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Stability of Grobner bases and ACGB

Yosuke Sato
Department of Mathematical Information Science,
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1 Introduction

Stability of Grébner bases is an important notion in computer algebra. There have been published many
papers by many authors. In [2] and [3], the following result is shown independently.

Theorem 1.1 (P.Gianni and M.Kalkbrener)

Let I be a zero-dimensional ideal of a polynomial ring K [A, X] over a field K where A denotes variables
Ai,...,Am. Let G = {g1(A,X),...,91(A, X)} be a Grébner basis of I w.r.t. a term order > of T(4, X)
such that X s greater than any term in T(/i). Let @ be an m-tuple of elements of the algebraic closure
K of K which is a zero of the ideal I N K[A)]. Then, G becomes a Grobner basis with the specialization
by @, that is {91(a, X), ...,9(a, X)} becomes a Grobner basis in K[X].

Here, T(Y) denotes the set of all terms consisting of variables Y.

For a polynomial ring K[A4, X] with several variables X = Xi,..., Xn, the above theorem is extended in
[1] under some assumptions.

Theorem 1.2 (T.Becker)

Let I be an ideal of a polynomial ring K[A, X over a field K with variables A and X such that I N K[A]
is a zero-dimensional radical ideal in K[A].

Let G = {g1(4,X),...,9(A,X)} be a Gribner basis of I w.r.t. a term order > of T(A,X) such that
each variable X; is greater than any term in T(A) and the restriction n of > on T(A) is a lezicographical
term order. Let & be an m-tuple of elements of the algebraic closure K of K which is a zero of the ideal
INK[A]. Then, G becomes a Grébner basis with the specialization by @, that is {g1(a, X () s G (@, X)}
becomes a Gribner basis in K[X] w.r.t. the term order that is a restriction of > on T(X). '

In [4], the above result is further generalized to the following theorem.

Theorem 1.3 (M.Kalkbrener)

Let I be an ideal of a polynomial ring K[A, X] over a field K with variables A and X such that I N K[A]
is d zero-dimensional radical ideal in K[A]. Let G = {g1(4,X),...,9(4,X)} be a D-Grébner basis of I
in the polynomial ring (K [A])[X] over the coefficient ring K [A] Let a be an m-tuple of elements of the
algebraic closure K of K which is a zero of the ideal IN K [A] Then, G becomes a Gribner basis with
the specialization by @, that is {g1(a, X), ...,q:(a, X)} becomes a Grébner basis in K K[X] w.r.t. the same
term order.

(See Definition 4.1 for the definition of D-Grébner bases.).

In both of the papers [1] and [4], they study when D-Gribner bases are stable under specializations. The
second paper also proves a more general fact from which we can see the assumption that I N K[A] is a
zero-dimensional radical ideal is a boundary in some sense to keep the stability property. (See Theorem
3.3 of [4].) However either of them does not seem to give a simple insight why D-Grébner bases are stable.

In [9, 10], we showed that alternative of comprehensive Grobner bases can be defined in terms of
Grobner bases in polynomial rings over commutative Von Neumann regular rings, and we called them
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ACGB(Alternative Comprehensive Grobner Bases). In [7], we further optimized ACGB to get the fol-
lowing result.

Theorem 1.4

Let F = {fi(4,X),...,fs(A,X)} be a set of polynomials in K[A, X], let I be a zero-dimensional proper
radical ideal in K[A]. Then the quotient ring K[A]/I becomes a commutative Von Neumann regular ring.
Let G = {g1(4,X),...,9(4,X)} be a Grébner basis of (F) in the polynomial ring (K[A]/I)[X] over
K[A]/I. Then, {g:1(a,X),...,q(a, X)} becomes a Grébner basis of the ideal (f1(@,X),..., f.(@, X)) for
any m-tuple of elements @ which lies on the variety V(I) in an algebraic extension field of K.

In this paper, we show that G in Theorem 1.3 actually becomes a Grobner basis in the polynomial ring
(K[A]/INK[A])[X] over the commutative Von Neumann ring K[A]/INK[A]. ;From this result together
with Theorem 1.4, Theorem 1.3 directly follows. Our proof is not only simple but also gives a natural
and clear view why Grdbner bases are stable under specializations, since the notion of Grébner bases in
polynomial rings over commutative Von Neumann regular rings and the notion of comprehensive Grébner
bases are essentially same as is shown in [13].

