
Doctoral Thesis

Reliable Resource Allocation Models in

Network Virtualization

Fujun HE

Graduate School of Informatics, Kyoto University

September 2020

Preface

Network virtualization has been introduced as a key role in the next-generation

networking paradigm to fend off the ossification of traditional networks. By

leveraging the technologies of computer virtualization, network function vir-

tualization, and software-defined networking, a platform with network virtu-

alization provides virtualized resources of computing, functionality, and net-

working to users in a dynamic manner. While network virtualization leads to

a more flexible and efficient network, it brings challenges for network man-

agement, one of which is how to efficiently allocate resources with satisfying

different requirements. In addition, as the adaptation of network virtualiza-

tion in different application archetypes is an increasing trend, the reliability

of an environment with network virtualization has become a major concern.

Resource allocation with protection strategies dealing with the reliability issue

is an essential requirement for network virtualization. This thesis studies five

specific problems about reliable resource allocation in network virtualization,

each of which focuses on a typical application scenario, to achieve a flexible,

cost-effective, and dependable network virtualization environment.

Firstly, this thesis proposes a primary and backup resource allocation model

that provides a probabilistic protection guarantee for virtual machines against

multiple failures of physical machines in a cloud provider to minimize the re-

quired total capacity. The probability that the protection provided by a phys-

ical machine does not succeed is guaranteed within a given number. Providing

the probabilistic protection can reduce the required backup capacity by allow-

ing backup resource sharing, but it leads to a nonlinear programing problem in

a general-capacity case against multiple failures. This work applies robust op-

timization with extensive mathematical operations to formulate the resource

allocation problem as a mixed integer linear programming problem, where

iii

Preface

capacity fragmentation is suppressed. This work proves the NP-hardness of

considered problem. A heuristic is introduced to solve the optimization prob-

lem. The results reveal that the proposed model saves about one-third of the

total capacity in the examined cases; it outperforms the conventional models

in terms of both blocking probability and resource utilization.

Secondly, this thesis proposes a backup computing and transmission re-

source allocation model for virtual networks with the probabilistic protection

against multiple facility node failures. Backup transmission resource allocation

is incorporated, where the required backup transmission capacity can affect the

required backup computing capacity. This work analyzes backup transmission

resource sharing in the case of multiple facility node failures to compute the

minimum required backup transmission capacity. A heuristic algorithm is in-

troduced to solve the problem; especially, several techniques based on graph

theory are developed to handle the problem with full backup transmission re-

source sharing. The results observe that the proposed model outperforms a

baseline with dedicated protection for computing resource.

Thirdly, this thesis proposes a backup resource allocation model for mid-

dleboxes with considering both failure probabilities of network functions and

backup servers. This work takes the importance of functions into account by

defining a weighted unavailability for each function. This work aims to find an

assignment of backup servers to functions where the worst weighted unavail-

ability is minimized. This work formulates the proposed model as a mixed

integer linear programming problem. This work proves that the considered

problem is NP-complete. This work develops three heuristic algorithms with

polynomial time complexity to solve the problem. This work analyzes the

approximation performances of different heuristic algorithms with providing

several lower and upper bounds. This work presents the competitive evalua-

tion in terms of deviation and computation time among the results obtained

by running the heuristic algorithms and by solving the mixed integer linear

programming problem. The results show the pros and cons of different ap-

proaches. With the analyses, a network operator can choose an appropriate

approach according to the requirements in specific applications.

Fourthly, this thesis proposes an unavailability-aware backup allocation

model with the shared protection to minimize the maximum unavailability

iv

Preface

among functions. The shared protection allows multiple functions to share

the backup resources, which leads to a complicated recovery mechanism and

makes unavailability estimation difficult. This work develops an analytical ap-

proach based on the queueing theory to compute the middlebox unavailability

for a given backup allocation. The heterogeneous failure, repair, recovery, and

waiting procedures of functions and backup servers, which lead to several dif-

ferent states for each function and for the whole system, are considered in the

queueing approach. This work introduces a simulated annealing heuristic to

solve the problem based on the developed analytical approach. The results

reveal that, compared to a baseline model, the proposed model reduces the

maximum unavailability 16% in average in the examined scenarios.

Fifthly, this thesis proposes a master and slave controller assignment model

against multiple controller failures in software-defined networks with consider-

ing propagation latency between switches and controllers. Given assigned con-

trollers for a switch, the master controller in each failure case is automatically

specified based on a low latency first policy. This work defines three objectives

to be optimized, which lead to three different problems. This work proves that

the adopted policy achieves the optimal objectives for considered problems.

This work formulates the proposed model with different goals as three mixed

integer linear programming problems. This work proves the NP-completeness

for all the three problems. A greedy algorithm with polynomial time com-

plexity is developed; this work shows that it provides a 1/2-approximation

for the case without the survivability guarantee constraint. The numerical

results observe that the proposed model obtains the optimal objective value

with the computation time about 102 times shorter than that of a baseline

that introduces decision variables to determine the master controllers.

This thesis is organized as follows. Chapter 1 introduces the background of

reliable resource allocation in network virtualization. Chapter 2 investigates

the related works in literature. Chapter 3 presents the robust optimization

model for virtual machine allocation. Chapter 4 introduces the probabilistic

protection model for virtual networks. Chapter 5 develops the backup resource

allocation model for network functions. Chapter 6 presents the unavailability-

aware shared backup allocation model. Chapter 7 describes the controller

assignment model for switches. Finally, Chapter 8 concludes this thesis.

v

Preface

vi

Acknowledgements

This thesis is the summary of my doctoral study at Kyoto University, Kyoto,

Japan. I am grateful to a large number of people who have helped me to

accomplish this work.

First of all, I would like to express my sincere gratitude to my advisor, Pro-

fessor Eiji Oki, for his mentorship, guidance, and encouragements. Especially,

without the inspiration from Professor Oki, I could not find that doing research

can be such interesting. By working under the supervision of Professor Oki, I

received an invaluable experience that helped me to shape my academic and

professional skills.

Second, I would like to thank Professor Ryoichi Shinkuma for the insightful

discussions. I would like to express my appreciation to Professor Takehiro Sato

for his advisements and helps.

I would like to thank Professor Masahiro Morikura and Professor Hiroshi

Harada for being part of my judging committee and providing their precious

comments to improve my thesis.

I would also like to thank Ms. Mariko Tatsumi and all members in Oki lab

for their kind helps in my research and life.

Finally, I want to deeply thank my parents, grandparents, and beloved girl,

Shihan. Without their constant support and encouragements, I would never

achieve anything.

vii

Acknowledgements

viii

Contents

Preface iii

Acknowledgements vii

List of Figures xvii

List of Tables xx

Notations xxi

Abbreviations xxiii

1 Introduction 1

1.1 Network virtualization . 1

1.1.1 Computer virtualization 2

1.1.2 Network function virtualization 3

1.1.3 Software-defined networking 3

1.1.4 Challenges of resource allocation in network virtualization 4

1.2 Reliability issue in network virtualization 4

1.3 Problem statements . 5

1.3.1 Probabilistic protection for virtual machines 5

1.3.2 Probabilistic protection for virtual networks 6

1.3.3 Backup resource allocation for network functions 7

1.3.4 Unavailability-aware shared backup allocation 8

1.3.5 Controller assignment for switches 9

1.4 Overview and contributions of this thesis 11

ix

Contents

2 Related works 13

2.1 Resource allocation in computer virtualization 13

2.2 Resource allocation in NFV . 14

2.3 Resource allocation in SDN . 17

3 Robust optimization model for virtual machine allocation 19

3.1 Optimization model . 20

3.1.1 Protection of virtual machines in cloud provider 20

3.1.2 Primary and backup resource allocation model 21

3.1.3 Mixed integer linear programming problem 24

3.1.4 Extended model suppressing capacity fragmentation . . . 32

3.2 NP-hardness . 33

3.3 Simulated annealing . 35

3.4 Dynamic scenario . 37

3.4.1 Overview . 37

3.4.2 Dynamic approach . 37

3.4.3 Performance metrics . 39

3.5 Numerical results . 39

3.5.1 For small-size problems 40

3.5.2 For large-size problems 46

3.6 Chapter summary . 49

4 Probabilistic protection model for virtual networks 51

4.1 Model and problem definition 52

4.1.1 Virtual networks in substrate network 52

4.1.2 Backup computing resource allocation for virtual nodes . 54

4.1.3 Backup transmission resource allocation for virtual links 57

4.1.4 Problem formulation . 59

4.2 Analyses for backup transmission resource sharing 60

4.2.1 Cross-sharing and backup-sharing 61

4.2.2 Backup transmission resource sharing in multiple virtual

networks with multiple substrate facility node failures . . 62

4.2.3 Analyses for three questions 66

x

Contents

4.2.4 Proposed model with different degrees of backup trans-

mission resource sharing 71

4.3 Heuristic algorithm . 71

4.3.1 Framework . 71

4.3.2 Backup computing resource allocation 72

4.3.3 Backup transmission resource allocation 73

4.3.4 Computational time complexity of DBA 78

4.4 Numerical results . 79

4.4.1 Demonstration . 79

4.4.2 Evaluation . 82

4.5 Chapter summary . 87

5 Backup resource allocation model for network functions 89

5.1 Model and problem definition 90

5.1.1 Assumptions . 90

5.1.2 Assign backup servers to protect functions 91

5.1.3 Problem definition . 93

5.1.4 Mixed integer linear programming problem 94

5.1.5 NP-completeness . 94

5.2 Greedy approach . 95

5.2.1 Sorted greedy assignment 95

5.2.2 Converse greedy assignment 97

5.3 Linear programming relaxation approach 99

5.3.1 Similar problems . 99

5.3.2 Linear programming formualtion 101

5.3.3 Tree-based rounding algorithm 102

5.4 Numerical results . 109

5.4.1 Experiment setup . 110

5.4.2 Comparison with scheme that ignores importance of func-

tions and backup server failures 111

5.4.3 Competitive evaluation for small size problem 111

5.4.4 Competitive evaluation for large size problem 114

5.5 Chapter summary . 117

xi

Contents

6 Unavailability-aware shared backup allocation model 119

6.1 Model and problem definition 120

6.1.1 Shared protection for functions 120

6.1.2 Heterogeneous procedures 121

6.1.3 State transition and unavailable time for each function . 123

6.1.4 Unavailability of function 124

6.1.5 Problem definition . 124

6.2 Analyses for unavailability based on queueing theory 125

6.2.1 In case of |H | = 1 . 126

6.2.2 In case of |H | = 2 . 132

6.3 Heuristic algorithm . 134

6.4 Numerical results . 136

6.4.1 Baseline model . 136

6.4.2 Experiment Setup . 137

6.4.3 Evaluation for |H | = 1 137

6.4.4 Evaluation for |H | = 2 140

6.5 Chapter summary . 144

7 Master and slave controller assignment model 145

7.1 Optimization model . 146

7.1.1 Assign master and slave controllers to switch 147

7.1.2 Priority policy . 148

7.1.3 Minimize average-case expected propagation latency . . . 149

7.1.4 Minimize worst-case expected propagation latency 151

7.1.5 Maximize expected number of switches within propaga-

tion latency bound . 152

7.2 Analysis for priority policy . 152

7.3 NP-completeness . 155

7.4 Heuristic algorithm . 158

7.4.1 Weighted bipartite b-matching problem 158

7.4.2 Lower-bound aware greedy weighted bipartite b-matching

algorithm . 159

7.4.3 Computational time complexity 160

7.4.4 Approximation performance 160

xii

Contents

7.5 Numerical results . 163

7.5.1 Optimal assignments for different problems 163

7.5.2 Competitive evaluation 165

7.5.3 Performance dependency 172

7.6 Chapter summary . 173

8 Conclusions 175

Bibliography 179

Publication List 193

xiii

Contents

xiv

List of Figures

1.1 Basic components in network virtualization. 2

1.2 Chapter overview of this thesis. 11

3.1 Example of cloud provider, where each PM is used to accept

both primary and backup resources. 21

3.2 Flowchart of dynamic approach. 38

3.3 Backup resource allocation for Pe
i 41

3.4 Primary resource allocation for N and backup resource alloca-

tion for Pe
i and N. 41

3.5 Dependency of blocking probability on γ for different λ. 44

3.6 Dependency of blocking probability on α for for different p in

SBPM. 44

3.7 Comparison of blocking probabilities using different models for

different λ when µ = 1. 45

3.8 Comparison of resource utilization using different models for

different λ when µ = 1. 45

3.9 Relationship between required backup capacity in feasible solu-

tion and admissible computation time [s]. 48

3.10 Comparison of blocking probabilities of large problem using dif-

ferent models for different λ when µ = 1. 48

3.11 Comparison of resource utilization in large problem using dif-

ferent approaches for different λ when µ = 1. 48

4.1 Example of VNs in SN. 54

4.2 Example of backup computing resource allocation with proba-

bilistic protection. 56

xv

LIST OF FIGURES LIST OF FIGURES

4.3 Backup and primary paths of VN m1. 62

4.4 Example of relationships between backup and primary paths

represented by bipartite graph. 64

4.5 Examples of VB
l . 67

4.6 Examples of VB
l for Theorem 2; same symbols with Fig. 4.5 are

used. 69

4.7 Constructed directed graph based on given bipartite graph in

Fig. 4.4. 70

4.8 Backup computing resource allocation in optimal solution for

P-NTS. 80

4.9 Dependency on capacity of substrate node. 85

4.10 Dependency on capacity of substrate link. 85

5.1 Examples of protection, failing, and recovery. 93

5.2 Connected component with cycle. 103

5.3 Modified connected component with no cycle. 103

5.4 Integral assignment. 103

5.5 Modified solution with no cycle in this general case. 108

5.6 Integral assignment in this general case. 108

5.7 Comparison between introduced approaches and BA approach. . 112

5.8 Comparison among average values of worst weighted unavail-

abilities obtained by different approaches and lower and upper

bounds; different ranges of q j are considered in different subfig-

ures; legend in Fig. 5.8(c) is applied to each subfigure. 112

5.9 Comparison among average values of worst weighted unavail-

abilities obtained by different approaches within different values

of T and lower and upper bounds. 116

5.10 Dependency of average value of worst weighted unavailabilities

obtained by MILP approach on admissible computation time T
when |S | = 50. 116

6.1 Example of backup allocation with shared protection. 121

6.2 State transition for each function. 124

6.3 System state transition for (m, n, o, p, q). 127

xvi

List of Figures

6.4 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of M. 138

6.5 Dependency of maximum unavailabilities obtained by different

models on average failure rate. 139

6.6 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of average repair times. 140

6.7 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of N. 141

6.8 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of v. 142

6.9 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of λ1. 143

6.10 Comparison among maximum unavailabilities obtained by dif-

ferent models for different values of µ−11 143

7.1 Example of master and slave controller assignment. 148

7.2 Comparison among average-case expected propagation latency

obtained by proposed model with different approaches and base-

line. 167

7.3 Comparison among worst-case expected propagation latency ob-

tained by proposed model with different approaches and baseline.168

7.4 Comparison among values of η obtained by proposed model with

different approaches and baseline. 168

7.5 Comparison among average-case expected propagation latency

obtained by different models and approaches with limited ad-

missible computation time. 170

7.6 Comparison among worst-case expected propagation latency ob-

tained by different models and approaches with limited admis-

sible computation time. 171

7.7 Comparison among values of η obtained by different models and

approaches with limited admissible computation time. 171

7.8 Dependencies on controller capacity with different values of con-

troller failure probabilities and switch acceptable unavailabilities.172

xvii

List of Figures

xviii

List of Tables

3.1 List of frequently used notations in Chapter 3. 22

3.2 Required backup capacity by solving MILP problem and results

from SA heuristic for different values of p. ε = 0.01 in each case. 42

4.1 Probability and transferred computing capacity for each failure

case. 55

4.2 List of frequently used notations in Chapter 4. 61

4.3 Backup transmission resource allocation in optimal solution for

P-NTS. 80

4.4 Backup transmission resource allocation in optimal solution for

P-FTS and P-LTS. 81

4.5 Dependencies on value of ε for different models. 83

4.6 Dependencies on value of p for different models. 83

4.7 Computation time [s] to obtain results shown in Fig. 4.10. . . . 86

5.1 Average computation time (seconds) of different approaches. . . 113

5.2 Deviations from optimal values. 114

6.1 System state transition incoming to and outgoing from state

(m, n, o, p, q). 127

6.2 System state transition incoming to and outgoing from state

(m1, n1, o1, p1,m2, n2, o2, p2, q). 131

6.3 Computation time [s] to obtain results shown in Fig. 6.4. 138

6.4 Computation time [s] to obtain results shown in Fig. 6.8. 141

7.1 List of frequently used notations in Chapter 7. 147

7.2 Assigned controllers in optimal assignments for different problems.164

xix

List of Tables

7.3 Computation times [s] to obtian results of Fig. 7.4. 169

xx

Notations

Notation Description

rei j
Given parameter indicating

requested capacity of existing VM j ∈ Pe
i in PM i ∈ W

qn
Given parameter indicating requested capacity

of new coming VM n ∈ N

cRi
Given parameter indicating remaining capacity on PM i

except for primary allocation of existing VMs

p Given parameter indicating failure probability of each PM

ε
Given small number for

probabilistic protection guarantee

xi j
k

Binary variable indicating whether existing VM

j ∈ Pe
i , i ∈ W , is protected by PM k ∈ W : k , i

zin
k

Binary variable indicating whether new coming VM

n ∈ N is allocated into PM i ∈ W
and protected by PM k ∈ W : k , i

Xi Random variable indicating whether PM i fails

nk
Number of PMs, each of which

is partially or totally protected by PM k
Γk Number of PMs representing robustness for PM k
cBk Required backup capacity on PM k
V Set of all primary and backup paths

VP ⊆ V Set of all primary paths

VB ⊆ V Set of all backup paths

WP ⊆ VP Subset of primary paths

WB ⊆ VB Subset of backup paths

xxi

Notations

Notation Description

vP Primary path

vB Backup path

Vl ⊆ V Set of all substrate paths that include substrate link l
WB

l Set of all maximal unexclusive subsets on substrate link l

li j
Given parameter indicating propagation latency between

switch i ∈ S and controller j ∈ C

qi
Given parameter indicating

acceptable unavailability of switch i

bi
Given parameter indicating

propagation latency bound of switch i

p j
Given parameter indicating

failure probability of controller j

c j
Given parameter indicating

capacity of controller j

yi j

Given parameter indicating

priority of controller j to become

master controller of switch i

xi j
Binary variable indicating whether

controller j is assigned to switch i

xxii

Abbreviations

Abbreviation Description

ISP Internet service provider

InP infrastructure provider

SP service provider

NFV network function virtualization

SDN software-defined networking

VM virtual machine

PM physical machine

CPU central processing unit

IaaS infrastructure as a service

PaaS platform as a service

SaaS software as a service

IDS intrusion detection system

NAT network address translator

LD load balancer

ETSI European telecommunications standards institute

NFVI NFV infrastructure

VNF virtual network function

MANO management and network orchestration

VN virtual network

ILP integer linear programming

SN substrate network

WAN wide-area network

INLP integer non-linear programming

MILP mixed integer linear programming

xxiii

Abbreviations

Abbreviation Description

GLB general load balancing

SC Santa Clause

SA simulated annealing

PP partition problem

LP linear programming

LPR linear programming relaxation

WBM weighted bipartite b-matching

xxiv

Chapter 1

Introduction

1.1 Network virtualization

The Internet has achieved great success over the course of past several decades

with advancing a wide variety of distributed applications and network tech-

nologies. However, its further growth meets the biggest impediment brought

by its popularity. With the multi-provider nature, modifying the existing In-

ternet architecture or developing a new one requires consensus among compet-

ing stakeholders. Consequently, alterations to the Internet architecture have

been limited to simple incremental updates; implementations of new network

technologies are difficult [1, 2].

Network virtualization has been introduced as a key role in the next-

generation networking paradigm to fend off this ossification. It decouples

the traditional Internet service providers (ISPs) into two roles: infrastructure

providers (InPs) and service providers (SPs). An InP manages and provides

the physical infrastructure to multiple ISPs, each of which provisions end-to-

end network services with aggregating resources from multiple InPs. Such an

environment releases the inherent limitations of the existing Internet to allow

heterogeneous network architectures coexist.

Generally, network virtualization is related to the virtualization of differ-

ent types of resources in a network. Figure 1.1 shows the basic components

in network virtualization. A platform with network virtualization provides

virtualized resources of computing, functionality, and networking to users in a

1

Chapter 1

cost-effective and dynamic manner, by leveraging the technologies of computer

virtualization, network function virtualization (NFV), and software-defined

networking (SDN). This thesis introduces the three key enablers for network

virtualization in Sections 1.1.1-1.1.3.

Computing
CPU
Memory
…

Functionality
Firewall
Load balancer
…

Networking
Bandwidth
Routing
…

Figure 1.1: Basic components in network virtualization.

1.1.1 Computer virtualization

Computer virtualization, or hardware virtualization, is the process of creating

a virtual instance of computer system abstracted from the physical computer

or hardware [3]. With computer virtualization, multiple and different oper-

ating systems with the form of virtual machines (VM) can run on the same

physical machine (PM), which provides computing resources, such as central

processing unit (CPU) and memory. It indicates that different users or ap-

plications with different needs can share the same hardware. As a result, the

physical computing resource is utilized efficiently.

Cloud computing is one of the most successful applications of computer

virtualization. It allows global access to shared resources and services that

can be quickly provisioned and released with the nominal effort over the Inter-

net. The services offered by cloud providers are typically classified into three

categories, which are Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) [4, 5]. An IaaS provider serves re-

sources that are represented by several types of VM for its customers. Based

2

Section 1.1

on the customers’ requirements, the cloud provider allocates different types of

VMs to its PMs according to resource allocation policies [6, 7].

1.1.2 Network function virtualization

Network functions, such as firewalls, intrusion detection systems (IDS), net-

work address translators (NAT), and load balancers (LD), are functional blocks

within network infrastructures that have well-defined functional behaviors and

external interfaces to support network services. Usually, a network function

is called as a middlebox in a network. While middleboxes used to be im-

plemented as dedicated physical devices, they now can be implemented as

softwares running on commodity servers by adopting the NFV technology to

efficiently utilize the hardware resources in networks [8].

As the European telecommunications standards institute (ETSI) intro-

duced, the NFV architecture is composed of the NFV infrastructure (NFVI),

virtual network functions (VNF), and the management and network orchestra-

tion (MANO). NFVI provides the environment to develop VNFs with combin-

ing both physical and virtual resources. The physical resources include physical

computing and networking resources that provide processing and transmission

capacities for VNFs. The virtual resources are abstractions of physical re-

sources based on a virtualization layer. More specifically, the computing re-

sources can be represented by VMs, while a virtual network (VN) consists of a

set of virtual nodes and a set of virtual links [9,10]. A virtual node is a software

component, such as an operating system encapsulated in a VM. A virtual link

spans over a substrate path with utilizing a certain transmission capacity to

connect tow virtual nodes. A VNF is an implementation of network function

deployed on a set of virtual resources. For example, a VNF can be composed

of one or multiple internal components, each of which can be deployed over a

VM. NFV MANO works on all virtualization-specific management tasks, such

as the orchestration and lifecycle management for resources supporting VNFs.

1.1.3 Software-defined networking

In traditional networks, as mentioned, network functions are deployed in spe-

cific hardwares. Particularly, for switches and routers, algorithms, policies,

3

Chapter 1

and protocols are implemented on specific hardwares to control and forward

data flows of dedicated network services. To provide a new network service,

the network operator needs to manually updates the switches with the low-

level configuration commands to realize the corresponding high-level policies.

As a result, severe issues, such as reliability, scalability, and network speed,

occurs in the traditional networks.

The SDN paradigm provides a flexible and deployable network architecture

by decoupling control and forwarding planes which are highly integrated to-

gether in traditional networks. The control plane consists of a set of controllers

that decide where and how to forward data in switches placed in the forward-

ing plane. Typically, a large-scale SDN uses multiple controllers, which are

logically centralized but physically distributed in the network [11–13]. With

the architecture of SDN, a (logic) single point, i.e., the control plane, controls

the whole network, which makes it easy to implement protocols or policies

supporting new network services or applications.

1.1.4 Challenges of resource allocation in network vir-

tualization

While network virtualization leads to a more flexible and efficient network,

it brings challenges for network management, one of which is the resource

allocation in network virtualization. More specifically, compared to traditional

networks, there exist more choices or candidates for a decision in resource

allocation with network virtualization. Different choices can vary a lot in

terms of the resulted performance. How to efficiently allocate the computing,

functionality, and networking resources to satisfy different requirements from

users or requested services is challenging in network virtualization.

1.2 Reliability issue in network virtualization

As the adaptation of network virtualization in different application archetypes

is an increasing trend, the reliability of an environment with network virtu-

alization has became a major concern. It was reported that, from 2010 to

2016, the average cost of a data center outage has increased from $505,502 to

4

Section 1.3

$740,357 [14]. More importantly, customer satisfaction greatly decreases if ser-

vices are suddenly stop and cannot be recovered promptly with the occurrence

of failures.

A network element, such as a PM, network function, or SDN controller,

may fail due to several reasons, such as overloading, software crashes, connec-

tivity errors, configuration bugs, and hardware faults [15–17]. Each network

element failure can result in several critical issues for the network and the users

involved. A PM failure in cloud providers make all VMs hosted by it unavail-

able for the users. If a middlebox fails and cannot be promptly recovered, the

network function in the middlebox becomes unavailable, which interrupts all

services using this function. For an SDN, all the switches become unavailable

if the corresponding controller fails and no prompt recovery is provided.

Multiple simultaneous failures potentially occur among network elements

in network virtualization. For example, several elements can be destroyed at

the same time or the failure can occur on the second element before the recov-

ery of the first failed element. Therefore, resource allocation with protection

strategies dealing with multiple failures has become an essential requirement

for network virtualization.

1.3 Problem statements

This thesis studies five specific problems about reliable resource allocation in

network virtualization, each of which includes one or serval questions that have

not been addressed and are answered in this thesis.

1.3.1 Probabilistic protection for virtual machines

To protect VMs form multiple PM failures, if the backup resources for VMs

in PMs are allocated into their corresponding PMs just as the mirror of the

primary resource allocation in the protected PMs, protections with high suc-

cessful probabilities are provided; especially if a PM hosting backup resources

does not fail, the corresponding protected VMs absolutely survive from every

random PM failure scenario. For example, we can synchronize each state of an

active VM to its standby on the PM providing the protection, or running the

5

Chapter 1

standby in parallel with the active one, to achieve a high degree of fault toler-

ance [18]. However, this straightforward approach requires double amounts of

total capacity in the cloud provider.

Providing a probabilistic protection guarantee allows the primary resources

in PMs to share the backup capacity, and consequently the total cost of protec-

tion can be reduced benefiting from statistic multiplexing gain. More specif-

ically, the snapshot of a VM is stored and updated to a PM providing the

protection. When a protected VM fails, it can be recovered on the corre-

sponding PM based on the snapshot. Since updating the stored snapshot of a

VM usually requires much less computing capacity compared to entirely run-

ning or recovering the VM, multiple VMs can share the same reserved backup

resource [19, 20]. Clearly, a PM may not recover all failed VMs at the same

time due to the limited reserved backup capacity, which leads to the failing

of protection. A probabilistic protection guarantee is defined as that, for any

PM, the probability that the protection provided by the PM fails is guaran-

teed with no greater than a given number. The resource allocation problem

to provide protection against any single PM failure can be formulated as an

integer linear programming (ILP) model based on the idea of [21]. It becomes

difficult when multiple simultaneous failures occur, each of which has a failure

probability.

A question, which has not been addressed, arises: is there any model that

allocates primary and backup resources with providing probabilistic protection

against multiple failures? This work answers this question in Chapter 3.

1.3.2 Probabilistic protection for virtual networks

With network virtualization, services can be represented as VNs embedded in

the same substrate network (SN). Each VN consists of a set of virtual nodes and

a set of virtual links. A virtual node demands a certain computing capacity,

such as CPU and memory capacities, and is hosted on a substrate facility node.

A virtual link spans over a substrate path in the SN with utilizing a certain

transmission capacity. When a service request arrives, a VN is embedded to

the SN based on resource allocation policies [9, 10].

The problem stated in Section 1.3.1 only considers the backup computing

6

Section 1.3

resource allocation for virtual nodes regardless of network aspects, which means

that it does not consider the backup resource allocation at a VN level. When

some primary facility nodes fail, the embedded virtual nodes are moved to

the corresponding backup facility nodes. At the same time, the virtual links

connected to the moved virtual nodes need to be remapped to some prepared

backup substrate paths, which require a certain allocated backup transmission

capacity.

Two questions, which have not been addressed, arise: 1) how can we jointly

consider backup computing and transmission resource allocation against mul-

tiple random facility node failures? 2) how can we reduce the required backup

computing capacity as much as possible after incorporating the backup trans-

mission resource allocation? This work studies these two questions in Chap-

ter 4.

1.3.3 Backup resource allocation for network functions

The availability of middleboxes is increasingly concerned. Middlebox failures

are found to be prevalent in networks and significantly impact hosted ser-

vices over the past few years [22]. In order to improve the availability of a

middlebox, several backup servers can be assigned to protect it, where the

information required to recover the middblebox is synchronically updated to

each assigned backup server. The degree of synchronization can vary for differ-

ent application scenarios. The works in [19,20] considered the aspect of limited

network resources by allowing backup computing resource sharing, where snap-

shots of multiple middleboxes can be stored at the same backup server, and

a certain number of them can be recovered at the same time by using the

reserved computing capacity. Delay may occur when the snapshot of failed

middlebox is used to regenerate the missing states [20]. On the contrary, some

delay-sensitive applications may require to synchronize each internal state of an

active middlebox to its standbys with utilizing a large amount of computing re-

sources, which are not shared among standbys, such that the middlebox can be

promptly and correctly recovered by its backup servers when it fails [16,18,23].

Note that a backup server in this thesis is not necessarily referred to a physical

one and can be a logical server abstracted from a set of resources.

7

Chapter 1

The backup servers are always assumed not to fail, such as the works

in [19, 24], and only the failures of functions in middleboxes are considered.

In practical NFV environments, backup servers may also fail with some prob-

abilities. The failure of backup server can affect the availability of functions.

For example, a function protected by several backup servers, each of which has

enough resource to host the function, becomes unavailable when the middlebox

and all the corresponding backup servers experience failures simultaneously.

Therefore, both failure probabilities of functions and backup servers need to

be considered for the availability of middleboxes.

In addition, the importance of different functions can be different in prac-

tical applications. For example, in security applications, the achievable level

of defense can be increased by guaranteeing a high level of availability for

some specific security functions. Similarly, the work in [25] suggested that

the necessities of functions included in a service chain are different, where the

availabilities of some functions just contribute to improve the quality of ser-

vice that is completed by other functions. Since the capacity of backup servers

is always limited, the importance of functions need to be considered in the

assignment of backup servers to efficiently utilize the backup resource.

A question arises: is there any model that allocates backup resources for

functions with considering both failure probabilities of functions and backup

servers and the importance of different functions? This question has not been

addressed, and is studied in Chapter 5.

1.3.4 Unavailability-aware shared backup allocation

In literature, the backup allocation problem with the shared protection has

been studied from different aspects for middleboxes. The work in [19] consid-

ered finding the assignment of backup severs to middleboxes with maximizing

the probability for a recovery of all failed middleboxes. The work in [24] stud-

ied the maximum number of failed middleboxes that can be fully recovered

by a given number of backup servers. However, these works did not explicitly

consider the unavailability of middleboxes; consequently, the suggested backup

allocations may not be optimal in terms of the middlebox unavailability.

Handling the middlebox unavailability directly in a backup allocation model

8

Section 1.3

requires comprehensive analyses considering heterogeneous procedures. More

specifically, each device, middlebox or backup server, in a network may expe-

rience heterogeneous procedures that affect the unavailability of middleboxes;

for the same procedure, the behaviors may vary for different devices. For

example, a device may experience different procedures, waiting or no wait-

ing, to recover its failure depending on the backup allocation; the failure and

repair procedures of different devices can be with different characteristics of

probability distributions. The work in [26] studied the unavailability with

considering heterogeneous procedures for the dedicated protection. Since the

shared protection introduces a more complicated mechanism to recover a failed

middlebox, developing a backup allocation model being explicitly aware of

the middlebox unavailability becomes difficult when the shared protection is

adopted.

Two questions arise: 1) how can we estimate the unavailability of middle-

boxes with considering the shared protection? 2) what is the optimal backup

allocation in terms of the unavailability of middleboxes? The two questions

have not been addressed, and are studied in Chapter 6.

1.3.5 Controller assignment for switches

The reliability of control plane in an SDN is a critical issue in practical appli-

cations [17]. One approach to protect switches is to assign multiple controllers

to each switch, where one of the assigned controllers works as a master con-

troller and others are slave controllers for the switch [27]. At any time, each

switch is only managed by its master controller. When the master controller

fails, one of the available slave controllers becomes the new master controller

to promptly recover the failure.

The propagation latency between switches and controllers is another crit-

ical issue for lots of SDNs, such as the wide-area network (WAN) [28]. In

WANs, the control reaction of a controller that runs at reasonable speed and

stability is bounded by the propagation latency. With enough latency, some

tasks may greatly slow down; real-time tasks, such as link layer fault recovery,

become infeasible. The work in [29] showed how the number of controllers

existing in a network and the placement of these controllers impact the prop-

9

Chapter 1

agation latency between switches and controllers. The propagation latency is

analyzed in both average-case and worst-case. The work in [30] presented a

controller placement and assignment model to minimize the average-case prop-

agation latency. Given a placement of controllers, the controller assignment

problem is formulated as a minimum weight matching problem in [30]. The

work in [31] introduced a master controller assignment model to minimize flow

setup latency, where propagation latency between master controllers is consid-

ered. The master controller assignment problem was formulated as an integer

non-linear programming (INLP) problem in [31]. All the works in [29–31] do

not consider the survivability issue in an SDN, where each switch only has a

master controller without any slave controller.

Given a placement of switches and controllers in an SDN, how to assign

master and slave controllers to each switch with considering both survivability

and propagation latency is a significant problem. The work in [32] addressed

how to assign slave controllers under a single master controller failure; the

propagation latency between a switch and any controller assigned to it is lim-

ited within a constant value. Multiple failures potentially occur among con-

trollers in an SDN. For example, several controllers may fail simultaneously

or the second controller fails before the recovery of the first failed controller

is completed. Previously, the works in [33–35] considered multiple controller

failures, where a constant number of controllers are assigned to each switch.

The worst-case propagation latency among all switches and failure patterns is

considered. As the works in [33–35] mainly focused on the aspect of controller

placement, several questions remain for controller assignment.

Different switches may require different degrees of availability, and differ-

ent controllers may have different probabilities to fail. Simply assigning the

same number of controllers to each switch may not be efficient in resource

utilization. For example, a switch with higher availability requirement needs

to be assigned with more backup resources that are related to the number of

assigned controllers and their failure probabilities. With the multiple assigned

controllers, the order to connect controllers, i.e., the selection for the master

controller under each failure pattern from all available assigned controllers,

needs to be determined. Typically, in order to obtain the optimal order, it is

designed to be determined in the same optimization problem with controller

10

Section 1.4

assignment [33,35]. Clearly, this approach introduces additional decision vari-

ables, and consequently the complexity of problem can be greatly increased.

Two questions, which have not been addressed, arise: 1) how can we build

the assignment model that is aware of the characteristics of different compo-

nents? 2) can we develop a general policy that always yields the optimal order

to avoid adding additional decision variables? This work answers the two ques-

tions in Chapter 7.

Computing

Functionality

Networking

Reliable resource allocation in network virtualization

Dedicated
protection

Shared
(probabilistic)

protection

Chapters 3 and 4

Chapter 6Chapter 5

Chapters 4 and 7

Chapter 1: background and problem statements

Chapter 2: related works in literature

Chapter 8: conclusions and future works

Figure 1.2: Chapter overview of this thesis.

1.4 Overview and contributions of this thesis

Figure 1.2 shows the chapter overview of this thesis. Chapter 2 surveys the

related works in literature.

Chapter 3 proposes a primary and backup resource allocation model for

VMs with providing a probabilistic protection against multiple PM failures to

minimize the required total capacity. By adopting robust optimization with ex-

tensive mathematical operations, a mixed integer linear programming (MILP)

problem is formulated. The results show that the proposed model saves about

one-third of the total capacity in the examined cases; it outperforms the con-

ventional models in terms of both blocking probability and resource utilization.

11

Chapter 1

Chapter 4 incorporates backup transmission resource allocation in the prob-

abilistic protection model for VNs against multiple facility node failures. The

backup transmission resource sharing is analyzed in the case of multiple facility

node failures to compute the minimum required backup transmission capac-

ity. The results observe that the proposed model reduces the required backup

computing capacity compared to the baseline with dedicated protection.

Chapter 5 proposes a backup resource allocation model for middleboxes

with considering both failure probabilities of network functions and backup

servers. The importance of functions is taken into account. Three heuris-

tic algorithms with polynomial time complexity are developed, where the ap-

proximation performances of different heuristics are analyzed with providing

several lower and upper bounds. Based on the discussions in numerical re-

sults, a network operator can choose an appropriate approach according to the

requirements in specific applications.

Chapter 6 proposes an unavailability-aware backup allocation model with

the shared protection to minimize the maximum unavailability among func-

tions. An analytical approach based on the queueing theory is developed to

compute the middlebox unavailability for a given backup allocation. A sim-

ulated annealing (SA) heuristic is introduced to obtain the backup allocation

based on the developed analytical approach. The results reveal that the pro-

posed model reduces the maximum unavailability 16% in average compared to

the baseline model

Chapter 7 proposes a master and slave controller assignment model against

multiple controller failures in software-defined networks. The survivability

guarantee of each switch is satisfied by assigning a set of controllers. Given

assigned controllers for a switch, the master controller in each failure case is

automatically specified based on a low latency first policy, which is proved as

the optimal choice for each considered problem. The numerical results observe

that, compared to the baseline that introduces decision variables to determine

the master controllers, the proposed model obtains the optimal objective value

with the computation time about 102 times shorter.

Finally, Chapter 8 concludes this thesis and discusses the future works to

extend this work.

12

Chapter 2

Related works

2.1 Resource allocation in computer virtual-

ization

In literature, various studies have been considered for backup resource allo-

cation problems to provide the mirroring protection [18, 36]. Taking this di-

rection, the work in [36] considered providing protection against a single link

failure in primary network by developing a dedicated backup network. The

work in [18] described an approach to protect VMs from the failure of PMs in

terms of any VM-based system. In this thesis, the proposed robust optimiza-

tion model for VMs [37] and the proposed probabilistic protection model for

VNs [38] provide the probabilistic protection guarantee to reduce the required

total capacity for primary and backup resource allocation.

Similar to the proposed robust optimization model, several works provided

probabilistic protection guarantees for backup resource allocation [19, 39, 40].

The works in [39,40] presented an approach to design a dedicated backup net-

work against random link failures. Robust optimization, where the provided

backup capacity in backup links is robust to the uncertainty in primary link

failures, is adopted to formulate an ILP problem for backup capacity provi-

sioning. In the proposed model, this work applies the similar technologies

to formulate the resource allocation problem with providing the probabilistic

protection guarantee against random PM failures as an MILP problem. This

work differs from [39, 40] in three major aspects: (i) instead of only backup

13

Chapter 2

resource allocation, this work allocates both primary and backup resources

in PMs; (ii) this work allows different PMs to provide backup capacity for

different primary VMs which are in the same protected PM; (iii) instead of

designing a dedicated backup network, a PM in the proposed model accepts

both primary and backup resources. As an approach different from ILP, the

work in [19] focused on the heuristic algorithm for backup resource allocation

for middleboxes. The work in [38] presented the transmission capacity and

flow constraints for backup resource allocation of virtual networks based on

the results of [37].

Robust optimization has been applied to network flow problems [41–43].

The work in [41] formulated an MILP for maximizing the amount of admissible

VPN traffic. The traffic demand model adopted in [41] is called the hose model,

where the uncertainty of the traffic-demand matrix is resisted by setting traffic

upper bounds outgoing from ingress nodes and incoming to egress nodes in the

network. The work in [42] considered a two-phase routing to achieve a traffic-

oblivious routing in IP-over-optical networks. The work in [43] applied robust

optimization for energy saving against link traffic uncertainty.

Some studies focused on the reliability of a cloud provider, where the

backup resource allocation for high survivability is not considered [44,45]. The

works in [44, 45] presented reliable resource allocation models for distributed

clouds from a networking aspect. In their models, a request of VMs is allo-

cated in several selected PMs which are located in the different nodes of cloud

network and are considered as a star topology where the center PM is assumed

not to fail.

2.2 Resource allocation in NFV

Since middlebox failures are found to be prevalent in networks and signifi-

cantly impact hosted services [22], some works designed the frameworks for

fault-tolerant middleboxes [16, 46, 47]. Taking this direction, the work in [46]

adopted flow-level checkpoints to provide the synchronization per flow. The

work in [16] presented a framework where the traffic packets and associated de-

terminant information of a stateful middlebox are stored in its backup servers,

which can recover the primary middlebox with reintroducing the traffic packets

14

Section 2.2

to the failed network function by using the stored copy of state. Based on [16],

the work in [47] introduced an approach with avoiding using the snapshots of

entire system to reduce the latency overhead.

Addition to the framework designing, similar to the works in [48–50], sev-

eral works focused on the basic backup resource allocation problem for mid-

dleboxes or VMs from different aspects [19, 24]. The work in [19] provided

several properties of an optimal assignment of backups servers to functions

to maximize the probability for a full recovery or to maximize the expected

number of functions that can be recovered simultaneously. The work in [24]

designed the recovery schemes, which guarantee a full recovery for any small

subset of failed functions, based on the analyses of machine graph. The pro-

posed backup allocation model for middleboxes differ from the above works

by considering both failure probabilities of backup servers and functions and

aiming at different objective.

Some studies addressed the availability issue for service function chain

(SFC) instead of focusing on each function [26, 51–56]. The works in [51, 52]

presented algorithms mapping SFCs with minimizing the amounts of on-site

and off-site backups required for satisfying the availability requirements. The

work in [26] presented an approach to provision availability of SFC with consid-

ering heterogeneous failure processes; an optimization problem was formulated

to minimize the required backup resources with satisfying a certain degree of

availability requirement for an SFC request. The work in [53] jointly consid-

ered the availability and delay constraints in the backup resource allocation

problem for SFC with minimizing the required bandwidth resource, and the

further works in [54, 55] considered backup resource sharing and multipath

routing. The work in [56] considered the software characteristics of virtual

functions, where the backup sharing for basic and duty resources is clarified.

Compared to the works in [26,51–56], the work in [50]introduces a different

way to estimate the middlebox availability. In [26, 51–56], the availability

of a middlebox required in a SFC is calculated with considering the given

failure probabilities or availabilities of related devices. This approach dose

not include some factors, such as the recovery procedure for a failed middlbox

on its backup server and the action after the shared protection fails, which

also affect the availability. In this thesis, the availability of each middlebox

15

Chapter 2

is estimated based on the queueing theory with comprehensively considering

the heterogeneous failure, repair, recovery, and waiting procedures of functions

and backup servers.

This work is also related to the algorithm designing for the general load

balancing (GLB) problem [57–61] and the Santa Clause (SC) problem [62,63].

The works in [58, 59] provided a greedy algorithm with an upper bound of
4
3 of optimum for the GLB problem; algorithms with stronger approximation

guarantees for this problem were presented in [61] based on the dual approx-

imation technique. The work in [63] studied the SC problem with providing

an algorithm based on the LPR approach, which has an upper bound similar

to the one proved in Section 5.3.3 for considered problem. The work in [62]

introduced another approximation algorithm for the SC problem by configur-

ing a different LP problem and showed the integrality gap of the configuration

LP problem. In this thesis, the backup resource allocation problem for mid-

dleboxes is equivalent to maximizing the minimum, which is opposite with the

objective in the GLB problem; it also varies from the GLB problem and the

SC problem by considering two conditions, which are that each function has a

corresponding initial workload and that one backup server can be assigned to

several different functions.

The queueing theory has been wildly studied for different network prob-

lems [64–68]. The work in [64] presented a fiber span power management

scheme by using the dummy wavelength signals to shorten the lightpath pro-

visioning and releasing times; the system blocking probability and the request

waiting time are estimated through a queueing model. The work in [65] de-

veloped the analytical models based the queuing theory to predict the average

packet delay and packet loss probability of flows over software-defined net-

works. The works in [66–68] studied the VNF deployment problem, where

each VNF instance is modeled as an M/M/1 or M/M/c queueing model to

process the traffic flows. In this work for the unavailability-aware backup al-

location model, the whole system including functions and backup servers with

the heterogeneous procedures is not equivalent to the traditional M/M/1 or

M/M/c model; this work provides the comprehensive analyses in the developed

queueing approach.

16

Section 2.3

2.3 Resource allocation in SDN

Since the control plane of an SDN frequently suffers from failures in prac-

tical applications, several works implemented the replication mechanisms to

improve the survivability of control plane [69,70]. The work in [69] developed

functional implementations for SDNs with passive and active replications; it

showed that the passive and active replications are suitable for a less intru-

sive approach and a delay-sensitive scenario, respectively. The work in [70]

focused on actively replicating controllers, where a prototype with consistent

state among distributed controllers is implemented based on Ryu controllers

and OpenReplica. Instead of replication mechanisms, the work in [71] studies

a basic problem of the assignment between controllers and switches.

This work is related to controller placement problems [29,30,33–35,72–76].

Taking this direction, one type of work studies how to place controllers with

the objectives focusing on the propagation latency; the survivability issue is

not considered, such as [29,30]. Another type of work studies resilience aware

controller placement. The works in [72,73] addressed placing controllers to sat-

isfy the network reliability requirement against network link failures regardless

of the propagation latency. The works in [33–35,74–76] considered placing con-

trollers with different objectives against multiple controller failures. Usually,

the assignment of controller in a placement problem is intuitively obtained

when the placement is determined. For example, the work in [29] assumed

that each switch connects the nearest controller; the works in [74–76] consid-

ered assigning a constant number of nearest controllers to each switch. Some

placement problems, such as [30, 33–35], determine the controller assignment.

