm start when pursuing a highly accurate solution, we

adopt the two-phase strategy proposed by Zanelli, Quirynen, Jerez, and Diehl (2017).

In the first phase, the relaxed problem is solved with a fixed barrier parameter ρ0.

Then, the barrier parameter is decreased with a constant rate at every iteration in

the second phase. The strategy is illustrated in Fig. 5.1 showing the variation of ρ.

At sampling time t, the relaxed problem with an initial barrier parameter ρ0 is solved
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t(1) t+ 1(1)t(m) t+ 1(n)

· · ·

. . .
. . .

· · ·

ρ

ρ
0

ρ
min

Time step (iter.)

Figure 5.1: Barrier parameter ρ under two-phase strategy.

and the solution is stored to warm start the first iteration of the next sampling time

t+ 1, that is, the solution at t(m) is used to warm start t+ 1(1).

The overall parallel optimization algorithm, together with the two-phase strategy,

is summarized in Algorithm 5.3. The termination criterion is met when the optimality

error for the relaxed problem is smaller than a predefined tolerance or the maximum

NOI has been reached. We denote exi , e
µ
i , eui , e

λ
i as the `∞ norms of the four expressions

in (5.3), respectively. The optimality error eo is defined as

eo := max
i∈{1,··· ,N}

{
exi , e

µ
i ,

eui
σu
,
eλi
σλ

}
,

where σu, σλ ≥ 1 are the scaling parameters. We adopt Wächter and Biegler’s scaling

strategy (Wächter & Biegler, 2006b) to choose σu and σλ as

σu = max

{∑N
i=1(‖λi‖1 + ‖µi‖1)

N(nx + nµ)
, σmax

}
/σmax

and

σλ = max

{∑N
i=1 ‖λi‖1

Nnx
, σmax

}
/σmax.

Here, σmax ≥ 1 is a fixed number, e.g., σmax = 100.

Regarding the initialization of the very first optimization problem, for those which

can be solved offline, an accurate initial guess can be provided with the offline so-

lution. For those which cannot be solved offline, e.g., with an unknown initial state

beforehand, the basic requirements for Sinit, Z init, and W init
1,··· ,N are that the inequality

Gi(ui, xi) > ε (ε > 0 is a small number) should be satisfied for all i ∈ {1, · · · , N}, its

corresponding Lagrange multiplier z should be positive, and the sensitivity matrices

should be positive-semidefinite. Conventional initialization techniques used in other

methods can be applied to Sinit and Z init. For example, a state trajectory can be
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Algorithm 5.3 Parallel optimization with two-phase strategy

Input: x̄0, Sinit, Z init, W init
1,··· ,N

Output: Sinit, Z init, W init
1,··· ,N , S∗, Z∗

1: Initialize: k = 0; initial guesses: S0 = Sinit, Z0 = Z init, W−1
1,··· ,N = W init

1,··· ,N ;

barrier parameters: ρ0 > 0, η ∈ (0, 1], ρmin ∈ (0, ρ0], ρ = ρ0

2: repeat
3: (Sk+1, Zk+1,W k

1,··· ,N)← Iter(x̄0, S
k, Zk,W k−1

1,··· ,N , ρ)
4: k ← k + 1
5: until termination criterion is met
6: (Sinit, Z init,W init

1,··· ,N)← (Sk, Zk,W k−1
1,··· ,N)

7: repeat
8: ρ = max{ρmin, ηρ}
9: (Sk+1, Zk+1,W k

1,··· ,N)← Iter(x̄0, S
k, Zk,W k−1

1,··· ,N , ρ)
10: k ← k + 1
11: until termination criterion is met
12: (S∗, Z∗)← (Sk, Zk)

Procedure Iter
Input: x̄0, Sk, Zk, W k−1

1,··· ,N , ρ

Output: Sk+1, Zk+1, W k
1,··· ,N

Calculate search directions (Algorithm 5.2)
Perform line search (Section 5.4)

End

obtained by interpolating from the initial state to the set-point. The initialization

of the sensitivity matrices W init
1,··· ,N is less straightforward. We show a possible initial-

ization for the input-constrained problem with a quadratic cost function, that is, the

stage cost function of relaxed problem (5.2) is in the form of

Li(ui, xi) + ρΦi(ui) =
1

2
‖xi − xref‖2

Qi
+ φi(ui, ρ),

where xref is the given state reference, Qi > 0 is the weighting matrix, and φi(ui, ρ)

is a function encoding the input-related cost. The following equality can be shown:

lim
∆τ→0

Wi =
N∑
j=i

Qi, i ∈ {1, · · · , N},

and the right-hand side can be used as W init
i .

5.6 Performance evaluation

In this section, the performance of ParNMPC is evaluated by using three examples.

In the first, an example of quadrotor control, we demonstrate the problem formulation
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and parallel code generation procedures of ParNMPC. The computation time (CT) of

ParNMPC is compared in detail against several state-of-the-art NMPC toolkits, and

the performance of the two-phase and inversion approximation strategies is assessed

as well. We show in the second example, in which a real-world laboratory helicopter

is controlled, that ParNMPC converges fast when tracking a dramatically changed

reference signal. The third experiment is a closed-loop simulation of a robot manip-

ulator that demonstrates the Gauss-Newton Hessian approximation method and the

parallel performance for systems with complicated dynamics.

All experiments were performed on a hexa-core 2.9-GHz (Turbo Boost and Hyper-

Threading were disabled) Intel Core i9-8950HK laptop. The helicopter experiment

was run in Simulink on Windows 10, and the others were run on Ubuntu 18.04.

All code was automatically generated by using ParNMPC. To reduce the effect of

the computing environment, the CT at each time step was measured by taking the

minimum one of ten runs of the closed-loop simulation.

It should be noted that all three experiments were started from deterministic

states, which made it possible to solve the very first optimization problem offline to

provide an accurate initial guess, and line search in ParNMPC was only enabled then.

5.6.1 Quadrotor

Problem formulation

Consider a quadrotor with four inputs and nine states. The state vector of the

quadrotor is x = [X, Ẋ, Y, Ẏ , Z, Ż, γ, β, α]T ∈ R9, where (X, Y, Z) and (γ, β, α) are

the position and angles of the quadrotor, respectively. The input vector is u =

[a, ωX , ωY , ωZ ]T , where a represents the thrust and (ωX , ωY , ωZ) the rotational rates.

The dynamics of the quadrotor are given in (3.33). The goal was to control the

quadrotor to position (1, 1, 1) under the constraints of the inputs: [0,−1,−1,−1]T ≤
u ≤ [11, 1, 1, 1]T . We chose the cost function to be quadratic as

Li(u, x) =
1

2
(‖x− xref‖2

Q + ‖u− uref‖2
R),

where xref encodes the position reference, uref = [g, 0, 0, 0]T , and the weighting matri-

ces were Q = diag(10, 1, 10, 1, 10, 1, 1, 1, 1) and R = 0.01× I. The prediction horizon

was T = 0.5 s, which was discretized into N = 24 grids by using the reverse-time

Heun’s method.

The above NMPC problem is formulated in ParNMPC as shown in Listing 5.1.
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% Create an OCP( n u , n x , n p ,N)
OCP = OptimalControlProblem (4 , 9 , 0 , 24 ) ;
X = OCP. x (1 ) ; dX = OCP. x (2 ) ; . . .
a = OCP. u (1 ) ; omegaX = OCP. u (2 ) ; . . .
OCP. setT ( 0 . 5 ) ;
OCP. s e tD i s c r e t i za t i onMethod ( ’RK2 ’ ) ;
f = [dX; a ∗( cos (gamma) ∗ s i n ( beta ) ∗ cos ( alpha )+s i n (gamma) ∗ s i n ( alpha ) ) ; . . . ] ;
Q = diag ( [ 1 0 , 1 , 10 , 1 , 10 , 1 , 1 , 1 , 1 ] ) ; R = 0.01∗ eye (4 ) ;
xRef = [ 1 ; 0 ; 1 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ] ; uRef = [ g ; 0 ; 0 ; 0 ] ;
L = 0 . 5∗ (OCP. x−xRef ) . ’∗Q∗(OCP. x−xRef ) +0.5∗(OCP. u−uRef ) . ’∗R∗(OCP. u−uRef ) ;
G =[ [ 11 ; 1 ; 1 ; 1 ] −OCP. u ; [ 0 ; 1 ; 1 ; 1 ] +OCP. u ] ;
OCP. s e t f ( f ) ; OCP. setL (L) ; OCP. setG (G) ;
OCP. codeGen ( ) ;

Listing 5.1: Problem formulation in ParNMPC (some repeated code was omitted)

After formulating the NMPC problem, the NMPC solver is configured as shown

in Listing 5.2. The exact Hessian is calculated, and the regularization parameters

are made default in this example, i.e., δC = 10−9 and δH = 0. The exact value of

(∇xF)−1 is used by default.

% Conf igurate the NMPC so l v e r
s o l = NMPCSolver (OCP) ;
s o l . setHess ianApproximation ( ’Newton ’ ) ;
% s o l . s e tNons ingu l a rRegu l a r i z a t i on (1 e−9) ; % \ de l ta C
% so l . s e tDes c en tRegu l a r i z a t i on (0 ) ; % \delta H
% so l . setInvFxMethod ( ’ exact ’ ) ;
s o l . codeGen ( ) ;

Listing 5.2: NMPC solver configuration in ParNMPC

Code generation

The parallel code for DOP = 6 of the NMPC controller can be automatically gener-

ated as shown in Listing 5.3. We fix the barrier parameter to be ρ0 = ρmin = 10−3.

The two-phase strategy in Section 5.5 can be adopted by adjusting parameters ρ0,

ρmin, and η. Regarding the termination criterion, the optimality tolerance is 10−3,

and the maximum NOI is 10. The generated code is self-contained, easy-to-use, and

can be easily deployed, e.g., using Visual Studio with OpenMP Support enabled or

GCC with an extra -fopenmp flag. Given an initial state, the corresponding opti-

mal control input can be obtained by simply calling function NMPC Solve from the

generated code.

opt ions = createOpt ions ( ) ;
opt i ons .DoP = 6 ;
opt ions . i sL ineSea r ch = f a l s e ;
opt i ons . r h o In i t = 1e−3; % \ rho ˆ0
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opt ions . rhoEnd = 1e−3; % \ rhoˆmin
% opt ions . rhoDecayRate = 0 . 1 ; % \ eta
opt ions . tolEnd = opt ions . rhoEnd ;
opt ions . maxIterTotal = 10 ;
% Generate p a r a l l e l C code
NMPC Solve CodeGen ( ’ l i b ’ , ’C ’ , opt i ons ) ;

Listing 5.3: Parallel code generation in ParNMPC

Evaluation of computation time

The CT of ParNMPC was evaluated by performing a three-second closed-loop sim-

ulation starting from x̄0 = 0 with a sampling period of 10 ms. We compared the

following toolkits (the last three toolkits are based on the first-order methods):

- ParNMPC (version 1903-1): the toolkit introduced in this chapter.