We assume the reader is familiar with a theory of Grébner bases in polynomial rings over commutative
Von Neumann regular rings, which was introduced in {11]. Though we give a minimum review in section
2, we strongly recommend reading [6] or [11] for the reader who are not familiar with the theory. In
section 2, we also prove some properties which will be used for proving our main result. In section 3, we
give a brief review of ACGB. Though the contents is self contained, we also refer the reader to [7, 10] for
more detailed description. Qur main result is proved in section 4.

2 Von Neumann regular rings and Grébner bases

A commutative ring R with identity 1 is called a Von Neumann regular ring if it has the following
property: Va € R 3b € R a%b = a. For such a b, a* = ab and a~! = ab? are uniquely determined and
satisfy aa* = a, aa™! = a*, and (a*)? = a*. Note that every direct product of fields is a Von Neumann
regular ring. Conversely, any Von Neumann regular ring is shown to be isomorphic to a subring of a
direct product of fields as follows.

Definition 2.1 : '

Let R be a Von Neumann regular ring. If we define ~a=1—a, aAb=ab and aV b= —(~a A —b) for
each a,b € R such that a> = a,b% = b, then ({z € R | z? = z},—, A, V) becomes a boolean algebra, which
is denoted by B(R).

Considering B(R) as a boolean ring, Stone representation theorem gives the following isomorphism ®
from B(R) to a subring of HIGSt(B(R)) B(R)/I by ®(z) = [1;cs¢(B(Ry)|z]r, where St(B(R)) is the set of
all maximal ideals of B(R). This representation of B(R) is extended to a representation of R as follows.

Theorem 2.1 (Saracino-Weispfenning)
For a mazimal ideal I of B(R), if we put Ir = {xy | = € R,y € I}, then Iy is a mazimal ideal of R. If we
define a map ® from R into HIEst(B(R)) R/Igp by ®(z) = Hlest(B(R))[x]IR’ then ® is a ring embedding.

A maximal ideal coincides with a prime ideal in a boolean ring. In the rest of the paper St(B(R)) is
denoted by Spec(B(R)). We use p for an element of Spec(B(R)) as in the papers [11, 13]. We also use
the same notations R, to denote the field R/p, and z, to denote the element [z],, in R,.

In the following unless mentioned, Greek letters a, 3, are used for terms, Roman letters a, b, ¢ for
elements of R, and f, g, h for polynomials over R. Throughout this section, we work in a polynomial
ring over R which is a Von Neumann regular ring unless mentioned. We also assume that some term
order is given. The leading term of f is denoted by It(f) and its coefficient by lc(f). By li(f) we denote
le(f)*. The leading monomial of f, i.e., le(f)It(f) is denoted by Im(f). The set of all terms consisting
of variables X is denoted by 7'(X).

Definition 2.2
For a polynomial f = aa + g with Im(f) = aa, a monomial reduction —; is defined by baf + h —;
bafB + h — ba~!B(aa + g), where ab # 0 and baB need not be the leading monomial of baf + h.

V-2



28

A monomial reduction — 5 by a set F of polynomials is also naturally defined. When F'is a finite set,
—r has a termination property. Using this monomial reduction, Grébner bases are defined as follows.

Definition 2.3

Let I be an ideal of a polynomial ring over R. A finite subset G of I is called a Gribner basis of I, if it
satisfies the property that f € I if and only if f 56 0 for each polynomial f.

We simply say G is a Grobner basis if G is a Grobner basis of the ideal (G) generated by itself.

Note that a Grobner basis G of I is clearly a basis of I. It is not difficult to show the following property.

Lemma 2.2
A finite subset G of an ideal I is a Grébner basis of I if and only if {tm(H)If € I}) = ({Im(g)lg € G})

