Some inequalities for distance-regular graphs

大阪教育大学 平木 彰

Osaka Kyoiku University, Akira HIRAKI hiraki@cc.osaka-kyoiku.ac.jp

1 Definitions

All graphs considered are undirected finite graphs without loops or multiple edges. Let $\Gamma = (V\Gamma, E\Gamma)$ be a connected graph with usual shortest path distance ∂_{Γ} . The diameter of Γ , denoted by d, is the maximal distance of two vertices in Γ . Let $u \in \Gamma$. We denote by $\Gamma_j(u)$ the set of vertices which are at distance j from u. For $x, y \in V\Gamma$ with $\partial_{\Gamma}(x, y) = i$, let

$$\begin{array}{ccccc} C_i(x,y) & = & \Gamma_{i-1}(x) & \cap & \Gamma_1(y), \\ A_i(x,y) & = & \Gamma_i(x) & \cap & \Gamma_1(y), \\ B_i(x,y) & = & \Gamma_{i+1}(x) & \cap & \Gamma_1(y). \end{array}$$

A connected graph Γ is said to be distance-regular if

$$c_i = |C_i(x, y)|, \ a_i = |A_i(x, y)| \ \text{and} \ b_i = |B_i(x, y)|$$

depend only on $i = \partial_{\Gamma}(x, y)$ rather than individual vertices.

The numbers c_i , a_i and b_i are called the *intersection numbers* of Γ . In particular, $k := b_0$ is called the *valency* of Γ . The array

$$\iota(\Gamma) = \left\{ \begin{array}{cccccc} * & c_1 & \cdots & c_i & \cdots & c_{d-1} & c_d \\ a_0 & a_1 & \cdots & a_i & \cdots & a_{d-1} & a_d \\ b_0 & b_1 & \cdots & b_i & \cdots & b_{d-1} & * \end{array} \right\}$$

is called the intersection array of Γ . Define

$$r = r(\Gamma) := \max\{i \mid (c_i, a_i, b_i) = (c_1, a_1, b_1)\}.$$

Let $\Gamma = (V\Gamma, E\Gamma)$ be a distance-regular graph of diameter $d \geq 2$ and valency $k \geq 3$. Define $R_i := \{(x,y) \mid \partial_{\Gamma}(x,y) = i\}$. Then $(V\Gamma, \{R_i\}_{0 \leq i \leq d})$ is an association scheme of class d and

$$p_{i,j}^t := \#\{z \mid \partial_{\Gamma}(x,z) = i, \ \partial_{\Gamma}(y,z) = j\},$$

where $\partial_{\Gamma}(x,y) = t$.

Conversely, for an association scheme $(X, \{R_i\}_{0 \le i \le d})$ satisfying P-polynomial condition, the graph (X, R_1) is a distance-regular graph. (See [1] and [3].)

2 The Odd graph and the doubled Odd graph

Let m be a positive integer and X a set of 2m+1 elements. For $0 \le t \le m$ define

$$X_t := \{ Y \subseteq X \mid \#Y = t \}.$$

The Odd graph O_{m+1} is a graph with

$$V\Gamma = X_m$$
, $E\Gamma = \{(Y, Y') \mid Y \cap Y' = \emptyset \}$.

The doubled Odd graph $2O_{m+1}$ is a graph with

$$V\Gamma = X_m \cup X_{m+1} \quad E\Gamma = \{(Y,Z) \mid Y \in X_m, \, Z \in X_{m+1}, \, Y \subset Z\}.$$

Then Odd graph O_{m+1} is a distance-regular graph of diameter m with :

Case: m=2t,

Case: m = 2t - 1,

The doubled Odd graph $2O_{m+1}$ is distance-regular of diameter 2m+1 with :

More information for these graphs can be found in [3, §9.1.D].

These graphs had been characterized by some of their intersection numbers. In particular, Ray-Chaudhuri and Sprague [8], Cuypers [4, Theorems 4.6-4.7] and Koolen [7, Theorem 16] proved the following result.

Theorem 1 Let Γ be a distance-regular graph of diameter $d \geq 5$ such that $c_1 = c_2 = 1$, $c_3 = c_4 = 2$ and $a_1 = \cdots = a_4 = 0$. Then Γ is either the Odd graph or the doubled Odd graph.

3 Some Inequalities for distance-regular graphs

The following are well known basic properties of the intersection numbers.

- $(1) 1 = c_1 \leq c_2 \leq \cdots \leq c_{d-1} \leq c_d \leq k.$
- (2) $k = b_0 \ge b_1 \ge \cdots \ge b_{d-2} \ge b_{d-1} \ge 1$.
- (3) $c_i \leq b_j$ if $i+j \leq d$.

We recall the proof of these properties:

Let (x_0, x_1, \ldots, x_d) be a path of length d such that $\partial_{\Gamma}(x_0, x_d) = d$. Then we have

$$C_1(x_1,x_0) \subseteq C_2(x_2,x_0) \subseteq \cdots \subseteq C_{d-1}(x_{d-1},x_0) \subseteq C_d(x_d,x_0) \subseteq \Gamma_1(x_0),$$

$$B_0(x_0,x_0)\supseteq B_1(x_1,x_0)\supseteq \cdots\supseteq B_{d-2}(x_{d-2},x_0)\supseteq B_{d-1}(x_{d-1},x_0)\supseteq \{x_1\}$$

and

$$C_i(x_0,x_i) \subseteq B_i(x_{i+j},x_i).$$

The idea of this proof is: "Let $X \subseteq Y$ be subsets of $V\Gamma$. Then $\#X \leq \#Y$." We prove several inequalities for intersection numbers by applying this idea. For example:

Theorem 2 Suppose $1 \le c_{t-1} < c_t$. Then $c_{2t-1} \ne c_t$.