- ParNMPC-primitive: the primitive version of ParNMPC, of which the algo-

rithm is introduced in Section 4.4. The mechanism for handling inequalities

was modified in this chapter to be the primal interior-point method.

- ACADO Code Generation Tool with qpOASES and qpDUNES: the SQP method

based on a dense QP solver, qpOASES, and a sparse QP solver, qpDUNES.

- GRAMPC: a gradient-based augmented Lagrangian method.

- VIATOC: a gradient projection method for NMPC problems with input and

state box constraints.

- FalcOpt: a projected gradient descent method.

Apart from the default parameters, some key tuning parameters for the different

toolkits are shown in Table 5.1.

The closed-loop trajectories of the inputs and position when using ParNMPC are

shown in Figs. 5.2 and 5.3, respectively. The CTs during the closed-loop simulation

for the different toolkits are shown in Fig. 5.4. In addition, the optimality for each

toolkit is defined as the normalized distance to its corresponding optimal trajectory,

i.e., ∑300
t/0.01=0 {L(ũ(t), x̃(t), p(t))− L(u∗(t), x∗(t), p(t))}∑300

t/0.01=0 L(u∗(t), x∗(t), p(t))
× 100%, (5.15)

where ũ(t) is the control input obtained by each toolkit, u∗(t) is the optimal control

input obtained by solving the corresponding OCP exactly, and x̃(t) and x∗(t) are the
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Table 5.1: Tuning parameters for different toolkits in quadrotor example (e.g., RT-
Heun stands for reverse-time Heun’s method).

Toolkit Discretization Tuning parameters
ParNMPC RT-Heun As shown in Listings 5.1, 5.2, and 5.3
ParNMPC-primitive RT-Euler Barrier parameter: 0.001

ACADO (qpOASES) Heun
GAUSS NEWTON, MULTIPLE SHOOTING,
FULL CONDENSING N2, HOTSTART QP,
tolerence: 0.001

ACADO (qpDUNES) Heun
GAUSS NEWTON, MULTIPLE SHOOTING,
tolerence: 0.001

ACADO-RTI (qpDUNES) Heun Same as above but performing RTI scheme
GRAMPC Heun MaxMultIter: 1, MaxGradIter: 10
VIATOC Heun Number of iterations: 10
FalcOpt Euler Tolerance: 0.01

Figure 5.2: Time histories of inputs for quadrotor example.

corresponding closed-loop responses, respectively. The closed-loop optimalities of the

different toolkits are shown in Table 5.2.

Table 5.2: Closed-loop optimalities [%] of different toolkits for quadrotor example

ParNMPC 0.1177 GRAMPC 1.5233
ParNMPC-primitive 0.0819 VIATOC 1.2743
ACADO (qpDUNES) 0.0002 FalcOpt 0.9719
ACADO-RTI (qpDUNES) 0.0108 - -

Note that even though the first-order methods (GRAMPC, VIATOC, and Fal-

cOpt) have relatively low optimalities, they can still drive the quadrotor to the refer-

ence position. In some circumstances, a sub-optimal solution obtained by performing

only several iterations is acceptable. That is, we are also interested in the CT per

iteration, which is compared for different N for these toolkits in Table 5.3.
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Figure 5.3: Time histories of position for quadrotor example.

We conclude from the comparison results as shown in Fig. 5.4 and Tables 5.2 and

5.3 that

- For ParNMPC, after parallelization, a speed-up of more than 4× was achieved

for N = 96 and even 2.5× for a small number of discretion grid points of N = 6.

- Compared with ParNMPC-primitive, ParNMPC was a factor of 2-3 faster in

terms of CT per iteration as shown in Table 5.3 both in serial and parallel,

which was caused by condensing.

- Compared with ACADO, where a QP has to be solved at each iteration, the

CT per iteration of ParNMPC in Table 5.3 was shorter than that of ACADO

(qpDUNES) even in serial and did not vary too much during the closed-loop

simulation due to the usage of the interior-point method. That is, the CT per

time step can be roughly estimated from the NOI. However, ACADO was more

effective than ParNMPC in terms of the closed-loop optimality as shown in

Table 5.2.

- The first-order methods had short CTs per iteration, and ParNMPC with par-

allelization was only several times slower than first-order methods as shown in

Table 5.3. However, the first-order methods converged slowly as indicated by

their closed-loop optimalities in Table 5.2.

In summary, ParNMPC has a good trade-off between optimality and CT, resulting in

an overall advantageous CT for the closed-loop control in Fig. 5.4, while maintaining

a good closed-loop optimality as shown in Table 5.2.
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Figure 5.4: Computation times per time step of closed-loop simulation.

Evaluation of the two-phase and inversion approximation strategies

In the above quadrotor example, the performance of the two-phase and inversion

approximation (5.10) strategies is not evaluated. In this part, we extended the sim-

ulation time to six seconds and set the position reference xref to zero for the last

three seconds. We ran the experiment with different DOPs, barrier strategies (with

different ρ0 and ρmin), and (∇xF)−1 calculation methods as shown in Table 5.4. It

should be noted that all of these patterns converged to the same optimality tolerance

with the same terminal barrier parameter, and therefore, the same level of optimality.

Due to the choice of the small terminal barrier parameter ρmin, input signals

approached the constraints very closely, and the closed-loop optimality (5.15) was

decreased to 0.002. The NOIs and CTs for different patterns are shown in Table

5.5. By comparing patterns (b)(d)(e)(f) with (a)(c), it can be seen that the two-

phase strategy illustrated in Fig. 5.1 significantly reduced the maximum NOIs for

both DOPs. The approximation of (∇xF)−1 using (5.10) for patterns (e)(f) reduced

the CT by 14% and 6% per iteration compared with patterns (b)(d), respectively,

however, with a slight increase in the NOIs.
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Table 5.3: Computation times [µs] per iteration for different N for quadrotor example.

N 6 12 24 48 96

ParNMPC (DOP = 1)
min 27 54 108 218 437
median 28 55 110 222 444
max 29 57 114 241 456

ParNMPC (DOP = 6)
min 11 18 31 55 101
median 11 19 32 56 103
max 12 20 33 63 111

ParNMPC-primitive (DOP = 1)
min 78 152 301 627 1251
median 79 154 302 631 1261
max 82 166 322 640 1287

ParNMPC-primitive (DOP = 6)
min 20 37 69 135 263
median 21 38 70 137 267
max 24 42 76 141 284

ACADO (qpOASES)
min 30 81 269 1015 4571
median 32 99 417 2463 20377
max 34 102 427 2496 20573

ACADO (qpDUNES)
min 41 83 120 248 520
median 43 86 171 355 751
max 60 112 245 492 1226

ACADO-RTI (qpDUNES)
min 42 83 166 345 719
median 44 87 176 368 774
max 79 161 363 819 1855

GRAMPC
min 3 6 13 26 53
median 4 8 16 31 62
max 5 9 18 35 71

VIATOC
min 6 8 15 29 57
median 7 12 23 46 94
max 8 13 31 100 469

FalcOpt
min 3 6 12 24 49
median 3 6 12 25 51
max 4 8 17 35 73

Table 5.4: Configurations.

Pattern DOP
Two-phase strategy (η = 0.1)

(∇xF)−1

ρ0 ρmin

(a) 1 10−5 10−5 Exact
(b) 1 1 10−5 Exact
(c) 6 10−5 10−5 Exact
(d) 6 1 10−5 Exact
(e) 1 1 10−5 Approx.
(f) 6 1 10−5 Approx.

5.6.2 Helicopter

In this experiment, we controlled Quanser’s 3 degree-of-freedom (DOF) helicopter

as shown in Fig. 5.5. The data acquisition and communication were done by using

Quanser Q8-USB, which is able to provide a maximum closed-loop control rate of 2
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Table 5.5: Number of iterations and computation times under different configurations.

Pattern Max. NOI Avg. NOI Median CT/Iter. [µs]
(a) 37 6.0 111
(b) 19 13.0 111
(c) 38 6.5 32
(d) 21 13.4 32
(e) 20 13.2 95
(f) 21 13.4 30

kHz. The hardware blocks in Simulink were provided by Quanser’s real-time control

software, QUARC.

Figure 5.5: Quanser’s 3 DOF helicopter (https://www.quanser.com/products/3-dof-
helicopter/).

The helicopter has two inputs u = [Vf , Vb]
T : the voltage on the front motor

Vf and the voltage on the back motor Vb. It has six states including three angles

q = [qε, qρ, qλ]
T (the elevation angle qε, pitch angle qρ, and yaw angle qλ) and their

time derivatives. We use the benchmark model in Brentari, Bosetti, Queinnec, and

Zaccarian (2018) in the following form:

q̈ = −

 sin qε(aε1 + aε2 cos qρ) + Cεq̇ε
−aρ cos qε sin qρ + Cρq̇ε

Cλq̇ε

+Kf

 bε cos qρ 0
0 bρ

bλ cos qε sin qρ 0

[ Vf + Vb
Vf − Vb

]
,

where the parameters are given as: aε1 = 2.356, aε2 = 0.799, aρ = 0.858, Cε = 0.053,

Cρ = 0.048, Cλ = 0.274, bε = 0.719, bρ = 9.336, bλ = 0.327, and Kf = 0.1188. The

goal was to control the helicopter to track a given reference qref under the constraints

of the input voltages: Vf , Vb ∈ [5, 10]. We choose the cost function to be quadratic as

follows.