Proof. Assume that G is a Grobner basis of I. Let f be a non-zero polynomial in I. Since f
X6 0, there must exist polynomials gy,...,9s € G such that It(g;)|it(f) for each i = 1,...,s and
(li(g) V - -+ V li(gs))li(f) = li(f). Define cy,...,cs € R inductively as follows. c¢; = b;li(g:) for each
i=1,...,8 where by = 1 — (¢c; + -~ + ¢i—y) for each ¢ = 2,...,5. (We put by =1 for convenience.)
Then we have c;c; = 0 for each distinct 4 and jand ¢; +---+¢s = li(g1) vV --- V li(gs). Since le(f) =
li(f)le(f), we have le(f) = (€1 + -+ - +¢5)le(f). Hence, Im(f) = (c1 + -+ e)le(H(f) = erle(FIt(f) +
ot elelPE() = bili(gOIe(DIS) + -+ + boli(g e HUE(F) = balign)le(FIt(g) 1(F)/1t(g)) +--- +
beli(gs)le(F)It(gs) (t(£)/1t(gs)) = bile(gr)~Hle(ga)le(£)lt(gr)(Ut(f)/1t(g1)) + -+ -+
bele(ge)~tlc(gs)lc(H)It(gs) (1H(£)/1t(gs)) = bile(gr) " le(£)(1t(f)/1t(g1))im(g1) +---+
budc{gn) el f)(1(F)/1t(ga))im(gs). Tt follows that ({Im(F)]f € I}) € ({im(g)lg € G}). ({im(f)If € I}
2 ({lm(g)lg € G}) is trivial.

Assume conversely that ({im(f)|f € I}) = ({Iim(g)lg € G}).
To get a contradiction suppose there exists a non-zero polynomial f in I which is irreducible by = . This
means that le(f)lc(g) = 0 for any g in G satisfying lt(g)|lt(f). By our assumption, there exists g1,...,9s
€ G and monomials a a1, . . ., ass such that Im(f) = ajlm(g1)en +- - - + aslm(gs)as. Multiplying le(f)
from both sides, we get a contradiction le(f)im(f) = 0. O

Definition 2.4
For a polynomial f, li(f)f is called the boolean closure of f and denoted by be(f). A polynomial f such
that f = be(f) is called boolean closed. Note that be(f) is boolean closed.

Lemma 2.3
Let G be a Gribner basis of an ideal I, then G' = {bc(g)lg € G} also becomes a Grébner basis of I.

Proof. By the definition of boolean closure, G’ is clearly a subset of I. Since Im(g) = lm(bc(g)) for each
polynomial g, ({Im(g)lg € G}) = ({im(g)|g € G'}). So, G’ is a Grdbner basis of I by Lemma 2.1. a
The following result of [5] will be used for proving our main result.

Lemma 2.4

Let R be a commutative ring with identity, which need not to be a Von Neumann regular ring. Let I
be an ideal in a polynomial ring R[X] and G = {g1,...,9m} be a finite subset of I. Then the following
properties are equivalent:

o ({Im(f)If € I}) = ({Im(g)lg € G})

e For any polynomial f € I, f has a Grébner representation w.r.t. G, that is there exist polynomials
D1...,Dm Such that f = Yo pigi and It(f) > t(pi)lt(g:) for eachi=1,...,m.

We conclude this section with the following fact.

Lemma 2.5 _ ~
For a polynomial f in a polynomial ring R[X] and p € Spec(B(R)), f, denotes the polynomial in Ry[X)]
given from f by replacing each coefficient a with a,. For a set F of polynomials in R[)_(]', F, denotes the

set {fo|f € F} — {0}. Let G be a Grébner basis of an ideal I in a polynomial ring R[X].
Then G, becomes a Grobner basis of the ideal I, in the polynomial ring Ry[X] for each p € Spec(B(R)).

Iv-3



21

Proof. Note first that for each element e in R, there exists an element a in R such that a, = e. Hence,
for each polynomial h in R,[X] there exists a polynomial f in R[X] such that f, = h, from which it
follows that I, is an ideal in R,[X].

In case each element of G is boolean closed, this lemma is already shown in [11]. (Where the converse
also holds.) If G is not a set of boolean closed polynomials, let G’ = {bc(g)|g € G}. Then G’ is also a
Grobner basis of I by Lemma 2.2. Therefore, G, is also a Grébner basis of I,. We claim that G}, is a
subset of G,. Let g be a polynomial in G. Note first the following two properties:

If li(g)p = 0, then be(g), = 0. If li(g), = 1, then be(g), = gp-

Since li(g), is 0 or 1 for each p, we have bc(g), = 0 or be(g), = gp, from which our claim follows. Since
G, is clearly a subset of I,, G, is a Grobner basis of I, in R,[X]. m}

3 ACGB

A polynomial ring K[A] over a field K with variables A = Ay, ..., A, is not a Von Neumann regular ring.
But considering a pclynomial in K[A] as a function from K™ to K, K[A] can be considered as a subring
of a Von Neumann regular ring KX . This idea leads us to define an ACGB(Alternative Comprehensive
Grobner Basis) as follows.

