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Abstract

Many strategies for an actuated biped gait generation
have been proposed based on the passive dynamic gait.
Among them, this study focuses on an impulsive excita-
tion at the toe-off instance. The strategy offers advan-
tages in its experimental implementation; for example, it
is not required to measure and control the trajectory of
the legs all the time. However, there has been no study
on a realistic design of the impulsive torque itself. In this
paper, we propose an impulsive actuation method based
on a power packet dispatching system. Power packet is a
unit of electric power transfer in a pulse shape with infor-
mation tags attached in voltage waveforms. According
to the tag, power packets are transferred from sources
to loads. On the basis of the power packetization, the
torque input is configured as a result of a power packet
supply to electric motors in a realistic setup. The pro-
posed scheme controls the supply in a digitized way, that
is, by changing the number of power packets supplied in
a gait step. We confirm the successful gait generation
with the power packets through numerical simulations.
Keywords: Power packet; Impulsive torque; Biped

robot; Gait generation

Nomenclature

a Distance from the hip to the centroid of the leg.
b Distance from the ankle to the centroid of the leg.
d Initial state deviation from an equilibrium point.
ej Unit vector consisting of 6 elements.

Only the j-th element is 1 and others 0.
g Gravitational acceleration.
i =

√
−1. Imaginary unit.

i = [i1 i2]>.
ij Current of motor j.
l = a+ b. Length of each leg.
m Mass of each leg.
mH Mass of the hip.
nj Number of power packets supplied to motor j

in one gait step.

∗This is a post-peer-review, pre-copyedit version of an article
published in Nonlinear Dynamics. The final authenticated ver-
sion is available online at: http://dx.doi.org/10.1007/s11071-020-
05756-7

uj Output torque of motor j.
v = [v1 v2]>.
vj Input voltage of motor j.

x =
[
θ> θ̇

>
i>
]>

. State point.

x0 Initial state.
x̄(j,k) Equilibrium point of Poincaré map when

(n1, n2) = (j, k).
DF Linearized map of F .
F Poincaré map representing one gait step.
Kj Electromotive force constant of motor j.
Lj Inductance of the winding of motor j.
Rj Resistance of the winding of motor j.
T Time duration of a power packet.
V Voltage of a power packet.
α = (θ1 − θ2)/2. Hip joint angle divided by 2.
γ Slope angle.
ε Scalar perturbation for eigenvalue computations.
θ = [θ1 θ2]>. Generalized coordinates.

θ̇ Time derivative of θ.

θ̈ Time derivative of θ̇.
θ1 Angle of stance leg.
θ2 Angle of swing leg.
θ−j Value of θj right before an impact.

θ+j Value of θj right after an impact.

θ̇− Value of θ̇ right before an impact.

θ̇+ Value of θ̇ right after an impact.
κj Gear ratio of motor j.
λ Eigenvalues of an equilibrium point.
τ Generalized force.
ωj Angular velocity of the joint where motor j is

mounted.

1 Introduction

McGeer [1] showed that a simple biped robot exhibits a
passive dynamic walking on a gentle downhill. The pas-
sive walker exploits the gravity to generate a stable gait
without external actuation. Following the study, much
effort has been devoted to the further understanding of
the underlying mechanisms and rich properties such as
bifurcation and chaos [2–4]. An important tool for their
analysis is Poincaré map [2, 5], whose fixed point cor-
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responds to a periodic gait. Eigenvalue analysis based
on the linearization of the map provides the informa-
tion of stability of the gait. Stability apparently plays
an important role in the practical use of the gait; how-
ever, due to the complexity of the biped dynamics, it
is not an easy task to derive the map. Much effort has
been devoted to the constitution method of the map both
numerically and analytically [2, 3, 6]. Besides the local
property, as a global analysis, a basin of attraction of
a gait has also been actively investigated until recently.
There have been not only numerical methods to obtain
the basin [7], but also analyses of the mechanism how its
complex shape appears [8–10].

Along with the analytic studies, another research di-
rection is the utilization of the dynamics of the passive
walker for an actuated gait. The work of Goswami et
al. [11] is known as the first proposal of the active gait
control. Focusing on the exchange of kinetic and poten-
tial energy that occurs every step in the passive gait, they
proposed an energy-tracking based strategy. Many re-
search groups followed the study, and a variety of energy
based strategies have been proposed until today: e.g. a
virtual gravity based strategy by Asano et al. [12], an en-
ergy shaping based strategy by Spong et al. [13], Sinnet
and Ames [14], de-León-Gómez et al. [15], and Yeatman
et al. [16]. Apart from the energy based ones, there have
recently been many proposals of active control strate-
gies from various perspectives, including a bio-mimetic
approach by Fu et al. [17, 18], an OGY-based feedback
control by Gritli et al. [19,20], and impulsive input strate-
gies by Kuo [21], Moon et al. [22], and Mochiyama and
Hikihara [23].