Li(u, x) =
1

2
(‖q − qref‖2

Qq + ‖q̇‖2
Qq̇

+ ‖u− ū‖2
R)
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Here, ū = [7.5, 7.5]T denotes the approximate voltage needed to eliminate the effect

of gravity, p = qref , and the weighting matrices are Qq = 10 × I, Qq̇ = 0.1 × I, and

R = 0.1× I. The prediction horizon was T = 4 s, which was discretized into N = 24

grids by using the reverse-time Runge-Kutta method method. The barrier parameter

was fixed to 0.001, and DOP = 1. The exact Hessian and (∇xF)−1 were used.

The experiment was performed for 90 s with a sampling period of 5 ms. We first

controlled the helicopter to track several step yaw angle references and then a sine

signal with a skew rate of π/2 rad/s. The closed-loop responses of the angles are

shown in Figs. 5.6 and 5.7, and the corresponding input signals are shown in Fig.

5.8. Despite the offset when tracking the piecewise constant reference, the NMPC

controller could track the given reference well while satisfying the input constraints.

As shown in Fig. 5.9, the proposed method converged to the specified tolerance

with only five iterations at most, even though the reference signal was changed dra-

matically, resulting in sudden changes in the input signals flipping from one side to

another. The time histories of the CT are shown in Fig. 5.10.

Figure 5.6: Time histories of helicopter’s yaw angle.

5.6.3 Robot manipulator

The manipulator is a 7-DOF lightweight robot manipulator KUKA LBR iiwa 14,

which has seven joint torque inputs u = τ ∈ R7 and 14 states including seven joint

angles q ∈ R7 and their corresponding angular velocities q̇ ∈ R7. The goal was to con-

trol the manipulator to track given joint angles’ references qref under the constraints

of the torques and angular velocities; each joint had a maximum torque output of 10

Nm, and the angular velocity for each joint was limited to have a maximum value
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Figure 5.7: Time histories of helicopter’s elevation and pitch angles.

Figure 5.8: Time histories of helicopter’s input signals.

of π/2 rad/s in order to achieve smooth movement. For the NMPC problem formu-

lation, the angular velocity constraints were softened by introducing a slack variable

v ≥ 0, which denotes the violation of the constraints. The inequality constraint is

Gi(u, x) =


τ + 10e
−τ + 10e

v
q̇ + π

2
e+ ve

−q̇ + π
2
e+ ve

 ≥ 0,

where e = [1, · · · , 1]T . We choose the cost function to be quadratic as follows.

Li(u, x) =
1

2
(‖q − qref‖2

Qq + ‖q̇‖2
Qq̇

+ ‖τ‖2
R + 1000v2)
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Figure 5.9: Time histories of number of iterations.

Figure 5.10: Time histories of computation time.

Here, p = qref and the weighting matrices were Qq = I, Qq̇ = 0.1 × I, and R =

0.001 × I. The weighting imposed on v was 1000, which was at least three orders

of magnitude larger than the other weightings. The prediction horizon was T = 1

s, which was discretized into N = 18 grids by using the reverse-time Euler’s method

method. The Gauss-Newton Hessian approximation method was chosen. The barrier

parameter was fixed to 5 × 10−4, and the exact (∇xF)−1 was used. The gravity

was set to zero. The system function f(u, x) and its derivatives were implemented

using Pinocchio (Carpentier et al., 2019), which is a C++ library for efficient rigid

multi-body dynamics computations.

For the closed-loop simulation, the system was started from an initial state of

x̄0 = 0 and qref = 0. The simulation was performed for 8 s with a sampling period
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of 1 ms. The joints’ reference was set to qref = [0, π/2, 0, π/2, 0, π/2, 0]T for the first

four seconds and qref = [π/2, 0, π/2, 0, π/2, 0, π/2]T for the last four seconds. The

reference was fed to the controller with a rate limitation of 4π rad/s.

In this experiment, we compared the CTs under different DOP settings (in serial

and parallel). We note again that when DOP is set to one, ParNMPC behaves

exactly the same as the structure-exploiting primal-dual interior-point method. For

the measurement of the CT, we ran the simulation 10 times and chose the minimal

one to eliminate the effect of performance fluctuation. Five sampled plots for the

simulated manipulator are shown in Fig. 5.11, and the time histories of the joint

torque inputs, joint angles, and the angular velocities are shown in Figs. 5.12, 5.13,

and 5.14, respectively. Here, the last three torques are omitted in Fig. 5.12 because

their magnitudes are in the range of [−1, 1]. We can see from the simulation results

that the NMPC controller could control the robot manipulator to its desired reference

position smoothly while satisfying the specified constraints. The NOIs for DOP = 1

and 6 are compared in Fig. 5.15, which shows that both converged to the specified

tolerance with nearly the same rates, even though approximate information was used

in the parallel mode. However, the parallel one was much faster than the serial one in

terms of the CT shown in Fig. 5.16. A speed-up of more than 4× could be achieved on

the hexa-core processor. We noticed that, for both DOPs, the NMPC controller could

still drive the manipulator to its reference position by using even only one iteration

each sampling time. Considering that the CT per iteration for the parallel method

was less than 170 µs, a higher sampling rate can be achieved with either more cores

or fewer iterations.

Figure 5.11: Plots of manipulator at 0, 1, 4, 5, and 8 s.
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Figure 5.12: Time histories of manipulator’s first four joint torque inputs.

Figure 5.13: Time histories of manipulator’s joint angles q.

5.6.4 Discussion

Since ParNMPC is exactly the primal-dual interior-point method applied to NMPC

when DOP = 1, it inherits the good convergence and robustness of the interior-

point method. Moreover, the increase in speed for ParNMPC with parallelization

(DOP > 1) can be large on a hexa-core processor, so ParNMPC with parallelization is

expected to behave better with more cores. Parallel performance can be achieved even

for highly nonlinear systems (e.g., a robot manipulator) and a small N , with almost

the same number of iterations. However, parallelization with OpenMP introduces

an overhead time, which is usually proportional to DOP and is not negligible when

either the overall CT is small or the DOP is large.
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Figure 5.14: Time histories of manipulator’s joint angular velocities q̇.

Figure 5.15: Time histories of numbers of iterations for parallel method (DOP = 6)
and Newton’s method (DOP = 1).

5.7 Summary

This chapter presented an efficient implementation for the parallel optimization of

NMPC. The reverse-time discretization method dedicated for parallelization is intro-

duced and its accuracy was shown. Since the parallel method is in the same framework

as the conventional primal-dual interior-point method, nonlinear optimization tech-

niques, such as regularization, Hessian approximation, and line search, are applied

and optimized for the parallel optimization of NMPC, making the implementation

both fast and numerically robust. Three experiments showed that ParNMPC was

effective and efficient both in serial and parallel.

92



5.7. Summary

Figure 5.16: Time histories of computation times for parallel method (DOP = 6) and
Newton’s method (DOP = 1).

Future directions include integrating algorithmic differentiation to calculate the

required derivatives for large-scale systems and replacing OpenMP with lower level

parallel computing interfaces to reduce the overhead time.
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Chapter 6

Sparsity-Exploiting Jacobi Method
for NMPC

6.1 Introduction

In nonlinear model predictive control (NMPC), especially in the NMPC of large-scale

systems, there are two kinds of sparsities in the Karush-Kuhn-Tucker (KKT) matrix,

the upper-layer temporal sparsity along the prediction horizon and the lower-layer

problem-dependent sparsity. Structure-exploiting methods for NMPC, such as the

backward correction method (or, equivalently, Newton’s method) and the parallel

method introduced in Chapter 4, can be seen as methods that exploit the tempo-

ral sparsity along the prediction horizon in the KKT matrix. However, when these

methods are applied, the lower-layer sparsity is not preserved, which results in com-

putationally expensive dense matrix operations.

In this chapter, we present a sparsity-exploiting Jacobi method that exploits both

the upper- and lower-layer sparsities. The upper-layer Jacobi (or Jacobi-type) method

is derived by ignoring the temporal couplings of either the state or costate equations

such that the lower-layer sparsity can be preserved. Convergence analysis shows

that the upper-layer Jacobi method can be guaranteed to converge by introducing

regularization and choosing a short prediction horizon. For the lower-layer sparsity

exploitation, we concentrate on the NMPC control of systems governed by partial

differential equations (PDEs) and present a tailored lower-layer Jacobi solver for the

underlying linear systems of the PDE-constrained NMPC problem. The performance

of the proposed method is assessed by controlling the temperature distribution of

a two-dimensional heat transfer process on a thin plate. The proposed method is

matrix-free and has a complexity of O(N(nu + nx)) for the heat transfer example.
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6.2. Problem statement

The numerical example shows that the proposed method is two orders of magnitude

faster than the conventional structure-exploiting method.

This chapter is organized as follows. The problem is formulated in Section 6.2.

The proposed Jacobi method for NMPC is introduced in Section 6.3. Section 6.4

introduces the application of the proposed method to PDE systems. Section 6.5

demonstrates the performance of the proposed method. Finally, this chapter is sum-

marized in Section 6.6.

6.2 Problem statement

We consider the following N -stage NMPC problem with a temporal discretization

step size of h := T/N :

min
u1,··· ,uN ,
x0,··· ,xN

N∑
i=1

hli(ui, xi)

s.t. x0 = x̄0,

xi = xi−1 + hf(ui, xi), i ∈ {1, · · · , N},

Gi(ui, xi) ≥ 0, i ∈ {1, · · · , N}.

(6.1)

For the sake of brevity, we omit the equality constraint Ci(u, x) = 0 and limit the dis-

cretization method to be the backward Euler’s method with Fi(ui, xi) = f(ui, xi)h−xi
so that a maximum sparsity can be achieved. It should be noted that the main results

obtained in Section 6.3 apply to the general discretized NMPC problem (2.19).

6.2.1 Regularized NMPC problem

Instead of solving the original NMPC problem (6.1), we add the following regulariza-

tion term to the cost:
γ

2
‖ui − ũ∗i ‖2, (6.2)

where γ ≥ 0 is the regularization parameter and ũ∗i is the given regularization refer-

ence and regarded as the estimation of the optimal control input of (6.1). We discuss

later in Remark 6.1 the role of regularization and the selection of ũ∗i .

We adopt the interior-point method to relax the regularized NMPC problem by

transferring the inequality constraints into a logarithmic barrier function added to
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the cost. We obtain the following relaxed regularized NMPC (RR-NMPC) problem:

min
u1,··· ,uN ,
x0,··· ,xN

N∑
i=1

(
hli(ui, xi) + hΦi(ui, xi) +

γ

2
‖ui − ũ∗i ‖2

)
s.t. x0 = x̄0,

xi = xi−1 + hf(ui, xi), i ∈ {1, · · · , N},

(6.3)

where Φi(u, x) := −τ
∑

j lnGi(j)(u, x) (τ > 0 is the barrier parameter). The RR-

NMPC problem (6.3) approaches the original NMPC problem (6.1) when τ → 0 and

either γ = 0 or ũ∗i is given to be the optimal control input of (6.1).