Definition 3.1

Let F be a finite_set of polynomials in a polynomial ring K [A, X] over a field K with variables A =
A, ..., An and X = Xq,...,X,. Let G be a Grébner basis of (F) in the polynomial ring K K™ [X . G
1s called an ACGB of F wtth pammeters A.

Theorem 3.1 B o _
Let G = {g1,...,q1} be an ACGB of F = {f1(A,X),..., fs(A, X)} with parameters A. Then, for each
m-tuple @ = @,...,0, of elements in K, G5 becomes a Gribner basis of the ideal ({fi1(a, X), .

[+(@,X)}) in K[X] Where G5 denotes the set {g1a,-..,gia} of polynomials gia,...,gia in K[X] gwen
from g1, ..., 91 by replacing each coefficient ¢ with c(a).
(Remember that ¢ is an element of KX™).

Proof. Let R = KX, Note that for any element ¢ of R, ¢* = c if and only if ¢(@) = 0 or ¢(a) = 1 for
each element @ of K™. Hence, the boolean ring B(R) consists of all ¢ of R such that ¢(@) =0orc(@) =1
for each element a@ of K™. That is B(R) is the direct product ZX™ of the finite field Z». (Note that B(R)
is not a subring of R.) Clearly the set {c € B(R)|c(@) = 0} forms a prime ideal in B(R) for any element
@ of K™. Let @ be an element of K™ and p be the prime ideal {c € B(R)|c(a) = 0}. Note also that the
maximal ideal pr = {zy|z € R,y € p} in R has the following form: pr = {c € R|c(a@) = 0}. Remember
that R, is the quotient field R/pg. Since ¢ — ¢’ € pg if and only if ¢(@) = ¢/(@) for any c and ¢’ in R, the
mapping 8 from R/pr to K defined by 6([c],;) = ¢(@) is an isomorphism. If we identify R/pr with K by
this isomorphism, [c],, is equal to c(a@). Remember that [c],, is denoted by c,. So the theorem follows
from Lemma 2.4. 0

In ACGB, we implicitely assume that a specialization can take any value from K™. If we give a
restriction on specializations, we can generalize ACGB as follows.

Definition 3.2

Let I be an ideal in a polynomial ring K[A]. Let V. C K™ be the variety of I in K™, that is V =
{a € K™|f(a) = 0 for any f € I}. Let F be a finite set of polynomials in a polynomial ring K [4, X]. Let
G be a Gribner basis of (F) in thr polynomial ring KV [X]. G is called an ACGB-V of F with parameters
A and a variety V.

We have the following theorem by an exactly same proof of Theorem 3.1.

Theorem 3.2

Let V. C K™ be the variety of an ideal in K™[A]. Let G = {g1,...,9} be an ACGB-V of F =
{fi(A,X),..., fs(A,X)} with parameters A and a variety V. Then, for each m-tuple @ in 'V, G,, becomes
a Grébner baszs of the ideal (F(a)) in K[X)].
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Let V be the variety of an ideal I. Let K[V] denote a subring of KV which consists of all elements
that can be represented as polynomial functions. Note that K[V] is isomorphic to the quotient ring
K[A]/I(V), where I{(V) denotes the ideal {f € K[A]|f(a) = O for every @ € V'}. In general, K[A]/I(V) is
not a Von Neumann regular ring. However, in case I(V) is zero-dimensional, it becomes a Von Neumann
regular ring. Since I(V) is a radical ideal, it can be represented as an intersection of distinct prime ideals
P n---nN Pg. If I(V) is zero-dimensional, each P; is also zero-dimensional, so it is maximal. Therefore,
K[A]/I(V) is isomorphic to the direct product K[A]/P; x - - - x K[A]/ Py of fields by the Chinese remainder
theorem. So, K[A]/I(V) becomes a Von Neumann regular ring. These observations lead us to have the
following theorem.