Compared to the assignment aspect studied in their works, this work has

three main differences: i) instead of assigning the same number of controllers

to each switch, this work considers the characteristics of different switches and

controllers; ii) this work adopts a policy-based approach and develops an opti-

mal policy to determine the master controllers; iii) instead of considering the

worst-case propagation latency among all failure patterns, this work introduces

expected values to reflect the probabilities of different failure patterns. Note

that this work can be extended to include the controller placement procedure.

Similar to this work, several works studied the controller assignment prob-

17

Chapter 2

lem for the given placement of switches and controllers [31, 77–83]. The work

in [31] developed a low-complexity algorithm for the master controller assign-

ment problem. The work in [77] focused on the efficient controller assignment

in a network virtualization environment. The works in [78] and [79] studied

the controller assignment against traffic dynamics. The assignment of slave

controllers is not considered in [31, 77–79]. Some works addressed assigning

slave controllers against the link failures instead of the controller failures. For

example, the work in [80] considered the survivability of a domain which is

defined as the average probability that the connection between the controller

and each switch in this domain does not fail. The works in [81–83] considered

the controller failure in the controller assignment problem. The work in [81]

introduced a multiple controller mapping model against a single controller

failure. The work in [82] extended the work in [32] by introducing a dynamic

slave controller assignment scheme, which determines slave controllers after

each controller fails. The work in [83] explored the modes of existing SDN

switches for the efficient recovery; a model was presented to select a set of

offline switches to be configured with the legacy routing mode, and to remap

the remaining offline switches with the SDN mode to active controllers, under

controller failures. Different from the above works, this work deals with mul-

tiple controller failures by proactively assigning master and slave controllers

before any failure occurs for a prompt recovery.

This work is also related to the algorithm designing for optimization prob-

lems with submodular objective functions [84–86]. The work in [84] showed

that a greedy algorithm achieves a (1 − 1/e)-approximation for maximiza-

tion problems with submodular objective functions and uniform matroid con-

straints. The works in [85] extended the results in [84] by considering the case

of intersection of p matroids. The work in [86] adopted the pipage rounding

technique to develop a greedy algorithm with (1− 1/e)-approximation under a

general matroid constraint.

18

Chapter 3

Robust optimization model for

virtual machine allocation

This thesis proposes a primary and backup resource allocation model with

providing a probabilistic protection against multiple PM failures to minimize

the required total capacity. A part of the work in this chapter was presented

in [37]. A probabilistic protection guarantee is introduced to assure the recov-

ery of failed PMs with a certain probability. The proposed model adopts an

efficient resource allocation policy, where the capacity of a PM is allowed to

accept both primary and backup resources. In addition, suppressing capacity

fragmentation is considered for further efficient resource utilization. Allowing

backup capacity sharing with probabilistic protection guarantee and efficient

resource utilization leads to cost reduction of protection.

To develop the proposed model, inspired by [39, 40], this work considers

robust optimization to provision backup capacity. Robust optimization deals

with the problem where the uncertainty of the problem is resisted with a

certain measure of robustness. In the case considered in this thesis, uncertainty

can be represented as the backup capacity required to provide protection.

By adopting robust optimization with extensive mathematical operations, an

MILP problem is formulated. This work proves that the primary and backup

resource allocation problem is NP-hard. SA is introduced to solve the same

optimization problem.

This work considers both static and dynamic scenarios for performance

19

Chapter 3

evaluation. This work compares the proposed model with two conventional

models to express the significance of the proposed model in terms of blocking

probability and resource utilization in a cloud provider. In the static scenario,

this work observes that the proposed model saves one-third of the total capacity

by providing the probabilistic protection; the results from the SA heuristic are

equal to the optimal values in the examined cases. In the dynamic scenario, the

results reveal that the proposed model outperforms the conventional models

in terms of both blocking probability and resource utilization.

The rest of this chapter is organized as follows. Section 3.1 presents the

proposed robust optimization model. The proof of NP-hardness is provided in

Section 3.2. Section 3.3 introduces the SA heuristic. The dynamic scenario is

described in Section 3.4. Section 3.5 evaluates the performance of the proposed

model. Section 3.6 summaries this chapter.

3.1 Optimization model

Consider a cloud provider that consists of a set of PMs, which is denoted by W .

This thesis studies the computing resource allocation for VMs with assuming

that the sufficient and reliable network resources are provided.

3.1.1 Protection of virtual machines in cloud provider

The capacity of a PM is used to accept both primary and backup resources.

On one hand, the cloud provider offers resources used for VMs to customers

based on the PMs. On the other hand, excepting for offering capacity for

primary resource allocation, each PM is able to provide protections for VMs

with allocating backup resources. More specifically, the latest snapshot of a

running VM is periodically updated to its corresponding PM that provides the

protection. When PMs experience failures, the corresponding survived PMs

recover the failed VMs based on the snapshots and take over the workloads.

Since updating the snapshot usually requires much less computing capacity

than entirely running or recovering a VM, the reserved backup capacity can

be shared among different VMs. Of course, if multiple PMs where hosted VMs

share the same backup resource fail simultaneously, only some of the failed

20

Section 3.1

VMs can be recovered due to the limited capacity, which leads to the failing

of protection provided by this PM. Note that a PM can just be protected by

other PMs instead of itself. Figure 3.1 presents an example that shows a cloud

provider consisting of six PMs.

PM4

PM1

PM5 PM6

PM2 PM3

VM13

VM12

VM11

VM21

VM22

VM31

VM32

VM33

VM51 VM61

Backup resources

Primary resources

Figure 3.1: Example of cloud provider, where each PM is used to accept both

primary and backup resources.

3.1.2 Primary and backup resource allocation model

This work builds an optimization model to minimize the total capacity required

for the primary and backup resource allocation. Table 3.1 summarizes the

frequently used notations.

The set of VMs existing in PM i ∈ W is denoted by Pe
i . The capacity of a

VM typically includes multiple types of resources, such as CPU and memory.

This thesis assumes that the capacity has a single type of resource to simplify

the discussion. The capacity of VM j ∈ Pe
i in PM i ∈ W is represented by rei j .

When a request for a set of VMs comes to the cloud provider from customers,

primary and backup resource allocation is performed for the requested VMs.

At the same time, backup resources for existing VMs are re-allocated to min-

imize the total capacity required in the cloud provider. To avoid any service

disruption, the primary resources for existing VMs are not re-allocated.

N denotes a set of requested VMs. The capacity of VM n ∈ N is represented

by qn. zin
k , k ∈ W, i ∈ W : i , k, n ∈ N, denotes a binary decision variable; zin

k

21

Chapter 3

Table 3.1: List of frequently used notations in Chapter 3.
Notations Meaning

Given parameters

rei j Requested capacity of existing VM j ∈ Pe
i in PM i ∈W

qn Requested capacity of new coming VM n ∈ N

cRi
Remaining capacity on PM i

except for primary allocation of existing VMs

p Failure probability of each PM

ε
Given small number for

probabilistic protection guarantee

Variables

x
i j
k

Binary variable indicating whether existing VM

j ∈ Pe
i , i ∈W , is protected by PM k ∈W : k , i

zin
k

Binary variable indicating whether new coming VM

n ∈ N is allocated into PM i ∈W

and protected by PM k ∈W : k , i

Xi Random variable indicating whether PM i fails

nk
Number of PMs, each of which

is partially or totally protected by PM k

Γk Number of PMs representing robustness for PM k

cB
k

Required backup capacity on PM k

is set to one if VM n ∈ N is allocated into PM i ∈ W and protected by PM

k ∈ W and zero otherwise.

xi j
k , k ∈ W, i ∈ W : i , k, j ∈ Pe

i , denotes a binary decision variable; xi j
k is set

to one if VM j ∈ Pe
i in PM i ∈ W is protected by PM k ∈ W and zero otherwise.

cBk denotes the required capacity of PM k ∈ W for backup resource allocation.

The available capacity in PM i ∈ W for primary and backup resource allocation

is denoted by cRi , which is the remaining capacity except for the primary

allocation of existing VMs. pi denotes the failure probability of PM i ∈ W .

S is a set of triplets (i, j, k), each of which does not allow xi j
k = 1. For

example, a PM is not allowed to be protected by itself, so xi j
k = 0 when k = i;

or if the connection between resource (i, j), i ∈ W, j ∈ Pi and k ∈ W is not

satisfied with the management requirement, xi j
k = 1 is not allowed.

Obviously, S is significant for the total required capacity for resource al-

location. For example, if the different VMs in one PM is not allowed to be

protected by different PMs due to some management restrictions, much higher

capacity is required in PMs compared with the situation that one PM is al-

lowed to be protected by different PMs for different resources.

This work assumes pi = p, ∀i ∈ W , to simplify the discussion. The assump-

tion that all the failure probabilities for PMs are the same p can be relaxed

22

Section 3.1

by using the similar approach in [40]. Xi denotes an independent, identically

distributed Bernoulli random variable with parameter p, indicating whether

PM i ∈ W fails.

min
∑
k∈W

cBk (3.1a)

s.t.
∑

k∈W :k,i

xi j
k = 1, ∀i ∈ W, j ∈ Pe

i (3.1b)∑
k∈W

∑
i∈W :i,k

zin
k = 1, ∀n ∈ N (3.1c)

P (Xk = 1) ×

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > 0

 +
P (Xk = 0) ×

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > cBk

 ≤ ε,
∀k ∈ W (3.1d)

cBi +
∑

k∈W :k,i

∑
n∈N

zin
k qn ≤ cRi , ∀i ∈ W (3.1e)

xi j
k = 0, ∀(i, j, k) ∈ S (3.1f)

xi j
k ∈ {0, 1}, ∀k ∈ W, i ∈ W : i , k, j ∈ Pe

i (3.1g)

zin
k ∈ {0, 1}, ∀k ∈ W, i ∈ W : i , k, n ∈ N . (3.1h)

Equation (3.1a) minimizes the total required capacity for backup resource al-

location. Equation (4.12c) ensures that each existing VM in a PM is protected

by another PM. Equation (3.1c) ensures that each requested VM is allocated

into a PM and protected by another PM. Equation (3.1d) is the probabilistic

protection guarantee, which indicates that the resources in PMs must be pro-

visioned to be protected by their corresponding PMs, where the probability

that the protection fails is not greater than ε . The first term of left hand side

in (3.1d) indicates the probability that the PM providing protection fails and

at least one protected PM fails. The second term of left hand side in (3.1d)

indicates the probability that the PM providing protection does not fail and

23

Chapter 3

the protection fails due to insufficient backup capacity. Since xi j
k is a binary

decision variable, resource j in i ∈ W is not divided into more than one PM.

Equation (4.12e) restricts that the total required capacity for primary and

backup resource allocation does not exceed cRi .

Note that this model can be widely used. Specially, when N is an empty set,

this model is used for backup resource allocation for Pe
i . When Pe

i is an empty

set for all i ∈ W , this model is for primary and backup resource allocation for

N.

3.1.3 Mixed integer linear programming problem

This work shows how to compute the probability that the protection pro-

vided by a PM fails. More specifically, in order to solve the primary and

backup resource allocation model by using optimization solvers [87, 88], this

work transforms (3.1a)-(3.1h) to an MILP problem by expressing the proba-

bilistic protection guarantee in (3.1d) as a linear form.

This work defines

nk =
∑

i∈W :i,k

min
©«
∑
j∈Pe

i

xi j
k +

∑
n∈N

zin
k , 1

ª®¬
 , (3.2)

where nk is the number of PMs, each of which is partially or totally protected

24

Section 3.1

by PM k ∈ W . Equation (3.1d) is expressed by,

P (Xk = 1) ×

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > 0

 +
P (Xk = 0) ×

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > cBk

=p {1 − (1 − p)nk } +

(1 − p)P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > cBk

 ≤ ε,
∀k ∈ W . (3.3)

Let

ε′ =
ε − p {1 − (1 − p)nk }

1 − p
, ∀k ∈ W . (3.4)

Equation (3.3) is transformed to,

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > cBk

 ≤ ε′, ∀k ∈ W . (3.5)

Therefore, provisioning a certain capacity cBk in PM k ∈ W for backup re-

source allocation to meet the probabilistic protection guarantee in (3.1d) is

equivalent to satisfying (3.5) as long as ε ≥ p {1 − (1 − p)nk }. Actually, for PM

k ∈ W , when the approach mirroring primary resources for backup resource

allocation is adopted, the probability that the protection provided by PM k
fails is p {1 − (1 − p)nk } = p2 with nk = 1, which is the lower bound of ε in the

proposed model.

In order to express (3.1d) or (3.5) in a linear form, this work starts by

considering the unit-capacity case where
∑

j∈Pe
i

xi j
k rei j +

∑
n∈N zin

k qn is 1 or 0. In

Section 3.1.3, this work removes the assumption to consider a general-capacity

case, where the idea in robust optimization is used to provision backup capacity

25

Chapter 3

to satisfy (3.5). After adopting the dual theorem and several mathematical

transformations, (3.1a)-(3.1h) are finally transformed to an MILP problem in

Section 3.1.3.

Unit-capacity case

This work assumes that
∑

j∈Pe
i

xi j
k rei j +

∑
n∈N zin

k qn is 1 or 0, when xi j
k and zin

k are

obtained as solutions. Equation (3.5) is expressed by,

P

∑
i∈W :i,k

Xi
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ > cBk

 (3.6a)

=

nk∑
y=bcB

k
c+1

(
nk

y

)
py(1 − p)nk−y ≤ ε′, ∀k ∈ W . (3.6b)

Let G(nk, p, ε) be the minimum integer value of cBk that satisfies (3.6). This

work denotes Γk = G(nk, p, ε); p and ε are given parameters, which are omitted

for simplicity, but Γk depends on p and ε .

Obviously, Γk represents the number of PM failures protected against. In

the unit-capacity case, for PM k ∈ W , the probabilistic protection guaran-

tee (3.5) is satisfied by allocating backup capacity for any Γk PMs among all

the protected PMs, and cBk = Γk .

General-capacity case

This work considers a general-capacity of rei j and qn by removing the assump-

tion of
∑

j∈Pe
i

xi j
k rei j+

∑
n∈N zin

k qn = 1 or 0. Since the capacity of primary resources

varies in different protected PMs in the general-capacity case, simply allocat-

ing backup capacity for any Γk PMs among all the protected PMs may not

satisfy (3.5). This work adopts the idea in robust optimization to provision

backup capacity to satisfy (3.5) and further transform it in a linear form.

Robust optimization deals with the problem where the uncertainty of prob-

lem is resisted with a certain measure of robustness. The work in [89] intro-

duced a robust approach to formulate the problems with uncertain data as lin-

ear optimization problems with providing a controllable degree of robustness.

A prespecified optimization parameter Γ of coefficients changes is introduced

26

Section 3.1

in the approach, where sufficient (robust) capacity is provided to guarantee

that the solution is feasible if no more than Γ uncertain coefficients change,

and the solution is proved to be feasible with a certain probability when there

are more than Γ uncertain coefficients changing. The works in [39,40] applied

the robust optimization results of [89] to design a dedicated backup network

against random link failures.

In this problem, the number of failed PMs follows the binomial distribution

whose probability mass function is expressed in (3.6). However, it is uncertain

which PM fails, which leads to an uncertainty in the required backup capac-

ity in each PM of the general-capacity case. This work applies the similar

technologies with [39, 40, 89] in this problem to provide a certain measure of

robustness in the required backup capacity to resist the uncertainty.

Let Lk be a set of PMs i ∈ W : i , k, each of which is partially or totally

protected by another PM k ∈ W , i.e., Lk = {i |
∑

j∈Pe
i

xi j
k +

∑
n∈N zin

k ≥ 1} and

the size of Lk is nk . Given nk , this work computes the corresponding Γk by

using (3.6). Let Sk be a set of Γk PMs in Lk with the largest capacities protected

by PM k ∈ W . For any i ∈ Sk , we have∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn ≥∑

j∈Pe
i′

xi′ j
k rei′ j +

∑
n∈N

zi′n
k qn, ∀i′ ∈ Lk\Sk, k ∈ W . (3.7)

The backup capacity required to protect against any Γk PMs in Lk is given by,

cBk =
∑
i∈Sk

©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ ≥ (3.8a)

max
Sk |Sk⊆Lk,|Sk |=Γk

∑
i∈Sk

©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬
 . (3.8b)

If no more than Γk PMs among the nk protected PMs fail simultaneously,

the backup capacity allocated by (3.8b) is sufficient. Therefore, the proba-

bility in the left hand of (3.5), which is the probability of insufficient backup

capacity, can be upper-bounded by the probability that more than Γk PMs

27

Chapter 3

fail simultaneously, which is not greater than ε′. As a result, (3.5) is satis-

fied for the general-capacity case by adopting the above robust optimization

technologies.

Therefore, for a general capacity of rei j and qn, (3.1a)-(3.1h) are transformed

to the following optimization problem by replacing (3.1d) with (3.9c).

min
∑
k∈W

cBk (3.9a)

s.t. (4.12c), (3.1c), (4.12e), (3.1f), (3.1g), (3.1h) (3.9b)

cBk ≥

max
Sk |Sk⊆Lk,|Sk |=Γk

∑
i∈Sk

©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬
 ,

∀k ∈ W . (3.9c)

Further transformations

This work adopts the duality technique, which is a similar approach in [40], to

express the right hand side of (3.9c) to a linear form. Consider the following

primal problem. For each k ∈ W , xi j
k , zin

k and Γk are fixed and wi
k, k ∈ W, i ∈

W : i , k is introduced as a decision variable.

max
∑

i∈W :i,k

©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn

ª®¬ wi
k (3.10a)

s.t.
∑

i∈W :i,k

wi
k ≤ Γk (3.10b)

0 ≤ wi
k ≤ 1, ∀i ∈ W : i , k . (3.10c)

The dual of (3.10a)-(3.10c) is formulated by,

min νkΓk +
∑
i∈W

θi
k (3.11a)

s.t. νk + θ
i
k ≥

∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn,

∀i ∈ W : i , k (3.11b)

28

Section 3.1

νk ≥ 0 (3.11c)

θi
k ≥ 0, ∀i ∈ W : i , k, (3.11d)

where νk and θi
k are introduced as decision variables in the dual formulation.

By setting wi
k in (3.10a)-(3.10c) as a real variable in a range of [0, 1], there

is no duality gap between (3.10a)-(3.10c) and (3.11a)-(3.11d). The duality

theorem guarantees that the optimal value of (3.10a) in the primal problem

is equivalent to that of (3.11a) in the dual problem. The linear programming

problem maximizes the objective value of (3.10a) by choosing the Γk PMs with

the largest
∑

j∈Pe
i

xi j
k rei j +

∑
n∈N zin

k qn for wi
k = 1 and setting other values of wi

k to

zero. As a result, the optimal value of (3.10a) is equivalent to the right hand

side of (3.9c). Thus, the right hand side of (3.9c) is equivalent to the optimal

value of (3.11a) in the dual problem.

Equations (3.9a)-(3.9c) are transformed by the following optimization prob-

lem.

min
∑
k∈W

cBk (3.12a)

s.t. (4.12c), (3.1c), (4.12e) − (3.1h) (3.12b)

cBk ≥ νkΓk +
∑
i∈W

θi
k, ∀k ∈ W (3.12c)

νk + θ
i
k ≥

∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn,

∀k ∈ W, i ∈ W : i , k (3.12d)

νk ≥ 0, ∀k ∈ W (3.12e)

θi
k ≥ 0, ∀k ∈ W, i ∈ W : i , k . (3.12f)

nk is a function of decision variables, and affects Γk . As Γk cannot be

computed analytically, this work prepares a table whose mth entry denotes

Γ(m), which is equal to G(m, p, ε). Γ(m) is computed numerically in advance.

To compute nk , this work introduces a binary decision variable, vm
k , where

vm
k is set to one if nk = m, and zero otherwise. We have the following constraint

given by,

|W |−1∑
m=0

vm
k = 1, ∀k ∈ W . (3.13)

29

Chapter 3

vm
k is set to 1 for only one value of m for each k ∈ W . By using (3.2), we have,

∑
i∈W :i,k

min
©«
∑
j∈Pe

i

xi j
k rei j +

∑
n∈N

zin
k qn, 1

ª®¬
 =

|W |−1∑
m=0

m · vm
k , ∀k ∈ W . (3.14)

To express min
(∑

j∈Pe
i

xi j
k rei j +

∑
n∈N zin

k qn, 1
)

in a linear form, let αi
k be a binary

decision variable. Equation (3.14) is transformed into the following constraints,

which is used in the minimization problem.∑
i∈W :i,k

αi
k ≤

|W |−1∑
m=0

m · vm
k , ∀k ∈ W . (3.15)

xi j
k ≤ α

i
k, ∀k ∈ W, i ∈ W : i , k, j ∈ Pi (3.16)

zin
k ≤ α

i
k, ∀k ∈ W, i ∈ W : i , k, n ∈ N (3.17)

αi
k ≤

∑
j∈Pi

xi j
k +

∑
n∈N

zin
k , ∀k ∈ W, i ∈ W : i , k . (3.18)

Equations (3.16) and (3.17) force αi
k = 1 if at least one j ∈ Pi satisfying xi j

k = 1

or at least one n ∈ N satisfying zin
k = 1 exits for each k ∈ W, i ∈ W : i , k.

Equation (3.18) forces αi
k = 0 if

∑
j∈Pi

xi j
k +

∑
n∈N zin

k = 0 for each k ∈ W, i ∈ W :

i , k. Equations (3.15)-(3.18) give m PMs protected by another PM k. Γk is

expressed by,

Γk =

|W |−1∑
m=0

Γ(m)vm
k , ∀k ∈ W . (3.19)

Equation (3.12c) is transformed into

cBk ≥
|W |−1∑
m=0

Γ(m)νkv
m
k +

∑
i∈W :i,k

θi
k, ∀k ∈ W . (3.20)

As the product of νkv
m
k is not linear, this work expresses νkv

m
k with an in-

troduced non-negative decision variable, ym
k , that satisfies the following con-

straints. This work defines W+ = {0, 1, · · · , |W | − 1}.

ym
k ≥ νk + K(vm

k − 1), ∀k ∈ W,m ∈ W+ (3.21)

30

Section 3.1

ym
k ≤ Kvm

k , ∀k ∈ W,m ∈ W+ (3.22)

ym
k ≥ 0, ∀k ∈ W,m ∈ W+ (3.23)

K is a sufficiently large number that satisfies K ≥
∑

i∈W
∑

j∈Pe
i

rW
i j +

∑
n∈N qn. If

vm
k = 0, ym

k is forced to zero by (3.22). If vm
k = 1, ym

k is forced to νk in the

optimization problem by (3.21).

Equations (3.12a)-(3.12f) are transformed into the following MILP problem.

min
∑
k∈W

cBk (3.24a)

s.t. (4.12c), (3.1c), (4.12e) − (3.1h), (3.12d) − (3.12f), (3.13)

(3.15) − (3.18), (3.21) − (3.23) (3.24b)

cBk ≥
|W |−1∑
m=0

Γ(m)ym
k +

∑
i∈W :i,k

θi
k, ∀k ∈ W (3.24c)

vm
k ∈ {0, 1}, ∀k ∈ W,m ∈ W+ (3.24d)

αi
k ∈ {0, 1}, ∀k ∈ W, i ∈ W : i , k . (3.24e)

To reduce the computation time of solving the above MILP problem, this

work utilizes a characteristic of Γ(m), which is a non-decreasing step function

on m. This work classifies the values of m into several classes based on the

table whose mth entry denotes Γ(m). Let M′ be the set of these classes. Dm′

denotes a set of m, which are with the same value of Γ(m), in class m′ ∈ M′. The

maximum value of m in Dm′ is represented by L(m′). Equations (3.24a)-(3.24e)

are transformed into the following MILP problem.

min
∑
k∈W

cBk (3.25a)

s.t. (4.12c), (3.1c), (4.12e) − (3.1h), (3.12d) − (3.12f), (3.16) − (3.18),

(3.24e) (3.25b)

cBk ≥
∑

m′∈M ′
Γ(L(m′))ym′

k +
∑

i∈W :i,k

θi
k, ∀k ∈ W (3.25c)∑

m′∈M ′
vm′

k = 1, ∀k ∈ W (3.25d)∑
i∈W :i,k

αi
k ≤

∑
m′∈M ′

L(m′) · vm′
k , ∀k ∈ W (3.25e)

31

Chapter 3

ym′
k ≥ νk + K(vm′

k − 1), ∀k ∈ W,m′ ∈ M′ (3.25f)

ym′
k ≤ Kvm′

k , ∀k ∈ W,m′ ∈ M′ (3.25g)

vm′
k ∈ {0, 1}, ∀k ∈ W,m′ ∈ M′ (3.25h)

ym′
k ≥ 0, ∀k ∈ W,m′ ∈ M′. (3.25i)

3.1.4 Extended model suppressing capacity fragmenta-

tion

The above primary and backup resource allocation model only considers the

minimization of required backup capacity regardless of the optimization in

capacity fragmentation. Different solutions of primary and backup resource

allocation with the same required backup capacity may cause different degrees

of capacity fragmentation in the cloud provider, where the heavier capacity

fragmentation is, the less efficient resource utilization is in the cloud provider

in terms of dynamic scenarios.

In the extended model, the number of PMs hosting the primary and backup

resources after resource allocation is used to measure the capacity fragmenta-

tion in the cloud provider. di, i ∈ W , denotes a binary given parameter; di

equals to one when PM i ∈ W is used to host the primary resource of any

existing VM and zero otherwise. d′i, i ∈ W , denotes a binary decision vari-

able; d′i is set to one if PM i ∈ W is used to host any resource after resource

allocation and zero otherwise. The primary and backup resource allocation

model to suppress capacity fragmentation is represented as an MILP problem

by extending the MILP problem in (3.25a)-(3.25i) as follows.

min
∑
k∈W

cBk + γ
∑
i∈W

d′i (3.26a)

s.t . (4.12c), (3.1c), (4.12e) − (3.1h), (3.12d) − (3.12f), (3.16) − (3.18),

(3.24e), (3.25c) − (3.25i) (3.26b)

d′i ≥ di, ∀i ∈ W (3.26c)

d′i ≥
∑

k∈W :k,i

zin
k , ∀i ∈ W, n ∈ N (3.26d)

d′k ≥
∑

i∈W :i,k

zin
k , ∀k ∈ W, n ∈ N (3.26e)

32

Section 3.2

d′k ≥ xi j
k , ∀k ∈ W, i ∈ W : i , k, j ∈ Pi (3.26f)

d′i ∈ {0, 1}, ∀i ∈ W, n ∈ N . (3.26g)

The objective given by (3.26a) is still to minimize the required backup

capacity. The second term of (3.26a), which sums up the number of PMs used

for hosting any resource after the primary and backup resource allocation, is

used to suppress capacity fragmentation. Unless specifically stated, γ is set to

small enough in order to not impair the first term of (3.26a), or γ is satisfied

with γ < δC
|W | , where δC is a minimum incremental value of CB

k . This provides

the primary and backup resource allocation that has a less degree of capacity

fragmentation among solutions that have the same value for the first term

of (3.26a). Equations (3.26c)-(3.26f) express that d′i is set to one if PM i ∈ W
is used to host any resource after resource allocation.

3.2 NP-hardness

From the primary and backup resource allocation (PBRA) problem, this work

defines the decision version of PBRA problem as below:

Problem Given a set of existing VMs, Pe
i , for each PM i ∈ W and a set of

requested VMs N, is it possible to allocate the primary resources of N and

the backup resources of Pe
i and N, which satisfy the probabilistic protection

guarantee, with the total required capacity no more than c?

Theorem 1 The PBRA decision problem is NP-hard.

Proo f : This work shows that the partition problem (PP), which is a known

NP-complete problem [90], is reducible to the PBRA decision problem. PB is

defined as: is it possible to partition a given set G of positive integers into two

subsets G1 and G2 such that the sum of the numbers in G1 equals that in G2?

This work constructs an instance of the PBRA decision problem from any

instance of PP. An instance of PP consists a multiset G of positive integers

and the value of positive integer g ∈ G is represented by Ig. An instance of

the PBRA decision problem is constructed with the following algorithm, which

performs in a polynomial time of O(|G |).

33

Chapter 3

1) This work considers a cloud provider which consists of three PMs,

PM1, PM2 and PM3. Only PM1 is hosting a set of existing VMs Pe
1 with

|Pe
1 | = |G |. For each positive integer g ∈ G, there is a corresponding VM

j ∈ Pe
1 with the capacity of re1 j = Ig. No VM exists in PM2 and PM3.

2) The maximum capacities of PM1, PM2 and PM3 are set to
∑

j∈Pe
1

re1 j ,∑
j∈Pe

1
re1j

2 and

∑
j∈Pe

1
re1j

2 , respectively. Therefore, the remaining capacities

of PM1, PM2 and PM3 are 0,

∑
j∈Pe

1
re1j

2 and

∑
j∈Pe

1
re1j

2 , respectively.

3) Set N as an empty set and consequently this model is used for backup

resource allocation for Pe
1.

4) Set ε = 0, which means that 100% protection is required against any

random failure.

5) Set c =
∑
g∈G Ig =

∑
j∈Pe

1
re1 j .

Consider that a PP instance is a Yes instance. G is able to be partitioned

into two subsets G1 and G2, and both sums of the numbers in the two subsets

are
∑
g∈G Ig
2 . Define a PBRA instance from the PP instance by using the above

described algorithm. In the PBRA instance, for each existing VM j ∈ Pe
1,

consider a corresponding backup resource b ∈ B with capacity fb = re1 j . The

set of backup resources B is able to be partitioned into two subsets B1 and

B2, which refer to G1 and G2, respectively, and both total capacities of the

backup resources in the two subsets are

∑
j∈Pe

1
re1j

2 . By allocating B1 and B2

into PM2 and PM3, respectively, 100% protection is provided for the primary

resources of Pe
1. As a result, it is possible to allocate the backup resources

of Pe
1, which satisfy the probabilistic protection guarantee, into the PMs with

the total required backup capacity no more than c =
∑

j∈Pe
1

re1 j . Therefore, the

PBRA instance is a Yes instance.

Conversely, consider a PBRA instance is a Yes instance. In the Yes PBRA

instance, in order to provide 100% protection, for each existing VM j ∈ Pe
1, a

corresponding backup resource b ∈ B with capacity fb ≥ re1 j has to be allocated

into PM2 and PM3. As the total required backup capacity is less or equal to

c =
∑

j∈Pe
1

re1 j , the capacity of each backup resource b ∈ B is fb = re1 j . Since the

34

Section 3.3

remaining capacities of PM2 and PM3 are

∑
j∈Pe

1
re1j

2 and

∑
j∈Pe

1
re1j

2 , respectively,

the set of backup resources B is able to be partitioned into two subsets B1

and B2, both total capacities of the backup resources in the two subsets are∑
j∈Pe

1
re1j

2 . Referring to the partition of B, we are able to partition G into two

subsets G1 and G2 such that the two sums of numbers in the two subsets equal

to each other. Therefore, if the PBRA instance is a Yes instance, then the PP

instance is a Yes instance.

Note that the above described algorithm transforms any PP instance into

a PBRA instance in a polynomial time. This work confirmed that if a PP

instance is a Yes instance, then the corresponding PBRA instance is a Yes

instance, and vice versa. This proves that PP, a known NP-complete problem,

is polynomial time reducible to the PBRA decision problem. Thus, the PBRA

decision problem is NP-hard. �

3.3 Simulated annealing

When the problem size is small, such as the values of |W | and |N | are small,

the MILP problem introduced in (3.26a)-(3.26g) can be solved in a practical

time, but for large one, it cannot due to an increase of computation time. SA

is introduced to solve the same optimization problem in (3.26a)-(3.26g) when

the problem size is large.

SA is a heuristic method inspired by physics for solving an optimization

problem [91]. The annealing in physics means the process of cooling an alloy

with high temperature down slowly. This procedure can result in low energy

allocation for the atoms. From an algorithmic point of view, the annealing

procedure is represented by a “temperature” variable T which is set to be

high at the beginning and gradually decreases with each iteration. A random

solution is set and its related cost is computed at the beginning of algorithm.

In each iteration, a random change is applied to an existing solution to generate

a new solution and a new cost is also computed. If the new cost is less than

the existing one, the new solution is accepted. In addition, a worse solution,

which has a higher cost than the existing one, can also be accepted with a

probability depending on the two costs and T , which avoids a local minimum

35

Chapter 3

solution.

For the primary and backup resource allocation problem in (3.26a)-(3.26g),

when SA is applied, a solution can be represented by two vectors combined

by xi j
k and zin

k , k ∈ W, i ∈ W : i , k, j ∈ Pi, n ∈ N, respectively. Furthermore,

when each solution is generated, (4.12c) must be satisfied to ensure that each

existing VM is protected by a PM; (3.1c) must be satisfied to ensure that

each requested VM is allocated into a PM and protected by another PM. The

required backup capacity for each PM is computed by (3.8). If the solution

dose not satisfy the capacity constraint of (4.12e), its cost is set to a large

enough constant, such as the one greater than
∑

i∈W
∑

j∈Pe
i

rei j +
∑

n∈N qn + |W |.
Otherwise, the cost is obtained by computing (3.26a), where the first part

is obtained by summing up all the required capacity over each PM and the

second part is the product of γ and the number of PMs hosting the primary and

backup resources after resource allocation. In each iteration, a new solution is

generated by randomly choosing an existing VM and making it be protected by

a random PM or randomly choosing a requested VM and making it be allocated

into a random PM and protected by another random PM. Then, the cost of

new solution cB
′

Total
is recomputed and compared with current cost cB

Total
. If

the new cost is less than the existing one, the new solution is unconditionally

accepted. Otherwise, it is accepted with a probability q, which is given by

q = e(
cB
Total

−cB
′

Total
T).

At the beginning of algorithm, the probability that a worse solution is

accepted is high, since T is set to be high initially. This attempt can prevent

the final solution from local minima. As T gradually decreases by T ′ = ρT
with 0 < ρ < 1 in each iteration, the probability accepting a worse solution

becomes less and less and finally close to 0. Then, a final solution containing

the specific assignment and required backup capacity of each PM is obtained

at the end of algorithm.

Since the complexities for computing (3.8) and (3.26a) are O(|W |(
∑

i∈W |Pi |+

|N |)2) and O(|W |), respectively, the computational time complexity of each

iteration in SA is O(|W |(
∑

i∈W |Pi | + |N |)2), which is polynomial. Note that

there is a tradeoff between the accuracy of solution and the total computation

time, when SA is adopted. By increasing the total computation time, or

choosing a larger value of ρ, we can obtain a more accurate solution.

36

Section 3.4

3.4 Dynamic scenario

This work describes dynamic scenarios, where both situations of requested

VMs arriving and existing VMs releasing are considered, to evaluate the per-

formance of proposed model.

3.4.1 Overview

To avoid any service disruption, the primary resources for existing VMs are

always not re-allocated. To maintain the minimum reserved backup capac-

ity in dynamic scenarios, one approach is to re-optimize the complete backup

resource allocation at each request arriving and releasing. However, this ap-

proach with backup resource re-allocation may not be efficient in terms of other

aspects, such as computational complexity, network bandwidth, and quality of

service. This work considers a dynamic approach, where the backup resources

of existing VMs are not re-allocated when the primary and backup resources

of requested VMs are allocated and those of terminated VMs are released;

a re-optimization procedure with backup resource re-allocation performs at a

certain interval to reduce the reserved backup capacity.

3.4.2 Dynamic approach

At any moment, the information of primary and backup resource allocation

of existing VMs can be collected to be used as the given parameters for each

computation. Let binary given parameter ui j
k , k ∈ W, i ∈ W : i , k, j ∈ Pe

i ,

represent the backup resource allocation for existing VMs; ui j
k equals one if the

existing VM j ∈ Pe
i in PM i ∈ W is protected by PM k ∈ W and zero otherwise.

The overall process of dynamic approach is presented in Fig. 3.2.

When a request for a set of VMs arrives at the cloud provider, it is enqueued

into a finite queue to wait the answer whether the cloud provider accepts

it. If there is no available space in the queue, the request will be rejected

immediately [92]. This arriving procedure is executed in parallel with the

flowchart.

The cloud provider answers each request by computing the primary and

backup resource allocation for the requested VMs in a first come first served

37

Chapter 3

Yes

Yes

Yes
Re-compute and update

reserved backup capacity

Any terminated
VM ?

Start

End

Continue?

No

Re-
optimization?

Yes

Solve optimization
problem

Re-allocate
backup resources

No

No
Reject request Allocate primary and

backup resources

Accept requestAny feasible
solution returned

?

Yes

Any request
in queue?

Solve optimization problem without re-allocation

No

Backup capacity
updated?

No

Yes

Collect information of
resource allocation

Collect information of resource allocation

Collect information of
resource allocation

No

Figure 3.2: Flowchart of dynamic approach.

manner. In each computation, the primary and backup resource allocation

of requested VMs and the updated required backup capacity are obtained by

solving the MILP problem in (3.26a)-(3.26g) or the same optimization problem

using a heuristic method, where decision variable xi j
k , k ∈ W, i ∈ W : i , k, j ∈

Pe
i , is replaced by given parameter ui j

k . If there is no feasible solution returned

within a certain admissible computation time, which means that there is no

enough capacity to host the primary and backup resources of requested VMs,

the cloud provider rejects the request. Otherwise, the cloud provider accepts

the request and allocates the primary and backup resources referring to the

obtained solution. In practical applications, the admissible computation time

should be set to satisfy the response time requirement [93], which may vary

for different types of services. For example, an interactive service can have a

strict response time requirement of at most a few seconds [94].

The re-optimization procedure is performed at a certain interval, which is

specified by the cloud provider, to reduce the reserved backup capacity. In

each re-optimization procedure, the original optimization problem is re-solved

based on the primary resource allocation of existing VMs, and then the backup

resources of existing VMs are re-allocated. If there is any request waiting in the

queue during the re-optimization procedure, the request is processed after the

completion of re-optimization procedure. If the interval of two re-optimization

procedures is short, the backup resource allocation can keep optimal and the

reserved backup capacity can always be minimum. However, performing the

38

Section 3.5

re-optimization procedure frequently may increase operational overhead. A

cloud provider can select an appropriate interval and start time for the re-

optimization procedure according to the practical environments.

When some VMs are terminated, the occupied primary physical resources

and other resources used for backup purpose, such as the stored copies of

image files, for the terminated VMs are released immediately; this releasing

procedure is executed in parallel with the flowchart. If at least one of the

procedures of re-optimization and computing the answer for one request runs

after the termination of VMs, the reserved backup capacity of existing VMs is

updated by solving the optimization problem during the procedure. Otherwise,

it needs to be updated by re-computing (3.8).

3.4.3 Performance metrics

Let K represent a set of requests incoming to the cloud provider. |K | denotes

the total number of requests in K. The cloud provider rejects the request

directly when the queue is full. In addition, the request is rejected after en-

queuing in the queue if there is no sufficient capacity remaining in the cloud

provider. The number of rejected requests in K is represented by kr . Similar

to [92], blocking probability Pb, which is a probability that a request incom-

ing to the cloud provider is rejected, can be a performance metric for a cloud

provider; it is defined by Pb =
kr
|K | .

For a cloud provider, the more capacity is used for primary resource alloca-

tion, the more profit is gained. Resource utilization, u, which is a ratio of the

average capacity used for hosting the primary resources to the total capacity

in the cloud provider, is introduced to measure the efficiency of the resource

allocation model.

3.5 Numerical results

To observe the effect of the proposed model, this work compares it with two

conventional models, which are a non-sharing protection model, named NSP,

and a specialized backup PM model, named SBPM. In NSP, backup resource

for each primary VM is allocated into another PM just as the mirror of the pri-

39

Chapter 3

mary resource allocation and backup capacity sharing is not allowed. Through

modifying the MILP problem in (3.26a)-(3.26g), the MILP problem of NSP is

obtained, where only suppressing capacity fragmentation is left in the objec-

tive function. In SBPM, the PMs in one cloud provider are divided into two

types, which are backup PMs and primary PMs; primary PMs are only used for

primary resource allocation and backup PMs are only responsible to take the

workloads from the primary PMs when any failure occurs in order to provide

probabilistic protection. α represents a fixed parameter in SBPM, which is the

ratio of the number of primary PMs to the total number of PMs in a cloud

provider. This work extends the MILP problem presented in [37] by incorpo-

rating primary resource allocation and suppressing capacity fragmentation to

the MILP problem for SBPM.

In the numerical analysis, the capacity of CPU is considered to be backed

up. The maximum capacity of each PM in the cloud provider is considered

as 1500 million instructions per second (MIPS). The workloads are clarified

into three types of VMs, which are small, medium, and large. The capacities

required for one small, medium and large VMs are 250 MIPS, 500 MIPS and

750 MIPS, respectively [95,96]. The MILP problems are solved by the IBM(R)

ILOG(R) CPLEX(R) Interactive Optimizer with version 12.7.1 [88], using Intel

Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory.

3.5.1 For small-size problems

This work considers a cloud provider with ten PMs. Since the problem size

is small, this work solves the MILP problem introduced in (3.26a)-(3.26g) to

compute the optimal primary and backup resource allocation in terms of static

and dynamic scenarios.

Static scenario

This work sets N as an empty set, and consequently the proposed model is used

for backup resource allocation for Pe
i . Figure 3.3 shows the backup resource

allocation for Pe
i with p = 0.025 and ε = 0.01. The backup resources are

allocated into two PMs and the required backup capacities of two PMs are

500 MIPS and 1000 MIPS, respectively. Figure 3.3 observes that the proposed

40

Section 3.5

model only needs to allocate 30% of the capacity that is needed for NSP.

This is because providing the probabilistic protection guarantee allows backup

capacity to be shared with each other. Consequently, the capacity is utilized

efficiently and the cost of protection is greatly reduced. More importantly, this

work observes that the PMs in the proposed model are used to accept both

primary and backup resources. As a result, the capacity of PMs in one cloud

provider is utilized more flexibly in the proposed model than that of SBPM.

Backup resources

Existing primary
resources

PM1 PM2 PM3

PM7 PM8

500
250

750

PM6

250

750

500

500

500

250
250

PM4

500

PM9

1000

500

PM5

PM10

Figure 3.3: Backup resource allocation for Pe
i .

Requested
primary resources

PM1 PM2 PM3

PM7 PM8

500
250

750

PM6

250

750

500

500

500

250
250

PM4

500

PM9

1500

500

750

250

PM10

PM5

Backup resources

Existing primary
resources

Figure 3.4: Primary resource allocation for N and backup resource

allocation for Pe
i and N.

Then, N is set as a set of three requested VMs and the required capacity

of each requested VM is 250 MIPS, 500 MIPS and 750 MIPS, respectively.

Figure 3.4 shows the primary resource allocation for N and the backup re-

source allocation for Pe
i and N with p = 0.025 and ε = 0.01. The proposed

model only allocates 23% of primary capacity for backup. Table 3.2 shows

the optimal required backup capacity obtained by solving the MILP problem

and the results by using the SA heuristic for different values of p when ε =

41

Chapter 3

0.01. This work observes that, as p increases, the required backup capacity

increases. This is because as the failure probability of PM decreases, more pri-

mary resources share backup capacity, which results in less capacity required

for backup resource allocation. Contrarily, with higher p, little backup capac-

ity is not sufficient to provide high probabilistic protection. As a result, the

required backup capacity is higher when PMs are more unreliable. Further-

more, this work observes that the results from the SA heuristic are equal to

the optimal values for different values of p in the examined cases.

Table 3.2: Required backup capacity by solving MILP problem and results

from SA heuristic for different values of p. ε = 0.01 in each case.

p 0.025 0.03 0.035 0.0425 0.05

MILP 1500 1750 2250 3000 3250

SA 1500 1750 2250 3000 3250

Dynamic scenario

This work applies the proposed model, NSP, and SBPM to the dynamic sce-

nario described in Section 3.4. Usually, the re-optimization procedure may be

conducted in free time, such as during the system maintenance period, and

the interval of adjacent re-optimization procedures can be much longer than

that of adjacent requests and the service time for a request. This work focuses

on the dynamic scenario between two adjacent re-optimization procedures to

observe the benefit brought by the proposed model.

This work considers that the number of requested VMs of each request is

uniformly distributed over the range of [1, 5] and the type of each requested VM

is randomly selected from the three types. The requests arrive at the cloud

provider based on a Poisson process with arrival rate λ per unit time; the

service time for requests follows an exponential distribution with the average

of µ−1 unit time; the performances of different models are evaluated in terms

of the blocking probability of Pb and the resource utilization of u [92,97]. This

work assumes that the computation time for a request is much smaller than

the interval of adjacent requests. It indicates that the effects of computation

time on the performances of cloud provider can be ignored. Based on the

42

Section 3.5

assumption, the computation time for a request is considered as zero in the

simulation for a dynamic scenario. This work sets the queue size large enough,

which means that, in terms of blocking probability, this work only focuses on

the case that there is no sufficient capacity remaining in the cloud provider.

Simulation results are obtained with a 95% confidence interval that is not

greater than 5% of the reported average results.

Figure 3.5 shows the blocking probability depending on parameter γ for

different arrival rates λ when the proposed model is adopted in the cloud

provider; p, ε , and µ are set to 0.015, 0.012, and 1, respectively. In Fig. 3.5,

there are three cases according to the value of γ. Cases 1, 2, and 3 are γ = 0,

γ = 0.1, and γ = 1000000, respectively, where 0.1 is less than the value of
δC
|W | . This work observes that, for each λ, the blocking probability in case 2

is less than that in case 1, where capacity fragmentation is not suppressed.

This is because the objective in case 2 is set to minimize the required backup

capacity and suppress the capacity fragmentation with less weight at the same

time. As a result, the capacity is utilized more efficiently and less blocking

probabilities are obtained. In addition, this work observes that the lowest

blocking probabilities for all the λ are obtained in case 2 instead of case 3,

where minimizing the required number of PMs hosting the primary resources is

the main objective. It indicates that minimizing the required backup capacity

is more significant for reducing the blocking probability than minimizing the

required number of PMs hosting the primary resources. In the following results

presented in Figs. 3.6-3.8, this work sets γ = 0.1.