In the literature reviewed above, a common and essen-
tial point is to utilize the intrinsic dynamics of the pas-
sive gait. The purely passive gait is ultimately energy
efficient since it does not require any external energy in-
jection except for its own potential energy. Thus, even in
an actuated gait, it would be effective to keep the intrin-
sic dynamics as much as possible, instead of overwriting
it with a high-gain input [19]. The standpoint is also
taken over in the gait control introduced in this paper.

Among the various strategies, we focus on an impulsive
excitation [21–23], where an impulsive torque is applied
only at the toe-off instance. The point is that the nat-
ural dynamics of the mechanical configuration is kept in
almost all of the gait period. That is, it is not required to
control the swing-leg trajectory. This becomes an advan-
tage in an experimental implementation; the trajectory
control requires a measurement of the state variables and
a regulation of the input in a precise and real-time man-
ner.

In spite of its high affinity for the real applications,
however, few studies have addressed a design problem
of the impulsive torque. Obviously, it is impossible to
produce a pure impulse in a robot. To bring it to the
stage of applications, it is required to discuss a realistic

Figure 1: Power packet dispatching system.

impulsive actuation.

This paper is devoted to the impulsive torque control
by means of power packet. Power packet dispatching sys-
tem has been proposed for smart management of elec-
tric power flows [24–28]. Figure 1 shows an example of
the power packet dispatching system. In the proposal,
a power supply for a load is represented by an inter-
mittent sequence of discrete-valued inputs called power
packets. A power packet is a unit of electric power trans-
fer in a pulse shape with information tags attached in
voltage waveforms. According to the tag, power packets
are transferred from sources to loads. The system offers
many advantages especially in systems such as a mobile
robot and an electric vehicle: the smooth inclusion of
power sources of time-varying profiles, the reduction of
wires and power converters, and so on [25]. In addi-
tion, the quantization of power enables a computation of
power flow in a completely digitized way. Here arises the
possibility of using the packetized power for the impul-
sive actuation in the biped robot.

Recently, a load control method based on the packe-
tized power has been developed [29,30]. In addition, the
concept has been experimentally proved to be available
for the power level of industrial applications [Mochiyama,
et al., under review]. The realization of the concept
largely owes to the emerging semiconductor power de-
vices such as SiC [31]. Based on the developed hardware,
we consider the impulsive actuation with power packets.

In this paper, we first define the numerical models of
the robot and the impulsive excitation with power pack-
ets. Then, the impulsive torque control method is devel-
oped on the basis of the models. The feasibility of the
gait generation with the developed method is confirmed
through numerical simulations. Lastly, to support the
feasibility of the proposed control in the real applica-
tions, we provide an analysis of the generated gait from
the perspectives of stability and attraction. The stability
is confirmed through numerical method called perturba-
tion technique [2, 20]. The basin of attraction is also
obtained numerically through a simple exhaustive search
in a certain area of the state space.
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Figure 2: Compass model of the biped robot.

2 Compass Model of Biped
Robot

2.1 Configuration

Here is introduced a compass model of a biped robot
referring to [2]. Figure 2 shows the physical configuration
of the robot. The robot walks on a flat horizontal ground.
The generalized coordinates are defined by the angles of
the legs, θ = [θ1 θ2]>. The robot is actuated by the
motors placed at the ankle and the hip joint. The input
torques, u1 and u2, are exerted on the ankle and the hip
joint, respectively.

Now note that there are also studies on an underac-
tuated biped robot (e.g. [19, 32, 33]), as well as a fully
actuated one (e.g. [12, 13, 22]). For example, the robot
discussed in [32] exhibits a stable gait only with the ankle
joint powered. Still, we selected the fully actuated model
because we have confirmed in the previous study [23] that
the fully actuated model exhibits a variety of gaits (in
terms of gait speed and period) by controlling the torque
distribution between the ankle and hip actuators. This
feature is expected to be useful for more flexible control
of the gait by power packets.