Theorem 3.3

Let F = {fi(4,X),...,fs(4,X)} be a finite set of polynomials in a polynomial ring K[A,X] with
variables A = A;,...,Am and X = X,,...,X,. Let I be a zero-dimensional proper radical ideal in
K[A]. Then the quotient ring K[A]/I becomes a Von Neumann regular ring. Let G be a Grébner ba-
sis of (F) in the polynomial ring (K[A]/I)[X] over K[A)/I. Each coefficient of a polynomial h(X) in
(K[A]/I)[X] is @ member of K[A]/I, so it can be represented by a polynomial in K[A]. Hence, h(X) can
also be repnesented as a polynomial in K [A, X]. Therefore, G can be represented by a set of polynomials
{01(4,X),...,9(A, X)} in K [A X]. Then, for any m-tuple a of elements in the algebraic closure K of K
which is a zero of I, {g1(a, X),...,9i(a@, X)} becomes a Grébner basis of the ideal (f,(a, X),..., f:(a@, X))
in K[X].

Proof. If K is an algebraically closed field, let V be the variety of I. Since I(V') = I, K[V] is isomorphic
to K[A]/I. Therefore G is actually a ACGB-V of F with parameters A and the variety V, from which
the theorem directly follows from Theorem 3.2.

In case K is not an algebraically closed field, we need to optimize the above proof. Represent I =
P1 N--+N P, as an intersection of distinct prime(maximal) ideals in K [4]. Foreachi =1,...,k, let @;
e K" be a zero of P;. If we put K; = {f(a@:)|f( A) e K[A]} for each i, K; becomes a ﬁeld whlch is
isomorphic to K[A]/P;. Define a map @ from K[A]/I to K; x - -- x Ki by ®(f(A)) = (f(@1),..., f(a@r))-
Then @ is an isomorphism. So, B(K[A]/I) can be considered as a boolean ring Zél""’k}. Where, the
set {c € B(K[A]/I)|c(i) = 0} forms a prime ideal in B(K[A]/I) for each i = 1,...,k. (Actually any
prime ideal has such a form since B(K[A]/I) is finite.) If we denote it by p;, (K[A]/I),, can be identified
with K; and f(A)p, is equal to f(a;) for each f(A) € K[A]/I by a similar reason as is described in the
proof of Theorem 3.1. Hence, by Lemma 2.4, {g:(a;, X),...,q:(a;, X)} becomes a Grobner basis of the
ideal (f1(@;, X),..., fs(@;, X)) in K;[X ] Since the Grobner basis property is conservative under a field
extension, it is also a Grébner basis in K[X]. mi

4 Stability of Grobner bases

In this section we prove our main result.

Definition 4.1

Let T be an ideal of a polynomial ring K[A, X] over a field K with variables A and X. Let G be a finite
subset of I. Consider K[A, X] as a polynomial ring (K[A])[X] over the coefficient ring K[A]. If we have
({Im(f)If € I}) = ({im(g)lg € G}) in (K[A])[X] with a term order > of T(X), G is called a D-Grébner
basis of I in (K[A))[X] w.r.t. >.

Theorem 4.1

Let I be an ideal of a polynomial ring K[A, X] over a field K with variables A and X such that I N K[A]
is a zero-dimensional proper radical ideal in K[A]. Let G = {g1(4,X),...,q(4,X)} be a D-Grobner
basis of I in (K[A])[X] w.r.t. a term order > of T(X). If we consider G as a set of polynomials in the
polynomial ring (K[A]/I N K[A])[X] over the Von Neumann regular ring K{A]/I N K[A], then G also
becomes a Grébner basis in this polynomial ring w.r.t. >.

Proof. Let R denote the Von Neumann regular ring K[A]/INK[A}, and (G)r denote the ideal generated
by G in the polynomial ring R[X].
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By Lemma 2.1 and Lemma 2.3, in order to see that G becomes a Grobner basis of (G)g in R[X], it
suffices to show that each polynomial h(X) € (G)r in R[X] has a Grobner representation w.r.t. G in
R[X]. We can have a polynomial h(4, X) in K[4, X] which represents h(X) as is described in Theorem
3.3. We can also take h(4,X) from I. We first claim that we can take h(A4, X) such as the leading
coefficient of h(A, X) in (K[A])[X] is not in I N K[A]. If this property does not hold, let Gz be a(any)
Grobner basis of N K[4] in the polynomial ring K[A], replace h(A, X) with the normal form of A(4, X)
by Gz, then h(A, X) has the desired property. Since G is a D-Grobner basis of I in (K[A])[X], we have
its Grobner representation h(4, X) = ¥"\_, pi(4, X)g:(4, X) in (K[A])[X] by Lemma 2.3. Note also that
lt(h(A, X) is same in both of (K[A])[X] and R[X]. Hence, this Grébner representation is also a Grébner
representation in R[X]. o
Together with Theorem 3.3, we directly have the following.