Figure 3.6 shows the relationship between blocking probability and param-

eter α for different PM failure probabilities p when SBPM is adopted in the

cloud provider; ε , λ, and µ are set to 0.005, 4, and 1, respectively. This work

observes that the blocking probability decreases, as α increases from 0 to a

certain point. This is because that more capacity is used for primary resource

allocation as well as the backup capacity is maintained sufficiently. As a re-

sult, the blocking probability, which is caused by insufficient capacity to host

the primary resources, decreases. After one point, as α increases, the capac-

ity used for backup resource allocation becomes insufficient. Consequently,

the blocking probability turns to increase and backs to 1 when α becomes 1.

Therefore, there is a point of α where the blocking probability becomes min-

43

Chapter 3

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 0.1 1000000

B
lo

ck
in

g
pr

ob
ab

ili
ty

λ = 6
λ = 4
λ = 2

Ratio in objective function, 𝛾

Figure 3.5: Dependency of blocking probability on γ for different λ.

1.0E-02

1.0E-01

1.0E+00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B
lo

ck
in

g
pr

ob
ab

ili
ty

p = 0.02475

p = 0.015

p = 0.0075

Ratio of number of primary PMs to total number of PMs, 𝛼

0.02475

0.015

0.0075

Figure 3.6: Dependency of blocking probability on α for for different

p in SBPM.

imum. This work observes that the point of α values to obtain the minimum

blocking probability varies for different p values. Actually, it is also affected

by multiple parameters, such as ε , λ, and N. As a result, it is difficult to find

a suitable fixed α, which leads to the minimum blocking probability under all

the situations, for one cloud provider.

Figure 3.7 shows the comparison of blocking probabilities of the cloud

provider using different resource allocation models obtained for different λ

values when µ = 1; p and ε are set as 0.015 and 0.005, respectively. This

work notices that the blocking probabilities for all the models increase as λ

increases. For SBPM, the best performance is obtained when α is fixed to 0.8.

44

Section 3.5

1.0E-03

1.0E-02

1.0E-01

1.0E+00

2.0 4.0 6.0 8.0 10.0

B
lo

ck
in

g
pr

ob
ab

ili
ty

Proposed model
SBPM, 𝛼 = 0.7
SBPM, 𝛼 = 0.8
SBPM, 𝛼 = 0.9
NSP

Arrival rate, 𝜆 [1/unit time]

Figure 3.7: Comparison of blocking probabilities using different models for

different λ when µ = 1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2.0 4.0 6.0 8.0 10.0

R
es

ou
rc

e
ut

ili
za

tio
n

Proposed model
SBPM, 𝛼 = 0.7
SBPM, 𝛼 = 0.8
SBPM, 𝛼 = 0.9
NSP

Arrival rate, 𝜆 [1/unit time]

Figure 3.8: Comparison of resource utilization using different models for dif-

ferent λ when µ = 1.

45

Chapter 3

This work observes that the proposed model always outperforms all the con-

ventional models in terms of blocking probability. This is because, compared

with NSP, the proposed model allows primary resources in different PMs to

share the common backup capacity by providing the probabilistic protection

guarantee, and consequently the total capacity required for each primary and

backup resource allocation can be reduced benefiting from statistic multiplex-

ing gain, which results in the reduction in the blocking probability. Compared

with SBPM, all the PMs are used to accept both primary and backup resources

in the proposed model, which leads to more efficient utilization of the capacity

of PMs. As a result, the blocking performance of the cloud provider is im-

proved by adopting the proposed model; specifically, compared to SBPM, the

blocking probability is reduced about 33% in average by the proposed model.

This work observes that the improvement of proposed model on the blocking

probability decreases as the arrive rate increases. This is because the block-

ing probabilities of all models gradually converge to one as the arrive rate

increases, which decreases the differences between them.

Figure 3.8 compares the resource utilization in the cloud provider using

the proposed model and considered conventional models for different λ values

when µ = 1; p and ε are set as 0.015 and 0.005, respectively. This work

observes that the resource utilization for all the models increase as λ increases.

For SBPM, the best performance is obtained when α is fixed to 0.8. The

capacity in the cloud provider is always utilized more efficiently by adopting

the proposed model rather the conventional models. This is because that each

PM in the cloud provider is used for accepting primary resources and providing

probabilistic protection for other PMs at the same time. As a result, the

proposed model provides more efficient utilization of resources in the cloud

provider compared with the considered conventional models.

3.5.2 For large-size problems

Consider the primary and backup resource allocation for a cloud provider com-

prising 1000 PMs. The MILP problem introduced in (3.26a)-(3.26g) cannot be

solved in a practical time for such a large size, but this work solves the same

optimization problem by SA.

46

Section 3.5

Static scenario

This work considers a static scenario where 400 PMs are hosting at least one

VM and the remaining 600 PMs are not. For each PM of the 400 PMs, the

number of existing VMs is uniformly distributed over the range of [1, 6], where

the type of each existing VM is randomly set with the limitation that the total

capacity of existing VMs does not exceed the maximum capacity of PM. N is

considered as a set of ten requested VMs and the type of each requested VM

is randomly selected from the three types. Let β ∈ (0, 1] denote a ratio of the

required backup capacity in a feasible solution to the total primary capacity

of existing and requested VMs.

Figure 3.9 shows the relationship between β and the admissible computa-

tion time [s] when the SA heuristic with different settings of ρ is applied to

solve the proposed model, where the initial and final values of T are set to 105

and 10−5, respectively, p = 0.0015, and ε = 0.0012. This work obtains that the

SA with different ρ takes about 6.2 [s] in average to obtain the first feasible

solution, where the required backup capacity is about 0.57 times in average

of the primary capacity. It indicates that if the admissible computation time

is not greater than 6.2 [s], the proposed model can address the static scenario

with 1000 PMs. This work observes that the computation times to obtain the

first feasible solution and to obtain the optimal solution in the scenario with

1000 PMs are about 103 and at least 103 times of those in the scenario with ten

PMs, respectively. Generally, β decreases as the admissible computation time

increases for each value of ρ. When the admissible computation time is small,

the value of β in the SA heuristic with smaller value of ρ is smaller, but the

heuristic is terminated earlier with greater final value of β. It indicates that

we can set ρ based on the admissible computation time. For example, if the

admissible computation time is within 10 [s], ρ is set to 0.90; if the admissible

computation time is up to 104 [s], such as re-optimization in free time, ρ is set

to 0.99.

Dynamic scenario

This work considers that the number of requested VMs of each request is

uniformly distributed over the range of [1, 10], where the type of each requested

47

Chapter 3

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04
0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

R
at

io
 o

f r
eq

ui
re

d
ba

ck
up

 c
ap

ac
ity

to

 to
ta

l p
rim

ar
y

ca
pa

ci
ty

, β

Admissible computation time [s]

𝜌 = 0.99

𝜌 = 0.95

𝜌 = 0.90

Figure 3.9: Relationship between required backup capacity in feasible

solution and admissible computation time [s].

1.0E-03

1.0E-02

1.0E-01

1.0E+00

100.0 200.0 300.0 400.0 500.0

B
lo

ck
in

g
pr

ob
ab

ili
ty

Proposed model
SBPM, 𝛼 = 0.7
SBPM, 𝛼 = 0.8
SBPM, 𝛼 = 0.9
NSP

Arrival rate, 𝜆 [1/unit time]

Figure 3.10: Comparison of blocking probabilities of large problem

using different models for different λ when µ = 1.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

100.0 200.0 300.0 400.0 500.0

R
es

ou
rc

e
ut

ili
za

tio
n

Proposed model
SBPM, 𝛼 = 0.7
SBPM, 𝛼 = 0.8
SBPM, 𝛼 = 0.9
NSP

Arrival rate, 𝜆 [1/unit time]

Figure 3.11: Comparison of resource utilization in large problem using

different approaches for different λ when µ = 1.

VM is randomly selected from the three types.

Figures 3.10 and 3.11 show the blocking probabilities of the cloud provider

versus λ and the resource utilization in the cloud provider versus λ, respec-

48

Section 3.6

tively, when different resource allocation models are adopted; p, ε , and µ are

set as 0.0015, 0.0012, and 1, respectively. In Figs. 3.10 and 3.11, this work

has the observations similar to those of Figs. 3.7 and 3.8, respectively. Specif-

ically, compared to SBPM, the blocking probability is reduced about 31% in

average by the proposed model. In summary, this work observes that the pro-

posed model outperforms the conventional models in terms of both blocking

probability and resource utilization.

3.6 Chapter summary

This chapter proposed a primary and backup resource allocation model that

provides a probabilistic protection guarantee for VMs against multiple PM fail-

ures to minimize the required total capacity. A PM in the cloud provider is used

to accept both primary and backup resources. Considering the probabilistic

protection guarantee in a general-capacity cloud provider leads to a nonlinear

programing problem for primary and backup resource allocation against mul-

tiple failures. By adopting robust optimization with extensive mathematical

operations, this work formulated the primary and backup resource allocation

problem as an MILP problem, where capacity fragmentation is suppressed.

This work proved that the primary and backup resource allocation problem

is NP-hard by showing that the partition problem is reducible to it. For the

problem with a large size, we introduced the SA heuristic. Numerical results

observed that about one-third of the total capacity is saved in the examined

cases by adopting the proposed model. In addition, this work evaluated differ-

ent models in dynamic scenarios, where both situations of the requested VMs

arriving and the existing VMs releasing are considered. The results revealed

that the proposed model outperforms the conventional models in terms of both

blocking probability and resource utilization.

49

Chapter 3

50

Chapter 4

Probabilistic protection model

for virtual networks

This thesis proposes a backup computing and transmission resource allocation

model for VNs with providing the probabilistic protection against multiple

facility node failures to minimize the required backup computing capacity.

A part of the work in this chapter was presented in [38]. Backup comput-

ing resource is allocated such that the probability that the protection from a

backup facility node fails due to insufficient reserved backup computing ca-

pacity is within a given value. This work describes constraints to provision

backup paths, which show the interactions between backup computing and

transmission resource allocation. The routing of backup paths is determined

when the backup computing resource allocation is determined. The required

backup transmission capacity can affect the required backup computing ca-

pacity. Considering that different substrate paths which are not used simulta-

neously can share the same reserved backup transmission resource, this work

analyzes backup transmission resource sharing in the case of multiple facility

node failures.

The proposed model with non backup transmission resource sharing is for-

mulated as an MILP problem. This work introduces a heuristic algorithm

to solve the problem with different degrees of backup transmission resource

sharing. Especially, several techniques based on graph theory are developed to

handle the problem with full backup transmission resource sharing. This work

51

Chapter 4

compares the proposed model to a baseline with the dedicated protection for

computing resource. The results observe that the proposed model outperforms

the baseline in terms of both feasibility and required backup computing capac-

ity. Furthermore, the proposed model with full backup transmission sharing,

which minimizes the required backup transmission capacity, leads to the least

required backup computing capacity. The proposed model with limited backup

transmission sharing saves the computation time with a slight performance

degradation.

The rest of this chapter is organized as follows. Section 4.1 presents the

proposed optimization model. Section 4.2 analyzes the backup transmission

resource sharing. Section 4.3 introduces the heuristic algorithm. The perfor-

mances of different models are evaluated in Section 4.4. Section 4.5 summaries

this chapter.

4.1 Model and problem definition

4.1.1 Virtual networks in substrate network

An SN, which consists of a set of substrate facility nodes and a set of substrate

links, is an infrastructure to support services. Let undirected graph GS(NS, LS)

represent the SN, where NS and LS represent the sets of substrate facility nodes

and substrate links, respectively. Each substrate facility node is connected to

the SN via a dedicated router or switch, which is assumed not to fail. Substrate

facility node n ∈ NS provides computing resources with the maximum capacity

of cn. The set of neighbors of substrate facility node n ∈ NS is denoted by A(n).
The transmission capacity of substrate link l ∈ LS, which is assumed not to

fail, is represented by bl .

A service is represented as a VN, which consists of sets of virtual nodes and

links. The VN is embedded into the SN through mapping each virtual node

and virtual link to a substrate facility node and a substrate path, respectively.

Several VNs can be embedded into the same SN, each of which utilizes a

certain computing and transmission resources. Let M denote a set of VNs

embedded in the SN GS(NS, LS). VN m ∈ M is represented by undirected

graph GD
m(N

D
m , LD

m), where ND
m and LD

m represent the sets of virtual nodes and

52

Section 4.1

virtual links, respectively. The demanded computing capacity of virtual node

j ∈ ND
m ,m ∈ M, is represented by rmj . The set of neighbors of virtual node

j ∈ ND
m ,m ∈ M, is denoted by B(j). The demanded transmission capacity of

virtual link k ∈ LD
m ,m ∈ M, is represented by dmk .

The facility nodes in NS are divided into two types, primary facility nodes

and backup facility nodes, which are given. Let NS
P and NS

B represent the sets of

primary facility nodes and backup facility nodes, respectively, or NS
P∪NS

B = NS

and NS
P ∩ NS

B = ∅. When any service request arrives, all the virtual nodes of

corresponding VN are placed in primary facility nodes; all virtual links are

mapped to primary substrate paths. The primary computing and transmission

resource allocation is given. Let y
mj
nP
, j ∈ ND

m ,m ∈ M, nP ∈ NS
P, denote a binary

given parameter; y
mj
nP
= 1 means that virtual node j is placed in primary facility

node nP and zero otherwise. Backup facility node nB ∈ NS
B is responsible to

take the workloads from the protected primary facility nodes when any failure

occurs. Note that different virtual nodes from the same VN are not mapped

to the same primary facility node for a management purpose [98]. In the same

way, this work does not allow the virtual nodes from the same VN to share the

backup computing resources in the same backup facility node. Multiple virtual

nodes from different VNs can share a backup facility node. Let pnP denote the

failure probability of primary facility node nP ∈ NS
P. Usually, backup facility

nodes are more infrequently used to handle the workloads than primary facility

nodes. This work assumes that the backup facility nodes never fail.

Figure 4.1 shows an example of two VNs embedded in an SN. Each virtual

node is placed in a primary facility node. For example, virtual nodes j3 and

j4 are placed in primary facility node nP3 . Each virtual link is mapped to a

primary substrate path. For example, virtual link k3 is mapped to primary

substrate path (l2, l3, l6). For a substrate facility node and a substrate link, the

numbers in the parentheses correspond to the maximum computing capacity

and the maximum transmission capacity, respectively. For a virtual node and

a virtual link, the numbers in the parentheses correspond to the demanded

computing capacity and the demanded transmission capacity, respectively.

53

Chapter 4

Primary facility node

Router
Substrate link

Virtual network m1 Virtual network m2

Virtual node
Virtual link
Embedding

Substrate path

Substrate network

nP
1 (10)

nP
2 (10)

nB
1 (10)

nP
3 (10)

nB
2 (10)

nP
4 (10)

nB
3 (10)

nP
5 (10)

j1 (5)

j2 (5)

j3 (5) j4 (2)

j5 (2)

j6 (6)
k1 (2)

k3 (1)

k2 (2) k4 (1)

k6 (1)

k5 (3)
Backup facility node

l1 (8)

l2 (6)

l3 (6)

l4 (6)

l5 (7)

l6 (9)

l7 (4)

l8 (7)

l9 (7)

l10 (5)

l11 (6)

Figure 4.1: Example of VNs in SN.

4.1.2 Backup computing resource allocation for virtual

nodes

Let xmj
nB
, j ∈ ND

m ,m ∈ M, nB ∈ NS
B, denote a binary decision variable; xmj

nB
is

set to one if the backup of rmj is protected by backup facility node nB and

zero otherwise. cB
nB

denotes the required backup capacity in backup facility

node nB ∈ NS
B, which is reserved and remains idle until failures occur. Note

that, except for the reserved backup capacity, the remaining capacity in each

backup facility node allows us to accept future demands for required backup

capacity.

Probabilistic protection

This work considers providing the probabilistic protection, which allows the

virtual nodes to share the backup capacity in backup facility nodes, to reduce

the required backup computing capacity. This work assumes pnP = p, ∀nP ∈
NS
P, to simplify the discussion. This assumption can be relaxed by using the

similar approach in [40]. XnP, n
P ∈ NS

P, denotes an independent and identically

distributed Bernoulli random variable with parameter p. The survivability

54

Section 4.1

guarantee of probabilistic protection is expressed as,

P
©«

∑
nP∈NS

P

∑
m∈M

∑
j∈ND

m

XnP xmj
nB
y

mj
nP

rmj > cBnB
ª®®¬ ≤ ε,

∀nB ∈ NS
B, (4.1)

where ε is a given parameter. Equation (4.1) guarantees that the probability

that the protection fails due to insufficient backup capacity allocated in a

backup facility node is within ε .

Figure 4.2 shows the optimal backup computing resource allocation of VNs

in Fig. 4.1 when p = 10−2 and ε = 10−4 without considering any constraint

from backup transmission resource allocation. This work takes the backup

computing resource allocation in backup facility node nB1 , which protects pri-

mary facility nodes nP1 and nP3 , as an example to show how the allocation sat-

isfies (4.1). Table 4.1 shows the probability of each failure case with primary

facility nodes nP1 and nP3 and the corresponding required computing capacity

on backup facility node nB1 for each failure case. From Table 4.1, we obtain

that allocating 5 units of backup computing resource in backup facility node

nB1 , as shown in Fig. 4.2, satisfies (4.1), where the probability that the protec-

tion fails is p2 = 10−4 = ε . Compared to providing the dedicated protection

(ε = 0), 2 units of backup computing resource are saved in backup facility node

nB1 by providing probabilistic protection (ε = 10−4).

Table 4.1: Probability and transferred computing capacity for each failure case.

Failure case Probability
Transferred

computing capacity

XnP
1
= 0, XnP

3
= 0 (1 − p)2 0

XnP
1
= 0, XnP

3
= 1 p(1 − p) 2

XnP
1
= 1, XnP

3
= 0 p(1 − p) 5

XnP
1
= 1, XnP

3
= 1 p2 7

Robust optimization

This work shows how to compute the required backup computing capacity

satisfying (4.1). Let LnB = {n
P |

∑
m∈M

∑
j∈ND

m
xmj

nB
y

mj
nP
≥ 1} represent a set of

primary facility nodes protected by backup facility node nB. The number

55

Chapter 4

nP
1 (10)

j1 (5)

nP
2 (10)

j2 (5)
nP

5 (10)

j6 (6)

nP
3 (10)

j3 (5)

j4 (2)

nP
4 (10)

j5 (2)

(5)

nB
1 (10)

(6)

nB
2 (10)

(5)

nB
3 (10)Primary resource for

virtual network m1

Backup resource
Protection

Primary resource for
virtual network m2

Figure 4.2: Example of backup computing resource allocation with probabilis-

tic protection.

of failed primary facility nodes follows the binomial distribution, where the

probability that more than q ∈ [0, |LnB |] primary facility nodes in LnB fail, is

expressed as,

P
©«

∑
nP∈NS

P

∑
m∈M

∑
j∈ND

m

XnP xmj
nB
y

mj
nP

> q
ª®®¬

=

|L
nB
|∑

σ=q+1

(
|LnB |

σ

)
pσ(1 − p)|LnB

|−σ . (4.2)

For a backup facility node, it is uncertain which protected primary facility

nodes in LnB fail, which leads to uncertainty in the required backup computing

capacity. Similar to the works in [37, 40], this work adopts the idea of robust

optimization to consider resisting uncertainty. Let ΓnB denote the minimum

value of q, where the value of (4.2) is not greater than ε . Let SnB be a set

of ΓnB primary facility nodes in LnB with the largest computing capacities

protected by backup facility node nB. The required backup computing capacity

is computed by,

cBnB =
∑

nP∈S
nB

∑
m∈M

∑
j∈ND

m

xmj
nB
y

mj
nP

rmj, (4.3)

which satisfies the probabilistic protection guarantee in (4.1).

56

Section 4.1

4.1.3 Backup transmission resource allocation for vir-

tual links

When some primary facility nodes fail, the embedded virtual nodes are moved

to the corresponding backup facility nodes. As a result, the virtual links

connected to the moved virtual nodes need to be remapped to some backup

substrate paths. When the backup facility node for each virtual node is deter-

mined, the routes of backup paths for virtual links need to be determined and

a certain backup transmission capacity needs to be reserved at the same time.

This work analyzes the types of backup substrate paths required to be

prepared for each virtual link. Any virtual node has two states; in one state, the

corresponding primary facility node fails, and, in the other state, the primary

facility node does not fail. Accordingly, there are four cases for the states of a

pair of connected virtual nodes, which leads to one primary substrate path and

three types of backup substrate paths required to be prepared for the virtual

link. In case 1, the corresponding two primary facility nodes do not fail, and

the virtual link is mapped in its primary path, which is given. In cases 2 and

3, one of the primary facility node fails and the other does not. Two backup

paths, which are defined as the first and second backup paths, are required

to be determined for cases 2 and 3, respectively. In case 4, the two primary

facility nodes fail simultaneously, and the third backup path is required. As

a result, the total number of backup substrate paths required to be prepared

for all the virtual links is 3
∑

m∈M |LD
m |, where

∑
m∈M |LD

m | is the total number

of virtual links.

Let α
mj j ′

nn′ ,m ∈ M, j ∈ ND
m , j′ ∈ B(j), n ∈ NS, n′ ∈ A(n), denote a binary

decision variable; α
mj j ′

nn′ is set to one if the first or second backup path of

virtual link k = (j, j′) ∈ LD
m is routed through substrate link l = (n, n′) ∈ LS

and zero otherwise, where the corresponding primary facility node of virtual

node j fails and that of virtual node j′ does not fail. Here we do not need

to specify variables α
mj j ′

nn′ for the first or second backup path of virtual link

k = (j, j′). For example, for virtual link k1 = (j1, j2) in Fig. 4.1, one of α
m1 j1 j2
nn′

and α
m1 j2 j1
nn′ corresponds to the first backup path, and the other corresponds

to the second backup path. Let βmk
nn′,m ∈ M, k ∈ LD

m , n ∈ NS, n′ ∈ A(n), denote

a binary decision variable; βmk
nn′ is set to one if the third backup path of virtual

57

Chapter 4

link k = (j, j′) ∈ LD
m is routed through substrate link l = (n, n′) ∈ LS and zero

otherwise, where the corresponding primary facility nodes of virtual nodes j
and j′ fail simultaneously.

Note that (n, n′) and (n′, n) represent the same substrate link, which is

undirected in this thesis by default. This work considers it as directed only

for α
mj j ′

nn′ and βmk
nn′, which means that α

mj j ′

nn′ (βmk
nn′) and α

mj j ′

n′n (βmk
n′n) are two

different variables. This work gives the following two constraints on α
mj j ′

nn′

and βmk
nn′,m ∈ M, j ∈ ND

m , j′ ∈ B(j), k ∈ LD
m , n ∈ NS, n′ ∈ A(n), respectively, to

avoid any repeated routing, where a backup path is routed through the same

substrate link twice.

α
mj j ′

nn′ + α
mj j ′

n′n ≤ 1, ∀m ∈ M, j ∈ ND
m , j′ ∈ B(j), l ∈ LS. (4.4)

βmk
nn′ + β

mk
n′n ≤ 1, ∀m ∈ M, k ∈ LD

m , l ∈ LS. (4.5)

Flow constraints

A substrate path may include several primary facility nodes in NS
P and backup

facility nodes in NS
B. For the first (second) backup path of a virtual link, this

work considers the backup facility node of virtual node whose primary facility

node fails as the source node in the backup path; the primary facility node,

which does not fail, of the other virtual node is considered as the destination

node in the backup path. Clearly, both source and destination nodes of the

third backup path of a virtual link are backup facility nodes.

The flow constraints for the first and second backup paths are expressed

by, ∑
n′∈A(nB)

α
mj j ′

nBn′
−

∑
n′∈A(nB)

α
mj j ′

n′nB
= xmj

nB
,

∀m ∈ M, j ∈ ND
m , j′ ∈ B(j), nB ∈ NS

B, (4.6)∑
n′∈A(nP)

α
mj j ′

nPn′
−

∑
n′∈A(nP)

α
mj j ′

n′nP
= −y

mj ′

nP
,

∀m ∈ M, j ∈ ND
m , j′ ∈ B(j), nP ∈ NS

P. (4.7)

58

Section 4.1

Similarly, the flow constraints for the third backup paths are expressed by,∑
n′∈A(nB)

βmk
nBn′ −

∑
n′∈A(nB)

βmk
n′nB = xmj

nB
− xmj ′

nB
,

∀m ∈ M, k ∈ LD
m , n

B ∈ NS
B, (4.8)∑

n′∈A(nP)

βmk
nPn′ −

∑
n′∈A(nP)

βmk
n′nP = 0, ∀m ∈ M, k ∈ LD

m , n
P ∈ NS

P. (4.9)

Capacity constraints

Let umk
l ,m ∈ M, k ∈ LD

m , l ∈ LS, denote a binary given parameter; umk
l = 1

means that the primary substrate path for virtual link k is routed through

substrate link l and zero otherwise. Let bPl represent the transmission capac-

ity in substrate link l ∈ LS used for primary substrate paths, which can be

expressed by,

bPl =
∑
m∈M

∑
k∈LD

m

umk
l dmk, ∀l ∈ LS. (4.10)

Let bBl represent the required backup capacity in substrate link l ∈ LS.

The transmission capacity constraint for substrate link l ∈ LS is expressed by,

bPl + bBl ≤ bl, ∀l ∈ LS. (4.11)

4.1.4 Problem formulation

This work formulates the backup resource allocation for VNs (BRAVN) prob-

lem as the following optimization problem to minimize the total required

backup computing capacity.

min
∑

nB∈NS
B

cBnB (4.12a)

s.t. Eqs. (4.1), (4.4) − (4.11) (4.12b)∑
nB∈NS

B

xmj
nB
= 1, ∀m ∈ M, j ∈ ND

m (4.12c)∑
j∈ND

m

xmj
nB
≤ 1, ∀m ∈ M, nB ∈ NS

B (4.12d)

59

Chapter 4

cBnB ≤ cnB, ∀nB ∈ NB (4.12e)

α
mj j ′

nn′ ∈ {0, 1}, ∀m ∈ M,

j ∈ ND
m , j′ ∈ B(j), n ∈ NS, n′ ∈ A(n) (4.12f)

βmk
nn′ ∈ {0, 1},

∀m ∈ M, k ∈ LD
m , n ∈ NS, n′ ∈ A(n) (4.12g)

xmj
nB
∈ {0, 1}, ∀m ∈ M, j ∈ ND

m , n
B ∈ NB. (4.12h)

Equation (4.12a) minimizes the total required backup computing capacity.

Equation (4.12c) ensures that each virtual node is protected by a backup fa-

cility node. Equation (4.12d) indicates that a backup facility node protects at

most one virtual node in the same VN. In other words, more than one virtual

node from the same VN is protected by different backup facility nodes. Equa-

tion (4.12e) is the computing capacity constraint, which indicates that cB
nB

does not exceed cnB . Equations (4.12f), (4.12g), and (4.12h) show the ranges

of decision variables.

Adopting the techniques presented in Chapter 3, this work transforms the

above optimization problem to an MILP problem without considering backup

transmission resource sharing. Clearly, if two backup paths are not used si-

multaneously, they can share a certain backup transmission capacity, which re-

duces the required backup transmission capacity. Less required backup trans-

mission capacity can lead to more feasible solutions for backup computing

resource allocation. As a result, the required backup computing capacity can

be reduced. This work analyzes two types of backup transmission resource

sharing to compute the minimum required backup transmission capacity in

Section 4.2.

4.2 Analyses for backup transmission resource

sharing

In this section, this work firstly explains two kinds of backup transmission

resource sharing presented in [99,100] with considering single substrate facility

node failure. Then this work generally analyzes the two types of sharing in

multiple VNs cases with considering multiple substrate facility node failures to

minimize the required backup transmission capacity. This work discusses three

60

Section 4.2

specific questions generated from the analyses. Finally, this work classifies the

proposed model in terms of the degree of backup transmission resource sharing.

Table 4.2 summarizes the frequently used notations.

Table 4.2: List of frequently used notations in Chapter 4.
Notation Meaning

V Set of all primary and backup paths

VP ⊆ V Set of all primary paths

VB ⊆ V Set of all backup paths

WP ⊆ VP Subset of primary paths

WB ⊆ VB Subset of backup paths

vP Primary path

vB Backup path

Vl ⊆ V Set of all substrate paths that include substrate link l

WB
l

Set of all maximal unexclusive subsets on substrate link l

4.2.1 Cross-sharing and backup-sharing

The works in [99, 100] studied protection strategies against single substrate

facility node failure. This work takes VN m1 in Fig. 4.1 as an example, where

the primary paths of virtual links k1, k2, and k3, are (l1), (l5), and (l2, l3, l6),
respectively. The computing resources for VN m1 in nP1 , nP2 , and nP3 are pro-

tected by nB1 , nB2 , and nB3 , respectively, as shown in Fig. 4.2. For a single

failure in facility node nP1 , let substrate paths (l2, l1) and (l3, l6) be the backup

substrate paths for virtual links k1 and k3, respectively. For a single failure

in facility node nP2 , let substrate paths (l2, l3) and (l6) be the backup substrate

paths for virtual links k1 and k2, respectively. For a single failure in facil-

ity node nP3 , let substrate paths (l7, l4) and (l7, l4, l1) be the backup substrate

paths for virtual links k2 and k3, respectively. Figure 4.3 shows all the backup

and primary paths of VN m1 against single facility node failure, where some

network information in Fig. 4.1 is omitted.

This work discusses the backup transmission capacity of VN m1 required

in substrate link l2 against any single failure. Only the two backup paths of

virtual link k1, which demands 2 units of transmission capacity in a substrate

path, are routed through substrate link l2. If we do not consider any backup

transmission capacity sharing, in total 4 units of transmission capacity are

required to be reserved for the two backup paths. Since the transmission

capacity used for primary substrate path (l2, l3, l6) of virtual link k3 is released

61

Chapter 4

Primary facility node

Router
Substrate link

Virtual network m1

Virtual node

Virtual link

Primary embedding

Primary path

Substrate network

nP
1 (10)

nP
2 (10)

nB
1 (10)

nP
3 (10)

nB
2 (10) nB

3 (10)

j1 (5)

j2 (5)

j3 (5)

l1 (8)

l2 (6)

l3 (6)

l4 (6)

l5 (7)

l6 (9)

l7 (4)

l8 (7)

k1 (2)

k3 (1)

k2 (2)
Backup facility node

Backup path

Backup embedding

Cross-sharing

Backup-sharing

Figure 4.3: Backup and primary paths of VN m1.

when primary facility node nP1 fails, it can be used for backup substrate path

(l2, l1) of virtual link k1. As a result, 1 unit of backup transmission resource

is saved, and only 1 unit of backup transmission resource is required to be

reserved in substrate link l2 for virtual link k1 against the single failure in

primary facility node nP1 . This kind of sharing is called cross-sharing between

primary and backup substrate paths, as shown in Fig. 4.3. To recover virtual

link k1 in the case of single failure in primary facility node nP2 , since 1 unit of

backup transmission resource is already reserved in substrate link l2 against the

single failure in primary facility node nP1 , only 1 unit of backup transmission

resource is additionally needed, which means that another 1 unit of backup

transmission resource is saved. Such type of sharing is known as backup-sharing

between backup paths which correspond to different single failure cases, as

shown in Fig. 4.3. Therefore, in total 4 − 2 = 2 units of backup transmission

resource are required in substrate link l2 for VN m1 against any single failure

in primary facility nodes.

4.2.2 Backup transmission resource sharing in multiple

virtual networks with multiple substrate facility

node failures

In this problem, in total four substrate paths, which consists of one primary

path and three backup paths, need to be prepared for each virtual link. Let V

62

Section 4.2

denote the set of substrate paths required to be prepared, including primary

and backup paths, for all virtual links, and the size of V is |V | = 4
∑

m∈M |LD
m |.

Let VB ⊆ V and VP ⊆ V , where V = VB ∪ VP, denote sets of all backup and

primary paths, respectively.

To describe the relationship between any two prepared substrate paths in

V , this work gives the following definition:

Definition 1 If prepared substrate paths v ∈ V and v′ ∈ V are not used simul-

taneously, substrate paths v and v′ are mutually exclusive. Otherwise, they are

not mutually exclusive.

Obviously, for a primary path and a backup path which are mutually ex-

clusive, the transmission capacity of primary path can be used for the backup

path after the releasing of primary path; two backup paths which are mutu-

ally exclusive can share the same reserved backup transmission capacity. For

example, since any two of the four prepared substrate paths of a virtual link

are not used simultaneously at any time, they are mutually exclusive.

Backup transmission resource sharing, such as cross-sharing and backup-

sharing, cannot be performed between a backup path and another path, if they

are not mutually exclusive. For a subset of backup paths, WB ⊆ VB, this work

gives the following two definitions:

Definition 2 WB is an unexclusive subset of backup paths of VB, if any two

backup paths in WB are not mutually exclusive or there is only one backup path

in WB.

Definition 3 WB is a maximal unexclusive subset of backup paths of VB, if

WB is an unexclusive subset of backup paths of VB and there is no backup path

vB ∈ VB\WB such that WB∪ {vB} is still an unexclusive subset of backup paths

of VB.

Let Vl ⊆ V represent the set of all the prepared substrate paths which

include substrate link l ∈ LS. Let VB
l ⊆ Vl and VP

l ⊆ Vl , where Vl = VB
l ∪ VP

l ,

l ∈ LS, denote sets of all the backup and primary paths in Vl , respectively. Let

WB
l ⊆ VB

l , l ∈ LS, be an unexclusive subset of backup paths of VB
l . There is

no backup-sharing between any two backup paths in WB
l , l ∈ LS.

63

Chapter 4

This work analyzes the situations of cross-sharing between the primary

paths in VP
l , l ∈ LS, and the backup paths in WB

l based on the framework of

bipartite graph in graph theory to compute the total required backup trans-

mission capacity of WB
l in substrate link l. Here, backup path vB ∈ WB

l , l ∈ LS,

may mutually exclusive with multiple primary paths in VP
l . Contrarily, pri-

mary path vP ∈ VP
l , l ∈ LS, may mutually exclusive with multiple backup

paths in WB
l . Let WP

l ⊆ VP
l , l ∈ LS, represent the set of all the primary paths

in VP
l , each of which is mutually exclusive with at least one backup path in

WB
l .

The relationships between backup paths in WB
l , l ∈ LS, and primary paths

in WP
l can be represented by a bipartite graph, where the backup and primary

paths represent the nodes in two sides, respectively, and an edge exists between

a backup path and a primary path if they are mutually exclusive. Figure 4.4

shows an example of three backup paths in WB
l , l ∈ LS, and three primary

paths in WP
l .

𝑣"#
Backup path
Primary path
Mutually exclusive 𝑣$#

𝑣%#

𝑣&'

𝑣('

𝑣)'

Figure 4.4: Example of relationships between backup and primary paths rep-

resented by bipartite graph.

Given a bipartite graph, this work considers the situations of cross-sharing

between backup and primary paths in the bipartite graph to judge if the total

released transmission capacity from primary paths is sufficient for the total de-

manded transmission capacity of backup paths. If it is not, extra transmission

capacity is required for backup paths in addition to the total released trans-

mission capacity from primary paths so that all the backup paths can protect

all the primary paths. This work computes the required backup transmission

capacity. Note that a backup path and a primary path which are in the same

bipartite graph and are mutually exclusive may not correspond to the same

virtual link.

For example, for the bipartite graph in Fig. 4.4, let the demanded trans-

mission capacities of virtual links corresponding to backup paths vBi , vBj , and

64

Section 4.2

vBk be 1, 2, and 3 units of transmission capacity, respectively; let all the re-

leased transmission capacities of primary paths vPw , vPx , and vPy be 1 unit of

transmission capacity. Consider multiple facility failures which activate all the

backup paths and simultaneously release all the primary paths in the bipar-

tite graph, where the demanded transmission capacity of a node can use the

released transmission capacities in other nodes which connect with the node.

The 1 unit of demanded transmission capacity of backup path vBi can use the 1

unit of transmission capacity of primary path vPw after its releasing. Similarly,

the two 1 unit of released transmission capacity from primary path vPx and vPy
can be used for the 2 units of demanded transmission capacity of backup path

vBj . As a result, there is no more released transmission capacity from primary

path vPy to be used for the demanded transmission capacity of backup path vBk .

Therefore, 3 units of transmission capacity, after considering cross-sharing, are

additionally required to be reserved for all the backup paths.

The total required backup transmission capacity of WB
l in substrate link l ∈

LS, bB
WB

l

, is equivalent to the total transmission capacity additionally required

for all the backup paths in the corresponding bipartite graph. Let WB
l , l ∈ LS,

represent the set of all the maximal unexclusive subsets of backup paths of

VB
l . Note that the same backup path may exist in some different maximal

unexclusive subsets in WB
l , l ∈ LS. Therefore, the required backup capacity

in substrate link l ∈ LS, bBl , equals the required backup capacity of maximal

unexclusive subset which is with the greatest required backup capacity among

all the maximal unexclusive subsets in WB
l , or it is expressed by,

bBl = max
WB

l
∈WB

l

bB
WB

l

. (4.13)

Actually, there are three remaining questions for computing bBl . Question 1

is what is the specific conditions to judge whether two prepared substrate paths

in V are mutually exclusive. Based on the judging conditions, question 2 is how

to obtain all the maximal unexclusive subsets of a given set of backup paths.

In a substrate link, there is a corresponding set of primary paths for each

maximal unexclusive subset of backup paths. This work derives a bipartite

graph to represent the relationships between the primary and backup paths

in the two sets. Question 3 is how to compute the total required backup

65

Chapter 4

transmission capacity of backup paths in a given bipartite graph. This work

analyzes the three questions in Sections 4.2.3, 4.2.3, and 4.2.3, respectively.

4.2.3 Analyses for three questions

Analyses for question 1

This work shows the specific conditions to judge whether two prepared sub-

strate paths in V are mutually exclusive. According to Definition 1, they are

equivalent to the conditions to judge whether two prepared substrate paths in

V are used simultaneously.

Given two virtual nodes connected by a virtual link and their states, a cor-

responding prepared substrate path is specified, and vice versa. Two prepared

substrate paths may correspond to the same pair of virtual nodes but with

different states. Let kv = (f v, jv) ∈ LD
m , f v ∈ ND

m , jv ∈ ND
m ,m ∈ M, represent

the corresponding virtual link of prepared substrate path v ∈ V , where f v and

jv are two corresponding virtual nodes. Let g jv ∈ NS
P represent the primary

facility node where virtual node jv ∈ ND
m ,m ∈ M, v ∈ V , is initially embedded,

which is given, or y
mjv
gjv = 1. Consider s jv as a binary index to represent the

state of virtual node jv ∈ ND
m ,m ∈ M, v ∈ V ; s jv = 1 expresses that virtual

node jv is in the state that the corresponding primary facility node g jv fails

and zero otherwise.

For prepared substrate paths v ∈ V and v′ ∈ V , consider a situation that

there is at least one pair of virtual nodes which are initially embedded in the

same primary facility node and are with different states, or ∃ jv and jv
′

such

that g jv = g jv′ and s jv , s jv′ . Note that the pair of virtual nodes may be

the same virtual node with different states or two different virtual nodes of

different VNs. In this situation, one prepared substrate path is active only

when primary facility node g jv does not fail, and the other path is active only

when primary facility node g jv fails. It means that prepared substrate paths

v ∈ V and v′ ∈ V are not used simultaneously. Hence, they are mutually

exclusive. On the contrary, if there is no such a pair of virtual nodes, the

two prepared substrate paths can be used simultaneously, and they are not

mutually exclusive.

66

Section 4.2

Analyses for question 2

Given the set of all the backup paths including substrate link l ∈ LS, VB
l ,

this work analyzes how to obtain all maximal unexclusive subsets of backup

paths of VB
l . Consider VB

l as an undirected graph, where each backup path

in VB
l represent a node and there is an edge between two nodes if the two

corresponding backup paths are not mutually exclusive. Let GVB
l represent the

graph corresponding to VB
l . Note that the condition of existing an edge here

is opposite to that in the bipartite graphs defined in Sections 4.2.2 and 4.2.3.

Figure 4.5(a) shows an example of VB
l consisting of seven backup paths, where

an edge connecting with two backup paths with a dotted line denotes that the

two backup paths are not mutually exclusive.

𝑣"#

Backup path
Not mutually exclusive

𝑣$#
𝑣%#

𝑣&#

𝑣'#

𝑣(#

𝑣)#

(a) |VB
l
| = 7

𝑣"#

𝑣$#
𝑣%#

(b) |VB
l
| = 3

Figure 4.5: Examples of VB
l .

In graph theory, a clique in an undirected graph is a subset of nodes, where

each two nodes are adjacent [101]. A maximal clique is a clique that cannot

be extended by adding any node which is adjacent with all the existing nodes

in the clique. There are several cliques in Fig. 4.5(a), such as {vB1 , vB2 , vB3 }.
There are three maximal cliques in Fig. 4.5(a), which are {vB1 , vB2 , vB3 , vB4 },
{vB4 , vB5 , vB6 }, and {vB6 , vB7 }.

Clearly, the concepts of unexclusive subset and maximal unexclusive sub-

set of backup paths in this thesis are similar to the concepts of clique and

maximal clique in graph theory, respectively. The only difference is that an

unexclusive or maximal unexclusive subset can contain only one backup path,

but a clique or maximal clique contains at least two nodes. For example, in

Fig. 4.5, any maximal unexclusive subsets of VB
l containing at least two backup

paths constructs a maximal clique in GVB
l ; in Fig. 4.5(b), {vB3 } is a maximal

unexclusive subset of VB
l but not a maximal clique of GVB

l . Let δ(VB
l) and

67

Chapter 4

δ′(GVB
l) represent the number of maximal unexclusive subsets of VB

l and the

number of maximal cliques of GVB
l , respectively.

Let Λ(t) denote the set containing t backup paths, where the number of

maximal unexclusive subsets of Λ(t) is maximized among all sets with t backup

paths, or Λ(t) = argmax{δ(VB
l)|V

B
l ⊆ VB : |VB

l | = t}. Based on the studies for

maximal clique, this work provides the flowing analyses for maximal unexclu-

sive set, which can be used to design algorithms finding all maximal unexclusive

subsets of backup paths of VB
l .

Lemma 1 In Λ(t) with t ≥ 2, there is at least one pair of backup paths which

are mutually exclusive, or there is at least one pair of nodes which are nonad-

jacent in GΛ(t).

Proo f : This work uses contradiction to prove Lemma 1.

Suppose that any two backup paths are not mutually exclusive in Λ(t).
As a result, Λ(t) itself is a maximal unexclusive subset of backup paths of

Λ(t), which indicates δ(Λ(t)) = 1. However, for VB
l with |VB

l | = t, where any

two backup paths are mutually exclusive, we have δ(VB
l) = t > δ(Λ(t)). It

contradicts that Λ(t) = argmax{δ(VB
l)|V

B
l ⊆ VB : |VB

l | = t}. Therefore, there

is at least one pair of backup paths which are mutually exclusive in Λ(t) when

t ≥ 2. �

Theorem 2 When t ≥ 5 , GΛ(t) is a connected graph.

Proo f : This work uses induction to prove Theorem 2.

When t = 5, we obtain that GΛ(5) is with the topology shown in Fig. 4.6(a),

where GΛ(5) is a connected graph.

Suppose that Theorem 2 holds for t = k − 1. When t = k, this work uses

contradiction to prove that GΛ(k) is a connected graph. Suppose that Λ(k)
contains backup path vB ∈ VB

l which is mutually exclusive with any other

backup path in Λ(k), or GΛ(k) contains an isolated node which is nonadjacent

with any other node in GΛ(k). We obtain δ(Λ(k)) = 1 + δ(Λ(k) \ {vB}). Since

δ(Λ(k)) = maxVB
l
⊆VB:|VB

l
|=k δ(V

B
l), we have Λ(k) \ {vB} = Λ(k − 1). It indicates

that GΛ(k) consists of the isolated node and the connected graph of GΛ(k−1),
such as Fig 4.6(b) for k = 6. Based on Lemma 1, there is at least one pair

68

Section 4.2

of nodes which are nonadjacent in GΛ(k−1). Connecting the isolated node with

the two nodes which are nonadjacent leads to VB
l , such as Fig 4.6(c) for k = 6,

where |VB
l | = k and δ(VB

l) = 2 + δ(Λ(k − 1)) > δ(Λ(k)). It contradicts that

Λ(k) = argmax{δ(VB
l)|V

B
l ⊆ VB : |VB

l | = k}. Hence, GΛ(k) is a connected

graph.

(a) Λ(5) and GΛ(5)

𝑣"

(b) k = 6 with isolated

node

𝑣"

(c) k = 6 with connected

graph

Figure 4.6: Examples of VB
l for Theorem 2; same symbols with Fig. 4.5 are

used.

Therefore, GΛ(t) is a connected graph when t ≥ 5. �

Theorem 3 Given VB
l with |VB

l | = t, there are at most 3
t
3 maximal unexclu-

sive subsets of backup paths of VB
l .

Proo f : When t = 1, 2, 3, and 4, we obtain δ(Λ(t)) = 1, 2, 3, and 4,

respectively, each of which supports Theorem 3.

When t ≥ 5, Theorem 2 indicates that δ(Λ(t)) = δ′(GΛ(t)). The work in [102]

proved that there are at most 3
n
3 maximal cliques in a graph with n nodes,

which indicates that δ′(GΛ(t)) ≤ 3
t
3 and δ(Λ(t)) ≤ 3

t
3 .

Therefore, given VB
l containing t backup paths, there are at most 3

t
3 max-

imal unexclusive subsets of VB
l . �

Analyses for question 3

This work computes the total required backup transmission capacity of backup

paths in a given bipartite graph by solving a minimum cost flow (MCF) prob-

lem [103]. Consider a given bipartite graph, such as the one in Fig. 4.4, where

backup path set WB
l and primary path set WP

l represent the sets of nodes in

two sides, respectively. dv denotes the demanded transmission capacity of vir-

tual link corresponding to substrate path v ∈ WB
l ∪WP

l . Consequently, dvB and

69

Chapter 4

dvP represent the demanded transmission capacity of backup path vB ∈ WB
l

and the released transmission capacity of primary path vP ∈ WP
l , respectively.