A gait of the model can be divided into two phases:
(a) swing phase, and (b) impact phase. In the phase
(a), the swing leg moves in the air, while the stance leg
is fixed on the ground. The impulsive input is applied
at the beginning of this phase. Then, the gait moves
onto the phase (b) when the swing leg collides with the
ground. In this phase, the swing and stance legs switch
their roles. After the phase (b), the phase (a) starts
again. The numerical models for the phases are shown
in what follows.

2.2 Numerical Models

The equations of motion of the robot in the phase (a)
can be derived through Lagrangian formulation [34]. The
Lagrangian of the robot is

L(θ, θ̇) = K(θ, θ̇)− P (θ), (1)

where

K(θ, θ̇) =
1

2
θ̇
>
M(θ)θ̇, (2)

P (θ) = {mHl sin θ1 +mb cos θ1

+m(l cos θ1 − a cos θ2)} g, (3)

M(θ) =

[
(mH +m)l2 +mb2 −mal cos 2α
−mal cos 2α ma2

]
. (4)

As the generalized force related to the generalized coor-
dinates is

τ = Su =

[
1 1
0 −1

] [
u1
u2

]
, (5)

the equations of motion of the robot in the phase (a) is
expressed by

d

dt

∂L
∂θ̇
− ∂L
∂θ

= τ. (6)

Substituting Eq. (1) into Eq. (6), we have

M(θ)θ̈ +C(θ, θ̇)θ̇ + g(θ) = τ , (7)

where

C(θ, θ̇) =

[
0 −malθ̇2 sin 2α

malθ̇1 sin 2α 0

]
, (8)

g(θ) =

[
−(mHl +mb+ml) sin θ1

ma sin θ2

]
g. (9)

The input torque is supplied from the actuators. We
consider a linear model of a brushed dc motor{

Lj i̇j = −Rij − κjKjωj + vj

uj = κjKjij
, (10)

where ωj represents the angular velocity of the joint

where motor j is mounted: ω1 = θ̇1 and ω2 = θ̇1− θ̇2. In
other words, κωj represents the angular velocity of the
shaft of motor j. The input of Eq. (10) is set as the volt-
age v, which is realized by the input of power packets.
The design of the power packets will be discussed later.

The phase (a) ends by the impact of the swing leg on
the ground. When the ground is a slope of γ rad, the
equation

θ−1 + θ−2 = 2γ (11)

holds at the impact, where θ−1 and θ−2 represent θ1 and
θ2 right before the impact. In other words, the transition
of the legs occurs when the state variables transversely
crosses a hyperplane

Σ : θ1 + θ2 − 2γ = 0. (12)

Throughout this paper, we consider a flat ground and γ
is fixed at zero. We assume that the impact of a swing leg
can be modeled as an instantaneous and inelastic colli-
sion. Let θ̇

−
and θ̇

+
be angular velocities of right before

and after the impact. Then the law of conservation of
angular momentum leads to

Q+(α)θ̇
+

= Q−(α)θ̇
−
, (13)
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Figure 3: Power packet dispatching circuit.

where

Q+(α) =

[
q+11 q+12
q+21 q+22

]
, (14)

q+11 = mHl
2 +mb2 +ml(l − a cos 2α), (15)

q+12 = ma(a− l cos 2α), (16)

q+21 = −mal cos 2α, (17)

q+22 = ma2, (18)

Q−(α) =

[
q−11 q−12
q−21 q−22

]
, (19)

q−11 = (mHl
2 + 2mbl) cos 2α−mab, (20)

q−12 = q−21 = −mab, (21)

q−22 = 0. (22)

Along with the jump of the angular velocity, the ex-
change between the swing and stance legs occurs at the
impact. The switch is expressed as

θ+ =

[
0 1
1 0

]
θ−. (23)

3 Impulsive torque control with
power packets

3.1 Dispatching system

Figure 3 shows the power packet dispatching circuit. The
circuit can be seen as a minimal setup of the general dis-
patching network shown in Fig. 1. The source j supplies
power to motor j. The torque uj is generated by the
motor j. Note that the two motors placed at each ankle
are unified as “motor 2.” This simplification is based on
the fact that the two ankles are never actuated at the
same time.