Corollary 4.2

Let I be an ideal of a polynomial ring K[A, X] over a field K such that

INK[A] is a zero-dimensional radical ideal in K[A].

Let G = {9:1(A,X),...,q(A,X)} be a D-Grobner basis of I in (K[A))[X] w.r.t. aterm order > of T(X).
Let @ be an m-tuple of elements of the algebraic closure K of K which is a zero of the ideal I N K[A].
Then, G becomes a Grobner basis with the specialization by @, that is {g1(G, X), ..., (@, X)} becomes a
Grébner basis in K[X] w.r.t. >.

Proof. When I N K[A] is not a proper ideal, the result is trivial, otherwise apply Theorem 4.1 and
Theorem 3.3. o

The following lemma describes a relationship between D-Grdbner bases and standard Grébner bases.

Lemma 4.3 _ _ _
Let I be an ideal of a polynomial ring K [4,X] over a field K with variables A and X. Let G =
{91(A,X),...,91(A,X)} be a Gribner basis of I w.r.t. a term order > such that each variable X; is

greater than any term in T(A). Then G is a D-Grébner basis of I in (K[A])[X] w.r.t. the term order
that is a restriction of > on T(X).

Proof. Since Lemma 2.1 and Lemma 2.3 also hold in any polynomial ring over a field, each polynomial

f in I has a Grobner representation w.r.t. G in K[A, X]. By our assumption on the term order, it is also

a Grobner representation of f w.r.t. G in (K[A])[X]. ]
By this lemma, the following facts are direct consequences from the above theorem and corollary.

Theorem 4.4

Let I be an ideal of a polynomial ring K[A, X) over a field K with variables A and X such that I N K[A]
is a zero-dimensional proper radical ideal in K[A]. Let G = {g:(4,X),...,q1(4, X))} be a Gribner basis
of I w.r.t. a term order > such that each variable X; is greater than any term in T(A). If we consider G
as a set of polynomials in the polynomial ring (K[A]/I N K[A})[X] over the Von Neumann regular ring
K[A]/IN K[A], then G also becomes a Grébner basis of the ideal {(G) in this polynomial ring w.r.t. the
term order that is a restriction of > on T(X).

Corollary 4.5

Let I be an ideal of a polynomial ring K[A, X] over a field K such that

INKI[A] is a zero-dimensional radical ideal in K[A).

Let G = {g1(A4,X),...,q1(4,X)} be a Grobner basis of I w.r.t. a term order > such that each variable
X is greater than any term in T(A). Let @ be an m-tuple of elements of the algebraic closure K of K
which is a zero of the ideal I N K[A]. Then, G becomes a Gribner basis with the specialization by @, that
is {91(a,X), ..., (@, X)} becomes a Grobner basis in K[X] w.r.t. the term order that is & restriction of
> on T(X).

5 Remarks

The original definition of D-Grébner bases is slightly different from ours. It is defined only in a plynomial
ring (K[A])[X] with one variable A. Since the property of Lemma 2.1 is usually used for the definition
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of Grobner bases in polynomial rings over arbitrary commutative rings, our D-Grobner bases are nothing
but Grobner bases in a plynomial ring (K [A])[X] over the domain K [A].

The condition that I N K[A] is zero-dimensional is crucial for the results of section 4.
Example 5.1
G = {AX +Y? - 1,Y® - 1} is a Grobner basis w.r.t. the lexicographical term order > such that
X >Y > A. However, we get {Y? —1,Y? ~ 1} by specializing A = 0, which is not a Grébner basis.

The condition that IN K [/_1] is a radical ideal is also crucial. The following is a counterexample given in
2].

Example 5.2

G = {X}, X1 X3, X1 X3, AX1 + Xa, X3, X2 X3 — X2,AX,, X3, AX2, A?} is a reduced Grébner basis w.r.t.
the lexicographical term order > such that X; > X, > X3 > A. However, we get {X2,X1X5,X1X2,X>,
X2, X2X3 — X2, X3} by specializing A = 0, which is not a Grébner basis.

Three theorems of section 3 are originally given for boolean closed Grébner bases in [7, 9, 10]. In this
paper, we optimize our proofs so that the theorems hold for arbitrary Grobner bases.
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