Based on the given bipartite graph, this work constructs a directed graph

by adding sets of nodes and edges and by specifying the information of each

edge. This work adds three nodes, which are a source node, a middle node,

and a destination node. This work adds directed edges from the source node

to backup path vB ∈ WB
l , from backup path vB to the middle node, from

primary path vP ∈ WP
l to the destination node, and from the middle node to

the destination node, with the edge costs and capacities of (0, dvB), (0, dvB),
(0, dvP), and (1,

∑
vB∈WB

l
dvB), respectively. The edge costs and capacities for

an edge from backup path vB to primary path vP are considered as (0, dvB).
Figure 4.7 shows the constructed directed graph based on the bipartite graph

in Fig. 4.4.

𝑣"#

𝑣$#

𝑣%#

𝑣&'

𝑣('

𝑣)'

𝑣*

𝑣+𝑣,

Backup path
Primary path
Mutually exclusive
Added node
Added edge

Figure 4.7: Constructed directed graph based on given bipartite graph in

Fig. 4.4.

For the MCF problem based on the constructed directed graph with con-

sidering the flow requesting the traffic volume of
∑
vB∈WB

l
dvB from the source

node to the destination node, the optimal objective value is the flow cost on

the edge from the middle node to the destination node, which is equivalent to

the total required backup transmission capacity of backup paths in the given

bipartite graph. In literature, several polynomial time algorithms, such as the

one presented in [103], can be adopted to solve the MCF problem.

70

Section 4.3

4.2.4 Proposed model with different degrees of backup

transmission resource sharing

Different degrees of backup transmission resource sharing can be considered

in the proposed backup resource allocation model for VNs. The proposed

model with full backup transmission resource sharing (P-FTS) minimizes the

required backup transmission capacity. In practical applications, computing

the exact minimized required backup transmission capacity may not be neces-

sary as long as a robust one satisfies the transmission capacity constraint. The

proposed model with limited backup transmission resource sharing (P-LTS)

considers the cross-sharing and backup-sharing among paths corresponding to

the same virtual link. The proposed model with non backup transmission re-

source sharing (P-NTS) requires the simplest computation with reserving the

most backup transmission capacity.

4.3 Heuristic algorithm

This work focuses on the heuristic algorithm to solve the BRAVN problem

with considering full backup transmission resource sharing, or P-FTS. For

P-LTS and P-NTS, the introduced algorithm can be easily modified to fit each

case.

4.3.1 Framework

This work presents a disjoint backup allocating (DBA) algorithm (see Al-

gorithm 1). In the DBA algorithm, this work first obtains a set of backup

computing resource allocations, which is denoted by F, without considering

the capacity constraint of (4.12e) and constraints from backup transmission

resource allocation through a multiple-stage simulated annealing (MSA) al-

gorithm (see Algorithm 2). The number of backup computing resource allo-

cations obtained in this step is denoted by Θ, which is a given parameter.

Then this work removes the infeasible backup computing allocations from F
with considering (4.12e). This work sorts the remaining backup computing

resource allocations in F in a nondecreasing order of the required backup com-

puting capacity. The DBA algorithm passes through the backup computing

71

Chapter 4

resource allocations in this order; when it comes to one backup computing

resource allocation, this work allocates the backup transmission resource for

backup paths of virtual links by using a greedy sharing (GS) algorithm (see

Algorithm 3). If we obtain a feasible solution with backup transmission re-

source allocation, the algorithm is terminated; otherwise, it goes to the next

backup computing resource allocation in F.

Algorithm 1: Disjoint backup allocating (DBA)

Input: p, ε , Θ, T init, ρ, and primary computing and transmission

resource allocation

Ouput: Backup computing and transmission resource allocation and

required backup computing capacity

Generate set of backup computing resource allocations of F by using

Algorithm 2

Remove infeasible allocations from F
Sort remaining allocations in F
for Backup computing resource allocation in F do

Compute backup transmission resource allocation by using

Algorithm 3

if Obtain feasible solution then
Break

end

end

4.3.2 Backup computing resource allocation

This work introduces the MSA algorithm, which is extended from a typical

SA algorithm [91]. Consider T init and 0 < ρ < 1 as two given parameters in

the typical SA algorithm. The running variable indicating the “temperature”

in the typical SA algorithm is represented by T . The MSA algorithm divides

the typical SA into Θ stages. Let given parameter Ta represent the terminal

“temperature” of stage a ∈ [1,Θ]; T1 < T init and Ta > Ta′ if a < a′. At

the beginning of MSA algorithm, T = T init is set. Given the values of p
and ε , this work prepares a table whose gth entry denotes the value of ΓnB

when |LnB | = g based on (4.2). The required backup computing capacity on

72

Section 4.3

each backup facility node is computed by using the table and (4.3). Then

the MSA algorithm goes through the stages from 1 to Θ. At the beginning

of each stage, an initial backup computing resource allocation is generated

by allocating the backup computing resources for virtual nodes in a random

order. For a virtual node, this work allocates its backup computing resource

on the backup facility node such that the allocation can maximize the ratio

of remaining capacity after the allocation to maximum capacity of the backup

facility node. The remaining capacity after an allocation equals to the value

obtained by subtracting the additional required backup computing capacity

from the current remaining capacity, which is negative when (4.12e) is not

satisfied. Each stage may contain several iterations. In each iteration, T = ρT ;

a new allocation is generated by reallocating a random virtual node based on

the existing allocation. If the total required backup computing capacity of new

allocation is less than that of the existing one, the new allocation is accepted

and replaces the existing one; otherwise, the new allocation is accepted with

a probability, which depends on the value of T and the difference between the

required backup computing capacities of new and existing allocations. The

algorithm outputs the existing allocation, which is amended to F, and moves

to stage a + 1 when T ≤ Ta.

4.3.3 Backup transmission resource allocation

Overall of GS

In the GS algorithm, this work allocates each backup path one by one based

on a backup computing resource allocation. For a backup path, this work

obtains the set of all allocated paths which are mutually exclusive with it

based on the analysis in Section 4.2.3. Let VB
lvB

and VP
lvB

denote sets of backup

and primary paths, respectively, each of which has been allocated in substrate

link l ∈ LS and is mutually exclusive with backup path vB ∈ VB. By using

the algorithms introduced in Seciton 4.3.3, this work computes the required

backup transmission capacity and the marginal gain on each substrate link if

backup path vB is added to it. This work removes each substrate link where

adding backup path vB exceeds its maximum capacity. Based on the amended

network, this work allocates backup path vB to the substrate path with the

smallest total marginal gains by using Dijkstra’s algorithm, where a substrate

73

Chapter 4

Algorithm 2: Multiple-stage simulated annealing (MSA)

Input: p, ε , Θ, T init, ρ, and primary computing resource allocation

Ouput: F
Set F = ∅
Set T = T init

Prepare table of ΓnB

for a ∈ [1,Θ] do
Generate allocation by allocating backup computing resources of

virtual nodes in random order

Compute total required backup computing capacity of cB
while T > Ta do

Set T = ρT
Generate new allocation by reallocating random virtual node

Compute new total required backup computing capacity of c′B
Accept new feasible allocation with a probability of min(1, δ),

where δ = e(
cB−c

′
B

T)

end

Append existing allocation to F
end

link weight is set to the marginal gain for the link.

Algorithm to compute required backup transmission capacity

For substrate link l ∈ LS, this work introduces Algorithm 4 to compute its

required backup transmission capacity when backup path vB ∈ VB is added to

it based on the analyses in Sections 4.2.2, 4.2.3, and 4.2.3. bBl is the required

backup transmission capacity on substrate link l before allocating backup

path vB. Let WB
lvB ′

represent the set of all maximal unexclusive subsets of

backup paths allocated in substrate link l, where each maximal unexclusive

set contains backup path vB
′
.

In Algorithm 4, this work first obtains WB
lvB

with considering that backup

path vB is allocated by using the collected data before allocating backup

path vB, such as WB
lvB ′

, ∀vB′ ∈ ∆B
lvB
= VB

l \ VB
lvB

; the details of this step are

74

Section 4.3

Algorithm 3: Greedy sharing (GS)

Input: Backup computing resource allocation

Ouput: Backup transmission resource allocation

for VN m ∈ M do

for virtual link k ∈ LD
m do

for backup path vB in set of three backup paths of k do
Obtain all allocated paths mutually exclusive with backup

path vB

Compute required backup transmission capacity and

marginal gain on each substrate link

Remove substrate links with insufficient remaining capacity

Select substrate path with smallest total marginal gains

Update required backup transmission capacity

end

end

end

Algorithm 4: Compute required backup transmission capacity

Input: bBl , WB
lvB ′

, ∀vB′ ∈ ∆B
lvB
= VB

l \ VB
lvB

, VP
lvB

, and VP
lvB ′

, ∀vB′ ∈ ∆B
lvB

Ouput: κ

Obtain WB
lvB

by Algorithm 5

Compute bB
lvB

by Algorithm 6

Set κ = max(bBl , b
B
lvB
)

described as Algorithm 5. Then this work computes the maximum required

backup transmission capacity among the maximal unexclusive sets in WB
lvB

,

which is denoted as bB
lvB

, by using Algorithm 6. Let κ denote the required

backup transmission capacity on substrate link l after adding backup path vB,

which is the greater one between bBl and bB
lvB

.

The basic idea of Algorithm 5 is to generate WB
lvB

based on {vB} and ∆B
lvB

according to WB
lvB ′

, ∀vB′ ∈ ∆B
lvB

. If backup path vB is mutually exclusive with

each backup path allocated in substrate link l, or VB
lvB
= VB

l and ∆B
lvB
= ∅,

WB
lvB

only contains the set of {vB}. Otherwise, any maximal unexclusive set in

75

Chapter 4

WB
lvB

is a union set of {vB} and a subset of ∆B
lvB

; WB
lvB

covers all backup paths

in ∆B
lvB

. For the latter case, there are two situations to include backup path

vB
′
∈ ∆B

lvB
into WB

lvB
. If there is at least one WB

l ∈ W
B
lvB ′

that is a subset of

∆B
lvB

, this work adds the union of {vB} and each WB
l as a maximal unexclusive

set in WB
lvB

; otherwise, this work adds {vB} ∪ {vB
′
} as a maximal unexclusive

set in WB
lvB

.

Algorithm 5: Find all maximal unexclusive sets

Input: WB
lvB ′

, ∀vB′ ∈ ∆B
lvB

Ouput: WB
lvB

Set WB
lvB
= ∅

if ∆B
lvB
= ∅ then

Set WB
lvB
= {{vB}}

else

for vB
′
∈ ∆B

lvB
do

Set Flag = 0

for WB
l ∈ W

B
lvB ′

do

if WB
l ⊆ ∆

B
lvB

then

Set WB
lvB
←WB

lvB
∪ {{vB} ∪WB

l }

Set Flag = 1

end

end

if Flag = 0 then

Set WB
lvB
←WB

lvB
∪ {{vB} ∪ {vB

′
}}

end

end

end

This work computes the maximum required backup transmission capac-

ity among maximal unexclusive sets in WB
lvB

in Algorithm 6. If VP
lvB
= ∅,

the required backup transmission capacity of WB
l ∈ W

B
lvB

is the sum of de-

manded capacity of backup path vB and required backup transmission capacity

of WB
l
′
= WB

l \ {v
B}, which has been collected. Otherwise, this work constructs

a directed graph based on WB
l and WP

l and use the algorithm presented in [103]

76

Section 4.3

solving the MCF problem to compute the required backup transmission ca-

pacity of WB
l , where WP

l = ∪vB
′
∈WB

l
VP

lvB ′
is obtained by the collected data of

VP
lvB ′

, vB
′
∈ WB

l .

Algorithm 6: Compute bB
lvB

Input: VP
lvB

, VP
lvB ′

, ∀vB′ ∈ ∆B
lvB

, and WB
lvB

Ouput: bB
lvB

Set bB
lvB
= 0

for WB
l ∈ W

B
lvB

do

if VP
lvB
= ∅ then

Set bB
WB

l

= dvB + bB
WB

l

′, where WB
l
′
= WB

l \ {v
B}

else

Obtain WP
l = ∪vB

′
∈WB

l
VP

lvB ′

Construct directed graph

Obtain bB
WB

l

by solving MCF problem

end

Set bB
lvB
← max(bB

lvB
, bB

WB
l

)

end

This work shows an example to demonstrate Algorithms 4-6. Consider

adding backup path vB ∈ VB to substrate link l ∈ LS, where VB
l = {v

B
1 , v

B
2 , v

B
3 , v

B
4 }

and VP
l = {v

P
1 , v

P
2 , v

P
3 , v

P
4 }. We are given bBl , VB

lvB
= {vB4 } and ∆B

lvB
= {vB1 , v

B
2 , v

B
3 },

VP
lvB
= {vP1 , v

P
4 }, WlvB1

= {{vB1 , v
B
2 }}, WlvB2

= {{vB1 , v
B
2 }}, WlvB3

= {{vB3 , v
B
4 }}, and

VP
lvB ′
= {vP1 , v

P
2 }, ∀vB

′
∈ ∆B

lvB
.

In Algorithm 5, for backup paths vB1 and vB2 , since {vB1 , v
B
2 } ⊆ ∆

B
lvB

, we add

{vB1 , v
B
2 , v

B} inWB
lvB

; for backup path vB3 , since {vB3 , v
B
4 } * ∆

B
lvB

, we add {vB3 , v
B}

inWB
lvB

. As a result, we obtainWB
lvB
= {{vB1 , v

B
2 , v

B}, {vB3 , v
B}}. In Algorithm 6,

since VP
lvB

is not empty, we solve the MCF problem for each WB
l ∈ W

B
lvB

, where

WP
l = {v

P
1 , v

P
2 , v

P
4 }, and obtain bB

lvB
. Finally, we obtain κ by comparing bBl and

bB
lvB

.

77

Chapter 4

4.3.4 Computational time complexity of DBA

There are at most |M | virtual nodes on a backup facility node. To pre-

pare the table of ΓnB , we need to compute the value of ΓnB for each value

of |LnB | ∈ [0, |M |]. Given |LnB |, it takes O(|LnB |
2) to obtain the value of ΓnB

by computing (4.2). Therefore, the computational complexity of preparing the

table is O(|M |3).

To compute the required backup computing capacity on a backup facility

node, this work sorts the protected virtual nodes by their demanded com-

puting capacities, which takes O(|M | log |M |). Then it takes O(|M |) to com-

pute (4.3). Therefore, allocating the backup computing resource of a vir-

tual node to a backup facility node takes O(|NS
B | |M | log |M |). It leads to

O(|NS
B | |M | log |M |

∑
m∈M |ND

m |) to generate a backup computing resource allo-

cation and to compute the total required backup computing capacity at the

beginning of each stage of the MSA algorithm. Similarly, for each iteration

in each stage, generating a new allocation with computing the total required

backup computing capacity takes O(|NS
B | |M | log |M |). Considering that there

are O(Θ) stages, the computational time complexity of MSA algorithm is O(ι),
where ι = |M |3 + |NS

B | |M | log |M |
∑

m∈M |ND
m |Θ. It takes O(|NS

B |Θ) to remove all

infeasible allocations. Sorting the Θ backup computing resource allocations

takes O(Θ logΘ).

Let Ψ =
∑

m∈M |LD
m |. Consider backup path vB ∈ VB as the gth backup

path to be allocated, where g ∈ [1, 3Ψ]. The number of prepared paths which

have been allocated before backup path vB is Ψ+g−1. Obtaining all allocated

paths which are mutually exclusive with backup path vB needs O(Ψ + g − 1),

which means that O(Ψ2) is required for all backup paths.

There are at most g − 1 allocated backup paths on a substrate link, which

lead to O(3
g
3) maximal unexclusive subsets based on Theorem 3. Determining

whether a maximal unexclusive set is a subset of ∆B
lvB

takes O(Ψ). There-

fore, obtaining WB
lvB

by Algorithm 5 takes O(Ψ3
g
3). Similarly, there are O(3

g
3)

maximal unexclusive subsets in WB
lvB

. Obtaining WP
l and constructing the di-

rected graph take O(Ψ2). Solving the MCF problem takes O(Ψ4 logΨ). Hence,

running Algorithm 6 to compute bB
lvB

takes O(3
g
3Ψ4 logΨ), which is the compu-

tational complexity of Algorithm 4. O(3
g
3Ψ4 |LS | logΨ) and O(3ΨΨ4 |LS | logΨ)

78

Section 4.4

are required for backup path vB and all backup paths, respectively, to compute

the required backup transmission capacities on all substrate links.

It takes O(Ψ|LS | log |NS |) to select the substrate paths with minimum total

marginal gains for all backup paths by using Dijkstra’s algorithm. As a result,

the computational time complexity of GS algorithm to allocate the backup

transmission resource is O(3ΨΨ4 |LS | logΨ).

Therefore, the the computational time complexity of DBA to solve P-FTS

is the dominant term of O(Θ3ΨΨ4 |LS | logΨ). The term of O(3Ψ) is the worst-

case computation time for finding all maximal unexclusive sets, which is similar

to listing all maximal cliques in a clique problem [104]. By adjusting the

procedure of computing the required backup transmission capacity, DBA is

modified to solve P-LTS and P-NTS. Then the computational time complexity

for each of the two cases is the dominant term of O(ι + ΘΨ|LS | log |NS |).

4.4 Numerical results

This work considers a non-sharing (NS) model as a baseline, where the dedi-

cated protection is provided for the computing resource, or ε = 0; cross-sharing

and backup-sharing are not considered for the backup transmission resource

allocation. The proposed model is considered with different degrees of trans-

mission resource sharing, which leads to P-FTS, P-LTS, and P-NTS. In Sec-

tion 4.4.1, the size of problem, such as the number of substrate nodes and

links, is small, and this work solves NS and P-NTS by the MILP approach.

For a large one in Section 4.4.2, this work solves them by the modified DBA

heuristic algorithms. P-FTS and P-LTS are always solved by the DBA and

modified DBA algorithms, respectively.

This work uses Intel Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory

for the evaluations. The MILP problem is solved by the IBM(R) ILOG(R)

CPLEX(R) Interactive Optimizer with version 12.8 [88].

4.4.1 Demonstration

This work demonstrates different models on the example provided in Fig. 4.1.

This work sets p = 10−2 and ε = 10−4. This work obtains that there is

no feasible solution for NS. This is because NS requires the same amount

79

Chapter 4

of computing resources with the primary allocation for backup, which exceeds

the maximum capacity of a backup facility node. More specifically, the backup

computing resource of virtual node j6 needs to be allocated in the same backup

facility node with that of one virtual node from VN m1. Virtual node j6 and

any virtual node from VN m1 demand 6 and 5 unites of backup computing

capacity, respectively. However, each backup facility node has the maximum

capacity less than 11. As a result, there is no feasible backup computing

resource allocation for NS.

Figure 4.8 and Table 4.3 show the optimal backup computing and trans-

mission resource allocations for P-NTS, respectively. This work obtains that

in total 18 units of backup computing resource are required for P-NTS, which

saves 7 units of backup computing resource compared to providing the dedi-

cated protection.

nP
1 (10)

j1 (5)

nP
2 (10)

j2 (5)
nP

5 (10)

j6 (6)

nP
3 (10)

j3 (5)

j4 (2)

nP
4 (10)

j5 (2)

(7)

nB
1 (10)

(6)

nB
2 (10)

(5)

nB
3 (10)Primary resource for

virtual network m1

Backup resource
Protection

Primary resource for
virtual network m2

Figure 4.8: Backup computing resource allocation in optimal solution for

P-NTS.

Table 4.3: Backup transmission resource allocation in optimal solution for

P-NTS.
Virtual link 1st backup path 2nd backup path 3rd backup path

k1 (l8, l5) (l4, l1) (l8, l6)

k2 (l6) (l2, l1) (l3)

k3 (l11, l10, l9) (l2) (l2, l1, l5, l8)

k4 (l3, l6, l9) (l8) (l3, l7)

k5 (l11) (l6, l9) (l7)

k6 (l2, l1, l5, l9, l10) (l4, l5) (l3)

P-FTS and P-LTS have the same optimal solution. The backup computing

80

Section 4.4

resource allocation in the optimal solution is the same with that shown in

Fig. 4.2. Table 4.4 shows the corresponding backup transmission resource

allocation. P-FTS and P-LTS require 16 units of backup computing resource;

compared to providing the dedicated protection, 9 units of backup computing

resource are saved by the proposed model with the probabilistic protection.

Furthermore, compared to P-NTS, P-FTS and P-LTS save 2 units of backup

computing resource. This is because cross-sharing and backup-sharing are

considered for the backup transmission resource allocation, which reduces the

required backup transmission capacity. More feasible solutions for backup

computing resource allocation can exist by requiring less backup transmission

capacity. As a result, the required backup computing capacity is reduced.

Table 4.4: Backup transmission resource allocation in optimal solution for

P-FTS and P-LTS.
Virtual link 1st backup path 2nd backup path 3rd backup path

k1 (l1, l2) (l2, l3) (l3)

k2 (l5, l8) (l6) (l6, l8)

k3 (l6, l3) (l2, l3, l7) (l3, l7)

k4 (l3, l6, l9) (l8) (l3, l7)

k5 (l9, l6) (l11) (l6, l8)

k6 (l11, l7, l3) (l6) (l3)

For example, based on Table 4.4, several backup paths of virtual links k1,
k3, k4, and k6 are routed through substrate link l3; in total 11 units of backup

transmission resource are required on substrate link l3 when P-NTS is adopted,

which exceeds its maximum capacity of 6. This work shows that the capacity

constraint is satisfied by using any of P-FTS and P-LTS. Considering backup-

sharing among backup paths of the same virtual link, the backup transmission

resource is required to be reserved for at most one backup path for each virtual

link. According to the analyses in Section 4.2.3, the second backup paths of

virtual links k1 and k3, the first backup path of virtual link k4, and the third

backup path of virtual link k6 are not mutually exclusive. Therefore, without

considering cross-sharing, in total 5 units of backup transmission resource are

required. Since the primary path of virtual link k3 is mutually exclusive with

any of the four backup paths, 1 unit of backup transmission resource is saved

by cross-sharing. Therefore, only 4 units of backup transmission resource are

required on substrate link l3 in P-FTS and P-LTS.

81

Chapter 4

4.4.2 Evaluation

Experiment setup

A 24-node undirected US backbone network presented in [105] is used as the

substrate network, where |NS
P | and |NS

B | are set to 18 and 6, respectively. This

work considers each VN as a full meshed network. For each result, this work

conducts 500 trials to obtain the average value. The parameters for each

trial are set as follows. This work randomly decides the locations of primary

and backup facility nodes. The number of VNs and the number of virtual

nodes in each VN are randomly selected from the ranges of [2, 10] and [2, 4],

respectively. The demanding computing and transmission capacities of each

virtual node and virtual link are randomly set within the range of [1, 10].

The capacity constraints are not considered to generate the primary resource

allocation. Each virtual node is randomly embedded in a primary facility node;

the primary path of each virtual link is mapped to the path connecting two

virtual nodes with the minimum number of substrate links. After the primary

resource allocation, the remaining computing and transmission capacities on

each substrate node and link are randomly set within the ranges of [0, A] and

[0, B], respectively, where A and B denote the upper bounds of ranges.

This work compares the different models in terms of feasibility, required

backup computing capacity, and computation time. The feasibility of a model,

which is denoted by ξ, is defined as the ratio of number of trials that returns

a feasible solution to the total number of trials. Note that only the trials

with feasible solutions for all the models are included to compute the average

required backup computing capacity and average computation time for each

model. Let η denote a ratio of the required backup computing capacity in

a feasible solution to the total primary computing capacity. Clearly, for NS,

ηNS = 1. The performance dependencies on the values of p and ε and on the

capacities of substrate nodes and links are evaluated.

Dependencies on values of p and ε

Table 4.5 shows the performance dependencies on value of ε for different mod-

els, where p = 10−2 and A = B = 100. P-NTS requires less backup computing

capacity than NS; the feasibilities of NS and P-NTS are comparable. It indi-

82

Section 4.4

cates that the main bottleneck to get a feasible solution is the transmission ca-

pacity on substrate links. By considering limited backup transmission resource

sharing, P-LTS achieves the feasibility of 0.87 in average, which is 2.38 times

greater than those of NS and P-NTS. P-FTS further improves the the average

feasibility to 0.90 by minimizing the required backup transmission capacity.

Compared to NS, P-NTS, P-LTS, and P-FTS save in average 53%, 54%, and

54% required backup computing capacity, respectively. From Table 4.5, this

work observes that as the value of ε increases, the required backup computing

capacity of each of P-NTS, P-LTS, and P-FTS decreases. This is because, for

the probabilistic protection, as the value of ε increases, the backup comput-

ing resource sharing is more acceptable, which decreases the required backup

computing capacity.

Table 4.5: Dependencies on value of ε for different models.
ε ξNS ξP−NTS ξP−LTS ξP−FTS ηP−NTS ηP−LTS ηP−FTS

10−4 0.38 0.37 0.88 0.91 0.59 0.57 0.56

5 × 10−4 0.39 0.37 0.86 0.86 0.48 0.47 0.47

10−3 0.37 0.34 0.89 0.93 0.46 0.45 0.45

5 × 10−3 0.39 0.37 0.87 0.89 0.42 0.41 0.40

7.5 × 10−3 0.40 0.38 0.86 0.91 0.42 0.41 0.40

Table 4.6 shows the performance dependencies on value of p for different

models, where ε = 10−4 and A = B = 100. As the value of p increases,

more backup computing resources are required to guarantee the same degree

of probabilistic protection, which indicates that the required backup computing

capacities of P-NTS, P-LTS, and P-FTS increase. Tables 4.5 and 4.6 observe

that the feasibilities of each model are comparable for different values of p and

ε . It indicates that, in the examined cases, the feasibility is mainly limited by

the transmission capacity instead of the computing capacity.

Table 4.6: Dependencies on value of p for different models.
p ξNS ξP−NTS ξP−LTS ξP−FTS ηP−NTS ηP−LTS ηP−FTS

5 × 10−4 0.41 0.39 0.87 0.90 0.44 0.43 0.43

10−3 0.38 0.36 0.84 0.90 0.45 0.44 0.44

5 × 10−3 0.39 0.38 0.86 0.93 0.49 0.47 0.46

10−2 0.38 0.37 0.88 0.91 0.59 0.57 0.56

10−1 0.38 0.37 0.88 0.90 0.97 0.97 0.96

83

Chapter 4

Dependencies on capacities of substrate nodes and links

Figure 4.9 shows the performance dependencies on the computing capacity of

a substrate node for different models, where p = 10−2, ε = 10−4, and B = 100.

Figure 4.9(a) observes that when the value of A is small, or A = 10, since

the computing capacity is a main bottleneck for each model to obtain a fea-

sible solution, the feasibilities of different models are low and comparable.

As the value of A increases from 10 to 40, the feasibility of each model signifi-

cantly increases. Since P-FTS and P-LTS consider both backup computing and

transmission resource sharing, they outperform the other two models; P-FTS

outperforms P-LTS by minimizing the required backup transmission capacity.

P-NTS has a higher feasibility than NS by requiring much less backup com-

puting capacity. As the value of A increases from 40, the computing capacity

becomes sufficient and the transmission capacity becomes the main bottleneck.

As a result, the feasibility of each model slightly increases; the feasibilities of

NS and P-NTS become comparable. From Fig. 4.9(b), this work observes that

the required backup computing capacity decreases for each of P-NTS, P-LTS,

and P-FTS as the value of A increases. This is because, when the computing

capacity on each substrate node is small, the backup computing resource allo-

cations for virtual nodes need to be distributed over different substrate nodes,

which limits the backup computing resource sharing among virtual nodes. As

the value of A increases, the allocations can be more centralized to promote

the backup computing resource sharing. Consequently, the required backup

computing capacity decreases.

Figure 4.10 shows the performance dependencies on the transmission ca-

pacity of a substrate link for different models, where p = 10−2, ε = 10−4, and

A = 100. Since transmission capacity is the main bottleneck to obtain a feasi-

ble solution, Fig. 4.10(a) shows that the feasibility of each model increases as

the value of B increases. P-FTS provides the highest feasibility; especially, for

B = 20, the feasibility of P-FTS is 2.08 times greater than that of P-LTS.

Figure 4.10(b) observes that the required backup computing capacity de-

creases for each of P-NTS, P-LTS, and P-FTS as the value of B increases. This

is because more transmission capacity in each substrate link leads to more fea-

sible solutions for backup computing resource allocation. Furthermore, this

84

Section 4.4

0.0

0.2

0.4

0.6

0.8

1.0

10 25 40 55 70 85 100

𝜉P-FTS

Fe
as

ib
ili

ty
, 𝜉

Upper bound of computing
capacity range, A

𝜉NS

𝜉P-LTS

𝜉P-NTS

(a) ξ

0.55

0.60

0.65

0.70

10 25 40 55 70 85 100

R
at

io
 o

f b
ac

ku
p

co
m

pu
tin

g
ca

pa
ci

ty
, 𝜂

Upper bound of computing
capacity range, A

𝜂P-FTS

𝜂P-LTS

𝜂P-NTS

(b) η

Figure 4.9: Dependency on capacity of substrate node.

work observes that when the transmission capacity is sufficient, or B = 220,

the required computing capacities of P-NTS, P-LTS, and P-FTS are compara-

ble. When the transmission capacity is limited, or B = 20, P-FTS significantly

outperforms P-NTS and P-LTS by considering full backup transmission re-

source sharing.

0.0

0.2

0.4

0.6

0.8

1.0

20 60 100 140 180 220

𝜉P-FTS

Fe
as

ib
ili

ty
, 𝜉

Upper bound of transmission
capacity range, B

𝜉NS

𝜉P-LTS

𝜉P-NTS

(a) ξ

0.48

0.52

0.56

0.60

0.64

0.68

20 60 100 140 180 220

R
at

io
 o

f b
ac

ku
p

co
m

pu
tin

g
ca

pa
ci

ty
, 𝜂

Upper bound of transmission
capacity range, B

𝜂P-FTS

𝜂P-LTS

𝜂P-NTS

(b) η

Figure 4.10: Dependency on capacity of substrate link.

85

Chapter 4

Computation time

Table 4.7 shows the computation time [s] to obtain the results shown in

Fig. 4.10. This work observes that NS and P-FTS require the shortest and

longest computation times, respectively; P-NTS requires slightly shorter time

than P-LTS. Especially, the computation times of P-FTS in cases of B = 180

and B = 220 are much longer than those in other cases and those of other

models. The computation time for each model increases as the value of B
increases. This is because a value of computation time is the average value

from trials that each model returns a feasible solution. When the value of

B is small, only the trials where the problem sizes, such as the numbers of

VNs, virtual nodes, and virtual links, are small return feasible solutions for

each model. As a result, the computation time is short in each model. As the

value of B increases, more trials that correspond to large size problems return

feasible solutions, and then the computation time increases for each model,

especially for P-FTS.

Figure 4.10 and Table 4.7 indicate that a network operator can set an

appropriate degree of backup transmission resource sharing based on practical

requirements, such as the admissible computation time. Typically, P-FTS is

beneficial in terms of ξ and η in the cases with limited transmission capacity,

where the computation time is acceptable. When the transmission capacity is

sufficient, P-LTS can be considered to save the computation time with a slight

performance degradation. P-NTS with much lower feasibility may be adopted

to further reduce the computation time.

Table 4.7: Computation time [s] to obtain results shown in Fig. 4.10.
B NS P-NTS P-LTS P-FTS

20 0.009 0.014 0.016 0.065

60 0.012 0.015 0.017 0.791

100 0.013 0.018 0.018 6.934

140 0.015 0.021 0.022 4.467

180 0.017 0.023 0.024 115.793

220 0.017 0.024 0.026 147.572

86

Section 4.5

4.5 Chapter summary

This chapter proposed a backup computing and transmission resource alloca-

tion model for VNs with the probabilistic protection against multiple facility

node failures. Both backup computing and transmission resource allocations

are considered to minimize the required backup computing capacity. Consid-

ering that the required backup transmission capacity can affect the required

backup computing capacity, this work analyzed backup transmission resource

sharing with multiple facility node failures based on graph theory. A heuris-

tic algorithm was introduced to solve the problem. The result revealed that

the proposed model outperforms the baseline in terms of both feasibility and

required backup computing capacity. This work discussed the application sce-

narios for the proposed model with different degrees of backup transmission

resource sharing. With the analyses, a network operator can consider an ap-

propriate degree of backup transmission resource sharing based on practical

requirements.

87

Chapter 4

88

Chapter 5

Backup resource allocation

model for network functions

This thesis proposes a backup resource allocation model for middleboxes with

considering the importance of functions and both failure probabilities of func-

tions and backup servers [48, 49]. In this model, a backup server is allowed to

protect several functions; a function can have multiple backup servers. This

work defines a weighted unavailability for each function, which depends on

its importance and failure probability, the assignment of backup servers, and

the failure probabilities of assigned backup servers. In this thesis, this work

focuses on the assignment of backup servers to functions where the weighted

unavailability of function that is in the worst case is minimized.

This work formulates the proposed backup resource allocation model as an

MILP problem. This work analyzes the considered problem with proving that

it is NP-complete and with showing how it is different with some similar classi-

cal problems, which indicates that developing new approaches with theoretical

analyses to solve the problem is necessary and challenging.

This work introduces three heuristic algorithms with polynomial time com-

plexity to solve the problem. This work analyzes the approximation perfor-

mances of different heuristic algorithms by providing several lower and upper

bounds. In numerical analysis, this work compares the three heuristic algo-

rithms in terms of the deviation from the optimal value. This work evaluates

the computation time used to solve the problem and compare different intro-

89

Chapter 5

duced approaches in terms of computation time. The results show the pros

and cons of different approaches. When the problem becomes large, solving

the MILP problem needs a long computation time to obtain the optimal solu-

tion, but a relatively much shorter time to obtain a solution comparable to the

optimal one. Heuristic approaches outperform the MILP approach when the

admissible computation time is set short. The first two algorithms based on

the greedy approach provide less deviations and require shorter computation

time than the last heuristic based on the linear programming relaxation (LPR)

approach. However, only the performance of last heuristic algorithm has an

upper bound and there is no approximation guarantee for the first two. Refer-

ring to the analyses, a network operator can choose an appropriate approach

according to the requirements in specific application scenarios.

The rest of this chapter is organized as follows. Section 5.1 presents the

proposed optimization model. Section 5.2 describes two heuristic algorithms

based on the greedy approach. Section 5.3 introduces another heuristic algo-

rithm based on the LPR approach. The performances of different approaches

are evaluated in Section 5.4. Section 5.5 summaries this chapter.

5.1 Model and problem definition

5.1.1 Assumptions

This model has several simplifying assumptions, which are often required for

the analysis and are summarized as follows.

(i) All components of a VNF are deployed on one backup server to reach

the ability of a hardware function.

(ii) A backup server can support several network functions at the same time.

(iii) Each network function requires the same amount of resources for infor-

mation synchronization or recovery on a backup server.

(iv) All backup servers fail independently and each backup server fails inde-

pendently of any function.

90

Section 5.1

This work justifies some of the assumptions. A VNF can be composed

of one or multiple internal components, each of which can be deployed over

a virtual machine or container [106–108]. For assumptions (i) and (ii), we

can improve the processing ability of a backup server by equipping with sub-

stantial computing resources or by adopting some advanced data processing

frameworks [109].

5.1.2 Assign backup servers to protect functions

Let F and S represent a set of functions and a set of backup servers, respec-

tively, where |F | and |S | denote the numbers of functions and backup servers,

respectively. In general, for backup server j ∈ S, the information of c j func-

tions can be synchronized to it and at most c′j functions can be recovered at

the same time, where c j ≥ c′j . Unless specifically stated, this work considers a

special case of c j = c′j to promptly recover each failed middlebox and the ca-

pacity of backup server j ∈ S is represented by c j in this thesis. Each function

in F can be protected by several backup servers in S. Compared to an indus-

try backup scheme where one or many dedicated backup servers are prepared

for one specified function, the proposed model has overheads including that

the number of logical connections between each backup server and functions is

increased and that the configuration in a backup server becomes complicated.

This work considers multiple simultaneous failures among both functions

and backup servers. When a function protected by some backup servers fails,

one of the corresponding backup servers which does not fail promptly recovers

the failed function by using the standby copy of its state. If a backup server

does not fail, it can recover all the protected functions that fail simultaneously;

otherwise, it cannot recover any failed function. The failure probabilities of

function i ∈ F and backup server j ∈ S are considered as pi and q j , respectively.

The unavailability of function i ∈ F is defined as the probability that

function i becomes unavailable, which depends on the assignment of backup

servers for function i. Let xi j, i ∈ F, j ∈ S, represent a binary decision variable;

xi j is set to one if function i ∈ F is protected by backup server j ∈ S and zero

otherwise. Consider Fj as a given parameter denoting a set of functions, each

of which is prohibited to be protected by backup server j ∈ S, or xi j = 0, i ∈ Fj .

91

Chapter 5

Several constraints, such the transmission delay constraint with considering

the placements of functions and backup servers, can be incorporated through

Fj . For example, if the transmission delay between function i ∈ F and backup

server j ∈ S is too high to satisfy the management requirements, function i is

set to be contained in Fj in advance. There are two possible situations that a

function becomes unavailable. One is that a function which is not protected by

any backup server fails, and the other is that a function and all backup servers

protecting it fail simultaneously. Therefore, the unavailability of function i ∈ F
is expressed by,

Pi = pi

∏
j∈S:xi j=1

q j . (5.1)

Let 0 < wi ≤ 1 represent the importance of function i ∈ F, which has been

decided in advance and is considered as a given parameter. The function with

greater value of wi is more important than the one with smaller value of wi.

The dependency between functions in terms of importance is considered as

that, for two functions with the same failure probability, the more important

function can have smaller unavailability compared to the other by assigning

backup servers. Considering wi as the weight of function i ∈ F, the weighted

unavailability of function i is expressed by,

PW
i = wi pi

∏
j∈S:xi j=1

q j . (5.2)

Equation (5.2) indicates that, for two functions i, i′ ∈ F with the same failure

probability but different weights, or pi = pi′ and wi > wi′, in order to obtain

the same weighted unavailability, function i with greater weight needs to be

assigned with backup resources such that
∏

j∈S:xi j=1 q j <
∏

j∈S:xi′ j=1 q j .

The worst weighted unavailability among PW
i , i ∈ F, which is denoted by

Q, is expressed by,

Q = max
i∈F

PW
i . (5.3)

Since an assignment can only exist between a function in F and a backup

server in S, this work presents the assignments between functions in F and

backup servers in S as a bipartite graph. Figure 5.1(a) shows an example of

92

Section 5.1

given sets of functions and backup servers. Figure 5.1(b) depicts an example

of assignment based on the given condition in Fig. 5.1(a), where cRj represents

the remaining capacity in backup server j ∈ S after the assignment. The

unavailability of a function after the assignment can be obtained according to

its weighted unavailability. Consider a situation that functions i2, i3, and i4 and

backup server j3 fail simultaneously. Figure 5.1(c) shows a recovery example

that failed functions i2 and i3 and failed function i4 are recovered by surviving

backup servers j1 and j2, respectively; Rj denotes the set of failed functions

recovered by backup server j ∈ S.

!!"#$!%&#$!'

()*+,-.*/ 012312/

!4"#$!%&#$4'
!5"#$#5%&!'

!6"#$#6%&!'
!7"#$4%&#$4'

"!"#$##!%&5'
"4"#$##4%&5'
"5"#$##5%&4'

! "#!%$!' "%"&"% '"'

(a) Given condition

!!"#!!$
%&'

()*+,-.*/ 012312/

!#"#!!$
%&'

!4"5!!$
%6'

!&"!$
%7'

!8"#98!!$
%7'

"!"$'
"#"$'
"4"$'

!#""#
$' "#"%&

''

(b) Assignment and protection

!!

!"#$%&'#()*+,*+(

!"
!#

!$

!%

"!-.!"/0!#12
""-.!%12
"#-.12

"#-!!2
!3&4*506"#$%&'#

!3&4*5073$8"90(*+,*+

(c) Failing and recovery

Figure 5.1: Examples of protection, failing, and recovery.

5.1.3 Problem definition

The problem of backup resource allocation for middlebox with importance

(BRAMI) is defined as follows:

Problem G iven a set of functions and a set of backup servers, both failure

probabilities of functions and backup servers, importance of each function,

capacity of each backup server, how to assign backup servers to functions to

minimize the worst weighted unavailability, Q?

93

Chapter 5

Note that, by incorporating the importance of functions into the BRAMI

problem through (5.2), this work can handle the BRAMI problem in the same

way as the problem without considering the importance; especially, each ap-

proach and its theorems introduced in this thesis hold for both problems.

5.1.4 Mixed integer linear programming problem

This work formulates the BRAMI problem as the following MILP problem.

min r (5.4a)

s.t.
∑
i∈F

xi j = c j, ∀ j ∈ S (5.4b)

log wi + log pi +
∑
j∈S

xi j log q j ≤ r, ∀i ∈ F (5.4c)

xi j = 0, ∀ j ∈ S, i ∈ Fj (5.4d)

xi j ∈ {0, 1}, ∀i ∈ F, j ∈ S, (5.4e)

where er = Q. The worst weighted unavailability, Q, is minimized in the ob-

jective function (5.4a) by minimizing r. Equation (5.4b) indicates that backup

server j ∈ S protects c j functions. This work expresses (5.2) and (5.3) as a

linear form in (5.4c) by taking the logarithmic for both sides of (5.2). Let Q∗

be the worst weighted unavailability in an optimal solution obtained by solving

the above MILP problem.

This thesis studies a static problem about how to assign a given set of

backup servers to protect a given set of functions before any failure occurs.

To consider the BRAMI problem with the dynamic scenarios, where functions

and backup servers may fail or be recovered over time, an approach is to re-

solve the static BRAMI problem and re-allocate the backup resources once the

given conditions change. A more practical approach may consider some other

aspects, such as computational complexity, network bandwidth, and quality of

service, related to the backup resource re-allocation.

5.1.5 NP-completeness

This work defines a backup resource allocation (BRA) decision problem as

follows: given a set of functions and a set of backup servers, both failure

94

Section 5.2

probabilities of functions and backup servers, capacity of each backup server,

is it possible to find an assignment of backup servers to functions so that all

the unavailabilities of functions are no more than u?

Theorem 4 The BRA decision problem is NP-complete.

Proo f : The details of proof can be found in [37]. �

Based on Theorem 4, this work gives the following theorem for the BRAMI

problem.

Theorem 5 The BRAMI problem is NP-complete.

Proo f : Firstly, similar with the proof for Theorem 4, we can verify a

certificate of any instance of the BRAMI problem in a polynomial time of

O(|F | |S |) by computing (5.2) for |F | times. Therefore, the BRAMI problem is

NP.

By setting wi = 1, i ∈ F, the BRAMI problem is the same with the BRA

problem. In other words, the BRA problem is a subset of the BRAMI problem.

Since the BRA decision problem is NP-complete, the BRAMI problem is also

NP-complete. �

5.2 Greedy approach

The MILP problem introduced in (5.4a)-(5.4e) can be solved in a practical

time, when the size of problem, such as the number of functions and backup

servers, is small. However, for large one, it becomes intractable. In this section,

this work considers two heuristic algorithms based on the greedy approach [57]

to solve the BRAMI problem when its size becomes large.

5.2.1 Sorted greedy assignment

In a sorted greedy assignment (SGA) algorithm (see Algorithm 7), this work

firstly sorts the backup servers in a nondecreasing order of failure probability

and then make one pass through the backup servers in this order; when it comes

to backup server j ∈ S, it assigns j to c j functions with the greatest weighted

95

Chapter 5

Algorithm 7: Sorted greedy assignment

Input: Importance and failure probability of function i ∈ F, wi and

pi, capacity and failure probability of backup server j ∈ S, c j and q j

Ouput: Assignment and weighted unavailability of function i ∈ F, Ai

and PW
i

Set PW
i = wi pi and Ai = ∅ for each function i ∈ F

Sort backup servers in a nondecreasing order of failure probability q j

Assume that q1 ≤ q2 ≤ · · · ≤ q|S |
for j = 1, 2, · · · , |S | do

Let L be the set of c j functions with the greatest weighted

unavailabilities

for i ∈ L do
Assign backup server j to function i
Set Ai ← Ai ∪ { j}
Set PW

i ← PW
i q j

end

end

unavailabilities. In the beginning of algorithm, the weighted unavailability

of function i ∈ F is wi pi. Let Ai denote a set of backup servers assigned to

function i ∈ F.

The SGA algorithm sorts backup servers for one time at the beginning, and

sorts functions for |S | times when it makes one pass through the sorted backup

servers. The computational time complexities of sorting |F | functions and sort-

ing |S | backup servers are O(|F | log |F |) and O(|S | log |S |), respectively. There-

fore, the computational time complexity of SGA algorithm is O(|S | |F | log |F |),
where |F | ≥ |S | is considered.

Theorem 6 The worst weighted unavailability in an optimal solution is at

least
(∏

i∈F wi pi
∏

j∈S qcj
j

) 1
|F |

, or Q∗ ≥
(∏

i∈F wi pi
∏

j∈S qcj
j

) 1
|F |

.

Proo f : Since Q∗ is the worst weighted unavailability in the solution, or

Q∗ = maxi∈F Pi, we obtain,

Q∗|F | ≥
∏
i∈F

Pi =
∏
i∈F

wi pi

∏
j∈S

qcj
j . (5.5)

96

Section 5.2

Therefore, a lower bound on the optimum is obtained as,

Q∗ ≥

(∏
i∈F

wi pi

∏
j∈S

qcj
j

) 1
|F |

. (5.6)

�

5.2.2 Converse greedy assignment

This work introduces a converse greedy assignment (CGA) algorithm (see Al-

gorithm 8), which is close to the SGA algorithm but performs the assignment in

a converse way. In the CGA algorithm, this work firstly assigns each function

with all the backup servers regardless of the capacity constraint of each backup

server; the weighted unavailability of function i ∈ F is wi pi
∏

j∈S q j after the

assignment. As a result, there are |F | − c j functions exceeding the maximum

capacity of backup server j ∈ S. Then this work sorts the backup servers in

a nondecreasing order of failure probability and make one pass through the

backup servers in this order; when it comes to backup server j ∈ S, this work

withdraws the assignments between backup server j and |F | − c j functions

with the smallest weighted unavailabilities. Clearly, the computational time

complexity of CGA algorithm is O(|S | |F | log |F |), which is the same with that

of the SGA algorithm.