6.2.2 KKT conditions

Let λi ∈ Rnx be the Lagrange multiplier (costate) corresponding to the i-th state

equation. For the sake of brevity, we define

s := (x, u, λ) and S := (s1, · · · , sN).

Let Hi(s) be the Hamiltonian defined by

Hi(s) := li(u, x) + Φi(u, x) + λTf(u, x).

Let Ki(xi−1, si, λi+1) be defined by

Ki(xi−1, si, λi+1) :=

 xi−1 − xi + hf(ui, xi)
h∇uHi(si)

T + γ(ui − ũ∗i )
λi+1 − λi + h∇xHi(si)

T


with x0 = x̄0 and λN+1 = 0. The KKT conditions for the RR-NMPC problem (6.3)

are

Ki(x∗i−1, s
∗
i , λ
∗
i+1) = 0, i ∈ {1, · · · , N}. (6.4)

Although the KKT conditions (6.4) are only the necessary conditions for optimality,

we solve the RR-NMPC problem (6.3) by solving the nonlinear algebraic equations

(6.4).

We introduce the following shorthand at the k-th iteration:

Kki := Ki(xki−1, s
k
i , λ

k
i+1), Kk := (Kk1 , · · · ,KkN),

∇siKki := ∇siKi(xki−1, s
k
i , λ

k
i+1), etc.
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6.2. Problem statement

6.2.3 Newton’s method

In solving the KKT conditions (6.4) by using the Newton’s method, the search direc-

tion ∆Sk := (∆sk1, · · · ,∆skN) is obtained by solving the following KKT system:
. . .

· · · Dk
i−1 MU

ML Dk
i MU

ML Dk
i+1 · · ·

. . .




...

∆ski−1

∆ski
∆ski+1

...

 =


...
Kki−1

Kki
Kki+1

...

 . (6.5)

Here, Dk
i := ∇siKki (the expression can be found in (6.15)) and the constant matrices

ML and MU given as follows show the couplings of the state and costate equations,

respectively.

ML :=

 Inx 0 0
0 0 0
0 0 0

 MU :=

 0 0 0
0 0 0
0 0 Inx

 (6.6)

Note that MU and ML differ from (4.12) and (4.13) in Chapter 4, respectively, since

the order of the unknown variables in s has been shifted. After the search direction is

calculated, a line search is performed to guarantee the primal feasibility G(u, x) ≥ 0,

i.e.,

Sk+1 = Sk − αmax∆Sk, i ∈ {1, · · · , N}, (6.7)

where αmax is obtained from the fraction-to-the-boundary rule (Nocedal & Wright,

2006):

αmax = max
{
αmax ∈ (0, 1] : Gk+1

i ≥ 0.005Gk
i , i ∈ {1, · · · , N}

}
. (6.8)

Since the KKT matrix in (6.5) is a block-tridiagonal matrix, solving (6.5) by using

the block Gaussian elimination method has a computational complexity of O(N(nx+

nu)
3). Many of the existing structure-exploiting methods tailored to NMPC are of

this complexity. Note that sparsity exists in both the upper-level KKT matrix in

(6.5) and the lower-level Jacobian matrices Dk
i , i ∈ {1, · · · , N}. However, since the

recursion D̂k
i := Dk

i − MU(D̂k
i+1)−1ML with D̂k

N+1 := 0 needs be performed from

i = N to 1 in the block Gaussian elimination method and D̂k
i is not necessarily

sparse (dense matrix inversion needs to be performed), the lower-level sparsity is not

preserved, which makes the structure-exploiting methods computationally expensive

for systems with large numbers of states.
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6.3 Jacobi method for NMPC

6.3.1 Preliminaries

We first review the Jacobi method (see, e.g., Saad (2003)) for solving linear equations

as follows.

Lemma 6.1. Let

Av = b, (6.9)

where A ∈ Rn×n and b ∈ Rn. Let A be decomposed into A = D + L + U , where

D, L, and U are the diagonal, strict lower triangular, and strict upper triangular

elements (blocks) of A, respectively. Assume that D is invertible. The Jacobi method

for solving (6.9) is given by

vk+1 = D−1(b− (L+ U)vk).

The Jacobi method converges if

ρ(D−1(L+ U)) < 1. (6.10)

Likewise, for the element-wise decomposition, the Jacobi method converges if the ma-

trix A is strictly diagonally dominant.

We show in the following some results on the convergence of general iterations.

Definition 6.1. (Point of attraction (Ortega & Rheinboldt, 1970)). Consider the

iteration

vk+1 = H(vk), (6.11)

where v ∈ Rn and H : P → Rn for a subset P ⊂ Rn. Let v∗ be an interior point of

P and a fixed point of the iteration (6.11), i.e., v∗ = H(v∗). Then, v∗ is said to be

a point of attraction of the iteration (6.11) if there is an open neighborhood O ⊂ P

of v∗ such that the iterates defined by (6.11) all lie in O and converge to v∗ for any

v0 ∈ O.

Lemma 6.2. (Ortega & Rheinboldt, 1970) Consider the iteration (6.11). Then, v∗

is a point of attraction of the iteration (6.11) if the following condition holds:

ρ(∇vH(v∗)) < 1. (6.12)
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6.3. Jacobi method for NMPC

Lemma 6.3. (Convergence factor and rate (Ortega & Rheinboldt, 1970)). If v∗ is a

point of attraction of the iteration (6.11), the following holds:

ρ(∇vH(v∗)) = lim
k→∞

sup ‖vk − v∗‖1/k,

and ρ(∇vH(v∗)) is called the convergence factor. The convergence rate is defined by

− ln ρ(∇vH(v∗)).

6.3.2 Algorithm

Let Dk, L, and U be the diagonal, strict lower triangular, and strict upper triangular

blocks of the KKT matrix in (6.5) as follows.

Dk := block-diag(Dk
1 , · · · , Dk

N)

L := lower-block-diag(ML, · · · ,ML)

U := upper-block-diag(MU , · · · ,MU)

The block-diagonal matrix Dk can be guaranteed to be invertible if h is sufficiently

small and γ > 0. The Jacobi method for solving the KKT conditions (6.4) is given

by

Sk+1 = Sk − αmax(Dk)−1Kk, (6.13)

where αmax ∈ (0, 1] is a scalar obtained from the fraction-to-the-boundary rule (6.8)

and S0 is chosen such that the primal feasibility condition G(ui, xi) > 0 is satisfied

for all i ∈ {1, · · · , N}. Herein, we call the Jacobi method (6.13) for solving the KKT

conditions (6.4) the upper-layer Jacobi method.

The upper-layer Jacobi method exploits the banded structure (temporal sparsity)

of the KKT matrix by ignoring its off-diagonal blocks. That is, the couplings intro-

duced by the state and costate equations are ignored during iteration so that (6.13)

can be performed block-wisely (Dk is a block-diagonal matrix). Although the Jacobi

method in (6.13) can be regarded as Newton’s method ignoring off-diagonal blocks

and Newton’s method is known to be locally quadratically convergent under mild

assumptions, the convergent property might not be preserved for the Jacobi method.

The convergence of the upper-layer Jacobi method is analyzed in the following sub-

section.

6.3.3 Convergence

We first give a general convergence condition for the upper-layer Jacobi method.
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Theorem 6.2. S∗ is a point of attraction of the iteration (6.13) if the following

condition holds:

ρ((D∗)−1(L+ U)) < 1. (6.14)

Proof. Since Gi(u
∗
i , x
∗
i ) > 0 is satisfied for all i ∈ {1, · · · , N}, there exists an open

neighborhood O of S∗ such that for any S0 ∈ O, the fraction-to-the-boundary rule

(6.8) will never be triggered when the iteration converges, i.e., αmax = 1 in the

neighborhood of S∗. The result then follows by applying Lemma 6.2 with αmax = 1,

K∗ = 0, and ∇SK∗ = D∗ + L+ U .

Theorem 6.2 gives a general sufficient condition for convergence. However, the con-

dition (6.14) can only be verified afterward and does not provide significant insights

related to the NMPC problem. We show in the following lemma and theorem that

the upper-layer Jacobi method can be guaranteed to converge by tuning the NMPC

parameters, such as the prediction horizon T and the regularization parameter γ.

Lemma 6.4. Let D∗i be decomposed into

D∗i =

 h∇xf
∗
i − I 0 0

h∇2
uxH∗i h∇2

uuH∗i + γI 0
h∇2

xxH∗i h∇2
xuH∗i h(∇xf

∗
i )T − I


+ h

 0 ∇uf
∗
i 0

0 0 (∇uf
∗
i )T

0 0 0


=: D̄∗i + hD̃∗i .

(6.15)

Let D̄∗ and D̃∗ be defined as follows.

D̄∗ := block-diag(D̄∗1, · · · , D̄∗N)

D̃∗ := block-diag(D̃∗1, · · · , D̃∗N)

Then, for any h > 0 and γ ≥ 0 such that D̄∗ is invertible, e.g., when h is sufficiently

small and γ is nonzero, the following holds:

ρ((D̄∗)−1(L+ U)) = 0.

Proof. If N = 1 (L = U = 0), the result can be easily obtained. We discuss the case

of N ≥ 2. The proof is done by showing that the eigenvalues of (D̄∗)−1(L + U) are

all zero. In fact, the expression det(σI − (D̄∗)−1(L+U)) = σN(2nx+nu) is obtained by

using Schur complement recursively as shown below.
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6.3. Jacobi method for NMPC

Define a set of matrices

A :=


 0 0 0

0 0 0
P 0 0

 ∈ C(2nx+nu)×(2nx+nu), P ∈ Cnx×nx

 .

Define the following shorthand:

D̄L
i := −(D̄∗i )

−1ML and D̄U
i := −(D̄∗i )

−1MU

so that

(D̄∗)−1(L+ U) = −


0 D̄U

1

D̄L
2 0 D̄U

2

D̄L
3

. . . . . .