Sketch of the Proof.

Suppose $c_{2t-1} = c_t$ and derive a contradiction. Let $u, x, y \in V\Gamma$ such that

$$\partial_{\Gamma}(u,y) = 2t-1, \ \partial_{\Gamma}(u,x) = t-1 \quad \text{and} \quad \partial_{\Gamma}(x,y) = t.$$

Then there exist $v \in C_{2t-1}(y,u) \setminus C_{t-1}(x,u)$ and $u' \in \Gamma_1(v) \cap \Gamma_{t-1}(x)$ such that

$$B_{t-1}(u',x)\subseteq B_{t-1}(u,x)\setminus C_{t-1}(y,x).$$

Then this implies $b_{t-1} \leq b_{t-1} - c_{t-1}$ which is a contradiction.

Theorem 3 Let Γ be a distance-regular graph with:

Then $s \leq \frac{r+4}{3}$.

Sketch of the Proof.

Suppose $s > \frac{r+4}{3}$ and derive a contradiction. Let $u, v, x \in V\Gamma$ such that

$$\partial_{\Gamma}(u,v) = r+1, \quad \partial_{\Gamma}(u,x) = 1, \quad \partial_{\Gamma}(x,v) = r.$$

Then we can take a path $(u = y_0, y_1, y_2, \dots, y_{r+1} = y)$ of length r + 1 such that

$$C_{r+1}(v,y) \subseteq C_{r+1}(u,v) \setminus C_r(x,v).$$

This is a contradiction.

We have the following result by Theorem 1 and 3.

Corollary 4 Let Γ be a distance-regular graph as in theorem. If $s = r \geq 2$, then r = 2 and Γ is either the Odd graph or the doubled Odd graph.

Theorem 5 Let Γ be a distance-regular graph with

Suppose $s = r \ge 2$. Then $a = a_1 = 0$ and r = 2. In particular, Γ is either the Odd graph, the doubled Odd graph or the doubled Grassmann graph.

Proposition 6 Let Γ be a distance-regular graph of diameter $d \geq 2$ and $k \geq 3$. Let q, h be positive integers with $q + h \leq d$.

(1) If $c_q < c_{q+1}$ and $a_q = 0$, then $c_h \le c_{q+h} - c_m$ and $b_{q+h} \le b_h - c_q$.

(2) If $b_{q+h} < b_{q+h-1}$ and $a_{q+h} = 0$, then $c_h \le b_q - b_{q+h}$.

Sketch of the Proof of (1).

Let $u, x, y \in V\Gamma$ such that

$$\partial_{\Gamma}(u,x)=h, \ \ \partial_{\Gamma}(x,y)=q \ \ \ ext{ and } \ \ \ \partial_{\Gamma}(u,y)=q+h.$$

Define

$$W:=igcup_{z\in C_h(u,x)}\{C_{q+1}(z,y)\setminus C_q(x,y)\}.$$

Then

$$\#C_h(u,x) \leq \#W$$
 and $W \subseteq C_{q+h}(u,y) \setminus C_q(x,y)$.

Hence $c_h \leq c_{q+h} - c_q$.

4 A characterization of O_k and $2O_k$

Theorem 7 Let Γ be a distance-regular graph of diameter $d \geq 5$ valency $k \geq 3$ and $r = \max\{i \mid (c_i, b_i) = (c_1, b_1)\} \geq 2$. Suppose one of the following conditions holds. Then Γ is either the Odd graph O_k , or the doubled Odd graph $2O_k$.

(i) $a_{m+r} = 0$ and $1 + c_m = c_{m+r} \le k - 2$ hold for some m with $r \le m \le d - r - 1$.

(ii)
$$a_m = 0$$
 and $2 \le b_{m+r} = b_m - 1$ hold for some m with $r \le m \le d - r - 1$.

Sketch of the Proof of (i).

We have $a_{m+r} = \cdots = a_1 = 0$ and $c_{r+1} > c_r$. Since $c_m = c_{m+r} - c_r$, the equality holds in Proposition 6. Then we obtain that $c_{m-1} = c_{m+r-1} - c_r$ holds.

Inductively, we have $c_j = c_{j+r} - c_r$ for all j < m. This implies that

$$c_{r+1} = \cdots = c_{2r} = 2.$$

The desired result is proved by Corollary 3.

The reader is referred to [2, 5, 6] for more detailed proofs of the results.

References

- [1] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin-Cummings, California, 1984.
- [2] S. Bang, A. Hiraki and J. H. Koolen, Improving diameter bounds for distance-regular graphs, preprint.
- [3] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer Verlag, Berlin, Heidelberg, 1989.
- [4] H. Cuypers, The dual Pasch's axiom, Europ. J. Combin. 13 (1992), 15-31.
- [5] A. Hiraki, Applications of the retracing method for distance-regular graphs, to appear in *Europ. J. Combin*.
- [6] A. Hiraki, A Characterization of the Odd graphs and the doubled Odd graphs, preprint.
- [7] J. H. Koolen, On Uniformly geodetic graphs, Graphs and Combin. 9 (1993), 325-333.
- [8] D. K. Ray-Chaudhuri and A. P. Sprague. Characterization of projective incidence structures, Geom. Dedicata. 5 (1976), 361-376.