The mixer generates a sequence of power packets with
switches SWM1, SWM2, and SWM3. To output “high”
logic or power, one of the serial-connected switches,
SWM1 or SWM2, is turned on. Other switches are kept
off to avoid a short circuit. To output “low” logic,
the parallel-connected switch SWM3 is turned on, while
SWM1 and SWM2 are kept off. The information tags

are read by the router’s controller through the isolator
module. When the router finishes reading the header of
a power packet, one of the switches SWR1 or SWR2 is
turned on to supply the power packet to the correspond-
ing motor. After detecting the end of the footer, the
router turns off all the switches.

The actuators are supplied by power packets at the
beginning of each step. The voltage and the time du-
ration of a power packet are denoted by V and T , re-
spectively. The values are kept constant; that is, the
amount of power is controlled by the number of power
packets. We denote the number of power packets sup-
plied to motor j in one gait step by nj (j = 1, 2). Here
power packets are supplied to each motor alternately in
the time-division multiplexing (TDM) manner [24, 25].
The supply is then expressed as

v =



[
V

0

]
if

{
(2n− 2)T ≤ t < (2n− 1)T

n = 1, 2, . . . , n1[
0

V

]
if

{
(2n− 1)T ≤ t < 2nT

n = 1, 2, . . . , n2[
0

0

]
otherwise

, (24)

where the onset of the time t coincides with the beginning
of a step.

Figure 4 shows an example of the TDM input in the
case of (n1, n2) = (3, 2). The top graph corresponds to
the first element of v, i.e. the supply to motor 1, and
the bottom graph to the second, i.e. the supply to mo-
tor 2. The supply to each motor is composed of mul-
tiple intermittent excitations. The two motors become
active repeatedly and alternately in one gait step, until
the number of activations reaches 3 and 2, respectively.
The activation of motor 1 (motor 2) corresponds to the
first (second) case of Eq. (24). After that, the two ac-
tuators are kept inactive until the beginning of the next
gait step (until the next impact), which corresponds to
the third case of Eq. (24). Here the time duration of
each excitation, T , is much shorter than the gait period
and the mechanical time constant, and there is no supply
except for at the very beginning of the gait period. In
these ways, the power-packet based controller takes over
the essential feature from the previous proposals of the
purely impulsive gait control. That is, it preserves the
natural dynamics of the passive gait in almost all all of
the gait period. In this sense, we call the controller as
impulsive.

The TDM transfer is one of the key concepts in the
power packet dispatching system [24, 25]. The distinc-
tion in time domain enables the power system to iden-
tify the flow of each power packet in the router network.
Obviously, this is not achieved in the common power sys-
tem where power from/to different source/destination is
mixed together. In addition, the system accommodates
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One gait step

time

Input voltage
of motor 1

(= One power packet)

Input voltage
of motor 2
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V

0 T
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4T0

Figure 4: Example of the TDM input in the case of
(n1, n2) = (3, 2).

the difference of voltage levels on a shared power line.
These features contribute to the reduction of the wires
and converters used in the conventional power system.
Their reduction contributes to less weight and volume,
i.e. to better maneuverability and higher energy effi-
ciency. Now it should be noted that the efficiency above
indicates that of the whole system including the power
distribution system. Besides the high efficiency of the
impulsive gait control scheme itself, the introduction of
the power packet dispatching system is expected to en-
hance the efficiency of the whole system by serving as an
interface between the control scheme and the physical
system including its power system.

The proposed method determines the number of power
packets in a feedforward manner. This is to remove the
requirement for a precise measurement of the state vari-
able to design the input torque. This is advantageous
for the applications since the real-time measurement and
computation are not required. The simple strategy is
also better suited for the concept of exploiting the natu-
ral dynamics of the structure as much as possible. Note
that the stability of the generated gait, which is con-
firmed later in Section 4, supports the feasibility of the
feedforward method.

3.2 Setup of power packet

Now we determine the specific setup of the power packet
supply. To keep the feasibility in the process of the
torque generation, we consider the following require-
ments. First, (R1) the maximum voltage and current
of a power packet supply are set at the level which is
adopted in a popular robotics application. Second, (R2)
the length of a unit pulse (power packet) is set within a
reasonable range. In (R2), the pulse length is required to
be sufficiently shorter than the step period of the robot;
otherwise it is no longer an impulsive excitation. At the
same time, it cannot be too short to realize the flow of
current in the switching circuit.

Now, setting a concrete configuration of the robot

Table 1: Parameters of the biped robot.
Parameter Unit Value

Mass of hip: mH kg 10.0
Mass of leg: m kg 5.0

Distance from hip to centroid: a m 0.50
Distance from ankle to centroid: b m 0.50

Table 2: Parameters of the actuator (MAXON RE40
148877) and the attached gear.