This work analyzes the approximation performance of CGA algorithm. Let

QCGA represent the worst weighted unavailability obtained by the CGA algo-

rithm.

Theorem 7 When wi pi = t, i ∈ F, where t is a constant, and c j = |F |−1, j ∈ S,

by using Algorithm 8, we can obtain a feasible assignment of backup servers to

functions with weighted unavailability of function at most Q∗
minj∈F qj

, or QCGA ≤

Q∗
minj∈F qj

.

Proo f : Since wi pi is a constant, all the functions are with the same

weighted unavailability as t
∏

j∈S q j at the beginning of algorithm. For each

backup server, we withdraw |F | − c j = 1 assignment, where the involved func-

tion is with the smallest weighted unavailability. Let i′ denote the function

with worst weighted unavailability QCGA in the solution of CGA algorithm.

97

Chapter 5

Algorithm 8: Converse greedy assignment

Input: Importance and failure probability of function i ∈ F, wi and

pi, capacity and failure probability of backup server j ∈ S, c j and q j

Ouput: Assignment and weighted unavailability of function i ∈ F, Ai

and PW
i

Set PW
i = wi pi

∑
j∈S q j and Ai = S for each function i ∈ F

Sort backup servers in a nondecreasing order of failure probability q j

Assume that q1 ≤ q2 ≤ · · · ≤ q|S |
for j = 1, 2, · · · , |S | do

Let L′ be the set of |F | − c j functions with the smallest weighted

unavailabilities

for i ∈ L′ do
Withdraw the assignment from backup server j
Set Ai ← Ai\{ j}
Set PW

i ← PW
i /q j

end

end

Before obtaining the solution assignment, there must be at least one backup

server withdrawn from function i′. Let j′ be the last backup server withdrawn

from function i′. Let PCGA
i denote the weighted unavailability of function i ∈ F

in the solution of CGA algorithm, and hence PCGA
i′ = QCGA = maxi∈F PCGA

i .

Since function i′ is with the smallest weighted unavailability when we with-

draw backup server j′, we obtain that QCGAq j ′ ≤ mini∈F PCGA
i . Hence, we

obtain,

(QCGAq j ′)
|F | ≤

∏
i∈F

PCGA
i =

∏
i∈F

wi pi

∏
j∈S

qcj
j . (5.7)

According to Theorem 6, where Q∗ ≥
(∏

i∈F wi pi
∏

j∈S qcj
j

) 1
|F |

, we obtain,

QCGA ≤

(∏
i∈F wi pi

∏
j∈S qcj

j

) 1
|F |

q j ′
≤

Q∗

q j ′
. (5.8)

Finally, since q j ′ ≥ min j∈S q j , we obtain two upper bounds for the CGA algo-

98

Section 5.3

rithm as below,

QCGA ≤

(∏
i∈F wi pi

∏
j∈S qcj

j

) 1
|F |

min j∈S q j
≤

Q∗

min j∈S q j
. (5.9)

�

This work provides the upper bound for the CGA algorithm when wi pi is the

same constant for different functions and c j = |F | − 1, j ∈ S. This work credits

a part of the above proof to the works in [58, 59], where a different problem,

which can be viewed to maximize the smallest weighted unavailability while

setting wi pi to the same constant for different functions and c j = 1, j ∈ S, was

studied.

It becomes difficult to theoretically obtain any upper bound for the CGA

algorithm in terms of a general situation, where the values of wi, i ∈ F, pi,

and c j, j ∈ S, can be generally set. Addition to the greedy approach, this

work introduces another heuristic approach in Section 5.3 to solve the BRAMI

problem, where the approximation performance is comprehensively analyzed.

5.3 Linear programming relaxation approach

The LPR approach is a powerful technique to solve such hard optimization

problem in (5.4a)-(5.4e) by relaxing the MILP problem to a linear program-

ming (LP) problem, which can be solved in a polynomial time [57]. In this

section, it begins by introducing two similar problems of the BRAMI prob-

lem presented in Section 5.1. Then, this work develops an LPR approach to

solve the BRAMI problem, where a rounding algorithm with polynomial time

complexity is introduced to round an optimal solution of the LP problem to a

feasible solution of the MILP problem. This work analyzes the approximation

performance of introduced rounding algorithm by providing an upper bound

for the LPR approach with the introduced rounding algorithm.

5.3.1 Similar problems

In (5.4a)-(5.4e), since wi ≤ 1 and pi ≤ 1 for function i ∈ F, and qi ≤ 1 for

backup server j ∈ S, log wi, log pi, and log q j are with nonpositive values. For

99

Chapter 5

analysis purpose, this work defines ai = − log wi−log pi, i ∈ F, and b j = − log q j ,

j ∈ S, where ai ≥ 0 and b j ≥ 0. The minimization problem in (5.4a)-(5.4e)

can be transformed to the following equivalent maximization problem.

max r′ (5.10a)

s.t. Eqs. (5.4b), (5.4d), (5.4e) (5.10b)

ai +
∑
j∈S

xi j b j ≥ r′, ∀i ∈ F, (5.10c)

where r′ = −r. With the form of (5.10a)-(5.10c), the BRAMI problem in this

thesis can be viewed as an extension of the generalized load balancing (GLB)

problem [57] and the santa claus (SC) problem [62].

For the GLB problem, there is a set of unrelated parallel machines and a

set of independent jobs, where each job is associated with a workload. The

objective of GLB problem is to assign each job to a machine such that the

maximum workload on any machine is minimized. The SC problem is closely

related to the GLB problem. The only difference is that the goal of SC problem

is to assign all the jobs in a way that maximizes the minimum workload on any

machine. The GLB problem, the SC problem, and several variations from them

have been extensively studied in computer science and economics [57–63,110].

Clearly, by considering the functions and backup servers as the machines

and jobs, respectively, the BRAMI problem in this thesis is similar to the

above two problems. One difference between the BRAMI problem and the

GLB problem is that they have opposite objective functions. In addition to

that, compared to the GLB and SC problems, there are two main differences

in this problem: 1) instead of no job existing on each machine before the

assignment, there is an initial workload, which is given by ai, for function

i ∈ F in this problem; 2) a job is assigned to only one machine in the GLB and

SC problems, but a backup server can be assigned to several different functions

in this problem.

This work shows how the two points make the BRAMI problem different

with the GLB and SC problems. For the first point, in a greedy approach

solving the GLB or SC problem, each internal assignment step only depends

on the previous assignments of workloads. However, for a similar greedy ap-

proach solving the BRAMI problem, such as the SGA or CGA algorithm, each

100

Section 5.3

internal assignment step is affected by both previous assignments of workloads

and initial workloads of functions, which indicates that the approximation per-

formance and its analysis of a greedy approach solving the BRAMI problem

are different with those of the similar one solving the GLB or SC problem. For

the second point, by physically unpacking backup server j ∈ F as c j backup

servers, each of which has unit capacity, this problem becomes the same as

the classical ones in terms of the LPR approach, if the backup server infor-

mation, such as the failure probability, after unpacking is given. Without the

information, we cannot transform this problem to the classical ones.

Based on the ideas introduced in [57, 60] to solve the GLB problem, this

work introduces an LPR approach with a rounding algorithm to solve the

BRAMI problem. Especially, this work shows how to handle the point that

backup server j ∈ S can be assigned to c j different functions in the introduced

LPR approach.

5.3.2 Linear programming formualtion

In the LPR approach, this work formulates the LP problem of the MILP

problem in (5.10a)-(5.10c) by directly setting xi j , i ∈ F, j ∈ S, to a real decision

variable with 0 ≤ xi j ≤ 1, which is expressed by,

max r′ (5.11a)

s.t. Eqs. (5.4b), (5.4d), (5.4e), (5.10c), (5.11b)

0 ≤ xi j ≤ 1, ∀i ∈ F, j ∈ S. (5.11c)

Let LMILP and LLP be the optimal objective values of MILP problem in (5.10a)-

(5.10c) and LP problem in (5.11a)-(5.11c), respectively. Clearly, LMILP ≤ LLP,

which means that LLP is an upper bound for the optimum of maximization

problem in (5.10a)-(5.10c) and e−LLP is a lower bound for the worst weighted

unavailability in an optimal solution, or Q∗ ≥ e−LLP .

In a solution of the MILP problem, the value of xi j, i ∈ F, j ∈ S is either

1 or 0; it can be fractional in the range of [0, 1] in a solution of the LP prob-

lem. Therefore, given an optimal solution from the LP problem, a rounding

algorithm is required to round the optimal solution from the LP problem to a

101

Chapter 5

feasible solution of the MILP problem. More specifically, the rounding algo-

rithm decides the value of xi j, i ∈ F, j ∈ S in a fractional solution to either 1 or

0.

5.3.3 Tree-based rounding algorithm

This work develops and analyzes a tree-based rounding (TBR) algorithm based

on the concepts of connected components [111] and tree in graph theory. Given

an optimal solution from the LP problem in (5.11a)-(5.11c), it can be repre-

sented by an undirected bipartite graph G(V, E), where V and E represent sets

of nodes and edges, respectively. In the bipartite graph, functions in F and

backup servers in S represent the nodes in two sides, respectively, or V = F∪S;

an edge between function i ∈ F and backup server j ∈ S exists in E if and only

if xi j > 0 in the solution.

For function i ∈ F, the total workloads in the solution is the sum of initial

workload and assigned workloads, which is expressed by ai +
∑

j∈S xi j b j . LLP is

the minimum workload in any function in the solution. For edge (i, j), i ∈ F, j ∈
S, this work considers the value of xi j b j as the value of flow, which outgoes

from backup server j and incomes to function i. Therefore, the total assigned

workloads for a function is the total flow incoming to it.

Given a bipartite graph, this work firstly divides it to several connected

components. Some algorithms can be adopt here, such as breadth-first search

(BFS) or depth-first search (DFS) [112], where all the connected components

are obtained in a linear time proportional to the number of nodes and edges

of the graph. Then this work separately considers the assignment in each

connected component. Figure 5.2 shows an example connected component,

which includes five functions and five backup servers. In Fig. 5.2, the number

attached to edge (i, j) indicates the flow value xi j b j on the edge.

In a connected component, there may exist some cycles, such as (i1, j1, i2, j2, i1)
in Fig. 5.2. In the TBR algorithm, this work modifies the given solution by

eliminating all the cycles such that each modified connected component can

be represented by a tree; the final rounding is performed based on the tree

structure. This work firstly introduces how to eliminate cycles and perform

rounding in a special case, where a backup server can be assigned to only one

102

Section 5.3

!!

"#$%&'($) *+,-+,)

!.

!/

!0

!1

"!
".

"/

"0

"1

!23

425
!2.

425

Figure 5.2: Connected component with cycle.

!!

"#$%&'($) *+,-+,)

!.

!/

!0

!1

"!
".

"/

"0

"1

234

!35
.3!

2

Figure 5.3: Modified connected component with no cycle.
i1

i2 i3 i5i4

j1 j2

j3 j5j4

Figure 5.4: Integral assignment.

function (see Algorithm 9), or c j = 1, ∀ j ∈ S. Then this work extends the TBR

algorithm to a general case (see Algorithm 10), where c j ≥ 1, ∀ j ∈ S, with keep-

ing the same computational time complexity and approximation performance

with those analyzed in the special case.

Special case of c j = 1

When c j, j ∈ F, is set to 1 in (5.11b), this work considers to eliminate all

the cycles in any connected component with the following procedure, which is

defined as elimination procedure 1. In a bipartite graph, any cycle has even

number of edges. Given a cycle with k edges, where k is an even number in

the range of [4,min(2|F |, 2|S |)], this work numbers each edge along the cycle

starting from an edge with minimum flow δ. The cycle can be represented

by (e1, e2, · ·· , ek), where el , l ∈ [1, k], denotes an edge with number l in the

cycle. To eliminate the cycle, this work decreases the flow in all edges with

103

Chapter 5

Algorithm 9: Tree-based rounding algorithm in special case of c j = 1

Input: A fractional solution, G(V, E), from the LP problem

Ouput: An integral solution for the MILP problem

Partition G(V, E) into a set of connected components

for each connected component do
Eliminate all the cycles by using elimination procedure 1

for each backup server j do
Assign backup server j to its parent function

end

end

odd numbers and increase the flow in all edges with even numbers by the same

amount δ. Then all edges with zero flow are deleted from the solution. For

remaining edge (i, j), i ∈ F, j ∈ S, let x′i j represent xi j after the modification,

hence x′i j b j is the modified flow on edge (i, j). Note that, with the above

procedure, this work can eliminate all the cycles in the given solution without

adding any new edge or changing the total incoming (outgoing) flow for each

function (backup server). In other words, the modified solution still satisfies

all the constraints in (5.11a)-(5.11c) and keeps the objective value as LLP. For

example, by considering edge (i2, j2) as the first edge and δ = 0.9 in the cycle

of Fig. 5.2, the connected component in Fig. 5.2, where b j1 = 4 and b j2 = 3

in the special case, can be modified to the one in Fig. 5.3 with deleting edge

(i2, j2).

After eliminating all the cycles, each connected component can be repre-

sented by a tree, where an arbitrary function is selected as the root. For each

node, there may be a parent and some children nodes adjacent with it. For

example, on the tree in Fig. 5.4, the parent and children backup servers of func-

tion i3 are { j1} and { j3, j4}, respectively; the parent and children functions of

backup server j1 are {i1} and {i2, i3, i4}, respectively. Let Vi and Wi be the sets

of parent and children of function i on the tree, respectively. Note that each

backup server has exactly one parent; each function has at most one parent,

or the size of Vi does not exceed one. Finally, this work rounds the given frac-

tional solution to an integral solution by assigning each backup server only to

its parent function, or setting x∗i j = 1, ∀i ∈ F, j ∈ Wi and x∗i j = 0, ∀i ∈ F, j ∈ Vi,

104

Section 5.3

where x∗i j represents the assignment between backup server j and function i
in the rounded integral solution. For example, an integral assignment of the

fractional assignment in Fig. 5.3 can be expressed in Fig. 5.4, where a solid

line and a dotted line represent rounding the corresponding fractional x′i j to 1

and 0, respectively.

This work analyzes the computational time complexity of TBR algorithm

in the special case of c j = 1, j ∈ S. This work assumes that |S | |F | ≥ |S | + |F |1

to simplify O(|S | |F | + |S | + |F |) as O(|S | |F |). Initially, there are at most |S | |F |
edges in G(V, E). The computational time complexity of dividing G(V, E) into

several connected components is O(|S | |F |) by adopting BFS or DFS. For a given

connected component, we can use BFS or DFS to find a cycle, or confirm if

there is any cycle, in O(|S | |F |) time. Hence, before each elimination procedure,

we can specialize a cycle in O(|S | |F |) time. In each elimination procedure, since

the maximum number of edges in a cycle is min(2|F |, 2|S |), it takes O(|S |) time

to determine δ, where |F | ≥ |S | is considered. Decreasing flow with δ for

the edges with odd numbers, increasing flow with δ for the edges with even

numbers, and deleting the edges with zero flow, require O(|S |) time. Totally, a

cycle can be found and eliminated in O(|S | |F |) time. Since we delete at least

one edge in each elimination procedure, we can run the elimination procedure

O(|S | |F |) times. As a result, we can eliminate all the cycles in O(|S |2 |F |2) time.

Since we always start from an arbitrary function node when we run BFS or

DFS to detect a cycle, a tree with function node root can be parallel set up

for each connected component after all the elimination procedures. Finally, we

take O(|S |) time to assign each backup server to its parent function. Therefore,

the computational time complexity of TBR in the special case is O(|S |2 |F |2).
This work analyzes the approximation performance of above algorithm.

Let QTBR represent the worst weighted unavailability obtained by the LPR

approach with the TBR (LPR-TBR) algorithm.

Theorem 8 In the special case, by using Algorithm 9, we can obtain a fea-

sible assignment of backup servers to functions with weighted unavailability of

function at most e−(LLP−maxj∈F bj), or QTBR ≤ e−(LLP−maxj∈F bj).

Proo f : Consider an arbitrary function i ∈ F. Since elimination procedure

1This condition is satisfied in the case of |S | ≥ 2 and |F | ≥ 2.

105

Chapter 5

1 does not change the total incoming flow in any function, we obtain,

ai +
∑

j∈Vi∪Wi

b j ≥ ai +
∑

j∈Vi∪Wi

x′i j b j ≥ LLP. (5.12)

For the parent backup server j ∈ Vi of function i, b j ≤ max j ′∈F b j ′. Therefore,

we obtain,

ai +
∑
j∈Wi

b j ≥ LLP −max
j∈F

b j . (5.13)

Hence, by using Algorithm 9, the rounded solution for (5.10a)-(5.10c) is lower

bounded by (LLP −max j∈F b j) and the obtained worst weighted unavailability

of function is upper bounded by e−(LLP−maxj∈F bj), or QTBR ≤ e−(LLP−maxj∈F bj).

�

General case of c j ≥ 1

For the general case, where each backup server can be assigned to several

different functions, we cannot directly use the above procedure to eliminate all

the cycles in a given fractional solution. The main reason is that elimination

procedure 1 cannot guarantee to always satisfy constraint (5.11c) in the general

case.

This work also takes cycle (i1, j1, i2, j2, i1) in Fig. 5.2 as an example. Now

consider b j1 = 2, b j2 = 1.5, c j1 = 2, and c j2 = 2 in the general case. Based

on flow value xi j b j indicated on the corresponding edge (i, j) in the cycle, we

consider xi1 j1 = 0.9, xi1 j2 = 0.6, xi2 j1 = 0.6, and xi2 j2 = 0.6. From the result

after elimination procedure 1, which is shown in Fig. 5.3, we observe that the

flow in edges (i1, j2) and (i2, j1) exceed b j2 and b j1 , respectively. In other words,

the values of x′i j in edges (i1, j2) and (i2, j1) are greater than 1, which violate

constraint (5.11c). In a modified solution, if constraint (5.11c) is not satisfied

for backup server j ∈ S, or ∃i ∈ F such that x′i j > 1, the number of edges

including backup server j may less than c j . As a result, we may not be able

to round the modified fractional solution to a feasible integral solution.

To address this issue, this work extends elimination procedure 1 to elimi-

nation procedure 2 as follows. Similar with elimination procedure 1, this work

numbers each edge along the given cycle starting from an edge with minimum

106

Section 5.3

Algorithm 10: Tree-based rounding algorithm in general case of c j ≥

1
Input: A fractional solution, G(V, E), from the LP problem

Ouput: An integral solution for the MILP problem

Partition G(V, E) into a set of connected components

for each connected component do
Eliminate all the cycles by using elimination procedure 2

for each backup server j do
Assign backup server j to its parent function

if c′j > 1 then
Assign backup server j to its c′j − 1 child functions with the

greatest weighted unavailabilities

end

end

end

flow δ. For edge el = (i, j), where l is an even number, this work computes

the remaining flow admissible for edge el , which is defined by γel = (1− xi j)b j ;

the minimum remaining flow on any edge with even number is represented by

γ. If δ ≤ γ, this work just eliminates the cycle by using elimination proce-

dure 1. If δ > γ, in order to avoid the violation of constraint (5.11c), this

work decreases the flow in all edges with odd numbers and increase the flow

in all edges with even numbers by the same amount γ, instead of δ. Let H
denote the set of edges, where x′i j = 1 after adding γ amount flow. For edge

(i, j) ∈ H, this work directly pre-assigns backup server j to function i before

the final rounding procedure. For backup server j ∈ S, this work decreases its

remaining capacity by one after each pre-assignment. Then, in the modified

connected component, this work deletes all the edges in H to eliminate the cy-

cle, and do not change the modified flow in other edges. Let c′′j represent the

remaining capacity of backup server j ∈ S after eliminating all the cycles; it

can be proved that c′′j > 0 is always satisfied. Let Di represent a set of backup

servers, each of which is pre-assigned to function i in the elimination proce-

dure. Note that, with elimination procedure 2, we can eliminate all the cycles

in a given solution for the general case; the modified solution, including the

107

Chapter 5

pre-assignments, still satisfies all the constraints in (5.11a)-(5.11c) and keeps

the objective value as LLP. For example, for cycle (i1, j1, i2, j2, i1) in Fig. 5.2,

δ = 0.9 and γ = 0.6. After modifying the flow in each edge, this work directly

pre-assigns backup servers j2 to function i1, and delete edge (i1, j2) in the given

connected component to eliminate the cycle. Figure 5.5 shows the modified

connected component of that in Fig. 5.2 and the pre-assignment in this general

case.

!"#$%&&'()*#)+

!"# $ %&'(!,

-.)/+'0)& 1#"2#"&

!3

!4

!5

!6

",
"3

"4

"5

"6

,73
,75

,78
974

Figure 5.5: Modified solution with no cycle in this general case.

After eliminating all the cycles by elimination procedure 2, each connected

component can be represented by a tree, where an arbitrary function is selected

as the root. For backup server j ∈ F, this work firstly assigns it to its parent

function; if c′′j > 1, this work then assigns it to its c′′j − 1 child functions

with the greatest weighted unavailabilities. In other words, x∗i j is set to 1,

∀i ∈ F, j ∈ Wi and x∗i j is probably set to either 1 or 0, ∀i ∈ F, j ∈ Vi. For

example, a final integral assignment of the fractional assignment in Fig. 5.5

can be expressed in Fig. 5.6, where a solid line and a dotted line represent

rounding the corresponding fractional x′i j to 1 and 0, respectively.

!!

!" !#

!$

!%

"!

"" "#

"$

"%

&'()*++,-./(.0

!"# $ %&'(

Figure 5.6: Integral assignment in this general case.

In elimination procedure 2, compared to elimination procedure 1, this work

only introduces the additional computation to obtain γ, whose computational

108

Section 5.4

time complexity is O(|S |). Hence, this work still takes O(|S |2 |F |2) time to elim-

inate all the cycles. In the final rounding procedure, sorting all the child func-

tions and completing the assignment need O(|F | log |F |) time for each backup

server, and totally O(|S | |F | log |F |) time is required. Therefore, the computa-

tional time complexity of TBR algorithm in the general case is still O(|S |2 |F |2).
For the approximation performance of TBR algorithm in the general case,

this work obtains the following theorem.

Theorem 9 In the general case, by using Algorithm 10, we can obtain a fea-

sible assignment of backup servers to functions with weighted unavailability of

function at most e−(LLP−maxj∈F bj), or QTBR ≤ e−(LLP−maxj∈F bj).

Proo f : Consider an arbitrary function i ∈ F. Since elimination procedure 2

does not change the total incoming flow in any function, we obtain,

ai +
∑
j∈Di

b j +
∑

j∈Vi∪Wi

b j ≥ ai +
∑
j∈Di

b j +
∑

j∈Vi∪Wi

x′i j b j ≥ LLP. (5.14)

The parent backup server j ∈ Vi of function i is probably assigned to function

i, where b j ≤ max j ′∈F b j ′. Therefore, we obtain,

ai +
∑
i∈Di

b j +
∑
j∈Wi

b j +
∑
j∈Vi

x∗i j b j ≥ LLP −max
j∈F

b j . (5.15)

Hence, in the general case, by using Algorithm 10, we obtain the same approx-

imation performance with that in the special case; the worst weighted unavail-

ability of function in the rounded solution is upper bounded by e−(LLP−maxj∈F bj),

or QTBR ≤ e−(LLP−maxj∈F bj). �

This implies that, when max j∈F b j is fixed, the greater LLP is, the better

approximation the LPR-TBR algorithm can provide.

5.4 Numerical results

In the numerical analysis, this work compares the introduced approaches with

a scheme which ignores the importance of functions and backup server failures

in terms of the exact worst weighted unavailability in Section 5.4.2. Then this

work compares different approaches introduced in this thesis in Sections 5.4.3

109

Chapter 5

and 5.4.4. This work considers the BRAMI problem with small size, such as

the number of functions and backup servers is small, and the MILP problem

in (5.4a)-(5.4e) can be solved in an admissible time to obtain the optimal

solution. When the size of BRAMI problem becomes large, this work consid-

ers the best feasible solution obtained from an optimization solver within the

admissible computation time. This work evaluates the heuristic approaches

introduced in Sections 5.2 and 5.3 by comparing their performances and ap-

proximation guarantees to the optimal solution in Section 5.4.3 and to the best

feasible solution in Section 5.4.4.

This work uses Intel Core i7-7700 3.60 GHz 4-core CPU, 32 GB memory to

solve the MILP problem or run the heuristic algorithms. The MILP problem is

solved by the IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer with version

12.8 [88].

5.4.1 Experiment setup

The work in [22] describes a mean number of 3.5 failures per year in the worst

case among four types of middleboxes where the 95th and 99th percentiles

for downtime are about 2.5 and 17.5 days, respectively. In literature, the

failure probability of a network function is always considered as the ratio of

its downtime to the total time of uptime and downtime [51,52]. Therefore,

this work considers that the failure probability of each function is uniformly

distributed over the range of [0.025, 0.175] where 0.025 ≈ 3.5×2.5
365 and 0.175 ≈

3.5×17.5
365 , which is the same estimation with that in [19]. Since, compared to

middleboxes, backup servers may process workloads less frequently and be less

depreciated, this work considers that the failure probability of a backup server

can be lower than that of a middlebox, and it is set to be uniformly distributed

over the range of [0.01, 0.05] in the experiment; the performances with different

settings of the range of q j are compared in Fig. 5.8.

Since the performances of heuristic approaches depend on the actual in-

put, this work adopts average case analysis in the numerical analysis. This

work conducts 500 trials, in each of which, unless specifically stated, the fail-

ure probability of each function, the weight of each function, and the failure

probability of each backup server are uniformly distributed over the ranges of

110

Section 5.4

[0.025, 0.175], [0.01, 1], and [0.01, 0.05], respectively.

5.4.2 Comparison with scheme that ignores importance

of functions and backup server failures

This work considers the balanced assignment (BA) approach presented in [19]

as the scheme which ignores the importance of functions and backup server

failures. To compare introduced approaches with the BA approach, this work

considers the BRAMI problem with a special case that the information of

c j = c functions is synchronized to backup server j ∈ S and only one of them

can be recovered at the same time due to the limited computing resources, or

c j = c ≥ c′j = 1, ∀ j ∈ S.

In the experiment, this work sets |F | = 10 and c is uniformly distributed in

the range of [1, 5] over trials. Given a BRAMI problem with the special case,

introduced approaches and the BA approaches solve it with assuming c j = c′j =
c and with ignoring the importance of functions and backup server failures,

respectively. This work computes the exact worst weighted unavailability for

a given solution.

Figure 5.7 shows the average values of exact worst weighted unavailabilities

which are obtained by introduced approaches and the BA approach for differ-

ent numbers of backup servers |S |. This work observes that the introduced

approaches outperform the BA approach in terms of the exact worst weighted

unavailability; especially, the exact worst weighted unavailability obtained by

the MILP approach, which considers the importance of functions and backup

server failures, is about seven times smaller than that obtained by the BA

approach.

5.4.3 Competitive evaluation for small size problem

In Sections 5.4.3 and 5.4.4, this work considers a large-size network with 100

middleboxes [113], or |F | = 100, and the capacity of each backup server is set

to be uniformly distributed over the range of [1, 15].

Figure 5.8(a) shows the comparison among the average values of worst

weighted unavailabilities, which are obtained by running the heuristic algo-

111

Chapter 5

!"#$%#&

!"#$%#'

!"#$%#!

() * + , -

./01/2!

./01/2'

./01/2&

./01/2(

./01/2)

3456/078976:;<4=72/0>/02?7!"!#

@A

.BA
CBA
DEF%G@F

HIDE

J
8
02
K7
L
/1
M
N
K/
O
74
P
:>
:1
Q:
6
1Q
1K
R
#

Figure 5.7: Comparison between introduced approaches and BA approach.

rithms and by solving the MILP problem, and the lower and upper bounds,

for different numbers of backup servers |S |, when the range of q j is set to [0.01,

0.05]. This work observes that the worst weighted unavailabilities obtained by

different approaches and the lower and upper bounds decrease as the number

of backup servers increases. It is obvious that the lower bound in Theorem 6

is a decreasing function in terms of the number of backup servers. For the

obtained worst weighted unavailabilities and the lower bound of e−LLP , with

more backup servers, more protections are provided to the function that is in

the worst case. As a result, the worst weighted unavailability and the value of

e−LLP decrease. For the upper bound in Theorem 9, since the lower bound of

failure probability of backup sever is fixed, which is approximate to fixing the

value of max j∈F b j , the upper bound of e−(LLP−maxj∈F bj) decreases as the value

of e−LLP decreases.

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#!

!"#$)##

!# !(!& !* !+ (#
,-./012342/567-82901:019;2 !"!

<
3
19
=2
>
0?
@
A
=0
B
2-
C
5:
5?
D5
/
?D
?=
E

(a) [0.01, 0.05]

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#!

!"#$)##

!# !(!& !* !+ (#
,-./012342/567-82901:019;2 !"!

<
3
19
=2
>
0?
@
A
=0
B
2-
C
5:
5?
D5
/
?D
?=
E

(b) [0.025, 0.175]

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#!

!"#$)##

!# !(!& !* !+ (#

,-./-0!

,-./-0(

,-./-0'

,-./-0&

,-./-01

,-./-0*

,-./-02

3456-.78976:;<4=70-.>-.0?7 !"!

@ABC?7!"

D==-.7684EF?7
GH-8.-57*

B8I-.7684EF?7
GH-8.-57'

B8I-.7684EF?7
#$%&'

,JK?7!()*

LJK?7!+)*

BCM%GNM?7!,-.

O
8
.0
P7
I
-/
Q
H
P-
F
74
E
:>
:/
R:
6
/R
/P
S

(c) [0.1, 0.25]

Figure 5.8: Comparison among average values of worst weighted unavailabil-

ities obtained by different approaches and lower and upper bounds; different

ranges of q j are considered in different subfigures; legend in Fig. 5.8(c) is ap-

plied to each subfigure.

112

Section 5.4

For the two lower bounds, this work observes that they are comparable

and the lower bound of e−LLP is slightly tighter than the one in Theorem 6.

This is because that the lower bound in Theorem 6 corresponds to a fractional

assignment, which is the most balanced assignment where the result weighted

unavailabilities of all functions are the same. However, this balanced assign-

ment may not be a feasible fractional solution of the LP version of BRAMI

problem for two reasons. Firstly, it is because that the value of wi pi of function

i ∈ F may be assigned to other functions for balancing purpose, which is not

allowed in the BRAMI problem. Secondly, the most balanced assignment may

not satisfy constraint (5.4d). Therefore, e−LLP , which is the worst weighted

unavailability in the optimal solution of LP version of BRAMI problem, is

greater than or equal to the lower bound in Theorem 6.

The deviation between a heuristic result and the optimal value is defined

by the value of heuristic result divided by the optimal value, where γSGA =
QSGA

Q∗ represents the deviation between the result from the SGA algorithm and

the optimal value. The average computation times of running the heuristic

algorithms and solving the MILP problem are represented by TSGA, TCGA,

TTBR, and TMILP, respectively.

Tables 5.1 and 5.2 show the average computation times of different ap-

proaches and the deviations corresponding the results shown in Fig. 5.8(a),

respectively. This work observes that TMILP increases as the number of backup

servers increases. This work observes that the average computation times of

running the SGA algorithm, the CGA algorithm, and the LPR-TBR algorithm

to obtain solutions are about 105, 104, and 102 times less than that of solving

the MILP problem, respectively; the SGA algorithm is the fastest one among

all the approaches in the examined scenarios.

Table 5.1: Average computation time (seconds) of different approaches.
|S | TMILP TSGA TCGA TTBR

10 14.66 8.19 × 10−4 1.60 × 10−3 1.25 × 10−1

12 28.21 8.29 × 10−4 1.60 × 10−3 1.25 × 10−1

14 42.38 7.44 × 10−4 1.27 × 10−3 1.15 × 10−1

16 53.73 8.45 × 10−4 1.31 × 10−3 1.30 × 10−1

18 57.79 8.01 × 10−4 1.49 × 10−3 1.37 × 10−1

20 84.31 2.00 × 10−3 4.23 × 10−3 3.37 × 10−1

113

Chapter 5

Table 5.2: Deviations from optimal values.
|S | γSGA γCGA γTBR

10 1.00 1.00 2.40

12 1.01 1.01 3.49

14 1.06 1.06 5.83

16 1.22 1.22 7.16

18 1.53 1.53 8.81

20 1.80 1.80 7.81

From Fig. 5.8(a) and Tables 5.1 and 5.2, this work observes that the results

from the SGA algorithm and the CGA algorithm are comparable and closer to

the optimal values than those from the LPR-TBR algorithm. There are some

pros and cons for the three heuristic algorithms. On one hand, the CGA algo-

rithm and the SGA algorithm may provide less deviations and require shorter

computation time than the LPR-TBR algorithm does. However, there is no

approximation guarantee for these two algorithms. On the other hand, the

worst weighted unavailability is upper bounded by adopting the LPR-TBR

algorithm, which may perform worse than the CGA algorithm and the SGA

algorithm in terms of deviation and computation time. With the analyses of

above pros and cons, a network operator can decide which heuristic approach

should be adopted according to the requirements in specific application sce-

narios.

Figures 5.8(b) and 5.8(c) show the results with different settings of the

range of q j compared to Fig. 5.8(a). this work observes that as the average

value of q j increases, the result of each approach or bound increases except for

that obtained by the upper bound in Theorem 9. The value of e−LLP increases

as the average value of q j increases, but the value of emaxj∈F bj decreases when

the lower bound of q j increases. As a result, the value of e−(LLP−maxj∈F bj) does

not always increase. For the results of different approaches and bounds, we

have the similar observations in both Figs. 5.8(b) and 5.8(c) compared to those

in Fig. 5.8(a).

5.4.4 Competitive evaluation for large size problem

Let T denote the admissible computation time (seconds) in the experiment.

When the size of BRAMI problem becomes large, the optimal value cannot

114

Section 5.4

be obtained within T , such as |S | ≥ 20 when T is considered as 60. In such

cases, this work considers the best feasible solution obtained by solving the

MILP problem within T , where T is set large enough for running any heuristic

algorithm.

Figure 5.9 shows the comparison among the average values of worst weighted

unavailabilities, which are obtained by running the heuristic algorithms and by

solving the MILP problem within different values of T , and the lower and up-

per bounds, for different numbers of backup servers |S |. For T = 5, this work

observes that the worst weighted unavailability in the best feasible solution

obtained by the MILP approach is greater than those from the SGA algorithm

and the CGA algorithm for any value of |S |; compared with the LPR-TBR

algorithm, the MILP approach outperforms it when |S | ≤ 45 and preforms

worse than it when |S | > 45 due to the increase of problem size. For T = 15,

this work observes that the MILP approach always outperforms the LPR-TBR

algorithm; the MILP approach preforms better than the SGA algorithm and

the CGA algorithm when |S | ≤ 35, and it performs worse when |S | > 35. For

T = 60, this work observes that, for different values of |S |, the worst weighted

unavailabilities in the best feasible solutions by solving the MILP problem are

always the least among all the results by different approaches.

Figure 5.10 shows the dependency of the average value of worst weighted

unavailabilities obtained by the MILP approach on the admissible computa-

tion time T when |S | = 50. This work observes that at the beginning of

T = 5, the MILP approach provides the greatest worst weighted unavailabil-

ity compared to other results obtained by the heuristic approaches. As the

value of T increases, the worst weighted unavailabilities in the best feasible

solution obtained by solving the MILP problem decreases. This is because

that the longer computation time can provide the result nearer to the optimal

one. This work observes that the worst weighted unavailability obtained by

the MILP approach decreases much faster as T increases when T ≤ 25 than

it does when T > 25. It indicates that the MILP approach may need a long

computation time to obtain the optimal solution, but a relatively much shorter

time to obtain a solution comparable to the optimal one. When T is set to

greater than about 20, this work observes that the worst weighted unavailabil-

ities in the best feasible solutions obtained by solving the MILP problem are

115

Chapter 5

!"#$%!#
!"#$%#&
!"#$%#'
!"#$%#(
!"#$%#)
!"#$%#*
!"#$%#+
!"#$%#,
!"#$%#-
!"#$%#!

-# ,# +# *#)# (#

./01/2!

./01/2-

./01/2,

./01/2+

./01/2*

./01/2)

./01/2&
34
356/07

89:;/0<5=<;>?@9A<2/0B/02C<!"!

DE34C<$ F<)#

GAA/0<;59HIC<JK/50/:<)

356/0<;59HIC<JK/50/:<,
356/0<;59HIC<!"#$%

.7LC<&'()
M7LC<&*()

34N%JONC<&+,-

DE34C<$ F<!*

DE34C<$ F<*

P
5
02
Q<
6
/1
R
K
Q/
I
<9
H
>B
>1
S>
;
1S
1Q
T

Figure 5.9: Comparison among average values of worst weighted un-

availabilities obtained by different approaches within different values

of T and lower and upper bounds.

!"#$%#&

!"#$%#'

!"#$%#(

!"#$%#)

) !) *) +) ,))) ()

-../012

123%453

678

978

:1;2

12

1<=/07

8>?@AA@BC/DE<?.FGHG@<IHCDG@?/DJA/E<I>AKLD!

:;12

-../0DB<FI>LD4M/<0/?D(

1<=/0DB<FI>LD4M/<0/?D+
1<=/0DB<FI>LD!"#$%

978LD&'()
678LD&*()
123%453LD&+,-

N
<
0A
GD
=
/@
O
M
G/
>
DF
I
HP
H@
CH
B
@C
@G
Q

Figure 5.10: Dependency of average value of worst weighted unavail-

abilities obtained by MILP approach on admissible computation time

T when |S | = 50.

always the least among all the results by different approaches, which means

that solving the MILP problem is the best approach in terms of the objective

value when T > 20 in the examined scenarios. Furthermore, by referring to

the lower bound of e−LLP , this work obtains that the deviation between the

objective value in the best feasible solution obtained by the MILP approach

and the optimal value is at most 1.31 when T = 65.

In summary, the admissible computation time T is another significant factor

for a network operator to choose an appropriate approach. For some delay-

sensitive application scenarios, the heuristic approaches should be adopted to

provide an assignment within a short time, such as the SGA algorithm can

terminate within 10−2 seconds for |F | = 100 and |S | = 50 in the experiment.

For other scenarios, where the requirement on T can be relaxed to a certain

degree, the best feasible solution by solving the MILP problem within T may

provide a good approximation to the optimum.

116

Section 5.5

5.5 Chapter summary

This chapter proposed a backup resource allocation model for middleboxes

with considering both failure probabilities of network functions and backup

servers. This work took the importance of functions into account by defin-

ing a weighted unavailability for each function. This work aimed to find an

assignment of backup servers to functions where the worst weighted unavail-

ability is minimized. This work formulated the BRAMI problem as an MILP

problem. This work proved that the BRAMI problem is NP-complete. Two

heuristics based on the greedy approach and one based on the LPR approach

were introduced to solve the same optimization problem. The computational

time complexities of three heuristic algorithms were analyzed as polynomials.

This work analyzed the approximation performances of different heuristic al-

gorithms by providing several lower and upper bounds. This work compared

among the results obtained by different approaches and the lower and upper

bounds. The results showed the pros and cons of different approaches. When

the BRAMI problem becomes large, solving the MILP problem needs a long

computation time to obtain the optimal solution, but a relatively much shorter

time to obtain a solution comparable to the optimal one. Heuristic approaches

outperform the MILP approach when the admissible computation time is set

short. The CGA algorithm and the SGA algorithm provide less deviations and

require shorter computation time than the LPR-TBR algorithm does. How-

ever, only the performance of LPR-TBR algorithm has an upper bound and

there is no approximation guarantee for the other two heuristics. Referring to

the analyses, a network operator can choose an appropriate approach according

to the requirements in specific application scenarios.

117

Chapter 5

118

Chapter 6

Unavailability-aware shared

backup allocation model

This thesis proposes an unavailability-aware backup allocation model with the

shared protection for middleboxes with comprehensively considering hetero-

geneous procedures of functions and backup servers. A part of the work in

this chapter was presented in [50]. In this model, multiple functions can share

the backup resources on backup servers. The proposed model aims to find the

assignment of backup servers to functions to minimize the maximum unavail-

ability among functions. This work develops an analytical approach based on

the queueing theory to compute the unavailability of middleboxes for a given

backup allocation. The heterogeneous failure, repair, recovery, and waiting

procedures of functions and backup servers, which lead to several different

states for each function and for the whole system, are considered. In the an-

alytical approach, this work analyzes what all system states are, how they

transit from/to each other, and what the equilibrium-state probability of each

system state is. The unavailability of each function is estimated based on the

obtained probabilities of system states. This work introduces an SA heuris-

tic to solve the backup allocation problem by using the developed analytical

approach. The performance dependencies on the failure, repair, and recovery

behaviors of functions and backup servers are evaluated. This work compares

the proposed model with a baseline model. The results reveal that the pro-

posed unavailability-aware model reduces the maximum unavailability 16% in

119

Chapter 6

average compared to the baseline model in the examined scenarios.

The rest of this chapter is organized as follows. Section 6.1 presents the

proposed model. Section 6.2 describes the analytical approach based on the

queueing theory. Section 6.3 introduces the heuristic algorithm to solve the

backup allocation problem. The performances are evaluated in Section 6.4.

Section 6.5 summaries this chapter.

6.1 Model and problem definition

Let F and S denote a set of functions and a set of backup servers in a net-

work, respectively. In this thesis, this work assumes that sufficient and reliable

networking resources are provided. This work studies the assignment between

backup servers and functions with considering the limited computing resources

and the heterogeneous procedures that can occur at a network node, function

or backup server, with affecting the unavailability of functions.

6.1.1 Shared protection for functions

To protect a function against failure events, a backup server is assigned to

protect it. This work assumes that, for different functions, the amounts of

resources utilized for information synchronization or recovery on the backup

servers are the same [19, 24, 48, 49]. Backup server j ∈ S can be assigned to

protect at most c j functions whose information required for recovery is updated

to backup server j, where at most r j functions can be recovered at the same

time and r j ≤ c j . Let xi j denote a binary variable; if function i ∈ F is protected

by backup server j ∈ S, xi j = 1; otherwise, xi j = 0.

Figure 6.1 shows an example of backup allocation for three functions pro-

tected by two backup servers, where a link exists between function i ∈ F and

backup server j ∈ S if xi j = 1. Backup server j1 can protect two functions and

only one of them can be recovered at the same time. It indicates that functions

i1 and i2 share the backup resource on backup server j1; if functions i1 and i2
fail simultaneously, only one of them can be recovered at the same time.

120

Section 6.1

i1

Functions Servers

i2
i3

j1(2, 1)
j2(1, 1)

j (cj, rj)

Figure 6.1: Example of backup allocation with shared protection.

6.1.2 Heterogeneous procedures

In the network, each element in W = F∪S may experience different procedures

that affect the unavailability of functions; for the same procedure, the behav-

iors may vary for different elements. This work describes these procedures.

Failure procedure

This work considers that an element in W is either in an active state or failed

state. This work assumes that each element, function or backup server, in W
experiences failure events independently to other elements, where the failure

events occur at an element based on a Poisson process when the element is in

the active state. For each element, the average failure rate of corresponding

Poisson process can be estimated by sampling the status of element within a

certain period.

In literature, several studies introduced that the average failure rate of an

element depends on its age or running time, which can be a key feature to

classify elements in W to several classes, in each of which the elements have

the same average failure rate [114, 115]. Let H = [1, |H |] denote the set of

classes for the elements in W ; an element in class h ∈ H has the average failure

rate of λh per unite time.

Repair procedure

Once a failure event occurs to an element in W , it goes to the failed state; a

procedure is started to repair the element itself to return to the active state.

For example, if a function or backup server fails due to a broken hardware

component on its hosting physical machine, some methods, such as replacing

the broken component, are taken to repair the physical machine, which makes

121

Chapter 6

the failed function or backup server return to the active state. This work

considers that the time to complete the repair procedure of a failed function

or backup server in class h ∈ H follows an exponential distribution with the

average value of µ−1h unit time.

Recovery procedure

When a function in F is in the failed state, it needs to be recovered on a

backup server before the completion of its repair procedure1. Once the repair

procedure is completed, the failed function goes to the active state and the

corresponding recovered one if any on the backup server is released. In other

words, the function recovered on a backup server is switched back to a function

in the active state. When a backup server in S is in the active state, it can

recover the failed functions if the recoveries do not exceed its capacity. When

a backup server in S is in the failed state, it cannot recover any function.

The operations to recover a failed function, such as launching a virtual

machine and recreating the missing states, on an active backup server take

time. This work assumes that the recovery time for a failed function on backup

server j ∈ S follows an exponential distribution with the average value of δ−1j

unit time.

Waiting procedure

For a function, there are two cases where the protection prepared for it fails

such that the recovery procedure cannot start immediately. One case is that

a function and its backup server are in the failed state at the same time. For

example, when both function i3 and backup server j2 in Fig. 6.1 are in the

failed state, the prepared protection for function i3 fails. The other case is

that a function is in the failed state and its preassigned backup server is in the

active state, but no capacity remains on the backup server to recover the failed

function. For example, when function i2 in Fig. 6.1 fails, if backup server j1 is

hosting failed function i1, the prepared protection for function i2 fails.

1In this thesis, for a failed function, the terminologies of recover and repair refer to

recovering it on a backup server and making itself return to the active state through the

repair procedure, respectively.