. . . 0 D̄U
N−1

D̄L
N 0

 .
For any A ∈ A, σ ∈ C, and i ∈ {2, · · · , N}, it can be examined that

D̄U
i−1(σI − A)−1D̄L

i ∈ A. (6.16)

Let K ∈ {2, · · · , N} and AK ∈ A. We define a K-size (K blocks of rows and columns)

block-tridiagonal matrix WK by
σI D̄U

1

D̄L
2 σI D̄U

2

D̄L
3

. . . . . .

. . . σI D̄U
K−1

D̄L
K σI − AK

 =:

[
MA MB

MC MD

]
. (6.17)

The determinant of WK is given by

detWK = det(σI − AK) det(schur(WK , σI − AK)), (6.18)

where schur(WK , σI − AK) denotes the Schur complement of the block σI − AK of

WK , i.e.,

schur(WK , σI − AK) = MA −MBM
−1
D MC .

Let us then calculate the right hand side of (6.18). It can be shown that

det(σI − AK) = σ2nx+nu . (6.19)

Since AK ∈ A, we can know from (6.16) that the only nonzero block (lower right

corner) of MBM
−1
D MC belongs to A, i.e,

D̄U
K−1(σI − AK)−1D̄L

K ∈ A. (6.20)
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By choosingAK−1 to be the left hand side of (6.20), the Schur complement schur(WK , σI−
AK) can be seen as a (K − 1)-size block-tridiagonal matrix in the form of (6.17), i.e.,

schur(WK , σI − AK) =: WK−1. (6.21)

By substituting (6.19) and (6.21) into (6.18), we obtain the following recursion:

detWK = σ2nx+nu detWK−1.

Following the procedures above and together with W1 = σI2nx+nu , we obtain

detWK = σK(2nx+nu). (6.22)

Now we choose K = N and AK = 0 ∈ A, i.e.,

detWN = det(σI − (D̄∗)−1(L+ U)) = σN(2nx+nu). (6.23)

From (6.23), we can know that (D̄∗)−1(L + U) has only zero eigenvalues. The con-

clusion ρ((D̄∗)−1(L+ U)) = 0 then follows.

Theorem 6.3. The convergence of the upper-layer Jacobi method (6.13) is described

as follows.

(i) Let γ be chosen to be nonzero. There exists T0 > 0 such that ρ((D∗)−1(L+U)) <

1 holds for any T < T0.

(ii) There exists ε > 0 such that ρ((D∗)−1(L + U)) < 1 holds for any D̃∗i satisfying

‖D̃∗i ‖ < ε‖D̄∗i ‖, i ∈ {1, · · · , N}.

Proof. Proof of (i). From the definitions in Lemma 6.4, we know that

ρ((D∗)−1(L+ U)) = ρ((D̄∗ + hD̃∗)−1(L+ U)). (6.24)

We first choose T0 > 0 to be sufficiently small. Since γ is a nonzero constant, T < T0,

and h = T/N is sufficiently small, the right-hand side of (6.24) can be seen as a small

perturbation of ρ((D̄∗)−1(L + U)) in terms of h. That is, together with Lemma 6.4,

we obtain that

lim
h→0

ρ((D∗)−1(L+ U)) = 0.

From the continuities of matrix inverse and spectral radius, there always exists T0 > 0

such that ρ((D∗)−1(L+ U)) < 1 holds for any T < T0.

Proof of (ii). Let ε > 0 be chosen to be sufficiently small. Since ε is a small number

and ‖D̃∗i ‖ < ε‖D̄∗i ‖, i ∈ {1, · · · , N}, ρ((D∗)−1(L + U)) = ρ((D̄∗ + hD̃∗)−1(L + U))

can also be seen as a small perturbation of ρ((D̄∗)−1(L + U)) = 0 in terms of D̃∗.

Similarly to the proof of (i), the result then follows.
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Theorem 6.3 can be interpreted as follows. Theorem 6.3 (i) indicates that a

nonzero regularization parameter γ and a short prediction horizon T guarantee the

convergence of the upper-layer Jacobi method. However, note that neither a nonzero

γ nor a small T > 0 is a necessary condition for satisfying ρ((D∗)−1(L + U)) < 1.

Since D̄∗i consists of the sensitivity ∇uf
∗
i , Theorem 6.3 (ii) can be interpreted as that

ρ((D∗)−1(L + U)) < 1 holds if the dynamical system (6.34) is not sensitive to the

control input u.

Remark 6.1. (Role of regularization). As can be seen from the proof of Theorem 6.3

(i), the nonzero regularization parameter γ makes (D̄∗)−1 less ill-conditioned (less

sensitive to h) and therefore guarantees the convergence of the method when selecting

a short prediction horizon T . However, a large γ makes the optimal solution of the

RR-NMPC problem (6.3) far away from the original NMPC problem (6.1) unless the

regularization reference ũ∗i in the regularization term (6.2) is chosen to be a good

estimation of the optimal control input of (6.1). Since the RR-NMPC problem has

to be solved successively at every time step, ũ∗i can be fixed to be the optimal control

input of the last time step or updated at each iteration, i.e., ũ∗i = uki . If ũ∗i = uki ,

the optimal solution to the RR-NMPC problem is equivalent to the optimal solution

to the NMPC problem with only relaxation.

6.3.4 Jacobi-type variants

The reason the iteration (6.13) is called the Jacobi method is that its convergence

condition (6.14) mimics the condition (6.10) for solving linear equations. This can be

seen as applying the Jacobi method to solve the KKT conditions. Likewise, Jacobi-

type methods (see, e.g., Saad (2003)) for solving linear equations, such as the Gauss-

Seidel and successive over-relaxation (SOR) methods, can be applied to solve the

KKT conditions as well. We show several Jacobi-type methods and their conditions

for convergence as follows.

• Forward Gauss-Seidel method (FGS):

Sk+1 = Sk − αmax(Dk + L)−1Kk (6.25)

Condition for convergence:

ρ((D∗ + L)−1U) < 1. (6.26)
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• Backward Gauss-Seidel method (BGS):

Sk+1 = Sk − αmax(Dk + U)−1Kk

Condition for convergence:

ρ((D∗ + U)−1L) < 1. (6.27)

• SOR method:

Sk+1 = Sk − αmaxω(Dk + ωL)−1Kk, ω > 0.

Condition for convergence:

ρ((D∗ + ωL)−1(ωU + (ω − 1)D∗)) < 1.

• Symmetric Gauss-Seidel (SGS) method:

Sk+1 = Sk − αmax(Dk + L)−1(Kk − U(Dk + U)−1Kk). (6.28)

Condition for convergence:

ρ((D∗ + L)−1U(D∗ + U)−1L) < 1. (6.29)

Note that FGS and BGS have the same amount of computation as the Jacobi

method. The difference is the rate of convergence as shown in the following theorem.

Theorem 6.4. If the convergence condition (6.14) holds for the Jacobi method, then

the convergence conditions (6.26) and (6.27) also hold for FGS and BGS, respectively.

That is, S∗ is a point of attraction of the FGS and BGS iterations. Moreover, both

the FGS and BGS methods converge twice as fast as the Jacobi method.

Proof. Since the KKT matrix in (6.5) is a block-tridiagonal matrix, the KKT matrix

is consistently ordered (Hageman & Young, 1981). It is known from Saad (2003) that

for a consistently ordered matrix, the spectral radius of FGS is the square of that of

the Jacobi method, i.e.,

ρ((D∗ + L)−1U) = ρ((D∗)−1(L+ U))2.

The conclusion above can be shown similarly for BGS that

ρ((D∗ + U)−1L) = ρ((D∗)−1(L+ U))2.

Recall the definition of the convergence rate in Lemma 6.3. The result then follows.
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As can be seen from Theorems 6.3 and 6.4, a short prediction horizon T and a

nonzero γ can also guarantee the convergence of FGS and BGS. The discussion on

the role of the regularization procedure in Remark 6.1 applies to FGS and BGS as

well. As for the SGS iteration (6.28), it can be seen as a BGS iteration followed by a

FGS iteration, i.e., a backward sweep followed by a forward sweep. The iteration in

the previous work Zavala (2016) is similar to the FGS iteration (6.25). However, the

inequality constraints are kept and the regularization procedure is not introduced, so

the convergence is difficult to guarantee.

The upper-layer Jacobi method and its variants exploit the upper-level sparsity of

the KKT matrix in (6.5) and preserve the lower-level sparsity of the Jacobian matrices

Dk
i , i ∈ {1, · · · , N}. We show in the next section that the lower-level sparsity can be

further exploited for the NMPC control of PDE systems.

6.4 Application to PDE systems

6.4.1 Motivation

Besides the NMPC control of systems governed by ordinary differential equations

(ODEs), NMPC control of PDE systems, such as Navier-Stokes equations for fluid

flow and heat transfer equations for chemical processes, has gained increasing at-

tention due to the optimal and constraint-handling properties of NMPC. However,

PDE-constrained NMPC presents a great challenge for real-time optimization due

to the infinite-dimensional state space of PDE systems. The solution methods for

PDE-constrained NMPC can be generally categorized as indirect or direct. Indirect

methods analytically derive the optimality conditions for PDE-constrained NMPC

and then solve these conditions numerically. For example, in Hashimoto, Yoshioka,

and Ohtsuka (2013), the analytic optimality conditions for the NMPC control of a

class of parabolic PDEs are derived. These optimality conditions are discretized to a

set of nonlinear algebraic equations, the solution of which is then traced by using the

C/GMRES method (Ohtsuka, 2004). Moreover, the so-called contraction mapping

method can be applied efficiently if the nonlinear algebraic equations satisfy certain

structure conditions. In contrast to indirect methods, which “first optimize, then

discretize,” direct methods need PDE systems to be first discretized both in space

and time. The NMPC problem is formulated on the basis of the discretized PDE sys-

tem, which leads to a nonlinear program. Since a fine-grained spatial discretization

results in a large number of states or optimization variables, model reduction tech-

niques are frequently applied. A common way, e.g., in Ou and Schuster (2009), is to
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combine the proper orthogonal decomposition method (Sirovich, 1987) with Galerkin

projection to obtain a low-dimensional dynamical system. An alternative approach

is to use Koopman operator-based reduced order models (Peitz & Klus, 2019). The

key idea is to transform the dynamical system into switched autonomous systems

by restricting the control input to a finite number of constant values. The switched

autonomous systems are approximated by low-dimensional linear systems using the

Koopman operator.