Parameter Unit Value
Torque constant: K N m A−1 6.03× 10−2

Inductance: L H 3.3× 10−4

Resistance: R Ω 1.13
Rated voltage V 48

Max. cont. current A 3.17
Starting current A 42.4

Mass kg 0.48
Gear ratio: κ - 16

and the actuators, we confirm the existence of the setup
which meets the requirements. Table 1 shows the values
of the parameters related to the physical configuration
of the robot. The parameters are referred to the previ-
ous study [2]. Dc brushed motors are adopted for the
actuators of all the joints. Table 2 shows the values of
the parameters related to the actuators (MAXON RE40
148877), taken from the website of the manufacturer [35].
The actuators are coupled to the ankles and the hip joint
through gears. The gear ratio is set at κ = 16 for all the
actuators. The rated voltage is 48 V, which is common
for a robotic application. Its weight, 0.48 kg, is also rea-
sonable for loading onto the robot of the aforementioned
physical configuration.

Based on the specifications of the motors, we deter-
mine the setups of power packet as follows. The voltage
of power packets is set at the rated value, V = 48 V. The
packet length is set at T = 1.0 × 10−2 s. The length is
expected to be much shorter than the step period of the
robot, typically 0.7–1 s, according to the previous stud-
ies using the similar model [2, 23]. It is also sufficiently
long compared with the electrical time constant of the
motor. In fact, T is about thirty times greater than the
time constant of L/R ∼ 2.9×10−4 s. Thus it is expected
that the current reaches its peak during each payload.

4 Numerical simulation of gait
generation

For the numerical integration in the following simula-
tions, the function “ode45” of MATLAB is used with
the relative and absolute error tolerance parameters set
at 1 × 10−8 and 1 × 10−10, respectively. The impact
condition Eq. (12) is detected by the optional argument
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called “event” of the function.

4.1 Results with (n1, n2) = (6, 4) and (2, 6)

This subsection shows an example of the successful gait
generation with two specific setups of (n1, n2). Accord-
ing to the literature on the purely impulsive gait genera-
tion [22,23], it is expected that a periodic gait is obtained
under an appropriate selection of (n1, n2). Here we in-
troduce a discrete map F called a step-to-step map [3].
This is a Poincaré map of the state trajectory which is
defined as a map from the state point right after an im-
pact to the one right after the next impact. The state

point is denoted by x = [θ>, θ̇
>
, i>]>. Then a periodic

gait corresponds to a fixed point of the map. To find
combinations of (n1, n2) and corresponding fixed point,
we conduct some trial-and-error simulations in advance.
In detail, for each (n1, n2), we repeat simulations with
initial states placed on lattice points in the state space
and see if x = F(x). As a result, we obtained the fol-
lowing two combinations, {(n1, n2) = (6, 4), x̄(6,4)} and
{(n1, n2) = (2, 6), x̄(2,6)}. The details of each gait are
presented in the following.

First, we present the result of a gait simulation with
(n1, n2) = (6, 4). Starting from the initial state

x0 = x̄(6,4) =


−0.2209
0.2209
0.9670
0.5488
−1.023
0.1978

 , (25)

the gait continues at least 100 steps without falling down.
Figure 5 shows the trajectories of angle, angular veloc-
ity, current, and torque for the first 8 seconds of the
gait. Figures 5 (a) and (b) show the trajectories of angle
and angular velocity. The discontinuous changes in angle
and velocity indicate the impacts of the swing leg to the
ground. The trajectories between each impact exhibit
the same appearance. Figures 5 (c) and (d) show the
trajectories of current. The current pulses are generated
at the beginning of each step. The magnitude of each
pulse is kept constant.The periodic trajectories of angle,
angular velocity, and current indicate the appearance of
a periodic gait. That is, in the steady state, each step
begins with the same state point, namely x0. Figures 5
(e) and (f) show the enlarged view of the current tra-
jectories. The current pulses are generated alternately
at motors 1 and 2, which shows that the power packets
are transferred in the TDM manner. The current trajec-
tory in each power packet reaches its peak value, as is
expected in the setup. Figures 5 (g) and (h) show the
trajectories of torque. The impulsive torque is generated
in accordance with the current pulses. The trajectories of
torque almost coincide with the current, since the torque
is proportional to the current and its factor is about 1
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Figure 5: Results of the simulation with (n1, n2) = (6, 4).
(a) Angle trajectories of both legs. (b) Angular velocity
trajectories of both legs. (c) Current trajectory of motor
1. (d) Current trajectory of motor 2. (e) Enlarged view
of current trajectory of motor 1. (f) Enlarged view of
current trajectory of motor 2. (g) Torque trajectory of
motor 1. (h) Torque trajectory of motor 2.
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(κj ·Kj ∼ 1). To sum up the results above, we conclude
that the generation of a periodic gait can be realized with
impulsive actuation by power packets.