122

Section 6.1

To recover a failed function when its protection fails, different policies can

be developed based on different application scenarios. In this thesis, this work

considers a preassigned backup only policy (PBOP), where the failed function

can only be recovered by its preassigned backup server. If the prepared pro-

tection fails, the failed function needs to wait. PBOP may be adopted in some

scenarios with limited network bandwidth resources to avoid the additional

transmissions for information required to recover failed functions [23].

6.1.3 State transition and unavailable time for each func-

tion

Figure 6.2 shows the state transition for each function with considering all

procedures. When an active function goes to the failed state, if its protec-

tion does not fail, the recovery procedure on the preassigned backup server

starts; otherwise, the function waits to start the recovery on its backup server.

When the preassigned backup server is active and has remaining capacity for

recovery, the recovery procedure of failed function starts. In the case that mul-

tiple failed functions protected by the same backup server are in the waiting

procedure, this work considers randomly choosing some of them to start the

recoveries which do not exceed the maximum capacity of backup server. After

the completion of recovery procedure, the failed function is recovered on the

backup server and becomes available. For a failed function that is recovered or

is being recovered on a backup server, if the backup server fails, the function

goes to the waiting procedure. When the repair procedure of a failed function

is completed, the failed function goes to the active state.

The function is considered as unavailable during the waiting and recovery

procedures. The time switching the function recovered on a backup server

to a function that goes to the active state is assumed much shorter than the

recovery time. In other words, the unavailable time of a function consists of

two types of time, which are waiting time and recovery time.

123

Chapter 6

Failed and
being recovered on

backup server

Failed and
recovered on
backup server

Active

Failed and waiting

Figure 6.2: State transition for each function.

6.1.4 Unavailability of function

In literature, such as the works in [51,52], the unavailability of function i ∈ F
is often considered as the ratio of its average unavailable time to the sum of

its average available time and average unavailable time, which can be define

as,

Qi =
Ti

Ti + T ′i
, (6.1)

where Ti and T ′i represent the average unavailable time and the average avail-

able time of function i, respectively. Clearly, if there is no backup that is used

to recover function i with class h ∈ H, its unavailability is Qi =
µ−1
h

µ−1
h
+λ−1

h

.

6.1.5 Problem definition

The unavailability of a function depends on the backup allocation for all func-

tions. Let J = maxi∈F Qi denote the maximum unavailability among func-

tions. The unavailability-aware shared backup allocation (UASBA) problem

is defined as follows:

Problem G iven sets of functions and backup servers, the average failure rate

and average repair time for each function and backup server, and the average

recovery time on a backup server, find the optimal backup allocation for all

functions to minimize the maximum unavailability among functions, or J.

124

Section 6.2

To address the UASBA problem, we first need to know how the unavailabil-

ity of a function is for a given solution of backup allocation. This work answers

this question in Section 6.2 by developing an analytical approach based on the

queueing theory.

6.2 Analyses for unavailability based on queue-

ing theory

Let L j = {i |i ∈ F : xi j = 1} denote the set of functions protected by backup

server j ∈ S; Lh
j ⊆ L j represents the set of all functions with class h ∈ H

in L j . This work considers backup server j ∈ S and L j as a group. Since

a failed function can only be recovered by its preassigned backup server in

PBOP, this work analyzes the unavailabilities of functions in a group indepen-

dently of other groups. Two functions with the same classes in the same group

have the same failure, repair, and recovery behaviors, which leads to the same

unavailability for them.

This work considers a state of functions of class h ∈ H in the group contain-

ing backup server j ∈ S as (mh, nh, oh, ph), where mh, nh, oh, and ph represent

the numbers of functions of class h which are active, waiting, being recovered,

and recovered, respectively. Clearly, the values of mh, nh, oh, and ph satisfy∑
h∈H(mh + nh + oh + ph) = |L j | ≤ c j and

∑
h∈H(oh + ph) ≤ r j . A state of backup

server j is considered as (q), where q ∈ {0, 1}; q = 1 and 0 mean that backup

server j is in the active and failed states, respectively. A system state of the

whole group consists of the substates of |H | classes of functions and backup

server, which is expressed by Γ = (m1, n1, o1, p1, · · · ,m|H |, n|H |, o|H |, p|H |, q) ∈ U j ,

where U j denotes a set of all feasible states for the group containing backup

server j ∈ S.

This work shows the analyses for the case of |H | = 1 to present the basic

idea of estimating the unavailability of a function based on the queueing theory.

Then this work shows how to consider the case of |H | = 2 and the general case

of |H | based on the result of |H | = 1.

125

Chapter 6

6.2.1 In case of |H | = 1

This work discusses the case of |H | = 1, where each element in W has the same

average failure rate of λ and the same average repair time of µ−1. A system

state of the group containing backup server j ∈ S is expressed by (m, n, o, p, q).

Number of feasible system states

This work analyzes the number of feasible system states of group containing

backup server j ∈ S in two conditions. One is |L j | ≥ r j , and the other is

|L j | < r j .

When |L j | ≥ r j , we consider two cases; q = 1 in case 1 and q = 0 in case 2.

For case 1, there are two sub cases. In case 1a, o+ p ∈ [0, r j − 1]. Since backup

server j has remaining capacity to recover one or more failed functions, n = 0

in case 1a. When o + p = t ∈ [0, r j − 1], m = |L j | − t and there are t + 1

possibilities for the values of o and p. As a result, in case 1a, there are
r2j +rj
2

feasible states. In case 1b, o+ p = r j and m+ n = |L j | − r j . There are r j + 1 and

|L j | − r j + 1 possibilities for the values of o and p and for the values of m and

n, respectively. As a result, in case 1b, there are (r j + 1)(|L j | − r j + 1) feasible

states. Hence, there are
r2j +rj
2 + (r j + 1)(|L j | − r j + 1) feasible states in case 1.

For case 2, o + p = 0 and m + n = |L j |, which leads to |L j | + 1 feasible states.

Therefore, in total
r2j +rj
2 + (r j + 1)(|L j | − r j + 1) + |L j | + 1 feasible states exist

when |L j | ≥ r j .

When |L j | < r j , the backup server can recover all functions in L j at the

same time if it is not in the failed state. For the case of q = 1, m + o+ p = |L j |

and n = 0, which indicates
|Lj |

2+3|Lj |+2
2 feasible states. For the case of q = 0,

m + n = |L j | and o + p = 0, which leads to |L j | + 1 feasible states. Therefore,

in total
|Lj |

2+5|Lj |+4
2 feasible states exist when |L j | < r j .

System state transition for (m, n, o, p, q)

Figure 6.3 shows the state transition for state (m, n, o, p, q) ∈ U j , j ∈ S, where

nine types of states can be incoming to state (m, n, o, p, q), which can be out-

going to nine types of states. Table 6.1 describes the condition and transfer

rate for each type of transition, where l = min(n, r j). This work numbers the

126

Section 6.2

(m, n, o, p, q)

(m+1, n-1, o, p, q)

(m+1, n, o-1, p, q)

(m+1, n, o, p-1, q)

(m+1, n-1, o+1, p-1, q)

(m, n, o-1, p+1, q)

(m-1, n+1, o, p, q)

(m-1, n, o+1, p, q)

(m, n+o+p, 0, 0, q-1)

(m-1, n+1, o, p, q)

(m-1, n, o+1, p, q)

(m, n, o+1, p-1, q)

(m-1, n, o, p+1, q)

(m-1, n+1, o-1, p+1, q)

(m+1, n-1, o, p, q)

(m+1, n, o-1, p, q)

(m, n+o, 0, 0, q-1)

(m, n-o'-p', o', p', q+1)

(m, n-l, l, 0, q+1)

Figure 6.3: System state transition for (m, n, o, p, q).

Table 6.1: System state transition incoming to and outgoing from state

(m, n, o, p, q).
Direction Type, k State Transfer rate Condition

In
co

m
in
g
st
a
te
s

1 (m − 1, n + 1, o, p, q) (n + 1 + o)µ m ≥ 1 and o + p = rj

m ≥ 1 and q = 0

2 (m − 1, n, o + 1, p, q) (o + 1)µ m ≥ 1, o + 1 + p ≤ rj , and q = 1

3 (m − 1, n, o, p + 1, q) (p + 1)µ m ≥ 1, o + p + 1 ≤ rj , and q = 1

4 (m − 1, n + 1, o − 1, p + 1, q) (p + 1)µ m ≥ 1, o ≥ 1, and o + p = rj

5 (m + 1, n − 1, o, p, q) (m + 1)λ n ≥ 1

6 (m + 1, n, o − 1, p, q) (m + 1)λ n = 0 and o ≥ 1

7 (m, n, o + 1, p − 1, q) (o + 1)δ j p ≥ 1

8 (m, n − o′ − p′, o′, p′, q + 1) λ q = 0

9 (m, n + o, 0, 0, q − 1) µ p = 0 and q = 1

O
u
tg
o
in
g
st
a
te
s

10 (m + 1, n − 1, o, p, q) (n + o)µ n ≥ 1

11 (m + 1, n, o − 1, p, q) oµ n = 0 and o ≥ 1

12 (m + 1, n, o, p − 1, q) pµ n = 0 and p ≥ 1

13 (m + 1, n − 1, o + 1, p − 1, q) pµ n ≥ 1 and p ≥ 1

14 (m − 1, n + 1, o, p, q) mλ m ≥ 1 and o + p = rj

m ≥ 1 and q = 0

15 (m − 1, n, o + 1, p, q) mλ m ≥ 1, o + 1 + p ≤ rj , and q = 1

16 (m, n, o − 1, p + 1, q) oδ j o ≥ 1

17 (m, n + o + p, 0, 0, q − 1) λ q = 1

18 (m, n − l, l, 0, q + 1) µ q = 0

127

Chapter 6

types of states from 1 to 18. For type 8 of (m, n − o′ − p′, o′, p′, q + 1), there are

l + 1 states incoming to state (m, n, o, p, q) with considering the conditions of

o′ + p′ = l. Except for type 8, each type corresponds to one state incoming to

or outgoing from state (m, n, o, p, q).

This work explains the system state transition incoming to state (m, n, o, p, q),
as shown in Fig. 6.3 and Table 6.1, in details:

1. For types 1-4 and 9, the repair procedure is completed for a failed ele-

ment, function or backup server, that goes to the active state.

• For type 1, there are two situations. The first situation is that

a waiting function goes to the active state with the transfer rate

of (n + 1)µ; the second situation is that a function in the recovery

procedure goes to the active state with the transfer rate of oµ, and a

waiting function starts the recovery procedure. Therefore, the total

transfer rate for type 1 is (n + 1 + o)µ. Since there exists at least

one waiting function before the transition, or n + 1 > 0, we have a

condition of o + p = r j or q = 0 indicating that the backup server

cannot recover any more or any failed function. Note that the first

situation can occur in both conditions of o+ p = r j and q = 0, while

the second situation can only occur in the condition of o + p = r j .

Since there is at least one function that is in the active state after

the transition, we have a condition of m ≥ 1.

• For type 2, a function in the recovery procedure goes to the active

state with the transfer rate of (o + 1)µ, where no waiting function

exists. Since the total number of functions that are either recovered

or being recovered cannot exceed r j before the transition, we have

a condition of o + 1 + p ≤ r j . The backup server needs to be in

the active state to have a function in the recovery procedure, which

leads to a conditon of q = 1. These two conditions include the

condition of n = 0. Similar to type 1, there is a a condition of

m ≥ 1.

• For type 3, a function that is recovered goes to the active state

with the transfer rate of (p + 1)µ, where no waiting function exists.

128

Section 6.2

Similar to type 2, we have the conditions of o + p + 1 ≤ r j , q = 1,

and m ≥ 1.

• For type 4, a function that is recovered goes to the active state

with the transfer rate of (p + 1)µ, and a waiting function starts the

recovery procedure. Since there exists at least one waiting function

before the transition, or n+ 1 > 0, we have a condition of o+ p = r j .

Since there are at least one function that is in the active state and

at least one function that is in the recovery procedure after the

transition, we have the conditions of m ≥ 1 and o ≥ 1.

• For type 9, the backup server goes to the active state with the trans-

fer rate of µ, and o waiting functions start the recovery procedure.

Since there is no failed function that is recovered before and after

the transition, we have a condition of p = 0. Clearly, the backup

server is in the active state after the transition, which indicates a

condition of q = 1.

2. For types 5, 6, and 8, a failure occurs at an active element, function or

backup server, that goes to the failed state.

• For type 5, a function goes to the failed state with the transfer rate

of (m + 1)λ, and it starts the waiting procedure. Since there is at

lease one waiting function after the transition, we have a condition

of n ≥ 1, which includes the fact that the backup server cannot

recover any more or any failed function.

• For type 6, a function goes to the failed state with the transfer rate

of (m + 1)λ, and it starts the recovery procedure. This function

does not experience the waiting procedure, which indicates that no

waiting function that fails before the considered function exists, i.e.,

n = 0. Since there is at lease one function in the recovery procedure

after the transition, we have a condition of o ≥ 1.

• For type 8, the backup server goes to the failed state with the

transfer rate of λ, and all failed functions that are either recovered

or being recovered go back to the waiting procedure. Clearly, we

have a condition of q = 0.

129

Chapter 6

3. For type 7, a recovery procedure is completed for a failed function with

the transfer rate of (o+1)δ j . Since there exists at least one function that

is recovered after the transition, we have a condition of p ≥ 1.

The explanations for the state transition outgoing from state (m, n, o, p, q)
are similar to the above explanations for the incoming transitions; more specif-

ically, types 1-9 correspond to types 10-18, respectively.

Equilibrium States

Let P(m, n, o, p, q) be the probability that the system is in state (m, n, o, p, q) ∈
U j , j ∈ S. In the equilibrium state, the total incoming flows to state (m, n, o, p, q)
are equivalent to the total outgoing flows from state (m, n, o, p, q). The equilib-

rium equation for (m, n, o, p, q) is expressed by,

h1P(m − 1, n + 1, o, p, q) + h2P(m − 1, n, o + 1, p, q)+

h3P(m − 1, n, o, p + 1, q)+

h4P(m − 1, n + 1, o − 1, p + 1, q)+

h5P(m + 1, n − 1, o, p, q) + h6P(m + 1, n, o − 1, p, q)+

h7P(m, n, o + 1, p − 1, q) + h9P(m, n + o, 0, 0, q − 1)+

h8
l∑

o′=0

P(m, n − l, o′, l − o′, q + 1)

=

18∑
k=10

hk P(m, n, o, p, q), (6.2)

where hk , k ∈ [1, 18], equals the transfer rate of type k if the conditions of type

k are satisfied and 0 otherwise. The total probability of all states equals one,

which indicates an equation as,∑
(m,n,o,p,q)∈Uj

P(m, n, o, p, q) = 1. (6.3)

By solving the multiple equations, which contain the equilibrium equations

for all states and the equation that the sum of all state probabilities equals

one, we obtain the equilibrium-state probability of each system state.

130

Section 6.2

Table 6.2: System state transition incoming to and outgoing from state

(m1, n1, o1, p1,m2, n2, o2, p2, q).
Direction Type State Transfer rate Further condition

In
c
o
m
in

g
st
a
te

s

1-1 (m1 − 1, n1 + 1, o1, p1,m2, n2, o2, p2, q) (n1 + 1)µ1 + o1µ1
n1+1

n1+1+n2
m1 ≥ 1

1-2 (m1, n1, o1, p1,m2 − 1, n2 + 1, o2, p2, q) (n2 + 1)µ2 + o2µ2
n2+1

n1+n2+1
m2 ≥ 1

1-3 (m1 − 1, n1, o1 + 1, p1,m2, n2 + 1, o2 − 1, p2, q) (o1 + 1)µ1
n2+1

n1+n2+1
m1 ≥ 1 and o2 ≥ 1

1-4 (m1, n1 + 1, o1 − 1, p1,m2 − 1, n2, o2 + 1, p2, q) (o2 + 1)µ2
n1+1

n1+1+n2
m2 ≥ 1 and o1 ≥ 1

2-1 (m1 − 1, n1, o1 + 1, p1,m2, n2, o2, p2, q) (o1 + 1)µ1 m1 ≥ 1

2-2 (m1, n1, o1, p1,m2 − 1, n2, o2 + 1, p2, q) (o2 + 1)µ2 m2 ≥ 1

3-1 (m1 − 1, n1, o1, p1 + 1,m2, n2, o2, p2, q) (p1 + 1)µ1 m1 ≥ 1

3-2 (m1, n1, o1, p1,m2 − 1, n2, o2, p2 + 1, q) (p2 + 1)µ2 m2 ≥ 1

4-1 (m1 − 1, n1 + 1, o1 − 1, p1 + 1,m2, n2, o2, p2, q) (p1 + 1)µ1
n1+1

n1+1+n2
m1 ≥ 1 and o1 ≥ 1

4-2 (m1, n1, o1, p1,m2 − 1, n2 + 1, o2 − 1, p2 + 1, q) (p2 + 1)µ2
n2+1

n1+n2+1
m2 ≥ 1 and o2 ≥ 1

4-3 (m1 − 1, n1, o1, p1 + 1,m2, n2 + 1, o2 − 1, p2, q) (p1 + 1)µ1
n2+1

n1+n2+1
m1 ≥ 1 and o2 ≥ 1

4-4 (m1, n1 + 1, o1 − 1, p1,m2 − 1, n2, o2, p2 + 1, q) (p2 + 1)µ2
n1+1

n1+1+n2
m2 ≥ 1 and o1 ≥ 1

5-1 (m1 + 1, n1 − 1, o1, p1,m2, n2, o2, p2, q) (m1 + 1)λ1 n1 ≥ 1

5-2 (m1, n1, o1, p1,m2 + 1, n2 − 1, o2, p2, q) (m2 + 1)λ2 n2 ≥ 1

6-1 (m1 + 1, n1, o1 − 1, p1,m2, n2, o2, p2, q) (m1 + 1)λ1 o1 ≥ 1

6-2 (m1, n1, o1, p1,m2 + 1, n2, o2 − 1, p2, q) (m2 + 1)λ2 o2 ≥ 1

7-1 (m1, n1, o1 + 1, p1 − 1,m2, n2, o2, p2, q) (o1 + 1)δ j p1 ≥ 1

7-2 (m1, n1, o1, p1,m2, n2, o2 + 1, p2 − 1, q) (o2 + 1)δ j p2 ≥ 1

8 (m1, n1 − o
′
1 − p′1, o

′
1, p
′
1,m2, n2 − o

′
2 − p′2, o

′
2, p
′
2, q + 1) λB

j

9 (m1, n1 + o1, 0, 0,m2, n2 + o2, 0, 0, q − 1) µB
j

1
l9

O
u
tg

o
in

g
st
a
te

s

10-1 (m1 + 1, n1 − 1, o1, p1,m2, n2, o2, p2, q) n1µ1 + o1µ1
n1

n1+n2
n1 ≥ 1

10-2 (m1, n1, o1, p1,m2 + 1, n2 − 1, o2, p2, q) n2µ2 + o2µ2
n2

n1+n2
n2 ≥ 1

10-3 (m1 + 1, n1, o1 − 1, p1,m2, n2 − 1, o2 + 1, p2, q) o1µ1
n2

n1+n2
o1 ≥ 1 and n2 ≥ 1

10-4 (m1, n1 − 1, o1 + 1, p1,m2 + 1, n2, o2 − 1, p2, q) o2µ2
n1

n1+n2
o2 ≥ 1 and n1 ≥ 1

11-1 (m1 + 1, n1, o1 − 1, p1,m2, n2, o2, p2, q) o1µ1 o1 ≥ 1

11-2 (m1, n1, o1, p1,m2 + 1, n2, o2 − 1, p2, q) o2µ2 o2 ≥ 1

12-1 (m1 + 1, n1, o1, p1 − 1,m2, n2, o2, p2, q) p1µ1 p1 ≥ 1

12-2 (m1, n1, o1, p1,m2 + 1, n2, o2, p2 − 1, q) p2µ2 p2 ≥ 1

13-1 (m1 + 1, n1 − 1, o1 + 1, p1 − 1,m2, n2, o2, p2, q) p1µ1
n1

n1+n2
n1 ≥ 1 and p1 ≥ 1

13-2 (m1, n1, o1, p1,m2 + 1, n2 − 1, o2 + 1, p2 − 1, q) p2µ2
n2

n1+n2
n2 ≥ 1 and p2 ≥ 1

13-3 (m1 + 1, n1, o1, p1 − 1,m2, n2 − 1, o2 + 1, p2, q) p1µ1
n2

n1+n2
p1 ≥ 1 and n2 ≥ 1

13-4 (m1, n1 − 1, o1 + 1, p1,m2 + 1, n2, o2, p2 − 1, q) p2µ2
n1

n1+n2
p2 ≥ 1 and n1 ≥ 1

14-1 (m1 − 1, n1 + 1, o1, p1,m2, n2, o2, p2, q) m1λ1 m1 ≥ 1

14-2 (m1, n1, o1, p1,m2 − 1, n2 + 1, o2, p2, q) m2λ2 m2 ≥ 1

15-1 (m1 − 1, n1, o1 + 1, p1,m2, n2, o2, p2, q) m1λ1 m1 ≥ 1

15-2 (m1, n1, o1, p1,m2 − 1, n2, o2 + 1, p2, q) m2λ2 m2 ≥ 1

16-1 (m1, n1, o1 − 1, p1 + 1,m2, n2, o2, p2, q) o1δ j o1 ≥ 1

16-2 (m1, n1, o1, p1,m2, n2, o2 − 1, p2 + 1, q) o2δ j o2 ≥ 1

17 (m1, n1 + o1 + p1, 0, 0,m2, n2 + o2 + p2, 0, 0, q − 1) λB
j

18 (m1, n1 − o
′
1, o
′
1, 0,m2, n2 − o

′
2, o
′
2, 0, q + 1) µB

j
1

l18

131

Chapter 6

Estimate unavailability of function

For state (m, n, o, p, q) ∈ U j , j ∈ S, there are n+o functions that are unavailable.

The average number of unavailable functions in the group is computed by∑
(m,n,o,p,q)∈Uj

(n + o)P(m, n, o, p, q). For types 14 and 15, the transition outgoing

from state (m, n, o, p, q) to its corresponding state indicates that a function

becomes unavailable with the rate of mλ. For type 17, the transition indicates

that a backup server becomes to fail and p functions become unavailable with

the rate of λ. Hence, per unite time,
∑
(m,n,o,p,q)∈Uj

(mλ + pqµ)P(m, n, o, p, q)
functions become unavailable. Therefore, by using Little’s formula [116], the

average unavailable time of function i ∈ L j is expressed by,

Ti =

∑
(m,n,o,p,q)∈Uj

(n + o)P(m, n, o, p, q)∑
(m,n,o,p,q)∈Uj

(mλ + pqλ)P(m, n, o, p, q)
. (6.4)

Similarly, the average available time of function i in the group is expressed by,

T ′i =

∑
(m,n,o,p,q)∈Uj

(m + p)P(m, n, o, p, q)∑
(m,n,o,p,q)∈Uj

[(n + o + p)µ + oδ j)]P(m, n, o, p, q)
. (6.5)

Based on (6.4) and (6.5), we obtain the unavailability of function i ∈ L j, j ∈
S, by using (6.1).

6.2.2 In case of |H | = 2

This work discusses the case that there are two classes of average failure rate;

a system state of a group is expressed by (m1, n1, o1, p1,m2, n2, o2, p2, q). Sec-

tion 6.2.1 indicates that one key point of the queueing analysis is to specify

the condition and transfer rate for each type of transition of a state, which is

presented as Table 6.1 for the case of |H | = 1. This work shows how to achieve

this point in the case of |H | = 2 by using the result of |H | = 1.

State (m1, n1, o1, p1,m2, n2, o2, p2, q) can be viewed as state (m, n, o, p, q), where

m = m1 + m2, n = n1 + n2, o = o1 + o2, and p = p1 + p2. The types of transi-

tion in the case of |H | = 2 are the same with those in Table 6.1 for the case

of |H | = 1. The conditions of a type of transition for state (m, n, o, p, q) in

Table 6.1 are included in the conditions of the same transition type for state

(m1, n1, o1, p1,m2, n2, o2, p2, q). Now, for each transition type, a change of func-

tion state in each of its corresponding situations can occur at different classes

132

Section 6.2

of functions, which leads to several possible states. Based on the state column

in Table 6.1, this work specifies each possible state, the corresponding transfer

rate, and the further conditions in addition to those in Table 6.1 for each type

of transition incoming to or outgoing from state (m1, n1, o1, p1,m2, n2, o2, p2, q).

Table 6.2 shows the possible states, transfer rate, and further conditions

for all types of transition for state (m1, n1, o1, p1,m2, n2, o2, p2, q), where λBj and

µBj denote the average failure rate and average repair rate of backup server j,
respectively. The transition of type 8 corresponds to l8 states, where l8 is the

number of combinations of o′1, p′1, o′2, and p′2 with satisfying the conditions of

o′1 + p′1 ≤ n1, o′2 + p′2 ≤ n2, and o′1 + o′2 + p′1 + p′2 = l. For the transition of

type 9 with state (m1, n1+o1, 0, 0,m2, n2+o2, 0, 0, q−1), when the backup server

becomes active, the system state is outgoing to one of the l9 states with the

form of (m1, n1 + o1 − o′1, o
′
1, 0,m2, n2 + o2 − o′2, o

′
2, 0, q), where l9 is the number

of combinations of o′1 and o′2 with satisfying the conditions of o′1 + o′2 ≤ r j ,

o′1 ≤ n1+ o1, o′2 ≤ n2+ o2, and, when o′1+ o′2 < r j , n1+ o1− o′1+ n2+ o2− o′2 = 0.

Similarly, for the transition of type 18, state (m1, n1, o1, p1,m2, n2, o2, p2, q) is

outgoing to one of the l18 states with the form of (m1, n1 − o′1, o
′
1, 0,m2, n2 −

o′2, o
′
2, 0, q + 1), where l18 is the number of combinations of o′1 and o′2 with

satisfying the conditions of o′1 + o′2 = l, o′1 ≤ n1, and o′2 ≤ n2.

This work takes the transition of type 1 for state (m1, n1, o1, p1,m2, n2, o2, p2, q)
in Table 6.2 as an example to explain in details. There are two situations for

the transition of type 1-1 with state (m1−1, n1+1, o1, p1,m2, n2, o2, p2, q). In the

first situation, one of the n1 + 1 functions becomes active, which indicates that

the state is outgoing to state (m1, n1, o1, p1,m2, n2, o2, p2, q) with the rate of (n1+
1)µ1. In the second situation, where one of the o1 functions becomes active, one

of waiting functions is randomly chosen to start the recovery procedure, which

leads to two cases of states which state (m1 − 1, n1 + 1, o1, p1,m2, n2, o2, p2, q) is

outgoing to. In one case, a function in class 1 starts the recovery procedure and

the state is outgoing to state (m1, n1, o1, p1,m2, n2, o2, p2, q). In the other case,

a function in class 2 starts the recovery procedure and the state is outgoing to

state (m1, n1+1, o1−1, p1,m2, n2−1, o2+1, p2, q). Therefore, the transfer rate that

the state is outgoing to (m1, n1, o1, p1,m2, n2, o2, p2, q) is (n1+1)µ1+o1µ1
n1+1

n1+1+n2
,

where n1+1
n1+1+n2

is the probability that the function starting the recovery proce-

dure in the second situation is in class 1. For the transition of type 1-3 with

133

Chapter 6

state (m1 − 1, n1, o1 + 1, p1,m2, n2 + 1, o2 − 1, p2, q), when one of the o1 + 1 func-

tions becomes active, if one of the n1 functions starts the recovery procedure,

the state is outgoing to state (m1, n1 − 1, o1 + 1, p1,m2, n2 + 1, o2 − 1, p2, q); oth-

erwise, the state is outgoing to state (m1, n1, o1, p1,m2, n2, o2, p2, q). Therefore,

the transfer rate that the state is outgoing to (m1, n1, o1, p1,m2, n2, o2, p2, q) is

(o1 + 1)µ1
n2+1

n1+n2+1
, where n2+1

n1+n2+1
is the probability that the function starting

the recovery procedure is in class 2. The transitions of types 1-2 and 1-4 are

similar to the transitions of types 1-1 and 1-3, respectively.

Based on the condition and transfer rate for each type of transition, we ob-

tain the state probability for (m1, n1, o1, p1,m2, n2, o2, p2, q) ∈ U j, j ∈ S, through

the same technique introduced in Section 6.2.1. By applying (6.4) and (6.5)

for each class of functions, we obtain the unavailability of each function in a

group.

Similarly, we can deal with the general case of |H | by adopting the above

procedure. In the general case, the average unavailable and available times of

function i ∈ L j, j ∈ S, with class h ∈ H are computed by,

Ti =

∑
Γ∈Uj
(nh + oh)P(Γ)∑

Γ∈Uj
(mhλh + phqλBj)P(Γ)

(6.6)

and

T ′i =

∑
Γ∈Uj
(mh + ph)P(Γ)∑

Γ∈Uj
[(nh + oh + ph)µh + ohδ j)]P(Γ)

, (6.7)

respectively.

6.3 Heuristic algorithm

This work introduces a heuristic algorithm based on SA [91] (see Algorithm 11)

to solve the UASBA problem. Let Dinit, Dterm, and ρ denote three given

parameters in the SA algorithm, where Dinit > Dterm > 0 and 0 < ρ < 1;

D represents a running variable to indicate the “temperature” in SA. At the

beginning of SA algorithm, D = Dinit and a feasible solution consisting of

xi j, i ∈ F, j ∈ S is randomly set; the maximum unavailability among functions

in each feasible solution is computed by the approach provided in Section 6.2.

134

Section 6.3

Then, in each iteration, D = ρD and a new feasible solution is generated by

applying a random change to the existing solution. If the objective value of

new solution is less than that of the existing one, the new solution is accepted

and replaces the existing one; otherwise, the new solution is accepted with a

probability, which depends on the difference between the objective values of

new and existing solutions and the value of D. As a result, the SA algorithm

can avoid a local minimum solution. The algorithm is terminated when D ≤
Dterm.

Algorithm 11: Simulated annealing (SA)

Input: λh and µh, h ∈ H, for function i ∈ F and backup server j ∈ S,

δ j , Dinit, Dterm, and ρ

Ouput: xi j , Qi, and J
Set D = Dinit

Randomly generate feasible solution of xi j

Compute Qi and J for xi j

while D > Dterm do
Set D = ρD
Generate new feasible solution of x′i j

Compute Q′i and J′ for x′i j

Set xi j = x′i j , Qi = Q′i, and J = J′ with a probability of min(1, d),

where d = e(
J−J ′

D)

end

This work analyzes the computational time complexity of SA algorithm.

It takes O(|F | |S |) to generate a feasible solution. Given a feasible solution,

as introduced in Section 6.2, this work creates and solves the multiple linear

equations for each group to obtain the maximum unavailability. Consider the

maximum number of feasible states, or the maximum number of variables in

multiple equations, among all groups as O(A); A = r2 in the case of |H | = 1,

where r = max j∈S r j . The computational time complexity of creating the mul-

tiple equations for a group is O(A). Solving the multiple equations for a group

takes O(A2) when the Gauss-Seidel algorithm [117] is adopted. Therefore, com-

puting the maximum unavailability for a given solution takes O(A2 |S |), which

is the computational time complexity for each iteration of the SA algorithm.

135

Chapter 6

For the approximation performance of SA algorithm, there is a tradeoff be-

tween the number of iterations and the accuracy of solution. A more accurate

solution can be obtained by increasing the number of iterations, or increasing

the value of ρ.

6.4 Numerical results

This work first introduces a conventional model as a baseline model. Then

this work compares the proposed model with the baseline model in terms of

the maximum unavailability among functions. The performance dependencies

on the backup server capacity, failure rate, average repair time, and average

recovery time are evaluated. This work uses Intel Core i7-7700 3.60 GHz 4-

core CPU, 32 GB memory through the evaluations.

6.4.1 Baseline model

Without comprehensively considering the failure, repair, recovery, and waiting

behaviors of functions and backup servers, the conventional backup alloca-

tion models with shared protection are not explicitly aware of unavailability.

Instead of considering the function unavailability directly, the work in [19] pre-

sented a survivability-aware backup allocation model, which is considered as

the baseline model.

In the baseline model, element k ∈ W with class h ∈ H is associated with a

failure probability, which is considered as αk =
µ−1
h

µ−1
h
+λ−1

h

. Let Λ ⊆ F denote a set

of failed functions. The survivability for a backup allocation, which is denoted

by K, is defined as the probability that the protection for all functions in Λ

succeed. The baseline model aims to find the backup allocation that maximizes

the survivability.

As studied in [19], the survivability is separately considered for each con-

nected component, which is either a group containing functions and the pre-

assigned backup server or a single function. Let C denote the set of all con-

nected components; Ku represents the survivability of connected component

u ∈ C. For the connected component of group containing backup server j ∈ S,

Ku = α jΠi∈Lj (1 − αi) + (1 − α j)
∑
Λ∈Lj :|Λ|≤rj Πi′∈Λαi′Πi∈Lj\Λ(1 − αi). For the con-

136

Section 6.4

nected component of single function i ∈ F, Ku = 1−αi. The overall survivability

is computed by, K = Πu∈CKu.

This work solves the baseline model by using the SA algorithm introduced

in Section 6.3, where the objective is changed to maximize the overall sur-

vivability and d is modified to e(
K ′−K
D). After obtaining the result of backup

allocation, the exact maximum unavailability among functions is computed by

the approach provided in Section 6.2.

6.4.2 Experiment Setup

A network with 100 middleboxes, or |F | = 100, is considered in the experi-

ments. The number of backup servers is considered as |S | = 20. Each result

is an average over 500 trials, in each of which this work randomly selects two

integers from the range of [1, M] as the values of c j and r j , j ∈ S, respectively,

with considering the condition of c j ≥ r j , where M denotes the upper bound

of range. Similarly, the average recovery time of δ−1j on backup server j ∈ S
is randomly set within a range of [L, N] in each trial, where L and N denote

the lower and upper bounds of range, respectively. This work sets Dinit = 107,

Dterm = 10−5, and ρ = 0.99 for the SA algorithm.

According to the studies in [22], the median and 95th percentile of time

between two adjacent failures for devices in a network are 104 and 106 [s],

respectively; the median and 95th percentile of repair time are 103 and 105 [s],

respectively. In the experiments in [20], the recovery time on a backup server

varies from 30 to 102 [s]. In the evaluations, the parameters are set with

refereeing the above investigations.

6.4.3 Evaluation for |H | = 1

Figure 6.4 shows the maximum unavailabilities obtained by the proposed and

baseline models for different values of upper bound of capacity range of backup

servers, where λ = 10−4, µ−1 = 103, and the range of δ−1j , j ∈ S, is considered as

[30, 102]. This work observes that, as the value of M increases, the maximum

unavailability obtained by the proposed model decreases. This is because,

with a larger value of r j, j ∈ S, a protected function can have less probability

to be in the waiting procedure. Compared to the baseline model, the proposed

137

Chapter 6

unavailability-aware model reduces the maximum unavailability 9% in average.

3.0E-02

3.5E-02

4.0E-02

4.5E-02

5.0E-02

9 11 13 15 17

JB

JP

Upper bound of capacity range, M

Proposed model

Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.4: Comparison among maximum unavailabilities obtained by different

models for different values of M.

Table 6.3 shows the computation times of proposed and baseline models to

obtain the results shown in Fig. 6.4. The computation time of proposed model

increases as the value of M increases, which fits the theoretical analyses in

Section 6.3. The results observe that the computation time of proposed model

is 13 times longer in average than that of baseline model. However, since it is

much smaller than the investigated time between two adjacent failures, repair

time, and recovery time, the proposed model can be acceptable in practical

applications in terms of the computation time.

Table 6.3: Computation time [s] to obtain results shown in Fig. 6.4.

M Proposed model Baseline model

9 1.288 0.133

11 1.531 0.129

13 1.834 0.135

15 2.098 0.139

17 2.390 0.143

Figure 6.5 shows the dependency of maximum unavailabilities obtained by

138

Section 6.4

the proposed and baseline models on the average failure rate, where M = 15,

µ−1 = 103, and the range of δ−1j , j ∈ S, is considered as [30, 102]. As the

average failure rate increases, the maximum unavailabilities of both models

increase. The proposed model reduces the maximum unavailability 11% in

average compared to the baseline model.

1.0E-03

1.0E-02

1.0E-01

2.0
E-05

4.0
E-05

6.0
E-05

8.0
E-05

1.0
E-04

JP

JB

Average failure rate, 𝜆 [1/unit time]

Proposed model

Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.5: Dependency of maximum unavailabilities obtained by different

models on average failure rate.

Figure 6.6 compares the maximum unavailabilities obtained by the pro-

posed and baseline models for different values of average repair time, where

M = 15, λ = 10−4, and the range of δ−1j , j ∈ S, is considered as [30, 102]. This

work observes that the maximum unavailabilities of both models increase as

the average repair time increases. On one hand, a larger average repair time

for a backup server leads to a higher probability that a failed function is in the

waiting procedure. On the other hand, the time that a failed function occupies

a backup server becomes long as the average repair time of a function increases.

As a result, the probability that a failed function is in the waiting procedure

becomes high. The proposed model reduces the maximum unavailability 10%

in average compared to the baseline model.

Figure 6.7 shows the comparison among maximum unavailabilities obtained

by the proposed and baseline models for different values of upper bound of re-

pair time range, where the lower bound is set to L = 30, M = 15, λ = 10−4,

and µ−1 = 103. This work observes that, as the value of N increases, it takes

139

Chapter 6

1.0E-02

1.0E-01

1.0E+00

1.0
E+03

2.0
E+03

3.0
E+03

4.0
E+03

5.0
E+03

JB
JP

Average repair time, 𝜇"# [unit time]

Proposed model
Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.6: Comparison among maximum unavailabilities obtained by different

models for different values of average repair times.

longer time to recover a failed function, which increases the maximum unavail-

abilities for both models. In this evaluation, compared to the baseline model,

the proposed model reduces the maximum unavailability 12% in average.

6.4.4 Evaluation for |H | = 2

This work considers that there are two typical types of elements in the network.

The first type of element has a higher probability to fail and needs a longer

time to be repaired than the second type of element, or λ1 ≥ λ2 and µ−11 ≥ µ
−1
2 .

For example, an element with the first type may have been used for a longer

time than that with the second type. For elements in W , let v denote the ratio

of the number of elements with the first type to the total number of elements.

This work sets λ2 = 2 × 10−5, µ−12 = 103, and M = 10; the range of δ−1j , j ∈ S,
is considered as [30, 102].

Figure 6.8 compares the maximum unavailabilities obtained by the pro-

posed and baseline models for different values of v, where λ1 = 10−4 and

µ−11 = 5 × 103. As the value of v increases, the maximum unavailabilities for

both models increase. This is because the more the number of functions with

the higher failure rate of λ1 is, the more the average number of failed functions

is, which increases the average waiting time for a failed function to start the

140

Section 6.4

3.0E-02

3.5E-02

4.0E-02

4.5E-02

5.0E-02

40 60 80 100 120

JP
JB

Upper bound of recovery time range,
N [unit time]

Proposed model
Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.7: Comparison among maximum unavailabilities obtained by different

models for different values of N.

recovery procedure. In this evaluation, compared to the baseline model, the

proposed model reduces the maximum unavailability 25% in average.

Table 6.4 shows the computation times of proposed and baseline models to

obtain the results shown in Fig. 6.8. This work observes that, as v increases

from 0.1, the computation time for each model increases. After one point, or

v = 0.5, as v increases, the computation time for each model decreases. This

is because, as discussed in Section 6.3, the computation time of each iteration

in SA is proportional to the number of feasible system states, which achieves

the maximum value when the difference between the numbers of functions in

the two types is minimized.

Table 6.4: Computation time [s] to obtain results shown in Fig. 6.8.

v Proposed model Baseline model

0.1 12.853 0.557

0.3 25.943 0.694

0.5 28.770 0.735

0.7 24.670 0.657

0.9 11.935 0.516

141

Chapter 6

1.0E-02

1.0E-01

1.0E+00

0.1 0.3 0.5 0.7 0.9

JB

JP

Ratio of first type element, v

Proposed model

Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.8: Comparison among maximum unavailabilities obtained by different

models for different values of v.

Figure 6.9 presents the maximum unavailabilities obtained by the proposed

and baseline models for different values of λ1, where µ−11 = 5 × 103 and v =

0.5. This work observes that, as the value of λ1 increases, in average more

failed functions need to be recovered on the backup server, which increases

the average waiting time for a failed function. As a result, the maximum

unavailabilities for both models increase. The proposed model reduces the

maximum unavailability 22% in average compared to the baseline model.

Figure 6.10 compares the maximum unavailabilities obtained by the pro-

posed and baseline models for different values of µ−11 , where λ1 = 10−4 and

v = 0.5. This work observes that, as the value of µ1 increases, with the similar

reasons provided for Fig. 6.6, the probability that a failed function is in the

waiting procedure becomes high, which increases the maximum unavailability

obtained by each of the two models. Compared to the baseline model, the

maximum unavailability is reduced 20% in average by adopting the proposed

model.

In addition, this work observes that the benefit of proposed model is more

significant when |H | = 2 compared to the results obtained for |H | = 1, where

the average reduction is increased from 11% to 22%. This is because, as |H |
increases, the number of combinations, or feasible solutions, for backup alloca-

tion increases, and the difference between two feasible solutions in terms of the

142

Section 6.4

1.0E-02

1.0E-01

1.0E+00

2.0
E-05

4.0
E-05

6.0
E-05

8.0
E-05

1.0
E-04

JP

JB

Average failure rate for first type
element, 𝜆! [1/unit time]

Proposed model

Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.9: Comparison among maximum unavailabilities obtained by different

models for different values of λ1.

1.0E-02

1.0E-01

1.0E+00

1.0
E+03

2.0
E+03

3.0
E+03

4.0
E+03

5.0
E+03

JB
JP

Average repair time for first type
element, 𝜇!"! [unit time]

Proposed model
Baseline model

M
ax

im
um

 u
na

va
ila

bi
lit

y

Figure 6.10: Comparison among maximum unavailabilities obtained by differ-

ent models for different values of µ−11 .

143

Chapter 6

maximum unavailability can increase; the proposed model which is explicitly

aware of the middlebox unavailability can have a greater possibility to find a

better solution than the baseline model.

6.5 Chapter summary

This chapter proposed an unavailability-aware backup allocation model with

the shared protection for middleboxes with comprehensively considering het-

erogeneous procedures of functions and backup servers. The backup resources

on a backup server can be shared by multiple functions. The proposed model

aims to find the backup allocation for all functions to minimize the maximum

unavailability among functions. This work developed an analytical approach

based on the queueing theory to estimate the unavailability of middleboxes

for a given backup allocation. The heterogeneous failure, repair, recovery, and

waiting procedures of functions and backup servers, which lead to several dif-

ferent states for each function and for the whole system, are considered in the

queueing approach. This work analyzed what all system states are, how they

transit from/to each other, and what the equilibrium-state probability of each

system state is. Based on the analytical approach, the SA heuristic was intro-

duced to solve the backup allocation problem. The performance dependencies

on the backup server capacity, failure rate, average repair time, and average re-

covery time were evaluated. This work compared the proposed model with the

baseline model. The results observed that, compared to the baseline model,

the proposed unavailability-aware model reduces the maximum unavailability

16% in average in our examined scenarios.

144

Chapter 7

Master and slave controller

assignment model

This thesis proposes a master and slave controller assignment model against

multiple controller failures with considering propagation latency between con-

trollers and switches. A part of the work in this chapter was presented in [71].

In the proposed model, a set of controllers, each of which has a capacity and

failure probability, is assigned to each switch to satisfy its survivability guar-

antee. The propagation latency for a switch depends on the assigned con-

trollers, their failure probabilities, and the selection for the master controller

in each failure case. This work defines the average-case expected propagation

latency, the worst-case expected propagation latency, and the expected number

of switches within a propagation latency bound, as three different objectives to

be optimized, which lead to three different problems. Given a set of assigned

controllers, the master controller in each failure case is determined by adopt-

ing a policy-based approach. This work proves that a low latency first policy

(LLFP), in which a controller with lower propagation latency has a higher

priority to be used as a master controller, achieves the optimal objectives in

the considered problems.

This work formulates the proposed master and slave controller assignment

model with different goals as three MILP problems. This work analyzes the

considered problems by proving that all the three problems are NP-complete

and by showing how they are different from a classical weighted bipartite b-

145

Chapter 7

matching (WBM) problem. Based on the analyses, this work introduces a

greedy algorithm with polynomial time complexity. This work shows that

one of the considered objective functions is a monotone submodular function;

the introduced algorithm achieves a 1/2-approximation for the case without

the survivability guarantee constraint. This work presents the competitive

evaluation in terms of the objective values and the computation times among

the results obtained by the proposed model with different approaches and a

baseline. The numerical results reveal that the proposed model obtains the

optimal objective value with the computation time about 102 times shorter

than that of the baseline by adopting the policy-based approach with LLFP.

Furthermore, when the problem size is small, the introduced heuristic obtains

the solution, where the difference between the obtained objective value and

the optimal value is less than 14% of the optimal value, with the computation

time about 103 times shorter than that of solving the MILP problem. As the

problem size increases, the heuristic provides a better objective value than the

MILP problem even when the admissible computation time to solve the MILP

problem is set to 103 times longer than that required by the heuristic.

The rest of this chapter is organized as follows. Section 7.1 presents the

proposed optimization model for the master and slave controller assignment

problems. Section 7.2 analyzes the optimality of LLFP. The proof of NP-

completeness is provided in Section 7.3. Section 7.4 introduces the heuristic

algorithm. The performance of proposed model is evaluated in Section 7.5.

Section 7.6 summaries this chapter.

7.1 Optimization model

Consider a set of switches and a set of controllers, which are denoted by S and

C with the sizes of |S | and |C |, respectively, in an SDN. Given the placement of

switches and controllers in the SDN, the propagation latency between switch

i ∈ S and controller j ∈ C is represented by li j . The maximum number of

switches hosted by controller j is represented by c j . The failure probability

of controller j is represented by p j ; this work assumes that each controller

fails independently. Let qi denote the acceptable unavailability of switch i.
Table 7.1 summarizes the frequently used notations.