Unlike the model reduction methods, we deal directly with the discretized PDE

system. PDE systems can be discretized in space into ODE systems by using, e.g.,

the finite difference method. Although conventional NMPC methods for ODE sys-

tems can in principle be applied, they are computationally expensive due to the large

number of states. For example, structure-exploiting methods for NMPC, e.g., in

Steinbach (1994) and Zanelli, Domahidi, Jerez, and Morari (2020), perform Riccati

recursions and have computational complexities of O(N(nu + nx)
3). Even the state

variables can be first eliminated in condensing-based methods, the elimination proce-

dure is roughly of O(N2n2
x) (Andersson, Frasch, Vukov, & Diehl, 2017). Note again

that sparsity exists both in the spatial and temporal directions of PDE-constrained

NMPC problems. Structure-exploiting methods can only make use of the temporal

sparsity along the prediction horizon, and the lower-layer spatial sparsity is destroyed

due to Riccati recursion. In this section, we apply the upper-layer Jacobi method

to PDE-constrained NMPC problems and present a lower-layer Jacobi method that

solves efficiently the underlying linear systems by exploiting the lower-layer spatial

sparsity.

6.4.2 PDE systems

We consider the NMPC control of a general class of PDE systems defined on the

spatial domain Ω ⊂ Rn and temporal domain Γ ⊂ R (p here stands for the spatial

position):

a(u(t), w(p, t))
∂2w(p, t)

∂t2
+ b(u(t), w(p, t))

∂w(p, t)

∂t
= c(u(t), w(p, t))4w(p, t) + d(u(t), w(p, t)),

(6.30)

where w is the scalar PDE state, 4w(p, t) :=
∑n

i=1 ∂
2w(p, t)/∂p2

(i) denotes the Lapla-

cian of w, and a, b, c and d are twice-differentiable nonlinear functions of u and w.

The boundary conditions, such as the Dirichlet and Neumann boundary conditions,

can be given to be input- and state-dependent, i.e., as functions of u and w. We
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w0(t) w1(t) wM (t)· · · wM+1(t)w
−1(t)

0 1−∆p ∆p 1 +∆p

Figure 6.1: Spatial discretization points and fictitious points

assume that a is not zero for every admissible (u,w) when the second-order time

derivative of w is involved.

Note that (6.30) is a very general description of PDE systems. Many of the PDE

systems, such as the heat transfer equation and wave equation, fall into the form of

(6.30). For PDE systems that are not in this form, e.g., the Navier-Stokes equations

including both gradients and algebraic variables, we will discuss later in Remark 6.2

that the results of this chapter can in principle be extended.

6.4.3 Spatial discretization

We first introduce the spatial discretization of (6.30) by using the finite difference

method. Without loss of generality, we demonstrate the discretization by using a

one-dimensional system on an unit space interval Ω := [0, 1] satisfying the following

Neumann boundary condition:

∂w(p, t)

∂p
= e(u(t), w(p, t)), p = 0 and 1. (6.31)

Let M + 1 be the number of the spatial discretization grid points and ∆p be the

corresponding step size. The finite difference method is to approximate derivatives

by using finite differences, i.e., for j ∈ {0, · · · ,M},

4w(j∆p, t) ≈ wj+1(t)− 2wj(t) + wj−1(t)

∆p2
,

where wj(t) := w(j∆p, t). At j = 0 and M , two fictitious points w−1(t) and wM+1(t),

as illustrated in Fig. 6.1, are introduced to deal with the boundary condition. By

using the finite difference method, the Neumann boundary condition (6.31) translates

into the difference equations as follows.

w1(t)− w−1(t)

2∆p
= e(u(t), w0(t)) (6.32a)

wM+1(t)− wM−1(t)

2∆p
= e(u(t), wM(t)) (6.32b)
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The PDE system (6.30) is then discretized into

a(u(t), wj(t))ẅj(t) + b(u(t), wj(t))ẇj(t)

= c(u(t), wj(t))
wj+1(t)− 2wj(t) + wj−1(t)

∆p2
+ d(u(t), wj(t)), j ∈ {0, · · · ,M},

(6.33)

where the fictitious points w−1(t) and wM+1(t) can be eliminated by using the dis-

cretized boundary conditions (6.32). Note that the discretized PDE system (6.33) is

described by a finite number of states:

x(t) := (W (t), Ẇ (t))

:= (w0(t), · · · , wM(t), ẇ0(t), · · · , ẇM(t)) ∈ Rnx ,

where nx = 2(M + 1). The dynamics of the discretized PDE system are given by

ẋ(t) =

[
Ẇ (t)

g(u(t), x(t))

]
=: f(u(t), x(t)), (6.34)

where g(u(t), x(t)) denotes the expression of Ẅ (t) obtained from (6.33).

6.4.4 Lower-layer Jacobi method

The upper-layer Jacobi method and its variants essentially consist of solving linear

equations with the coefficient matricesDk
i of the structure in (6.15) for i ∈ {1, · · · , N}.

Since Dk
i is sparse and its structure is fixed, efficient exact or iterative solution meth-

ods usually exist. For example, the Jacobi method for solving linear equations can be

applied directly when h is sufficiently small. In this subsection, we introduce another

iterative method by exploiting the particular structure of Dk
i .

The linear systems are reordered to have the following coefficient matrix: 0 h∇xf
k
i − I h∇uf

k
i

h(∇xf
k
i )T − I h∇2

xxHk
i h∇2

xuHk
i

h(∇uf
k
i )T h∇2

uxHk
i h∇2

uuHk
i + γI

 . (6.35)

For the sake of brevity, the linear system with the coefficient matrix (6.35) is expressed

by using the following shorthand: 0 Fx Fu
F T
x Axx Axu
F T
u Aux Auu

 v1

v2

v3

 =

 b1

b2

b3

 . (6.36)
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Equation (6.36) can be solved by first eliminating (v1, v2) and then solving for v3, i.e.,

by performing the following two steps.(
Auu −

[
F T
u Aux

] [ 0 Fx
F T
x Axx

]−1 [
Fu
Axu

])
v3

= b3 −
[
F T
u Aux

] [ 0 Fx
F T
x Axx

]−1 [
b1

b2

] (6.37a)

[
0 Fx
F T
x Axx

] [
v1

v2

]
=

[
b1

b2

]
−
[
Fu
Axu

]
v3 (6.37b)

Solving (6.37) consists of solving several linear equations of the following form:[
0 Fx
F T
x Axx

] [
v4

v5

]
=

[
b4

b5

]
. (6.38)

The linear equation (6.38) can be solved by first solving Fxv5 = b4 and then solving

F T
x v4 = b5 − Axxv5. That is, linear equations with the coefficient matrices Fx and

F T
x are solved essentially. We show next that these linear equations can be solved

efficiently by using the Jacobi method.

Recall that for the discretized PDE system (6.34), we have

Fx = h∇xf
k
i − I =

[
−I hI

h∇Wg
k
i h∇Ẇg

k
i − I

]
.

Therefore, a linear equation with the coefficient matrix Fx, i.e., the following equation,[
−I hI

h∇Wg
k
i h∇Ẇg

k
i − I

] [
v6

v7

]
=

[
b6

b7

]
can be solved by first eliminating v6 with v6 = hv7 − b6 and then solving a linear

system with the following coefficient matrix:

h∇Ẇg
k
i − I + h2∇Wg

k
i . (6.39)

Since that ∇Ẇg
k
i is diagonal, the off-diagonal entries of (6.39) have orders of O(h2).

It is easy to show that (6.39) is diagonally dominant if h is sufficiently small. More-

over, the off-diagonal entries of ∇Wg
k
i are sufficiently small for many of the PDE

equations, such as the heat transfer equation and the Navier-Stokes equation with

a large Reynolds number. That is, according to Lemma 6.1, convergence of the Ja-

cobi method can be achieved for solving linear equations with the coefficient matrices

(6.39). The same conclusion can be made for the F T
x system.
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Chapter 6. Sparsity-Exploiting Jacobi Method for NMPC

We herein call the introduced Jacobi method the lower-layer Jacobi method.

The lower-layer Jacobi method is concluded as follows. Since nx � nu for PDE-

constrained NMPC problems, the major computational cost for solving (6.36) comes

from solving linear equations with the coefficient matrices (6.39), which can be solved

efficiently by using the Jacobi method if, e.g., the NMPC problem is finely discretized

in time, i.e., with a sufficiently small h.

Remark 6.2. The key point of the lower-layer method is to find a method that solves

the equation (6.36) efficiently, e.g., the introduced lower-layer Jacobi method for the

NMPC control of the PDE system (6.30). For PDE systems that are not in the form of

(6.30) or even general systems, the proposed upper layer’s iteration can be performed

efficiently if a structure-exploiting linear solver can be designed.

6.5 Numerical experiment

The upper-layer Jacobi method for solving the NMPC problem (6.1) and the lower-

layer Jacobi method for solving the linear equation (6.36) form a double-layer Jacobi

method for PDE-constrained NMPC problems. In this section, we demonstrate the

performance of the double-layer Jacobi method in terms of the computation time,

number of iterations, and convergence factor by using a heat transfer closed-loop

control example. The experiment was implemented in C and performed on a 3.9-GHz

(turbo boost frequency) Intel Core i5-8265U laptop computer. To reduce the effect of

the computing environment, the computation time at each time step was measured

by taking the minimum one of ten runs of the closed-loop simulation.

6.5.1 System description

We consider a nonlinear heat transfer process in a thin copper plate (Mathworks,

2020). Because the plate is relatively thin compared with the planar dimensions,

temperature can be assumed constant in the thickness direction. The system is de-

scribed by the following two-dimensional PDE:

ρCptz
∂w(p, t)

∂t
− ktz4w(p, t) + 2Qc + 2Qr = 0,

where w is the plate temperature, p ∈ Ω := {(x, y)|x, y ∈ [0, 1]} (x here stands for the

horizontal axis) and Qc and Qr are, respectively, the convection and radiation heat

transfers defined as follows.

Qc := hc(w(p, t)− Ta)

Qr := εδ(w(p, t)4 − T 4
a )
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6.5. Numerical experiment

The boundary conditions are the zero Neumann boundary conditions. The parameters

of the heat transfer process are given in Table 6.1. There are 16 actuators distributed

Table 6.1: Parameters in the heat transfer process.

ρ 8960 Density of copper [kgm−3]
Cp 386 Specific heat of copper [Jkg−1K−1]
tz 0.01 Plate thickness [m]
k 400 Thermal conductivity of copper [Wm−1K−1]
hc 1 Convection coefficient [Wm−2K−1]
Ta 300 Ambient temperature [K]
ε 0.5 Emissivity of the plate surface
δ 5.67 · 10−8 Stefan-Boltzmann constant [Wm−2K−4]

uniformly under the plate to heat or cool the plate above the ambient temperature

in the range of [Ta, Ta + 400] K. The temperatures of the plate at the positions of

the actuators can be controlled directly. We assume that the actuators negligibly

impact the convection and radiation heat transfer processes. We are interested in

controlling the temperature distribution across the plate under constraints, which is

a typical control problem that arises in semiconductor manufacturing. For example,

a temperature gradient needs to be maintained within a wafer to ensure catalytic

activation (Bleris, Garcia, Kothare, & Arnold, 2006).

6.5.2 NMPC problem statement

The plate was uniformly discretized into 13 × 13 spatial grid points as shown in

Fig. 6.2. Since the temperatures at the positions of the actuators can be controlled

directly, the temperatures of the red squared points are regard as control inputs. We

obtain a system with 16 inputs and 153 states. The inputs are constrained by

G(u, x, p) =

[
u− Tae

−u+ (Ta + 400)e

]
≥ 0,

where e = [1, · · · , 1]T . We chose the cost function to be quadratic as

l(u, x, p) :=
1

2
(‖x− xref‖2

Q + ‖u− uref‖2
R), i ∈ {1, · · · , N},

where xref and uref encoded the temperature distribution reference and the weighting

matrices were Q = I and R = 0.1× I.

Note that the lower-layer Jacobi method converged fast and needed only two

iterations due to the small thermal diffusivity kρ−1C−1
p . Moreover, we noticed that

the coefficient matrix in (6.37a) was dominated by the diagonal matrix Auu. The
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y [m]

(0, 0) (1, 0)

(0, 1)
(1, 1)

x [m]

Figure 6.2: Spatial discretization grid points on plate (red squared points: actuators’
positions).

linear equation (6.37a) in the lower-layer Jacobi method was solved iteratively by

performing two of the following iterations:

Auuv
k+1
3 = b3+[

F T
u Aux

] [ 0 Fx
F T
x Axx

]−1([
Fu
Axu

]
vk3 −

[
b1

b2

])
,

(6.40)

which can be solved efficiently due to the diagonal property of Auu. The parameters of

the NMPC controller are given in Table 6.2. Since all of the matrices during iteration

Table 6.2: NMPC parameters.

Name Value
Prediction horizon T 100 [s]
# of temporal discretization points N 20
Barrier parameter τ 100
Regularization reference ũ∗i uki
Regularization parameter γ 0.5
Stopping criterion ‖Kk‖∞ < 1
Upper-layer method SGS (6.28)
Lower-layer method Two Jacobi iterations

were sparse, the expressions of the matrix-vector multiplications were pre-computed

offline, which made the proposed method matrix-free. The computational complexity

of the proposed method for the heat transfer example is O(N(nx + nu)).
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6.5.3 Closed-loop simulation

The system was started from an initial state of x̄0 = [Ta, · · · , Ta]T . The simulation

was performed for 1000 s with a sampling period of 5 s. The temperature distribution

reference, as shown in Fig. 6.3, was set to a slope shape for the first 500 seconds and

a V-like shape for the last 500 seconds. The second reference was fed to the controller

(a) 0 ≤ t ≤ 500 s (b) 500 < t ≤ 1000 s

Figure 6.3: Temperature distribution references at different time periods.

by changing continuously from the first reference within 50 seconds.

For tracking the first reference of the closed-loop simulation, two sampled plots

at t = 50 s and t = 500 s are shown in Fig. 6.4 (a) and (b). For the second reference,

two sampled plots at t = 550 s and t = 1000 s are shown in Fig. 6.4 (c) and (d). As

shown by these plots, the references were tracked well by using the NMPC controller.

The time histories of the control inputs are shown in Fig. 6.5. Although the barrier

parameter τ was fixed to 100, a high accuracy was still achieved such that the inputs

approached the boundaries very closely.

To demonstrate the performance of the proposed method, we compared the con-

ventional Newton’s method introduced in Section 6.2.3. The search direction (6.5)

in Newton’s method was calculated by using the block Gaussian elimination method,

which was implemented by using NMPC real-time optimization software ParNMPC

(version 1903-1) (https://github.com/deng-haoyang/ParNMPC), i.e., the toolkit in-

troduced in Chapter 5 with a degree of parallelism of one. Note that since both

methods were based on the interior-point method, their computation times per iter-

ation were consistent throughout the closed-loop simulation. The mean computation

time per iteration for Newton’s method was 0.180 s, which was about 433 times of

that of the proposed method (0.416 ms). Considering that their numbers of iterations
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(a) t = 50 s (b) t = 500 s

(c) t = 550 s (d) t = 1000 s

Figure 6.4: Temperature distributions at different time t.
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Figure 6.5: Time histories of inputs (some inputs coincide with each other).

shown in Fig. 6.6 were in the same range, the proposed method was much faster than

Newton’s method in terms of the computation time per time step shown in Fig. 6.7.

Furthermore, since the proposed method for the heat transfer example was matrix-
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free, its compiled executable file size (440 KB) was only about one tenth of that of

Newton’s method, which enables embedded applications for the proposed method.

0 200 400 600 800 1000
0

5

10

15

Newton's method
Proposed method

Figure 6.6: Time histories of numbers of iterations.
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0

Newton's method
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Figure 6.7: Time histories of computation times per time step.

Lastly, we discuss the effects of the prediction horizon and regularization. In the

numerical experiment, the proposed method could not converge without regulariza-

tion (γ = 0). According to Theorem 6.3 and Remark 6.1, the convergence can be guar-

anteed by shortening the prediction horizon and introducing a positive regularization

parameter γ. We compared the convergence factor ρ((D∗+L)−1U(D∗+U)−1L) for the
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upper layer’s SGS iteration along the closed-loop simulation under different predic-

tion horizons (T = 20 and 100) and regularization parameters (γ = 0 and 0.5) in Fig.

6.8. It can be seen that the convergence condition ρ((D∗ + L)−1U(D∗ + U)−1L) < 1

was satisfied with either regularization or a short prediction horizon.

0 200 400 600 800 1000

0.5

1

1.5

2

Figure 6.8: Time histories of convergence factors of SGS under different settings.

6.6 Summary

This chapter presents the Jacobi method for NMPC and its application to the NMPC

control of PDE systems. The proposed upper-layer Jacobi method performs simple

Jacobi-type iterations to solve the KKT conditions to make full use of the sparsities

exist in the upper and lower layers. Furthermore, the convergence of the proposed

method can be guaranteed by adjusting the prediction horizon and regularization pa-

rameter. The proposed method is applied to PDE-constrained NMPC problems, and

a lower-layer Jacobi method is proposed to solve the underlying linear equations. The

results of the numerical experiment show that the proposed method can significantly

reduce the computation time and program size.

Future research directions include extending the proposed method to the NMPC

control of other large-scale systems, such as power grids and multi-agent systems.
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Chapter 7

Conclusions and Outlook

In this thesis, we have proposed a variety of fast numerical optimization methods

for both linear model predictive control (MPC) and nonlinear MPC (NMPC). The

arising quadratic programs and nonlinear programs in linear MPC and NMPC, re-

spectively, are optimization problems with particular structures and properties, which

are captured in designing the efficient proposed methods. The combined first- and

second-order method in Chapter 3 makes use of the convexity and multi-stage prop-

erty of the linear MPC problem. In Chapters 4 and 5, the parallel method and its

implementation depend on the smoothly varying property of the sensitivity matrix.

The Jacobi method in Chapter 6 takes advantage of the double-layer sparsities arising

in large-scale NMPC problems. The experiments of aircraft, quadrotor, helicopter,

robot manipulator, and heat-transfer process control have demonstrated the efficiency

and potential of the proposed methods. Therefore, it is expected that the real-time

MPC control of systems with complicated dynamics, many inputs and states, and

high sampling rates can be made possible by using the proposed methods.

As we have mentioned in Chapter 1, the success of linear MPC lies in its simplicity

and easy understanding. Due to the convexity, optimization methods for linear MPC

can be extremely reliable for practical industrial and safety-critical applications. On

the other hand, the generality of NMPC makes it powerful to handle more types

of costs, dynamics, and constraints, however, brings complexities to its underlying

optimization methods. Although it is generally hard to find the global optimal so-

lution for a nonconvex NMPC problem within a limited amount of time, real-time

optimization methods for NMPC should be at least fast and reliable in finding local

solutions. In addition, optimization methods for NMPC should be able to report and

recover from numerical failures.
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Appendix A

Explicitly Discretized MPC

A.1 Problem statement

In the previous chapters, the model predictive control (MPC) problem is formulated

on the basis of the following discrete-time system obtained by using the reverse-time

discretization method:

xi−1 + Fi(ui, xi) = 0.

We here discuss how to extend the proposed methods to solve the MPC problems

on the basis of the explicit discretization methods, i.e., the following discrete-time

system:

xi+1 + Fi(ui, xi) = 0. (A.1)

The discrete-time system (A.1) can be obtained by using, e.g., the forward Euler

method with Fi(ui, xi) = −xi − hf(ui, xi), where h > 0 is the step size.

We first show that the combined first- and second-order method in Chapter 3 can

be extended easily to the explicitly discretized linear MPC problem in the following

section.

A.2 Combined first- and second-order method for

linear MPC

Consider a conventional MPC problem on the basis of the following discrete-time

system:

xi+1 + Axi +Bui = 0.

By multiplying A−1 and redefining the index of u, we can obtain the following

“reverse-time” system:

xi + A−1xi+1 + A−1Bui+1 = 0.
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That is, the conventional linear MPC problem and the linear MPC problem (3.1) on

the basis of the “reverse-time” system can be transferred mutually if A is nonsingular.

In conclusion, the combined first- and second-order method for linear MPC in Chapter

3 can be extended by transforming the conventional MPC problem to the form of

(3.1).