146

Section 7.1

Table 7.1: List of frequently used notations in Chapter 7.
Notations Meaning

li j
Given parameter indicating propagation latency between

switch i ∈ S and controller j ∈ C

qi Given parameter indicating acceptable unavailability of switch i

bi Given parameter indicating propagation latency bound of switch i

p j Given parameter indicating failure probability of controller j

c j Given parameter indicating capacity of controller j

yi j
Given parameter indicating priority of controller j to become

master controller of switch i

xi j
Binary variable indicating whether

controller j is assigned to switch i

7.1.1 Assign master and slave controllers to switch

Let xi j, i ∈ S, j ∈ C, denote a binary decision variable; xi j is set to one if

controller j is assigned to switch i and zero otherwise. In this model, a set

of controllers, which is denoted by Ci = { j | j ∈ C : xi j = 1} ⊆ C, is assigned

to switch i to satisfy the requirement of acceptable unavailability, before any

failure occurs. Let H represent a set of pairs of (i, j), i ∈ S, j ∈ C, each of which

does not allow xi j = 1. For example, if the connection between switch i and

controller j is not satisfied with the management requirements, such as the

admissible delay of connection setup, xi j = 1 is not allowed.

At any time, one of controllers in Ci works as the master controller to

control switch i ∈ S; others are slave controllers. Once the existing master

controller fails, one of the available slave controllers becomes the new master

controller to promptly recover the control. Switch i becomes unavailable when

all controllers in Ci fail. The survivability guarantee of switch i is expressed

by,

∏
j∈Ci

p j ≤ qi . (7.1)

Figure 7.1 presents an example of master and slave controller assignment

with considering the given parameters shown in Fig. 7.1(a). From Fig. 7.1(b),

for each controller, the number of assigned switches does not exceed its capacity

of c j ; for each switch, a set of controllers is assigned such that the survivability

guarantee in (7.1) is satisfied.

147

Chapter 7

1 2 3

1 10 104 104

2 103 105 10

3 102 105 104

4 104 104 105

5 10 103 105

6 10 10 105

𝑗
𝑖

𝑙$%	[𝜇𝑠], 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶

𝑗 1 2 3

𝑐% 4 6 8
𝑝% 10-3 10-2 10-1

𝑐% , 𝑝% , 𝑗 ∈ 𝐶

𝑖 1 2 3 4 5 6

𝑞$ 10-4 10-4 10-3 10-4 10-4 10-3

𝑞$,𝑖 ∈ 𝑆

(a) Values of given parame-

ters

1 2 3 4 5

1

Switches

Controllers

6

2 3

Assignment of 𝐶"

(b) Assignment of Ci

1

1

Switches

Controllers
2 3

Master controller Slave controller

1 2 3

(c) Master and slave controllers

for switch 1

Figure 7.1: Example of master and slave controller assignment.

7.1.2 Priority policy

Given an assignment of Ci, i ∈ S, the master controller in each failure case is

determined by adopting a policy-based approach. Let yi j , i ∈ S, j ∈ C, denote

a given parameter, which indicates that controller j is with the yi jth highest

priority over all the controllers in C to become the master controller of switch

i, where 1 ≤ yi j ≤ |C |. The controllers in Ci are sorted in an increasing order

of yi j . At any time, the first, i.e., highest-prioritized, available controller in Ci

works as a master controller to hold the workloads on switch i; other available

controllers in Ci are slave controllers. When the existing master controller in

Ci fails, switch i is transferred to the first, i.e., highest-prioritized, available

slave controller in Ci, which becomes the new master controller for switch i.
Since the master controller in each failure case is automatically decided based

on the policy before any failure occurs, a prompt recovery is provided.

Considering that, at any time, the propagation latency for a switch should

be as low as possible to achieve a high network performance in terms of data

transmission, this work adopts LLFP as the priority policy, which means that

148

Section 7.1

a controller with lower propagation latency has a higher priority to be used

as a master controller, or yik < yi j , if lik ≤ li j , k, j(k , j) ∈ Ci. Figure 7.1(c)

specifies the master and slave controllers for switch 1 based on LLFP and the

assignment shown in Fig. 7.1(b) when all the three controllers are available;

the number on each link indicates the priority of each controller. Later, this

work will show that LLFP achieves the optimal objectives in the considered

problems compared to other policies.

7.1.3 Minimize average-case expected propagation la-

tency

Each switch is only controlled by its master controller. The expected propa-

gation latency for switch, LE
i , is defined by,

LE
i =

∑
j∈C:xi j=1

li j

∏
k∈C:xik=1,yik<yi j

pk(1 − p j)

 , ∀i ∈ S. (7.2)

Equation (7.2) indicates that controller j ∈ Ci, i ∈ S becomes the master

controller for switch i if all the controllers that are with smaller orders than

controller j in Ci fail simultaneously and controller j does not fail. The average-

case expected propagation latency, which is denoted by A, is defined by,

A =
1

|S |

∑
i∈S

LE
i . (7.3)

The master and slave controller assignment to minimize the average-case

expected propagation latency (MinAEL) problem is obtained as the following

optimization problem.

min
1

|S |

∑
i∈S

LE
i (7.4a)

s.t. (7.2) (7.4b)∑
i∈S

xi j ≤ c j, ∀ j ∈ C (7.4c)∑
j∈C

xi j log p j ≤ log qi, ∀i ∈ S (7.4d)

xi j = 0, ∀(i, j) ∈ H (7.4e)

149

Chapter 7

xi j ∈ {0, 1}, ∀i ∈ S, j ∈ C. (7.4f)

The objective function in (7.4a) minimizes the average-case expected propaga-

tion latency between switches and controllers. Equation (7.4c) indicates that

controller j ∈ C controls at most c j number of switches. This work takes the

logarithmic for both sides of (7.1) to express it as a linear form in (7.4d).

Let Ni = {ni j |ni j, j ∈ C}, i ∈ S, where ni j ∈ [0, 1] is the number of assign-

ments between controller j and switch i; Ni is a set of Ni. If Ni is given, we

obtain the expected propagation latency for switch i ∈ S, LE
i , by using (7.2)

that is expressed by LE
i = Ω(Ni). Let tni j

i j , i ∈ S, j ∈ C, ni j ∈ [0, 1], denote a

binary variable that is set to one if there is ni j assignment between switch i
and controller j, and zero otherwise. In other words, t0i j = 0 and t1i j = 1 when

controller j is assigned to switch i; t0i j = 1 and t1i j = 0 when controller j is not

assigned to switch i. Equations (7.4a)-(7.4f) are transformed to the following

optimization problem.

min
1

|S |

∑
i∈S

LE
i (7.5a)

s.t. (7.4c) − (7.4f) (7.5b)
1∑

ni j=0

tni j
i j = 1, ∀i ∈ S, j ∈ C (7.5c)

xi j =

1∑
ni j=0

ni j t
ni j
i j , ∀i ∈ S, j ∈ C (7.5d)

LE
i ≥

∑
Ni∈Ni

[
Ω(Ni)

∏
j∈C

tni j
i j

]
, ∀i ∈ S (7.5e)

tni j
i j ∈ {0, 1}, ∀i ∈ S, j ∈ C, ni j ∈ [0, 1]. (7.5f)

Equation (7.5c) indicates that controller j ∈ C is either assigned to switch

i ∈ S or not assigned to i. Equation (7.5d) shows the relationship between xi j

and tni j
i j , ni j ∈ [0, 1]. Equation (7.5e) indicates that assignment Ni ∈ Ni, i ∈ S,

is selected to obtain LE
i if all corresponding tni j

i j , j ∈ C, of Ni are determined

to be 1.

This work expresses (7.5e) in a linear form by introducing some binary

variables, zNi

ik , Ni ∈ Ni, i ∈ S, k ∈ [1, |C |], where zNi

i1 = tni1
i1 and zNi

ik = zNi

i,k−1tnik
ik if

150

Section 7.1

k > 1. Thus,
∏

j∈C tni j
i j = zNi

i |C |. The equation of zNi

ik = zNi

i,k−1tnik
ik is expressed as a

linear form in the following.

zNi

ik ≤ zNi

i,k−1, ∀Ni ∈ Ni, i ∈ S, k ∈ [2, |C |] (7.6a)

zNi

ik ≤ tnik
ik , ∀Ni ∈ Ni, i ∈ S, k ∈ [2, |C |] (7.6b)

zNi

ik ≥ zNi

i,k−1 + tnik
ik − 1, ∀Ni ∈ Ni, i ∈ S, k ∈ [2, |C |] (7.6c)

zNi

ik ∈ {0, 1}, ∀Ni ∈ Ni, i ∈ S, k ∈ [1, |C |]. (7.6d)

Equations (7.5a)-(7.5f) are transformed to the following MILP problem.

min
1

|S |

∑
i∈S

LE
i (7.7a)

s.t. (7.4c) − (7.4f), (7.5c), (7.5d), (7.5f), (7.6a) − (7.6d) (7.7b)

zNi

i1 = tni1
i1 , ∀Ni ∈ Ni, i ∈ S (7.7c)

LE
i ≥

∑
Ni∈Ni

[
Ω(Ni)z

Ni

i |C |

]
, ∀i ∈ S. (7.7d)

7.1.4 Minimize worst-case expected propagation latency

Sometimes, the worst expected propagation latency among all switches can be

a key metric for the network performance. The worst-case expected propaga-

tion latency among LE
i , i ∈ S, which is denoted by W , is given by,

W = max
i∈S

LE
i . (7.8)

The second assignment problem is considered to find an assignment of con-

trollers to switches that minimizes the worst-case expected propagation latency

(MinWEL), which is expressed as the following MILP problem.

min W (7.9a)

s.t. (7.4c) − (7.4f), (7.5c), (7.5d), (7.5f), (7.6a) − (7.6d),

(7.7c) (7.9b)

W ≥
∑

Ni∈Ni

[
Ω(Ni)z

Ni

i |C |

]
, ∀i ∈ S. (7.9c)

151

Chapter 7

7.1.5 Maximize expected number of switches within prop-

agation latency bound

Let bi denote a propagation latency bound for switch i ∈ S. The probabil-

ity that switch i ∈ S is within the propagation latency bound bi, which is

represented by Pi, is obtained by,

Pi =
∑

j∈C:xi j=1,li j≤bi

∏
k∈C:xik=1,yik<yi j

pk(1 − p j). (7.10)

Equation (7.10) sums the possibilities of all the cases where the propagation

latency between switch i ∈ S and its master controller is not greater than

bi. Therefore, the expected number of switches within a propagation latency

bound, J, is expressed by,

J =
∑
i∈S

Pi . (7.11)

Given Ni ∈ Ni, we obtain the probability that switch i ∈ S is within the

propagation latency bound bi by using (7.10) that is expressed as Pi = Γ(Ni).

By using the similar methods obtaining (7.7a)-(7.7d), this work expresses the

master and slave controller assignment to maximize the expected number of

switches within a propagation latency bound (MaxENS) problem as following

MILP problem.

max
∑
i∈S

Pi (7.12a)

s.t. (7.4c) − (7.4f), (7.5c), (7.5d), (7.5f), (7.6a) − (7.6d),

(7.7c) (7.12b)

Pi ≤
∑

Ni∈Ni

[
Γ(Ni)z

Ni

i |C |

]
, ∀i ∈ S. (7.12c)

7.2 Analysis for priority policy

Given an assignment of Ci = { j | j ∈ C : xi j = 1} for switch i ∈ S, let d ∈ D
denote a possible permutation for the controllers in Ci, where D with the size of

|D | = |Ci |! represents the set of all possible permutations. Each permutation in

152

Section 7.2

D represents a priority setting for yi j , where a controller with the lower order

has a higher priority to become as the master controller. This work provides

the following theorems to analyze the optimality of adopting the priority policy

of LLFP.

Theorem 10 The permutation satisfying that a controller with lower latency

is with a smaller order, or adopting LLFP, results in the minimum value of

LE
i among all permutations in D.

Proo f : This work first proves a necessary condition to maximize the value

of LE
i . Let d∗ denote the permutation achieving the minimum value of LE

i , or

d∗ = arg mind∈D LE
i . Suppose that there exists a pair of two controllers of j,

j′ ∈ Ci with li j < li j ′ and with the adjacent orders, where the order of controller

j is larger by one than that of controller j′, in permutation d∗. Let d′ represent

a permutation, where the orders of controllers j and j′ are switched and the

orders of other controllers are kept as the same with those in d∗.
According to (7.2), the values of LE

i with d∗ and d′ are computed as

LE∗
i = a+b[(1−p j ′)li j ′+p j ′(1−p j)li j]+c and LE′

i = a+b[(1−p j)li j+p j(1−p j ′)li j ′]+c,

respectively, where LE∗
i and LE′

i have the same parts of a, b, and c, which are

related to other controllers. For example, b is the product of failure probabil-

ities of controllers whose orders are smaller than those of controllers j and j′.
Therefore, LE∗

i − LE′
i = b[(1− p j ′)li j ′ + p j ′(1− p j)li j − (1− p j)li j − p j(1− p j ′)li j ′] =

b(1 − p j ′)(1 − p j)(li j ′ − li j) > 0. It contradicts that d∗ = arg mind∈D LE
i . Hence,

for any pair of two adjacent controllers in permutation d∗, the one having a

lower latency is with a smaller order than the other. It indicates a necessary

condition that the controllers are sorted as a non-decreasing order of latency,

or with adopting LLFP, in permutation d∗.
Then this work shows that the necessary condition is also a sufficient con-

dition to minimize the value of LE
i . Since some controllers may have the same

latency, there can be multiple permutations satisfying this necessary condition,

but all of them result in the same value of LE
i based on the above analyses.

Therefore, a permutation with adopting LLFP leads to the minimum value of

LE
i . Theorem 10 is proved. �

Theorem 11 LLFP achieves the optimal objectives in the problems of Mi-

nAEL and MinWEL compared to other policies.

153

Chapter 7

Proo f : For a given priority policy, there is a permutation in D corre-

sponding to it. Based on Theorem 10, considering the objectives of MinAEL

and MinWEL, we easily obtain that LLFP achieves the optimal objectives in

MinAEL and MinWEL compared to other policies. �

Theorem 12 The permutation satisfying that a controller with the latency not

greater than the latency bound has a smaller order than another controller with

the latency greater than the latency bound, or with adopting LLFP, achieves

the maximum value of Pi among all permutations in D.

Proo f : Similar to the proof for Theorem 10, this work first proves a

necessary condition. Now, let d∗ represent the permutation achieving the

maximum value of Pi, or d∗ = arg maxd∈D Pi. Suppose that there exists a pair

of two adjacent controllers of j, j′ ∈ Ci ,where li j ≤ bi, li j ′ > bi, and the order

of controller j is larger by one than that of controller j′, in permutation d∗.
Let d′ represent a permutation, where the orders of controllers j and j′ are

switched and the orders of other controllers are kept as the same with those

in d∗.

According to (7.10), the values of Pi with d∗ and d′ are computed as P∗i =
a+bp j ′(1−p j)+c and P′i = a+b(1−p j)+c, respectively, where P∗i and P′i have the

same parts of a, b, and c; b is the product of failure probabilities of controllers

whose orders are smaller than those of controllers j and j′. Therefore, P∗i −P′i =
b(p j ′ − 1)(1 − p j) < 0. It contradicts that d∗ = arg maxd∈D Pi. Hence, we

obtain a necessary condition that, for any pair of two adjacent controllers in

permutation d∗, if the latency of one controller is not greater than the latency

bound and that of the other is greater than the latency bound, the one with

smaller latency has a smaller order than the other. In other words, for a

controller with the latency not greater than the latency bound, all controllers

having smaller orders must be with the latency not greater than the latency

bound.

Then this work shows that the necessary condition is also a sufficient con-

dition. For a permutation satisfying the necessary condition, switch i is within

the latency bound, if and only if there is at least one controller that is with

the latency not greater than the latency bound and does not fail. We obtain

154

Section 7.3

that Pi = 1−
∏

j∈Ci:li j≤bi p j , where
∏

j∈Ci:li j≤bi p j is the probability that all con-

trollers with the latency not greater than the latency bound fail, which is fixed

for given Ci. It indicates that, regardless of the exact order, all permutations

satisfying the necessary condition have the same value of Pi = 1−
∏

j∈Ci:li j≤bi p j ,

which is the maximum value.

Clearly, a permutation with adopting LLFP satisfies the necessary and

sufficient condition. Theorem 12 is proved. �

Theorem 13 LLFP achieves the optimal objective in the problem of MaxENS

compared to other policies.

Proo f : Based on Theorem 12, considering the objective of MaxENS, we

easily obtain that LLFP achieves the optimal objective in MaxENS compared

to other policies. �

7.3 NP-completeness

This work shows that all the three problems introduced in Section 7.1 are NP-

complete. The proof for the MaxENS problem is described below, which is

similar to the proofs for other two problems.

This work first considers a MaxENS without the survivability guaran-

tee (MaxENS-NSG) problem, where the constraint of survivability guarantee

in (7.1) is released from MaxENS. This work defines the decision version of

MaxENS-NSG problem as below:

Problem Given a set of switches of S and a set of controllers of C, is it

possible to find an assignment of controllers to switches so that the expected

number of switches within the propagation latency bound is no less than l?

Lemma 2 If two positive variables of a and b satisfy a × b = c, where c
is a constant, the value of a + b achieves the minimum value of 2

√
c when

a = b =
√

c.

Proo f : It can be easily proved considering the properties of function of

f (a) = a + c/a. �

155

Chapter 7

Theorem 14 The MaxENS-NSG decision problem is NP-complete.

Proo f : If a certificate of any instance of the MaxENS-NSG decision prob-

lem is given, we need to compute (7.12a) for verification. Based on the proof for

Theorem 12, the value of (7.12a) can be computed by
∑

i∈S(1 −
∏

j∈Ci:li j≤bi p j).

Therefore, for each switch, we check whether the latency between an assigned

controller and the switch is within the bound; if it is, we update the value

of (7.12a) by incorporating the failure probability of controller, which takes

O(|S | |C |) in total. As a result, we can verify whether a certificate of any

instance of the MaxENS-NSG decision problem has the expected number of

switches within the propagation latency bound no less than l in a polynomial

time of O(|S | |C |). Therefore, the MaxENS-NSG decision problem is NP.

Then, this work shows that PP, which is a known NP-complete prob-

lem [90], is reducible to the MaxENS-NSG decision problem.

This work constructs an instance of the MaxENS-NSG decision problem

from any instance of PP. An instance of PP consists of a multiset of positive

integers of G and the value of positive integer g ∈ G is represented by Ig.
An instance of the MaxENS-NSG decision problem is constructed with the

following algorithm, which performs in a polynomial time of O(|G |).

1) Set |S | = 2.

2) Set |C | = |G |. For each positive integer g ∈ G, there is a corresponding

controller j ∈ C with the failure possibility of p j = e−Ig .

3) For each controller j ∈ C, set c j = 1, which means that each controller

can control at most one switch.

4) Set li j ≤ bi, i ∈ S, j ∈ C, or the latency between any pair of switch

and controller satisfies the latency bound.

5) Set l = 2 − 2e
−

∑
g∈G Ig

2 = 2 − 2
√∏

j∈C p j .

Consider that a PP instance is a Yes instance. G is able to be partitioned

into two subsets of G1 and G2, and the sum of numbers in each subset is
∑
g∈G Ig
2 .

Define a MaxENS-NSG instance from the PP instance by using the above

described algorithm. In the MaxENS-NSG instance, the set of controllers of

156

Section 7.4

C is able to be partitioned into two subsets C1 and C2, which refer to G1 and

G2, respectively, and the product of failure probabilities of controllers in each

subset is e
−

∑
g∈G Ig

2 . By assigning C1 and C2 to the two switches, respectively,

we obtain the expected number of switches within the propagation latency

bound is 2 − 2e
−

∑
g∈G Ig

2 , which is not less than l. As a result, it is possible to

find an assignment of controllers to switches so that the expected number of

switches within the propagation latency bound is no less than l. Therefore,

the MaxENS-NSG instance is a Yes instance.

Conversely, consider that a MaxENS-NSG instance is a Yes instance. In the

Yes MaxENS-NSG instance, it is possible to find the assignment of C1 and C2

making the value of (7.12a) no less than l. Based on Lemma 2, the maximum

value of (7.12a), which can be expressed by 2 − (
∏

j∈C1
p j +

∏
j∈C2

p j), is l =

2 − 2
√∏

j∈C p j . It indicates that
∏

j∈C1
p j =

∏
j∈C2

p j = e
−

∑
g∈G Ig

2 . Therefore,

by referring to C1 and C2, we are able to partition G into two subsets G1

and G2 such that the two sums of numbers in the two subsets equal to each

other. Therefore, if the MaxENS-NSG instance is a Yes instance, then the PP

instance is a Yes instance.

Note that the above described algorithm transforms any PP instance into

a MaxENS-NSG instance in a polynomial time. This work confirmed that if a

PP instance is a Yes instance, then the corresponding MaxENS-NSG instance

is a Yes instance, and vice versa. This proves that PP, a known NP-complete

problem, is polynomial time reducible to the MaxENS-NSG decision problem.

Thus, the MaxENS-NSG decision problem is NP-complete. �

Theorem 15 The MaxENS problem is NP-complete.

Proo f : Given a certificate of any instance of MaxENS, we need com-

pute (7.4a) in addition to (7.12a) for verification, which requires O(|S | |C |).
Therefore, the MaxENS problem is NP.

Clearly, the MaxENS-NSG problem is a subset of the MaxENS problem

by setting qi = 1, ∀i ∈ S. Based on Theorem 14, the MaxENS problem is

NP-complete. �

By adopting the methods similar with the above proofs, we easily obtain

that both problems described in Sections 7.1.3 and 7.1.4 are NP-complete.

157

Chapter 7

7.4 Heuristic algorithm

A controller can be assigned to multiple switches, and a switch can have mul-

tiple controllers in the proposed model. It can be viewed as an extension of

classical WBM model. This section begins by introducing the WBM problem,

and then presents a polynomial-time greedy algorithm to solve the problems

described in Section 7.1.

7.4.1 Weighted bipartite b-matching problem

Consider an undirected bipartite graph G(V, E), where V is a set of nodes and

E is a set of edges. E consists of all the edges between two nodes that are

on different sides of G and are allowed to be connected. The WBM problem,

where the nodes on one side of G can be matched to several nodes on the other

side, is widely studied in computer science and economics, such as thesiss-

reviewers matching [118] and recommendation systems [119,120]. An instance

of matching the nodes on one side to the nodes on the other side is represented

by a subgraph of G′(V, E′), where E′ ⊆ E . Usually, the goal of WBM problem

is to find a subgraph G′ such that the total weight of the matched edges in

E′ is maximized or minimized with satisfying all constraints. The term of

b-matching means that the number of matched edges in E′ for node v ∈ V is

required to be in a range of [bLv , b
U
v] or [bLv ,∞), where bLv and bUv are always

given as two constants for node v.

In the proposed model, V = S ∪ C; E = {(i, j)|i ∈ S, j ∈ C : (i, j) < H}
consists of all the edges of (i, j), where switch i is allowed to be connected

with controller j, or (i, j) < H. The weight of each edge in E represents the

propagation latency between a switch in S and a controller in C. The matched

edges in E′ = {(i, j)|i ∈ S, j ∈ Ci} are determined by the master and slave

controller assignment. For each controller j ∈ C, the number of matched edges

is required to be in a range of [0, c j], which is the same with its capacity

constraint.

In addition to the above similarity, there are two main differences between

the considered problems and the classical WBM problem. Firstly, the objec-

tive in each considered problem is different with that of the WBM problem.

It has been known that the objective with minimizing or maximizing the total

158

Section 7.4

weight of matched edges in the WBM problem is a linear and modular func-

tion [86, 121]; the properties of objectives in the considered problems need to

be analyzed. Secondly, for each switch i ∈ S, the number of matched edges is

required to be in a range of [bLi ,∞), but different from other WBM problems,

such as those described in [118–120], bLi here is not a constant for switch i; it

depends on the survivability guarantee for switch i and the failure probabilities

of assigned controllers. While the WBM problem can be solved efficiently by

polynomial-time algorithms, such as the one presented in [122], all the three

considered problems are NP-complete; even a subproblem without the surviv-

ability guarantee, i.e., MaxENS-NSG, is NP-complete.

7.4.2 Lower-bound aware greedy weighted bipartite b-

matching algorithm

This work introduces a lower-bound aware greedy weighted bipartite b-matching

(LA-GWBM) algorithm (see Algorithm 12) that incrementally satisfies the sur-

vivability guarantees, or the lower bound of bLi , for all switches. Let U denote

a set of switches, in each of which the unavailability does not satisfy the surviv-

ability guarantee. Let T denote a set of controllers, each of which has remaining

capacity to hold at least one more switch. M ⊆ E represents a set of edges

which can be selected. Therefore, U = S, T = C, M = E , and E′ = ∅ at the be-

ginning of algorithm. The marginal gain in a corresponding objective function

by adding edge (i, j) ∈ M to E′ is defined as ∆[E′, (i, j)] = f [E′∪{(i, j)}]− f (E′),
where f represents the corresponding objective function, such as (7.3), (7.8),

and (7.11). LA-GWBM gives preference to the switches that do not satisfy

the survivability guarantees. In each iteration, LA-GWBM assigns controller

j ∈ T to switch i ∈ U, where matched edge (i, j) ∈ M leads to an optimal value

for the marginal gain of ∆[E′, (i, j)] in the corresponding objective function.

For example, when LA-GWBM is applied to solve the MaxENS problem, in

each iteration, this work selects edge (i, j) ∈ M by maximizing the value of

∆[E′, (i, j)] with considering the objective function of (7.11). After the assign-

ment, the selected edge (i, j) is deleted from M; switch i is deleted from U if

its survivability guarantee is satisfied, or
∑

j∈Ci
− log p j ≥ − log qi; controller j

is deleted from T and all edges connecting controller j are deleted from M if

159

Chapter 7

the capacity of controller j is used up, or c j = 0.

For MinAEL and MinWEL, as long as the survivability guarantee of a

switch is satisfied, no more additional controller is assigned to the switch to

achieve the objective value as low as possible. Therefore, LA-GWBM for

MinAEL and MinWEL terminates, if any one of U, T , and M becomes an

empty set. For MaxENS, as long as there exists a controller having remaining

capacity, the controller is assigned to switches that have not been matched to

it to obtain the objective value as great as possible. When U becomes empty,

LA-GWBM for MaxENS keeps assigning controller j ∈ T to switch i ∈ S with

the same greedy manner, where (i, j) ∈ M, until any of T and M becomes

empty.

7.4.3 Computational time complexity

The LA-GWBM algorithm sorts controllers for each switch to obtain yi j , i ∈ S,

j ∈ C, at the beginning of algorithm. The computational time complexity of

sorting |C | controllers for |S | times is O(|S | |C | log |C |). For a candidate edge

of (i, j) ∈ E , the values of ∆[E′, (i, j)] in terms of (7.3) or (7.8), and (7.11)

are obtained by computing (7.2), and (7.10), respectively. Through reusing

the past computation results, both computational time complexities of com-

puting (7.2) and (7.10) are O(|C |). In each iteration, the LA-GWBM algo-

rithm computes (7.2) or (7.10) at most |S | |C | times to select an optimal edge.

Equation (7.1) is also computed in each iteration, where the computational

time complexity is reduced from O(|C |) to O(1) by reusing the past compu-

tation results. Hence, the computational time complexity of each iteration

in the LA-GWBM algorithm is O(|S | |C |2). For each switch, the number of

required iterations is at most |C |, which leads to at most |S | |C | iterations in

the LA-GWBM algorithm. Therefore, the computational time complexity of

LA-GWBM algorithm is O(|S |2 |C |3).

7.4.4 Approximation performance

This work analyzes the approximation performance of LA-GWBM algorithm,

when it is used to solve the MaxENS problem. The analysis is related to

160

Section 7.4

the concepts of submodular function, p-system, and matroid; their detailed

definitions can be found in literatures, such as [86].

Let Θ(E′) denote the objective function of MaxENS. Based on Theorem 12,

given an assignment of E′ ∈ E , the expected number of switches within the

latency bound is computed by Θ(E′) =
∑

i∈S(1 −
∏

j∈C:(i, j)∈E ′,li j≤bi p j).

Theorem 16 The objective function of MaxENS, Θ(E′), is a monotone sub-

modular function.

Proo f : Firstly, it is easy to obtain that, for any E′ ⊆ E and (i, j) ∈ E \ E′,
∆[E′, (i, j)] = Θ[E′∪ {(i, j)}]−Θ(E′) ≥ 0. Hence, Θ(E′) is a monotone function.

Then, consider two arbitrary subsets, E′, E∗ ⊆ E , where E′ = E A∪ E B and

E∗ = E B ∪ EC; E A, E B, and EC are three disjoint sets. For switch i ∈ S and

E A, this work defines PA
i =

∏
j∈C:(i, j)∈EA,li j≤bi p j ; the same definition is applied

to E B and EC. We have,

Θ(E′) + Θ(E∗) =
∑
i∈S

(1 − PA
i PB

i) +
∑
i∈S

(1 − PB
i PC

i), (7.13)

Θ(E′ ∪ E∗) + Θ(E′ ∩ E∗) =
∑
i∈S

(1 − PA
i PB

i PC
i) +

∑
i∈S

(1 − PB
i). (7.14)

Therefore, we obtain,

Θ(E′) +Θ(E∗) −Θ(E′ ∪ E∗) −Θ(E′ ∩ E∗) =
∑
i∈S

PB
i (1 − PA

i)(1 − PC
i). (7.15)

Since PA
i , PB

i , and PC
i are in the range of [0, 1], (7.15) is with a non-negative

value. Hence, Θ(E′) is a submodular function.

Therefore, the objective function of MaxENS, Θ(E′), is a monotone sub-

modular function. �

Consider a special case of qi = 1, ∀i ∈ S, i.e., MaxENS-NSG. Then the

lower bound of bLi for each switch becomes 0; only the upper bound of capacity

constraint for each controller is considered. Several works, such as [86, 123],

show that a b-matching constraint, where each node v has a finite capacity, or

is associated with a range of [0, bUv], is a 2-system constraint. For the constraint

of MaxENS-NSG, where each controller has a range of [0, bUj], but each switch

has a range of [0,∞), this work provides the following theorem.

161

Chapter 7

Theorem 17 The constraint of MaxENS-NSG is a 1-system, or matroid, con-

straint.

Proo f : Let FNSG denote the family of feasible solutions for MaxENS-NSG.

Consider E′, E∗ ⊆ E as two solutions. This work will show that the pair of

(E, FNSG) forms a matroid.

First, this work show that the hereditary property of matroid is satisfied.

Clearly, an empty set is a feasible solution satisfying the cardinality constraint

of MaxENS-NSG. If E∗ is a feasible solution, or E∗ ∈ FNSG, and E′ ⊆ E∗, E′

must be a feasible solution, or E′ ∈ FNSG.

Then, this work shows that the exchange property of matroid is satisfied.

If E′ and E∗ are feasible solutions and |E∗ | > |E′|, there exists at least one

controller of j that is with the number of connected switches in E∗ at least

larger by one than that in E′; let i denote one of the additional connected

switches in E∗ for controller j. Since each switch has an infinite capacity,

adding edge (i, j) to E′ leads to another feasible solution, or ∃(i, j) ∈ E∗ \ E′

such that E′ ∪ {(i, j)} ∈ FNSG.

Therefore, (E, FNSG) is a matroid; Theorem 17 is proved. �

Theorem 18 For the special case of qi = 1, ∀i ∈ S, LA-GWBM achieves a

1/2-approximation of the optimal objective value.

Proo f : The work in [86] proves that a natural greedy algorithm maximiz-

ing a monotone submodular objective function achieves 1/(p+1)-approximation

for a p-system constraint. Therefore, based on Theorems 16 and 17, LA-

GWBM achieves 1/2-approximation of the optimal value for the special case.

�

When the survivability guarantee is considered, i.e., switch i ∈ S has a

positive (non-constant) lower bound of bLi , the family consisting of feasible so-

lutions of MaxENS is not an independence family [86], i.e., the hereditary prop-

erty of matroid is not satisfied. For this general case, the theoretical analysis

for the approximation guarantee of LA-GWBM becomes difficult. Section 7.5

will show that LA-GWBM performs much better than the lower bound of

1/2-approximation.

162

Section 7.5

7.5 Numerical results

In the numerical analysis, this work shows the optimal assignments for different

problems introduced in Section 7.1 with considering the same network. This

work considers an approach usually adopted in literature [33, 35] as a base-

line, where the order to connect controllers is determined by introducing some

decision variables instead of by adopting a policy-based approach. This work

compares the results from the proposed model and those from the baseline

in terms of the objective values and the computation time. For the proposed

model, this work also compares the results obtained by solving the MILP prob-

lem with those by running the introduced greedy algorithm. The performance

dependencies on the numbers of switches and controllers, the capacity and

failure probability of each controller, and the acceptable unavailability of each

switch are evaluated.

This work uses Intel Core i7-7700 3.60 GHz 4-core CPU with 32 GB mem-

ory to solve the MILP problems or run the heuristic algorithm. The MILP

problems are solved by the IBM(R) ILOG(R) CPLEX(R) Interactive Opti-

mizer with the version of 12.8 [88].

7.5.1 Optimal assignments for different problems

This work considers a network with the given information shown in Fig. 7.1(a)

, where a switch is allowed to be connected with any controller, i.e., H = ∅.
Table 7.2 shows the assigned controllers for each switch in optimal assign-

ments for the MinAEL problem, the MinWEL problem, the MaxENS problem

with considering propagation latency bound as 10 µs, and the MaxENS prob-

lem with considering propagation latency bound as 104 µs, respectively. This

work observes that the optimal assignments vary for different problems. The

difference between the optimal assignments of MinAEL problem and that of

MinWEL problem is the assigned controllers for switches 4 and 5, where con-

troller 1 can only be assigned to one of switches 4 and 5 due to its capacity

constraint. When controller 1 is assigned to any one of them, controllers 2

and 3 have to be assigned to the other to satisfy the survivability guarantee,

which leads to two options. For the option that controller 1 is assigned to

switch 5, the expected propagation latencies of switches 4 and 5 are 10800 µs

163

Chapter 7

and 9.99 µs, respectively. For the option that controller 1 is assigned to switch

4, the expected propagation latencies of switches 4 and 5 are 9990 µs and

1890 µs, respectively. As a result, the former option is chosen in the MinAEL

problem to obtain a less average-case propagation latency as 5404.995 µs, and

the latter option is chosen in the MinWEL problem to obtain a less worst-case

propagation latency as 9990 µs.

Table 7.2: Assigned controllers in optimal assignments for different problems.

Switch Assigned controllers

i MinAEL MinWEL
MaxENS

10 µs

MaxENS

104 µs

1 1, 3 1, 3 1, 3 1, 2, 3

2 1, 3 1, 3 1, 3 1, 3

3 1 1 2, 3 1, 3

4 2, 3 1 2, 3 1, 2

5 1 2, 3 1 2, 3

6 2, 3 2, 3 1, 2 2, 3

For the optimal assignments of MaxENS problem, this work observes that

controller 1 is assigned to switches 5 and 6, and switches 3 and 4, respectively,

when the propagation latency bounds are considered as 10 µs and 104 µs.

This is because the propagation latency between controller 1 and switch 3 or 4

exceeds 10 µs and that between controller 1 and switch 5 or 6 does not. Note

that controller 1 can be assigned to only two of switches 3, 4, 5, and 6 due

to the capacity constraint. As a result, controller 1 is assigned to switches

5 and 6 when the propagation latency bounds are considered as 10 µs. All

the propagation latencies between controller 1 and switches 3, 4, 5, and 6 are

within 104 µs, and assigning controller 1 to switches 3 and 4 increases the

objective value more than assigning it to any other two switches. Therefore,

controller 1 is assigned to switches 3 and 4 when the propagation latency bound

is considered as 104 µs.

Furthermore, this work observes that all the controllers are assigned to

switch 1 only for the MaxENS problem with 104 µs propagation latency bound.

Assigning controllers 1 and 3 to switch 1 satisfies its survivability guarantee.

164

Section 7.5

Further adding the assignment of controller 2 to switch 1, or replacing con-

troller 3 with controller 2, increases the objective values for the MinAEL prob-

lem and the MinWEL problem, and does not affect the objective value for

the MaxENS problem with 10 µs propagation latency bound. In other words,

these three problems achieve the optimal objective values by assigning con-

trollers 1 and 3 to switch 1. However, the objective value for the MaxENS

problem, which is a maximization problem, with 104 µs propagation latency

bound is increased by further assigning controller 2 to switch 1. As a result, all

the controllers are assigned to switch 1 to obtain the optimal objective value

for the MaxENS problem with 104 µs propagation latency bound.

7.5.2 Competitive evaluation

Baseline

Let D with |D | = |C |! represent the set of all permutations for all controllers.

A permutation, or order, in D corresponds to one priority setting of yi j and

vise versa. For the baseline, yi j is not given information based on LLFP, but

is determined by the selection of permutation from D. Let wid denote a binary

decision variable; wid = 1 if permutation d ∈ D is selected for switch i ∈ S and

zero otherwise. Given the assignment of Ni ∈ Ni and the order of d, the values

of LE
i and Pi are computed by (7.2) and (7.10), which are represented by the

functions of Ω(Ni, d) and Γ(Ni, d), respectively. Let vNid
i = zNi

i |C |wid denote a

binary variable introduced for linearization; vNid
i is set to one if the assignment

of Ni and the order of d are selected and zero otherwise. The MinAEL problem

with considering the baseline approach is formulated as the following MILP

problem.

min
1

|S |

∑
i∈S

LE
i (7.16a)

s.t. (7.4c) − (7.4f), (7.5c), (7.5d), (7.5f), (7.6a) − (7.6d), (7.7c) (7.16b)∑
d∈D

wid = 1, ∀i ∈ S (7.16c)

vNid
i ≤ zNi

i |C |, ∀i ∈ S, Ni ∈ Ni, d ∈ D (7.16d)

vNid
i ≤ wid, ∀i ∈ S, Ni ∈ Ni, d ∈ D (7.16e)

165

Chapter 7

vNid
i ≥ zNi

i |C | + wid − 1, ∀i ∈ S, Ni ∈ Ni, d ∈ D (7.16f)

LE
i ≥

∑
d∈D

∑
Ni∈Ni

[
Ω(Ni, d)v

Nid
i

]
, ∀i ∈ S (7.16g)

wid ∈ {0, 1}, ∀i ∈ S, d ∈ D (7.16h)

vNid
i ∈ {0, 1}, ∀i ∈ S, Ni ∈ Ni, d ∈ D. (7.16i)

Equation (7.16c) ensures that an order to connect the controllers is set for

each switch. Equations (7.16d)-(7.16f) linearize the product of zNi

i |C |wid. Equa-

tion (7.16g) computes the value of LE
i for given controller assignment and

connecting order. By following the similar methods, we can formulate the

MILP problems of MinWEL and MaxENS for the baseline.

Experiment setup

This work conducts 500 trials to compute the average values of objective values

and computation times. In each trial, the capacity of each controller, the failure

probability of each controller, the acceptable unavailability of each switch,

and the propagation latency between a switch and a controller, are randomly

selected from the ranges of [5, 20], [10−4, 10−1], [10−5, 10−1] and [10, 105] µs,

respectively. For MaxENS, the latency bound for each switch is randomly set

within the range of [10, 105] µs. Let η denote a ratio of the expected number

of switches within the bound to the total number of switches.

With unlimited admissible computation time

This work considers the unlimited admissible computation time to obtain the

optimal values by solving the MILP problems. The number of controllers is set

to four; the performance dependency on the number of switches is evaluated.

Note that, since the computation time of baseline to obtain the optimal solu-

tion for one trial is more than one day when |S | ≥ 18, the results of baseline

are only shown for |S | < 18.

Figure 7.2 presents the average-case expected propagation latency obtained

by the proposed model with different approaches and the baseline for different

numbers of switches. This work observes that the proposed model obtains

the same objective values as the baseline for MinAEL, which is held with

166

Section 7.5

Theorem 11. As the number of switches increases, the ratio of objective value

obtained by LA-GWBM to the optimal value increases; more specifically, it

increases from 1.00 to 1.06. This is because the number of feasible solutions

increases as the number of switches increases, which degrades the efficiency

of introduced greedy algorithm. In addition, since this work considers the

average-case expected propagation latency, the optimal values with different

numbers of switches are comparable.

1.9E+04

2.1E+04

2.3E+04

2.5E+04

6 12 18 24 30
Number of switches, |S|

Baseline
Proposed-MILP
Proposed-LA-GWBM

A
ve

ra
ge

-c
as

e
ex

pe
ct

ed

pr
op

ag
at

io
n

la
te

nc
y

[𝜇
s]

Figure 7.2: Comparison among average-case expected propagation latency ob-

tained by proposed model with different approaches and baseline.

Figure 7.3 compares the worst-case expected propagation latency obtained

by the proposed model with different approaches and the baseline for different

numbers of switches. It shows that the same objective values are obtained by

the proposed model and the baseline for MinWEL, which is kept with Theo-

rem 11. The ratio of objective value obtained by LA-GWBM to the optimal

value increases from 1.00 to 1.14 as the value of |S | increases. Introducing more

switches increases the probability to involve some relatively large propagation

latency. As a result, the worst-case expected propagation latency increases as

the number of switches increases.

Figure 7.4 presents the values of η obtained by the proposed model with

different approaches and the baseline for different numbers of switches; the

lower bound of Theorem 18 is also shown. This work observes that the nu-

merical result follows Theorem 13, where LLFP achieves the optimal value for

167

Chapter 7

4.2E+04

4.9E+04

5.6E+04

6.3E+04

7.0E+04

6 12 18 24 30
Number of switches, |S|

Baseline
Proposed-MILP
Proposed-LA-GWBM

W
or

st-
ca

se
 e

xp
ec

te
d

pr
op

ag
at

io
n

la
te

nc
y

[𝜇
s]

Figure 7.3: Comparison among worst-case expected propagation latency ob-

tained by proposed model with different approaches and baseline.

MaxENS compared to other policies. The objective value obtained by LA-

GWBM is in average 0.99 times less than the optimal value, which performs

better than the lower bound of Theorem 18 as shown in Fig. 7.4.

0.00

0.20

0.40

0.60

0.80

1.00

6 12 18 24 30
Number of switches, |S|

Baseline
Proposed-MILP

Proposed-LA-GWBM𝜂

Lower bound

Figure 7.4: Comparison among values of η obtained by proposed model with

different approaches and baseline.

Table 7.3 shows the computation times to obtain the results of Fig. 7.4.

For each model or approach, the computation time increases as the number of

switches increases. Benefiting from the theorems presented in Section 7.2, the

computation time of proposed model to obtain the optimal solution by solving

168

Section 7.5

the MILP problem is about 102 times less than that of baseline when |S | < 18;

the computation time of proposed model is within 20 [s] when 18 ≤ |S | ≤ 30,

but this work cannot obtain the optimal solution of baseline for one trial within

one day (= 8.64 × 104 [s]). This work observes that, for the proposed model,

the heuristic of LA-GWBM requires the computation time about 103 times

less than that required by solving the MILP problem.

Table 7.3: Computation times [s] to obtian results of Fig. 7.4.

|S | Baseline Proposed-MILP Proposed-LA-GWBM

6 53.13 1.90 × 10−1 6.50 × 10−4

12 1.14 × 102 5.51 2.17 × 10−3

18 ≥ one day 7.61 3.68 × 10−3

24 ≥ one day 13.55 5.34 × 10−3

30 ≥ one day 18.82 7.43 × 10−3

With limited admissible computation time

When the number of controllers increases, this work observes that the com-

putation times to obtain the optimal solutions by solving the MILP problems

increase greatly. Let T denote the admissible computation time. This work

compares the results obtained by different models and approaches within T [s],

where |S | is set to 12. Note that, for the baseline, there is no feasible solution

returned when |C | ≥ 7 and T = 60.

Figure 7.5 presents the average-case expected propagation latency obtained

by different models and approaches with different values of admissible com-

putation time for different numbers of controllers. When the problem size is

small, or |C | = 4, the proposed model and the baseline obtain the minimized

objective value within 5 and 60 [s], respectively, by solving the MILP prob-

lems. When |C | ≥ 5, the baseline with T = 60 always provides the largest

objective value. The objective values of proposed model by solving the MILP

problem with T = 5, 30, and 60 are larger than those obtained by running LA-

GWBM when |C | ≥ 5, 6, and 6, respectively. It indicates that, when the value

of |C | is small or the admissible computation time is large, solving the MILP

problem for the proposed model can achieve a smaller objective value; oth-

erwise, running the LA-GWBM heuristic can provide a better solution. This

169

Chapter 7

work observes that the objective value obtained by each approach for the pro-

posed model decreases as the number of controllers increases. This is because

more controllers can provide more choices with lower propagation latency for

switches. However, for the baseline with T = 60, the objective value increases

as the number of controllers increases. This is because the number of feasible

solutions searched within the same computation time greatly decreases as the

problem size increases for the baseline.

1.0E+04

2.4E+04

3.8E+04

5.2E+04

4 5 6 7 8
Number of controllers, |C|

Baseline, T = 60

Proposed-LA-GWBM
Proposed-MILP, T = 60
Proposed-MILP, T = 30

A
ve

ra
ge

-c
as

e
ex

pe
ct

ed

pr
op

ag
at

io
n

la
te

nc
y

[𝜇
s]

Proposed-MILP, T = 5

Figure 7.5: Comparison among average-case expected propagation latency ob-

tained by different models and approaches with limited admissible computation

time.

Figure 7.6 compares the worst-case expected propagation latency obtained

by different models and approaches with different values of T for different

numbers of controllers. This work obtains the similar observations to those

obtained from Fig. 7.5.

Figure 7.7 shows the values of η obtained by different models and ap-

proaches with different values of T for different numbers of controllers. As the

number of controllers increases, each switch can connect more controllers with

the propagation latency within the bound. Consequently, the objective value

obtained by each approach for the proposed model increases as the value of |C |
increases. However, since the number of searched feasible solutions decreases

as the problem size increases, the objective value obtained by the baseline with

T = 60 decreases.