A.3 Highly parallelizable Newton-type method for

NMPC

Since the equality constraint C(u, x) = 0 and the inequality constraint G(u, x) ≥ 0

are the constraints on the current stage’s variables and thus introduce no couplings

between the neighboring stages, we consider the following nonlinear MPC (NMPC)

problem on the basis of the explicitly discretized system (A.1):

min
X,U

N−1∑
i=0

Li(ui, xi) + ϕ(xN)

s.t. x0 = x̄0,

xi+1 + Fi(ui, xi) = 0, i ∈ {0, · · · , N − 1},

(A.2)

where X = (x0, x1, · · · , xN) and U = (u0, u1, · · · , uN−1) are, respectively, the se-

quences of states and inputs along the horizon.

A.3.1 KKT conditions

Let λi+1 ∈ Rnx be the Lagrange multiplier (costate) corresponding to the i-th state

equation. For the sake of brevity, we define

si := (λi, ui−1, xi) and S := (s1, · · · , sN).

Let Hi(λi+1, ui, xi) be the Hamiltonian defined by

Hi(λi+1, ui, xi) := Li(ui, xi) + λTi+1Fi(ui, xi).

For i ∈ {1, · · · , N − 1}, let Ki(xi−1, si, λi+1) be defined by

Ki(xi−1, si, λi+1) :=

 xi + Fi−1(ui−1, xi−1)
∇uHi−1(λi, ui−1, xi−1)T

λi +∇xHi(λi+1, ui, xi)
T

 (A.3)
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with x0 = x̄0. Let KN(xN−1, sN , λN+1) be defined by

KN(xN−1, sN , λN+1) :=

 xN + FN−1(uN−1, xN−1)
∇uHN−1(λN , uN−1, xN−1)T

λN +∇xϕ(xN)

 (A.4)

with λN+1 = 0. The Karush-Kuhn-Tucker (KKT) conditions for the explicitly dis-

cretized NMPC problem (A.2) are

Ki(x∗i−1, s
∗
i , λ
∗
i+1) = 0, ∀i ∈ {1, · · · , N}, (A.5)

with x∗0 = x̄0 and λ∗N+1 = 0.

A.3.2 Parallel method

It can be observed from (A.3) and (A.4) that the state and costate also enter the

KKT conditions linearly, which can also be shown from the constant off-diagonal

block entries of the KKT matrix. By applying the Newton’s method to the KKT

conditions (A.5), we obtain the search direction ∆S associated with the following

partitioned KKT matrix (or Jacobian J(Sk)):

J(Sk) =



0 ∇uFk0 I
(∇uFk0 )T ∇2

uuHk
0 0

I 0 0
Jk1 I

0
0 I 0

. . . . . .

0
. . . JkN−1 I

0
0 I 0 ∇2

xxϕ
k



, (A.6)

where the diagonal block Jki is given by

Jki :=

 ∇2
xxHk

i (∇xFki )T ∇2
xuHk

i

∇xFki 0 ∇uFki
∇2
uxHk

i (∇uFki )T ∇2
uuHk

i

 .
As can be seen from the KKT matrix (A.6), the constant off-diagonal blocks indi-

cate linear couplings between stages. By comparing the Jacobian (4.14) in Chapter 4

and (A.6) and following Section 4.3, we can derive the backward correction method to
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calculate the search direction ∆S for the explicitly discretized NMPC problem. Sim-

ilarly, the parallel method can be derived by approximating the backward correction

method.

As indicated by Remark 4.1 in Chapter 4, we note again that explicit discretization

will not lead to better computational performance compared with the reverse-time

discretization since the diagonal blocks Jki are of the same components as that in

Chapter 4.

A.4 Sparsity-exploiting Jacobi method for NMPC

We consider discretizing the continuous-time dynamical system by using the forward

Euler method. Similarly to (6.3), we consider the following relaxed regularized non-

linear MPC (RR-NMPC) problem:

min
u0,··· ,uN−1,
x0,··· ,xN

N−1∑
i=0

(
hli(ui, xi) + hΦi(ui, xi) +

γ

2
‖ui − ũ∗i ‖2

)
+ hϕ(xN)

s.t. x0 = x̄0,

xi+1 = xi + hf(ui, xi), i ∈ {0, · · · , N − 1},

(A.7)

where Φi is the barrier cost function and ϕ is the terminal cost function.

A.4.1 KKT conditions

Let λi+1 (costate) ∈ Rnx be the Lagrange multiplier corresponding to the i-th state

equation. For the sake of brevity, we define

si := (xi, ui−1, λi) and S := (s1, · · · , sN).

Let Hi(xi, ui, λi+1) be the Hamiltonian defined by

Hi(xi, ui, λi+1) := li(ui, xi) + Φi(ui, xi)− λTi+1f(ui, xi).

For i ∈ {1, · · · , N − 1}, let Ki(xi−1, si, λi+1) be defined by

Ki(xi−1, si, λi+1) :=

 xi − xi−1 − hf(ui−1, xi−1)
h∇uHi−1(xi−1, ui−1, λi)

T + γ(ui−1 − ũ∗i−1)
λi − λi+1 + h∇xHi(xi, ui, λi+1)T


with x0 = x̄0. Let KN(xN−1, sN , λN+1) be defined by

KN(xN−1, sN , λN+1) :=

 xN − xN−1 − hf(uN−1, xN−1)
h∇uHN−1(xN−1, uN−1, λN)T + γ(uN−1 − ũ∗N−1)
λN + h∇xϕ(xN) = 0
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with λN+1 = 0. The KKT conditions for the RR-NMPC problem (A.7) are

Ki(x∗i−1, s
∗
i , λ
∗
i+1) = 0, i ∈ {1, · · · , N}. (A.8)

A.4.2 Newton’s method

In solving the KKT conditions (A.8) by using the Newton’s method, the search di-

rection ∆Sk := (∆sk1, · · · ,∆skN) is obtained by solving the following KKT system:
. . .

· · · Dk
i−1 Mk

Ui−1

Mk
Li

Dk
i Mk

Ui

Mk
Li+1

Dk
i+1 · · ·

. . .




...

∆ski−1

∆ski
∆ski+1

...

 =


...
Kki−1

Kki
Kki+1

...

 . (A.9)

Here, Dk
i := ∇siKki , Mk

Ui
:= ∇si+1

Kki , and Mk
Li

:= ∇si−1
Kki . The expressions of Dk

i

are

Dk
i =

 I −h∇uf
k
i 0

0 h∇2
uuHk

i−1 + γI −h(∇uf
k
i )T

h∇2
xxHk

i 0 I

 , i ∈ {1, · · · , N − 1}, (A.10)

and

Dk
N =

 I −h∇uf
k
N 0

0 h∇2
uuHk

N−1 + γI −h(∇uf
k
N)T

h∇2
xxϕ

k 0 I

 . (A.11)

Note that unlike (6.6), the off-diagonal block entries of the KKT matrix in (A.9), i.e.,

Mk
Ui

and Mk
Li

, are not constant. The expressions of Mk
Ui

and Mk
Li

are, respectively,

Mk
Ui

=

 0 0 0
0 0 0
0 h∇2

xuHk
i −h(∇xf

k
i )T − I


and

Mk
Li

=

 −h∇xf
k
i−1 − I 0 0

h∇2
uxHk

i−1 0 0
0 0 0

 .
A.4.3 Jacobi method for NMPC

Let Dk, Lk, and Uk be the diagonal, strict lower triangular, and strict upper triangular

blocks of the KKT matrix in (A.9) as follows.

Dk := block-diag(Dk
1 , · · · , Dk

N)

Lk := lower-block-diag(Mk
L2
, · · · ,Mk

LN
)

Uk := upper-block-diag(Mk
U1
, · · · ,Mk

UN−1
)
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Similarly to (6.13) in Chapter 6, the upper-layer Jacobi method for solving the KKT

conditions (A.8) is given by

Sk+1 = Sk − αmax(Dk)−1Kk, (A.12)

where αmax ∈ (0, 1] is a scalar obtained from the fraction-to-the-boundary rule.

Remark A.1. Since the Jacobi method requires the invertibility of the diagonal blocks

and the first diagonal block in (A.6) might be singular, the partition of KKT matrix

(A.6) in the parallel method can not be applied to the Jacobi method.

We are interested in whether the convergence of the Jacobi method (6.13) in

Chapter 6 still holds for the iteration (A.12). We show in the following lemma and

theorem that the similar convergence results can be obtained for (A.12).

Lemma A.1. Let D∗i be decomposed into

D∗i = D̄∗i + h

 0 −∇uf
∗
i 0

0 0 −(∇uf
∗
i )T

0 0 0


=: D̄∗i + hD̃∗i .

(A.13)

Let D̄∗ and D̃∗ be defined as follows.

D̄∗ := block-diag(D̄∗1, · · · , D̄∗N)

D̃∗ := block-diag(D̃∗1, · · · , D̃∗N)

Then, for any h > 0 and γ ≥ 0 such that D̄∗ is invertible, e.g., when h is sufficiently

small and γ is nonzero, the following holds:

ρ((D̄∗)−1(L∗ + U∗)) = 0.

Proof. This lemma can be proved following the proof of Lemma 6.4 in Chapter 6.

Theorem A.1. The convergence of the upper-layer Jacobi method (A.12) is described

as follows.

(i) Let γ be chosen to be nonzero. There exists T0 > 0 such that ρ((D∗)−1(L∗ +

U∗)) < 1 holds for any T < T0.

(ii) There exists ε > 0 such that ρ((D∗)−1(L∗+U∗)) < 1 holds for any D̃∗i satisfying

‖D̃∗i ‖ < ε‖D̄∗i ‖, i ∈ {1, · · · , N}.
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Proof. This lemma can be proved following the proof of Theorem 6.3 in Chapter

6.

As can be seen from Theorem A.1, the convergence results of the upper-layer

Jacobi method also hold for (A.12). That is, a nonzero regularization parameter γ

and a short prediction horizon T guarantee the convergence of the upper-layer Jacobi

method (A.12). Likewise, the Jacobi-type iterations, such as the Gauss-Seidel and

successive over-relaxation methods, can be applied, and their convergence can be

shown as well.

In conclusion, the upper-layer Jacobi method for solving the NMPC problem on

the basis of the reverse-time discretization method in Chapter 6 can also be extended

to solve the explicitly discretized NMPC problem. Same convergence results and

extensions can be obtained. Moreover, since the diagonal blocks Dk
i in (A.10) and

(A.11) is simpler than these in (6.15), it takes less time to perform one iteration for

(A.12) than (6.13).
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