170

Section 7.5

3.0E+04

5.1E+04

7.2E+04

9.3E+04

4 5 6 7 8
Number of controllers, |C|

Baseline, T = 60

Proposed-LA-GWBM
Proposed-MILP, T = 60
Proposed-MILP, T = 30

W
or

st-
ca

se
 e

xp
ec

te
d

pr
op

ag
at

io
n

la
te

nc
y

[𝜇
s]

Proposed-MILP, T = 5

Figure 7.6: Comparison among worst-case expected propagation latency ob-

tained by different models and approaches with limited admissible computation

time.

0.50

0.58

0.66

0.74

0.82

0.90

4 5 6 7 8
Number of controllers, |C|

Baseline, T = 60

Proposed-LA-GWBM
Proposed-MILP, T = 60
Proposed-MILP, T = 30

𝜂 Proposed-MILP, T = 5

Figure 7.7: Comparison among values of η obtained by different models and

approaches with limited admissible computation time.

171

Chapter 7

7.5.3 Performance dependency

This work focuses on the MinAEL problem with considering a network with

50 switches and 10 controllers, or |S | = 50 and |C | = 10, to investigate the

performance dependencies on other parameters. This work runs the heuris-

tic of LA-GWBM to solve such a large problem. Unless specifically stated,

parameters are set to the same as those in Section 7.5.2.

Figure 7.8 shows the dependencies on the controller capacity with different

values of switch acceptable unavailabilities and controller failure probabilities.

As the controller capacity increases, each switch can have a higher probability

to connect controllers with low latency, which reduces the expected propaga-

tion latency for each switch. This work observes that the average-case expected

propagation latency decreases as the acceptable unavailability of each switch

increases. This is because less controllers are assigned to each switch when

it has a less strict requirement for availability. On the contrary, for the same

availability requirement, more controllers are required to be assigned for a

switch when the failure probability of each controller increases. As a result,

the average-case expected propagation latency increases.

9.0E+03

1.0E+04

1.1E+04

1.2E+04

10 15 20 25 30
Upper bound of controller capacity

𝑝" ∈ 10&', 10&) ,
𝑞+ ∈ [10&-,6×10&0]

Av
er

ag
e-

ca
se

 e
xp

ec
te

d
pr

op
ag

at
io

n
la

te
nc

y
[𝜇

s]

𝑝" ∈ 10&', 10&) ,
𝑞+ ∈ [10&-,8×10&0]
𝑝" ∈ 10&', 10&) ,
𝑞+ ∈ [10&-, 10&)]
𝑝" ∈ 10&', 10&0 ,
𝑞+ ∈ [10&-,10&)]
𝑝" ∈ 10&', 10&4 ,
𝑞+ ∈ [10&-, 10&)]

Figure 7.8: Dependencies on controller capacity with different values of con-

troller failure probabilities and switch acceptable unavailabilities.

172

Section 7.6

7.6 Chapter summary

This chapter proposed a master and slave controller assignment model against

multiple controller failures with considering propagation latency between switches

and controllers. A set of controllers is assigned to each switch to guarantee its

survivability in a certain degree. This work considered three controller assign-

ment problems optimizing the average-case expected propagation latency, the

worst-case expected propagation latency, and the expected number of switches

within a propagation latency bound, respectively. Given assigned controllers,

the master controller in each failure case is determined based on LLFP, which

is proven as the optimal policy in this paper. This work formulated three

MILP problems for the proposed model with different goals. This work proved

that all the three problems are NP-complete. This work developed a heuris-

tic of LA-GWBM; this work showed that it provides a 1/2-approximation for

the case without the survivability guarantee constraint. The numerical results

revealed that the computation time of proposed model to obtain the optimal

solution is about 102 times shorter than that of the baseline. For a small size

problem, LA-GWBM obtains a solution, where the difference between the ob-

tained objective value and the optimal value is less than 14% of the optimal

value; its computation time is about 103 times shorter than that of solving

the MILP problem. For a large size problem, LA-GWBM provides a better

objective value than the MILP problem even setting the admissible computa-

tion time to solve the MILP problem as 103 times longer than that required

by LA-GWBM.

173

Chapter 7

Algorithm 12: Lower-bound aware greedy weighted bipartite b-

matching

Input: qi, ∀i ∈ S, c j, p j, ∀ j ∈ C, and E
Ouput: Ci and E′

Set U = S, T = C, and M = E
Set E′ = ∅
Set Ci = ∅ for each switch i ∈ U
while U , ∅, T , ∅, and M , ∅ do

Assign controller j ∈ T to switch i ∈ U, where (i, j) ∈ M has

optimal value for marginal gain, or set Ci ← Ci ∪ { j} and set

E′← E′ ∪ {(i, j)}
Set c j = c j − 1

Set M ← M \ {(i, j)}
if

∏
j∈Ci

p j ≤ qi then
Set U ← U \ {i}

end

if c j = 0 then
Set T ← T \ { j}
Set M ← M \ {(i′, j)|(i′, j) ∈ M}

end

end

For MinAEL and MinWEL: return

For MaxENS:

while T , ∅ and M , ∅ do
Assign controller j ∈ T to switch i ∈ S, where (i, j) ∈ M has optimal

value for marginal gain, or set Ci ← Ci ∪ { j} and set

E′← E′ ∪ {(i, j)}
Set c j = c j − 1

Set M ← M \ {(i, j)}
if c j = 0 then

Set T ← T \ { j}
Set M ← M \ {(i′, j)|(i′, j) ∈ M}

end

end

return

174

Chapter 8

Conclusions

While network virtualization brings a more flexible and efficient network, it

makes network management such as resource allocation more challenging. In

addition, the reliability of an environment with network virtualization has

become a major concern. This thesis studied five specific problems about

reliable resource allocation for network virtualization.

Firstly, this thesis proposed a primary and backup resource allocation

model that provides a probabilistic protection guarantee for VMs against mul-

tiple PM failures to minimize the required total capacity. A PM in the cloud

provider is used to accept both primary and backup resources. Considering the

probabilistic protection guarantee in a general-capacity cloud provider leads

to a nonlinear programing problem for primary and backup resource alloca-

tion against multiple failures. By adopting robust optimization with extensive

mathematical operations, this work formulated the primary and backup re-

source allocation problem as an MILP problem, where capacity fragmentation

is suppressed. This work proved that the primary and backup resource alloca-

tion problem is NP-hard by showing that the partition problem is reducible to

it. For the problem with a large size, this work introduced the SA heuristic.

Numerical results observed that about one-third of the total capacity is saved

in the examined cases by adopting the proposed model. In addition, this work

evaluated different models in dynamic scenarios, where both situations of the

requested VMs arriving and the existing VMs releasing are considered. The

results revealed that the proposed model outperforms the conventional models

175

Chapter 8

in terms of both blocking probability and resource utilization.

Secondly, this thesis proposed a backup computing and transmission re-

source allocation model for VNs with the probabilistic protection against mul-

tiple facility node failures. Both backup computing and transmission resource

allocations are considered to minimize the required backup computing capac-

ity. Considering that the required backup transmission capacity can affect the

required backup computing capacity, this work analyzed backup transmission

resource sharing with multiple facility node failures based on graph theory. A

heuristic algorithm was introduced to solve the problem. The results revealed

that the proposed model outperforms the baseline in terms of both feasibility

and required backup computing capacity. this work discussed the application

scenarios for the proposed model with different degrees of backup transmis-

sion resource sharing. With the analyses, a network operator can consider an

appropriate degree of backup transmission resource sharing based on practical

requirements.

Thirdly, this thesis proposed a backup resource allocation model for mid-

dleboxes with considering both failure probabilities of network functions and

backup servers. This work took the importance of functions into account by

defining a weighted unavailability for each function. This work aimed to find

an assignment of backup servers to functions where the worst weighted unavail-

ability is minimized. This work formulated the BRAMI problem as an MILP

problem. This work proved that the BRAMI problem is NP-complete. Two

heuristics based on the greedy approach and one based on the LPR approach

were introduced to solve the same optimization problem. The computational

time complexities of three heuristic algorithms were analyzed as polynomials.

This work analyzed the approximation performances of different heuristic al-

gorithms by providing several lower and upper bounds. This work compared

among the results obtained by different approaches and the lower and upper

bounds. The results showed the pros and cons of different approaches. When

the BRAMI problem becomes large, solving the MILP problem needs a long

computation time to obtain the optimal solution, but a relatively much shorter

time to obtain a solution comparable to the optimal one. Heuristic approaches

outperform the MILP approach when the admissible computation time is set

short. The CGA algorithm and the SGA algorithm provide less deviations and

176

Section 8.0

require shorter computation time than the LPR-TBR algorithm does. How-

ever, only the performance of LPR-TBR algorithm has an upper bound and

there is no approximation guarantee for the other two heuristics. Referring to

the analyses, a network operator can choose an appropriate approach according

to the requirements in specific application scenarios.

Fourthly, this thesis proposed an unavailability-aware backup allocation

model with the shared protection for middleboxes with comprehensively con-

sidering heterogeneous procedures of functions and backup servers. The backup

resources on a backup server can be shared by multiple functions. The pro-

posed model aims to find the backup allocation for all functions to minimize

the maximum unavailability among functions. This work developed an analyt-

ical approach based on the queueing theory to estimate the unavailability of

middleboxes for a given backup allocation. The heterogeneous failure, repair,

recovery, and waiting procedures of functions and backup servers, which lead

to several different states for each function and for the whole system, are con-

sidered in the queueing approach. This work analyzed what all system states

are, how they transit from/to each other, and what the equilibrium-state prob-

ability of each system state is. Based on the analytical approach, the heuristic

was introduced to solve the backup allocation problem. The performance de-

pendencies on the backup server capacity, failure rate, average repair time,

and average recovery time were evaluated. This work compared the proposed

model with the baseline model. The results observed that, compared to the

baseline model, the proposed unavailability-aware model reduces the maximum

unavailability 16% in average in the examined scenarios.

Fifthly, this thesis proposed a master and slave controller assignment model

against multiple controller failures with considering propagation latency be-

tween switches and controllers. A set of controllers is assigned to each switch

to guarantee its survivability in a certain degree. This work considered three

controller assignment problems optimizing the average-case expected propa-

gation latency, the worst-case expected propagation latency, and the expected

number of switches within a propagation latency bound, respectively. Given

assigned controllers, the master controller in each failure case is determined

based on LLFP, which is proven as the optimal policy in this thesis. This

work formulated three MILP problems for the proposed model with different

177

Chapter 8

goals. This work proved that all the three problems are NP-complete. This

work developed a heuristic of LA-GWBM; this work showed that it provides a

1/2-approximation for the case without the survivability guarantee constraint.

The numerical results revealed that the computation time of proposed model

to obtain the optimal solution is about 102 times shorter than that of the

baseline. For a small size problem, LA-GWBM obtains a solution, where the

difference between the obtained objective value and the optimal value is less

than 14% of the optimal value; its computation time is about 103 times shorter

than that of solving the MILP problem. For a large size problem, LA-GWBM

provides a better objective value than the MILP problem even setting the ad-

missible computation time to solve the MILP problem as 103 times longer than

that required by LA-GWBM.

The five proposed models studied five typical application scenarios of net-

work virtualization with considering the corresponding properties, respectively.

This work provided different approaches with theoretical analyses in each

model. A network operator or service provider can select appropriate models

with suitable approaches according to the specific requirements to achieve a

flexible, cost-effective, and dependable network virtualization environment.

For future works, there can be two directions to extend the proposed mod-

els. First, this thesis considers the resource allocation with deterministic de-

manding capacity. The network traffic may fluctuate over time. The demand-

ing capacity of a network element, such as a VM, network function, or switch,

can vary within a certain range. We can extend the proposed models with in-

corporating the traffic fluctuation. Second, this thesis studies the independent

failure in different models, such as assuming that all backup servers fail in-

dependently and each backup server fails independently of any function. The

other direction to extend the proposed models is to consider the correlated

failure, which frequently occurs among network elements.

178

Bibliography

[1] J. Turner and D. Taylor, “Diversifying the Internet,” in Proc. IEEE

Glob. Commun. Conf. (GLOBECOM), 2005, pp. 755–760.

[2] N. Chowdhury and R. Boutaba, “A survey of network virtualization,”

Comput. Netw., vol. 54, no. 5, pp. 862–876, 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”

ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177,

2003.

[4] Z. Cai, X. Li, and J. Gupta, “Heuristics for provisioning services to

workflows in XaaS clouds,” IEEE Trans. Services Comput., vol. 9, no. 2,

pp. 250–263, 2016.

[5] E. Oki, R. Kaneko, N. Kitsuwan, T. Kurimoto, and S. Urushidani,

“Cloud provider selection models for cloud storage services to satisfy

availability requirements,” in Proc. ICNC, 2017, pp. 244–248.

[6] S. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource

allocation algorithms for cloud computing clusters,” Performance Eval-

uation, vol. 81, pp. 20–39, 2014.

[7] M. Hadji and D. Zeghlache, “Minimum cost maximum flow algorithm

for dynamic resource allocation in clouds,” in Proc. IEEE CLOUD, 2012,

pp. 876–882.

[8] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and

R. Boutaba, “Network function virtualization: state-of-the-art and re-

179

Bibliography

search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.

236–262, 2016.

[9] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in Proc. IEEE INFOCOM,

2006, pp. 1–12.

[10] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-

work embedding algorithms with coordinated node and link mapping,”

IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, 2012.

[11] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane

for OpenFlow,” in Proc. INM/WREN, 2010, pp. 3–3.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,

R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:

a distributed control platform for large-scale production networks,” in

OSDI, vol. 10, 2010, pp. 1–6.

[13] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control: Sur-

vey, taxonomy, and challenges,” IEEE Commun. Surv. Tutor., vol. 20,

no. 1, pp. 333–354, 2018.

[14] P. Institute. 2016 cost of data center outages. [Online].

Available: https://www.vertivco.com/globalassets/documents/reports/

2016-cost-of-data-center-outages-11-11 51190 1.pdf

[15] I. Addo, S. Ahamed, and W. Chu, “A reference architecture for high-

availability automatic failover between paas cloud providers,” in Proc.

TSA, 2014, pp. 14–21.

[16] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Ma-

ciocco, M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,

“Rollback-recovery for middleboxes,” ACM SIGCOMM Comput. Com-

mun. Rev., vol. 45, no. 4, pp. 227–240, 2015.

[17] A. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho, “Resilience

support in software-defined networking: a survey,” Comput. Netw.,

vol. 92, pp. 189–207, 2015.

180

Bibliography

[18] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield, “Remus: High availability via asynchronous virtual ma-

chine replication,” in Proc. NSDI, 2008, pp. 161–174.

[19] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Optimizing

virtual backup allocation for middleboxes,” IEEE/ACM Trans. Netw.,

vol. 25, no. 5, pp. 2759–2772, 2017.

[20] T. Sato, F. He, E. Oki, T. Kurimoto, and S. Urushidani, “Implemen-

tation and testing of failure recovery based on backup resource sharing

model for distributed cloud computing system,” in Proc. IEEE 7th Int.

Conf. Cloud Netw. (CloudNet), 2018, pp. 1–3.

[21] W. Grover, Mesh-based survivable transport networks: options and

strategies for optical, MPLS, SONET and ATM networking. Prentice

Hall PTR, 2003.

[22] R. Potharaju and N. Jain, “Demystifying the dark side of the middle:

a field study of middlebox failures in datacenters,” in Proc. ACM IMC,

2013, pp. 9–22.

[23] B. Yang, Z. Xu, W. Chai, W. Liang, D. Tuncer, A. Galis, and G. Pavlou,

“Algorithms for fault-tolerant placement of stateful virtualized network

functions,” in Proc. IEEE ICC, May 2018, pp. 1–7.

[24] Y. Kanizo, O. Rottenstreich, I. Segall, and J. Yallouz, “Designing opti-

mal middlebox recovery schemes with performance guarantees,” IEEE

J. Sel. Areas Commun., vol. 36, no. 10, pp. 2373–2383, 2018.

[25] H. Moens and F. D. Turck, “Customizable function chains: Managing

service chain variability in hybrid NFV networks,” IEEE Trans. Netw.

Service Manag., vol. 13, no. 4, pp. 711–724, 2016.

[26] J. Fan, M. Jiang, O. Rottenstreich, Y. Zhao, T. Guan, R. Ramesh,

S. Das, and C. Qiao, “A framework for provisioning availability of NFV

in data center networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 10,

pp. 2246–2259, 2018.

181

Bibliography

[27] O. N. Foundation. Openflow switch specification ver-

sion 1.5.1 (protocol version 0x06). [Online]. Avail-

able: https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

[28] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller place-

ment in SDN,” IEEE Commun. Surv. Tutor., vol. 22, no. 1, pp. 472–503,

2019.

[29] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” in Proc. HotSDN, 2012, pp. 7–12.

[30] T. Yuan, X. Huang, M. Ma, and J. Yuan, “Balance-based SDN controller

placement and assignment with minimum weight matching,” in Proc.

IEEE ICC, 2018, pp. 1–6.

[31] D. Suh and S. Pack, “Low-complexity master controller assignment in

distributed SDN controller environments,” IEEE Commun. Lett., vol. 22,

no. 3, pp. 490–493, 2018.

[32] T. Hu, Z. Guo, J. Zhang, and J. Lan, “Adaptive slave controller assign-

ment for fault-tolerant control plane in software-defined networking,” in

Proc. IEEE ICC, 2018, pp. 1–6.

[33] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through

resilient controller placement for software defined networks,” in Proc.

IEEE Glob. Commun. Conf. (GLOBECOM), 2016, pp. 1–7.

[34] M. Tanha, D. Sajjadi, R. Ruby, and J. Pan, “Capacity-aware and delay-

guaranteed resilient controller placement for software-defined WANs,”

IEEE Trans. Netw. Service Manag., vol. 15, no. 3, pp. 991–1005, 2018.

[35] N. Perrot and T. Reynaud, “Optimal placement of controllers in a re-

silient SDN architecture,” in Proc. DRCN, 2016, pp. 145–151.

[36] R. Banner and A. Orda, “Designing low-capacity backup networks for

fast restoration,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

182

Bibliography

[37] F. He, T. Sato, B. C. Chatterjee, T. Kurimoto, S. Urushidani, and

E. Oki, “Robust optimization model for backup resource allocation in

cloud provider,” in Proc. IEEE ICC, 2018, pp. 1–6.

[38] F. He, T. Sato, and E. Oki, “Backup resource allocation model for vir-

tual networks with probabilistic protection against multiple facility node

failures,” in Proc. DRCN, Mar. 2019, pp. 1–6.

[39] M. Johnston, H. Lee, and E. Modiano, “A robust optimization approach

to backup network design with random failures,” in Proc. IEEE INFO-

COM, 2011, pp. 1512–1520.

[40] ——, “A robust optimization approach to backup network design with

random failures,” IEEE/ACM Trans. Netw., vol. 23, no. 4, pp. 1216–

1228, Aug. 2015.

[41] J. Chu and C. Lea, “Optimal link weights for ip-based networks sup-

porting hose-model vpns,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp.

778–788, 2009.

[42] M. Kodialam, T. Lakshman, J. Orlin, and S. Sengupta, “Preconfigur-

ing ip-over-optical networks to handle router failures and unpredictable

traffic,” IEEE J. Sel. Areas Commun., vol. 25, no. 5, pp. 934–948, 2007.

[43] I. Ouedraogo and E. Oki, “A green and robust optimization strategy for

energy saving against traffic uncertainty,” IEEE J. Sel. Areas Commun.,

vol. 34, no. 5, pp. 1405–1416, 2016.

[44] Y. Zhu, Y. Liang, Q. Zhang, X. Wang, P. Palacharla, and M. Sekiya, “Re-

liable resource allocation for optically interconnected distributed clouds,”

in Proc. IEEE ICC, 2014, pp. 3301–3306.

[45] ——, “Reliable resource allocation with weighted srgs for optically inter-

connected clouds,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM),

2014, pp. 2186–2191.

[46] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A

high availability framework for middleboxes,” in Proc. 4th Annu. Symp.

Cloud Comput., Oct. 2013.

183

Bibliography

[47] Y. Harchol, D. Hay, and T. Orenstein, “Ftvnf: Fault tolerant virtual

network functions,” in Proc. 2018 Symp. Archit. Netw. Commun. Syst.,

Jul. 2018.

[48] F. He, T. Sato, and E. Oki, “Optimization model for backup resource

allocation in middleboxes,” in Proc. IEEE 7th Int. Conf. Cloud Netw.

(CloudNet), Oct. 2018, pp. 1–6.

[49] ——, “Optimization model for backup resource allocation in middleboxes

with importance,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1742–

1755, Aug. 2019.

[50] F. He and E. Oki, “Unavailability-aware shared virtual backup allocation

model for middleboxes,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp.

(NOMS), Apr. 2020.

[51] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware mapping of

service function chains,” in Proc. IEEE INFOCOM, May 2017, pp. 1–9.

[52] J. Fan, M. Jiang, and C. Qiao, “Carrier-grade availability-aware mapping

of service function chains with on-site backups,” in Proc. IEEE IWQoS,

Jun. 2017, pp. 1–10.

[53] L. Qu, C. Assi, K. Shaban, and M. Khabbaz, “A reliability-aware net-

work service chain provisioning with delay guarantees in NFV-enabled

enterprise datacenter networks,” IEEE Trans. Netw. Service Manag.,

vol. 14, no. 3, pp. 554–568, Jul. 2017.

[54] L. Qu, M. Khabbaz, and C. Assi, “Reliability-aware service chaining

in carrier-grade softwarized networks,” IEEE J. Sel. Areas Commun.,

vol. 36, no. 3, pp. 558–573, Mar. 2018.

[55] L. Qu, C. Assi, M. Khabbaz, and Y. Ye, “Reliability-aware service func-

tion chaining with function decomposition and multipath routing,” IEEE

Trans. Netw. Service Manag., 2019.

[56] D. Li et al., “Availability aware VNF deployment in datacenter through

shared redundancy and multi-tenancy,” IEEE Trans. Netw. Service

Manag., vol. 16, no. 4, pp. 1651–1664, 2019.

184

Bibliography

[57] J. Kleinberg and E. Tardos, Algorithm design. Boston: Pearson Edu-

cation Inc., 2006.

[58] R. Graham, “Bounds for certain multiprocessing anomalies,” Bell Syst.

Tech. J., vol. 45, no. 9, pp. 1563–1581, Nov. 1966.

[59] ——, “Bounds on multiprocessing timing anomalies,” SIAM J. Appl.

Math., vol. 17, no. 2, pp. 416–429, Mar. 1969.

[60] J. Lenstra, D. Shmoys, and E. Tardos, “Approximation algorithms for

scheduling unrelated parallel machines,” Math. Program., Ser. A, vol. 46,

no. 1-3, pp. 259–271, Jan. 1990.

[61] D. Hochbaum and D. Shmoys, “Using dual approximation algorithms for

scheduling problems theoretical and practical results,” J. ACM, vol. 34,

no. 1, pp. 144–162, Jan. 1987.

[62] N. Bansal and M. Sviridenko, “The santa claus problem,” in Proc. 38th

Annu. ACM Symp. Theory Comput., May 2006, pp. 31–40.

[63] I. Bezakova and V. Dani, “Allocating indivisible goods,” ACM SIGecom

Exchanges, vol. 5, no. 3, pp. 11–18, Apr. 2015.

[64] B. Chatterjee, F. He, E. Oki, A. Fumagalli, and N. Yamanaka, “A span

power management scheme for rapid lightpath provisioning and releasing

in multi-core fiber networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2,

pp. 734–747, Apr. 2019.

[65] Y. Lai, A. Ali, M. Hossain, and Y. Lin, “Performance modeling and

analysis of TCP and UDP flows over software defined networks,” J. Netw.

Comput. Appl., vol. 130, pp. 76–88, Mar. 2019.

[66] R. Gouareb et al., “Virtual network functions routing and placement for

edge cloud latency minimization,” IEEE J. Sel. Areas Commun., vol. 36,

no. 10, pp. 2346–2357, 2018.

[67] S. Agarwal et al., “VNF placement and resource allocation for the sup-

port of vertical services in 5G networks,” IEEE/ACM Trans. Netw.,

vol. 27, no. 1, pp. 433–446, 2019.

185

Bibliography

[68] F. Malandrino et al., “Reducing service deployment cost through VNF

sharing,” IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2363–2376, 2019.

[69] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “Resilience of SDNs

based on active and passive replication mechanisms,” in Proc. IEEE

Glob. Commun. Conf. (GLOBECOM), Dec. 2013, pp. 2188–2193.

[70] E. Spalla, D. Mafioletti, A. Liberato, G. Ewald, C. Rothenberg, L. Ca-

margos, R. Villaca, and M. Martinello, “Ar2c2: Actively replicated con-

trollers for SDN resilient control plane,” in Proc. IEEE/IFIP Netw. Oper.

Manag. Symp. (NOMS), Apr. 2016, pp. 189–196.

[71] F. He, T. Sato, and E. Oki, “Master and slave controller assignment

model against multiple failures in software defined network,” in Proc.

IEEE ICC, May 2019, pp. 1–6.

[72] F. Ros and P. Ruiz, “Five nines of southbound reliability in software-

defined networks,” in Proc. 3rd Workshop Hot Topics Softw. Defined

Netw., Aug. 2014, pp. 31–36.

[73] ——, “On reliable controller placements in software-defined networks,”

Comput. Commun., vol. 77, pp. 41–51, Mar. 2016.

[74] B. Killi and S. Rao, “Optimal model for failure foresight capacitated con-

troller placement in software-defined networks,” IEEE Commun. Lett.,

vol. 20, no. 6, pp. 1108–1111, Apr. 2016.

[75] B. Killi et al., “Capacitated next controller placement in software defined

networks,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3, pp. 514–

527, 2017.

[76] B. Killi and S. Rao, “Towards improving resilience of controller place-

ment with minimum backup capacity in software defined networks,”

Comput. Netw., vol. 149, pp. 102–114, Feb. 2019.

[77] C. Pham, D. Nguyen, N. Tran, K. Nguyen, and M. Cheriet, “Dynamic

controller/switch mapping in virtual networks service chains,” in Proc.

IEEE Glob. Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–6.

186

Bibliography

[78] T. Wang et al., “An efficient online algorithm for dynamic SDN controller

assignment in data center networks,” IEEE/ACM Trans. Netw., vol. 25,

no. 5, pp. 2788–2801, 2017.

[79] S. Bera, S. Misra, and N. Saha, “Traffic-aware dynamic controller as-

signment in SDN,” IEEE Trans. Commun., 2020.

[80] L. Zhang, Y. Wang, X. Zhong, W. Li, and S. Guo, “Resource-saving

replication for controllers in multi controller SDN against network fail-

ures,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), Apr.

2018, pp. 1–7.

[81] V. Sridharan, M. Gurusamy, and T. Truong-Huu, “On multiple controller

mapping in software defined networks with resilience constraints,” IEEE

Commun. Lett., vol. 21, no. 8, pp. 1763–1766, Apr. 2017.

[82] T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, “Dynamic slave controller

assignment for enhancing control plane robustness in software-defined

networks,” Future Gener. Comp. Sy., vol. 95, pp. 681–693, Jun. 2019.

[83] Z. Guo, W. Feng, S. Liu, W. Jiang, Y. Xu, and Z. Zhang, “Retroflow:

maintaining control resiliency and flow programmability for software-

defined wans,” in Proc. IEEE/ACM Int. Symp. Qual. Service (IWQoS),

Jun. 2019, pp. 1–10.

[84] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations

for maximizing submodular set functions-i,” Math. Prog., vol. 14, no. 1,

pp. 265–294, Dec. 1978.

[85] M. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approximations

for maximizing submodular set functions-ii,” Polyhedral Combinatorics,

pp. 73–87, 1978.

[86] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrak, “Maximizing a mono-

tone submodular function subject to a matroid constraint,” SIAM J.

Comput., vol. 40, no. 6, pp. 1740–1766, 2011.

187

Bibliography

[87] Gurobi. Gurobi optimizer 9.0. [Online]. Available: http://www.gurobi.

com

[88] IBM. Ibm ilog cplex optimization studio. [Online]. Available: https:

//www.ibm.com/products/ilog-cplex-optimization-studio

[89] D. Bertsimas and M. Sim, “The price of robustness,” Operations Re-

search, vol. 52, no. 1, pp. 35–53, 2004.

[90] R. Karp, Complexity of Computer Computations. New York: Miller, R.

E. and J. W. Thatcher Eds. Plenum Press, 1972, ch. Reducibility among

combinatorial problems, pp. 85–104.

[91] T. Segaram, Programming collective intelligence: building smart web 2.0

applications. O’Reilly Media, Inc, 2007.

[92] H. Khazaei, J. Misic, and V. Misic, “A fine-grained performance model

of cloud computing centers,” IEEE Trans. Parallel Distrib. Syst., vol. 24,

no. 11, pp. 2138–2147, 2013.

[93] D. Serrano, S. Bouchenak, Y. Kouki, T. Ledoux, J. Lejeune, J. Sopena,

L. Arantes, and P. Sens, “Towards QoS-oriented SLA guarantees for

online cloud services,” in Proc. IEEE/ACM CCGrid, 2013, pp. 50–57.

[94] P. Brebner, “Is your cloud elastic enough?: performance modelling the

elasticity of infrastructure as a service (iaas) cloud applications,” in Proc.

ACM/SPEC ICPE, 2012, pp. 263–266.

[95] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource al-

location heuristics for efficient management of data centers for cloud

computing,” Future Gener. Comp. Sy., vol. 28, no. 5, pp. 755–768, 2012.

[96] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for

spot markets in cloud computing environments,” in Proc. IEEE UCC,

2011, pp. 178–185.

[97] K. Xiong and H. Perros, “Service performance and analysis in cloud

computing,” in Proc. Services I, 2009, pp. 693–700.

188

Bibliography

[98] N. Shahriar, S. Chowdhury, R. Ahmed, A. Khan, S. Fathi, R. Boutaba,

and L. Liu, “Virtual network survivability through joint spare capacity

allocation and embedding,” IEEE J. Sel. Areas Commun., vol. 36, no. 3,

pp. 502–518, Mar. 2018.

[99] S. Ayoubi, Y. Chen, and C. Assi, “Towards promoting backup-sharing

in survivable virtual network design,” IEEE/ACM Trans. Netw., vol. 24,

no. 5, pp. 3218–3231, Oct. 2016.

[100] H. Yu, V. Anand, C. Qiao, and G. Sun, “Cost efficient design of sur-

vivable virtual infrastructure to recover from facility node failures,” in

Proc. IEEE ICC, Jun. 2011, pp. 1–6.

[101] R. Luce and A. Perry, “A method of matrix analysis of group structure,”

Psychometrika, vol. 14, no. 2, pp. 95–116, Jun. 1949.

[102] J. Moon and L. Moser, “On cliques in graphs,” Israel J. Math., vol. 3,

no. 1, pp. 23–28, Mar. 1965.

[103] J. Orlin, “A polynomial time primal network simplex algorithm for min-

imum cost flows,” Math. Prog., vol. 78, no. 2, pp. 109–129, Aug. 1997.

[104] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undi-

rected graph,” Commun. ACM, vol. 78, no. 2, pp. 109–129, Aug. 1997.

[105] M. Batayneh, D. A. Schupke, M. Hoffmann, A. Kirstaedter, and

B. Mukherjee, “On routing and transmission-range determination of

multi-bit-rate signals over mixed-line-rate WDM optical networks for

carrier ethernet,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp. 1304–

1316, Oct. 2011.

[106] T-NOVA. Network functions implementation and

testing - interim. [Online]. Available: http:

//www.t-nova.eu/wp-content/uploads/2016/03/TNOVA D5.

31-Network-Functions-Implementation-and-Testing-Interim v1.0.pdf

[107] E. I. S. G. (ISG). Network functions virtualisation (NFV): Architectural

framework. [Online]. Available: https://www.etsi.org/deliver/etsi gs/

nfv/001 099/002/01.01.01 60/gs nfv002v010101p.pdf

189

Bibliography

[108] J. Herrera and J. Botero, “Resource allocation in NFV: A comprehensive

survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 518–532,

Aug. 2016.

[109] T. Korikawa, A. Kawabata, F. He, and E. Oki, “Carrier-scale packet

processing system using interleaved 3d-stacked dram,” in Proc. IEEE

ICC, May 2018, pp. 1–6.

[110] S. Gerke, K. Panagiotou, J. Schwartz, , and A. Steger, “Maximizing the

minimum load for random processing times,” ACM Trans. Algorithms,

vol. 11, no. 3, pp. 1–19, Jan. 2015.

[111] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.

Comput., vol. 1, no. 10, pp. 146–160, Jun. 1972.

[112] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph

manipulation,” Commun. ACM, vol. 16, no. 6, pp. 372–378, Jun. 1973.

[113] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and

V. Sekar, “Making middleboxes someone else’s problem: network pro-

cessing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,

vol. 42, no. 4, pp. 13–24, Aug. 2012.

[114] T. Kuwabara, Y, Mitsunaga, and H. Koga, “Calculation method of fail-

ure probabilities of optical fiber,” J. Lightw. Technol., vol. 11, no. 7, pp.

1132–1138, Jul. 1993.

[115] S. Sekigawa, S. Okamoto, N. Yamanaka, and E. Oki, “Expected capacity

guaranteed routing based on dynamic link failure prediction,” in Proc.

ICNC, Feb. 2019, pp. 170–174.

[116] J. Little, “A proof for the queuing formula: l = λw,” Oper. Res., vol. 9,

no. 3, pp. 383–387, 1961.

[117] A. Bjorck, Numerical methods in matrix computations. Cham, Switzer-

land: Springer, 2015.

[118] F. Ahmed, J. Dickerson, and M. Fuge, “Diverse weighted bipartite b-

matching,” in Proc. IJCAI, 2017, pp. 35–41.

190

Bibliography

[119] C. Chen, L. Zheng, V. Srinivasan, A. Thomo, K. Wu, and A. Sukow,

“Conflict-aware weighted bipartite b-matching and its application to e-

commerce,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 6, pp. 1475–

1488, Jun. 2016.

[120] C. Chen, S. Chester, V. Srinivasan, K. Wu, and A. Thomo, “Group-

aware weighted bipartite b-matching,” in Proc. 25th ACM Int. Conf.

Inf. Knowl. Manage., Oct. 2016, pp. 459–468.

[121] J. Dickerson, K. Sankararaman, A. Srinivasan, and P. Xu, “Balancing

relevance and diversity in online bipartite matching via submodularity,”

in Proc. AAAI Conf. Artif. Intell., vol. 33, Jul. 2019, pp. 1877–1884.

[122] H. Gabow, “An efficient reduction technique for degree-constrained sub-

graph and bidirected network flow problems,” in Proc. 15th Annu. ACM

Symp. Theory Comput., Dec. 1983, pp. 448–456.

[123] K. Fujii, “Faster approximation algorithms for maximizing a monotone

submodular function subject to a b-matching constraint,” Inf. Process.

Lett., vol. 116, no. 9, pp. 578–584, Sep. 2016.

191

Bibliography

192

Publication List

Journal Papers

1. F. He, T. Sato, and E. Oki, “Optimization model for backup resource

allocation in middleboxes with importance,” IEEE/ACM Transactions

on Networking, vol. 27, no. 4, pp. 1742-1755, 2019.

2. R. Kang, F. He, T. Sato, and E. Oki, “Virtual network function allo-

cation to maximize continuous available time of service function chains

with availability schedule,” IEEE Transactions on Network and Service

Management, 2020. [Accepted]

3. T. Korikawa, A. Kawabata, F. He, and E. Oki, “Packet processing

architecture with off-chip last level cache using interleaved 3D-stacked

DRAM,” IEICE Transactions on Communications, 2020. [Accepted]

4. T. Sato, F. He, E. Oki, T. Kurimoto, and S. Urushidani, “Experiment

and availability analytical model of cloud computing system based on

backup resource sharing and probabilistic protection guarantee,” IEEE

Open Journal of the Communications Society, vol. 1, pp. 700-712, 2020.

5. T. Sawa, F. He, A. Kawabata, and E. Oki, “Algorithms for distributed

server allocation problem,” IEICE Transactions on Communications,

2020. [Accepted]

6. T. Korikawa, A. Kawabata, F. He, and E. Oki, “Packet processing archi-

tecture using last-level-cache slices and interleaved 3D-stacked DRAM,”

IEEE Access, vol. 8, pp. 59290-59304, 2020.

193

Publication List

7. R. Fujita, F. He, T. Sato, and E. Oki, “Shared backup resource as-

signment for middleboxes,” Optical Switching and Networking, vol. 37,

2020.

8. Y. Hirano, F. He, T. Sato, and E. Oki, “Backup network design against

multiple link failures to avoid link capacity overestimation,” IEEE Trans-

actions on Network and Service Management, vol. 17, no. 2, pp. 1254-

1267, 2020.

9. Y. Zhang, F. He, T. Sato, and E. Oki, “Network service scheduling with

resource sharing and preemption,” IEEE Transactions on Network and

Service Management, vol. 17, no. 2, pp. 764-778, 2020.

10. T. Sawa, F. He, T. Sato, B.C. Chatterjee, and E. Oki, “Defragmentation

with reroutable backup paths in toggled 1+1 protection elastic optical

networks,” IEICE Transactions on Communications, vol. E103.B , no. 3,

pp. 211-223, 2020.

11. T. Korikawa, A. Kawabata, F. He, and E. Oki, “Carrier-scale packet

processing system using interleaved 3D-stacked DRAM,” IEEE Access,

vol. 7, pp. 75500-75514, 2019.

12. B.C. Chatterjee, F. He, E. Oki, A. Fumagalli, and N. Yamanaka, “A

span power management scheme for rapid lightpath provisioning and re-

leasing in multi-core fiber networks,” IEEE/ACM Transactions on Net-

working, vol. 27, no. 2, pp. 734-747, 2019.

International Conference Papers

1. F. He and E. Oki, “Load balancing model against multiple controller

failures in software defined networks,” in Proceedings of IEEE Inter-

national Conference on Communications (ICC), Dublin, Ireland, Jun.

2020, pp. 1-6.

2. F. He and E. Oki, “Unavailability-aware shared virtual backup allo-

cation model for middleboxes,” in Proceedings of IEEE/IFIP Network

194

Publication List

Operations and Management Symposium (NOMS), Budapest, Hungary,

Apr. 2020, pp. 1-7.

3. F. He, T. Sato, and E. Oki, “Survivable virtual network embedding

model with shared protection over elastic optical network,” in Proceed-

ings of IEEE 7th International Conference on Cloud Networking (Cloud-

Net), Coimbra, Portugal, Nov. 2019, pp. 1-3.

4. F. He, T. Sato, and E. Oki, “Probabilistic protection model for virtual

networks against multiple facility node failures,” in Proceedings of 15th

International Conference on IP + Optical Network (iPOP), Kanagawa,

Japan, May 2019.

5. F. He, T. Sato, and E. Oki, “Master and slave controller assignment

model against multiple failures in software defined network,” in Pro-

ceedings of IEEE International Conference on Communications (ICC),

Shanghai, China, May 2019, pp. 1-6.

6. F. He, T. Sato, and E. Oki, “Backup resource allocation model for vir-

tual networks with probabilistic protection against multiple facility node

failures,” in Proceedings of 15th International Conference on the Design

of Reliable Communication Networks (DRCN), Coimbra, Portugal, Mar.

2019, pp. 37-42.

7. F. He, T. Sato, and E. Oki, “Optimization model for backup resource

allocation in middleboxes,” in Proceedings of IEEE 7th International

Conference on Cloud Networking (CloudNet), Tokyo, Japan, Oct. 2018,

pp. 1-6.

8. F. He, T. Sato, B.C. Chatterjee, T. Kurimoto, S. Urushidani, and E.

Oki, “Robust optimization model for backup resource allocation in cloud

provider,” in Proceedings of IEEE International Conference on Commu-

nications (ICC), Kansas City, USA, May 2018, pp. 1-6.

9. M. Zhu, F. He, and E. Oki, “Multiple backup resource allocation with

workload-dependent failure probability,” in Proceedings of IEEE Global

Communications Conference (Globecom), Taipei, Taiwan, Dec. 2020.

195

Publication List

10. E. Oki, T. Sawa, F. He, T. Sato, and B. C. Chatterjee, “Performance

of hitless defragmentation with rerouting for quasi 1+1 protected elastic

optical networks,” in International Conference on Transparent Optical

Networks (ICTON 2020), Bari, Italy, Jul. 2020. (Invited paper)

11. R. Fujita, F. He, and E. Oki, “Shared backup resource assignment for

middleboxes considering server capability,” in Proceedings of 20th IEEE

International Conference on High Performance Switching and Routing

(HPSR), Newark, USA, May 2020, pp. 1-6.

12. S. Masuda, F. He, A. Kawabata, and E. Oki, “Distributed Server Al-

location Model with Preventive Start-Time Optimization Against Single

Failure,” in Proceedings of 20th IEEE International Conference on High

Performance Switching and Routing (HPSR), Newark, USA, May 2020,

pp. 1-6.

13. Y. Zhang, F. He and E. Oki, “Network service mapping and scheduling

under uncertain processing time,” in Proceedings of IEEE/IFIP Network

Operations and Management Symposium (NOMS), Budapest, Hungary,

Apr. 2020.

14. R. Kang, F. He T. Sato, and E. Oki, “Demonstration of network service

header based service function chain application with function allocation

model,” in Proceedings of IEEE/IFIP Network Operations and Manage-

ment Symposium (NOMS), Budapest, Hungary, Apr. 2020.

15. M. Ito, F. He, and E. Oki, “Robust optimization model for probabilis-

tic protection under uncertain virtual machine capacity in cloud,” in

Proceedings of 16th International Conference on the Design of Reliable

Communication Networks (DRCN), Milan, Italy, Mar. 2020, pp. 1-8.

16. Y. Hirano, F. He, T. Sato, and E. Oki, “Preventive start-time opti-

mization to determine link weights against multiple link failures,” in

Proceedings of IEEE 7th International Conference on Cloud Networking

(CloudNet), Coimbra, Portugal, Nov. 2019, pp. 1-3.

196

Publication List

17. T. Sawa, F. He, A. Kawabata, and E. Oki, “Polynomial-time algorithm

for distributed server allocation problem,” in Proceedings of IEEE 7th In-

ternational Conference on Cloud Networking (CloudNet), Coimbra, Por-

tugal, Nov. 2019, pp. 1-3.

18. R. Kang, F. He, T. Sato, and E. Oki, “Virtual network function alloca-

tion to maximize continuous available time of service function chains,” in

Proceedings of IEEE 7th International Conference on Cloud Networking

(CloudNet), Coimbra, Portugal, Nov. 2019, pp. 1-6.

19. T. Sawa, F. He, T. Sato, B.C. Chatterjee, and E. Oki, “Defragmentation

considering link congestion in toggled 1+1 path protected elastic opti-

cal networks,” in Proceedings of 24th OptoElectronics and Communica-

tions Conference/Photonics in Switching and Computing (OECC/PSC),

Fukuoka, Japan, Jul. 2019, pp. 1-3.

20. Y. Zhang, F. He, T. Sato, and E. Oki, “Optimization of network ser-

vice scheduling with resource sharing and preemption,” in Proceedings

of 19th IEEE International Conference on High Performance Switching

and Routing (HPSR), Xi’an, China, May 2019, pp. 1-6.

21. T. Korikawa, A. Kawabata, F. He, and E. Oki, “Packet processing archi-

tecture with off-chip llc using interleaved 3D-stacked DRAM,” in Pro-

ceedings of 19th IEEE International Conference on High Performance

Switching and Routing (HPSR), Xi’an, China, May 2019, pp. 1-6.

22. R. Fujita, F. He, T. Sato, and E. Oki, “Optimization of backup resource

assignment for middleboxes,” in Proceedings of 19th IEEE International

Conference on High Performance Switching and Routing (HPSR), Xi’an,

China, May 2019, pp. 1-6.

23. Y. Zhang, F. He, T. Sato, and E. Oki, “Flexible scheduling approach

for network services in virtual networks,” in Proceedings of 15th Interna-

tional Conference on IP + Optical Network (iPOP), Kanagawa, Japan,

May 2019.

197

Publication List

24. T. Sawa, F. He, T. Sato, B.C. Chatterjee, and E. Oki, “Defragmenta-

tion using reroutable backup paths in toggled 1+1 path protected elas-

tic optical networks,” in Proceedings of 24th Asia-Pacific Conference on

Communications (APCC), Ningbo, China, Nov. 2018, pp. 422-427.

25. T. Sato, F. He, E. Oki, T. Kurimoto, and S. Urushidani, “Implemen-

tation and testing of failure recovery based on backup resource sharing

model for distributed cloud computing system,” in Proceedings of IEEE

7th International Conference on Cloud Networking (CloudNet), Tokyo,

Japan, Oct. 2018, pp. 1-3.

26. Y. Hirano, F. He, T. Sato, and E. Oki, “Backup network design scheme

for multiple link failures to avoid overestimating link capacity,” in Pro-

ceedings of 18th IEEE International Conference on High Performance

Switching and Routing (HPSR), Bucharest, Romania, Jun. 2018, pp. 1-

6.

27. T. Korikawa, A. Kawabata, F. He, and E. Oki, “Carrier-scale packet

processing system using interleaved 3D-stacked DRAM,” in Proceedings

of IEEE International Conference on Communications (ICC), Kansas

City, USA, May 2018, pp. 1-6.

Technical Reports and Local Conference Papers

1. F. He, T. Sato, and E. Oki, “Backup resource allocation model against

multiple controller failures in software defined network,” at Photonic

Network Workshop, Otaru, Japan, Aug. 2019.

2. F. He, T. Sato, B.C. Chatterjee, T. Kurimoto, S. Urushidani, and E.

Oki, “Mix integer linear programming model for backup resource alloca-

tion in cloud provider,” at Photonic Network Workshop, Kobe, Japan,

Jul. 2018.

198

Publication List

Awards

1. IEEE ComSoc Student Grant at IEEE International Conference on Com-

munications (ICC) in 2020

2. Excellent Paper Award at IEEE International Conference on High Per-

formance Switching and Routing (HPSR) in 2019

199