Then we move on to another setup: (n1, n2) = (2, 6).
Starting from the initial state

x0 = x̄(2,6) =


−0.1835
0.1835
0.8058
0.3978
−0.9439

1.326

 , (26)

the gait also continues at least 100 steps without falling
down. Figure 6 shows the result with (n1, n2) = (2, 6).
Figures 6 (a) – (d) show that the state exhibits a periodic
change in every step, as is observed for (n1, n2) = (6, 4).
The comparison of Figs. 5 (e) and (f) and Figs. 6 (e) and
(f) indicates the change of the number of input power
packets according to the setup of (n1, n2).

Now, in the successful gaits, some differences are found
depending on the value of (n1, n2). For example, the
amplitudes of the angle trajectories and the gait period
are different between the results with (n1, n2) = (6, 4)
and with (n1, n2) = (2, 6). Compared with the result
with (n1, n2) = (6, 4), both the amplitudes of the angle
trajectories and the gait period are increased. This result
suggests the possibility of gait control by changing the
number of power packets in a feedforward manner.

4.2 Property of attraction

The generated gait possesses a property of attraction
under small deviation of the initial value. To confirm
the property, we first analyze stability of the periodic
gait. The local stability of the periodic gait can be
determined through a stability analysis of the corre-
sponding fixed point of the Poincaré map F [5]. Let
the linearized map of F be denoted by DF . Accord-
ing to Hartman-Grobman’s theorem, if DF(x̄) has no
zero or purely imaginary eigenvalues, the local behavior
in a neighborhood of x̄ is identical both in the original
and the linearized cases [36]. There have been several
methods to constitute the linearized map, both analyt-
ical approaches [6, 37] and numerical ones [2, 3, 20]. We
adopt what is called the perturbation technique based
on numerical integration, following [20]. The procedure
is summarized in Algorithm 1. Each column of
DF is derived through a calculation of how a small per-
turbation grows after one step of the gait. Note that it
is required to set the value of ε appropriately; too large
or small value of ε can lead to a significant error of the
obtained map [20]. We thus repeat the procedure with
different ε to determine the best value, i.e. the value
around which a small change of ε does not affect the re-
sult of the calculation. It is also worth noting that the
perturbation technique is not efficient especially in the
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Figure 6: Results of the simulation with (n1, n2) = (2, 6).
(a) Angle trajectories of both legs. (b) Angular velocity
trajectories of both legs. (c) Current trajectory of motor
1. (d) Current trajectory of motor 2. (e) Enlarged view
of current trajectory of motor 1. (f) Enlarged view of
current trajectory of motor 2. (g) Torque trajectory of
motor 1. (h) Torque trajectory of motor 2.
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Algorithm 1 Pseudo code for the numerical calculation of the linearized map.

1: procedure ObtainLinearizedMap
2: for i← 1 : 6 do
3: xi ← x̄+ ε · ei . Set initial state with small deviation ε
4: x∗i ← F(xi) . Calculate one step of gait
5: δi ← (x∗i − x̄)/ε . Calculate normalized difference
6: end for
7: DF(x̄)← [δ1, δ2, . . . , δ6] . Constitute matrix with column vectors δi
8: [λ1,λ2, · · · ,λ6]← calculateEigenValue(DF(x̄)) . Use MATLAB’s “eig”
9: end procedure
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Figure 7: Eigenvalues on the complex plane. The sym-
bols “x” denote the eigenvalues. Note that some symbols
around the origin are overlapped because of their close
values.

analysis of unstable gait [20]. Although this issue does
not apply to our case, where only stable gaits are con-
sidered, it should be noted for further investigations e.g.
a bifurcation analysis.

With the procedure above, the eigenvalues λ(6,4) and
λ(2,6) are obtained as follows:

λ(6,4) =


0.3694 + 0.4022i
0.3694− 0.4022i

3.665× 10−2

1.303× 10−8 + 8.521× 10−8i
1.303× 10−8 − 8.521× 10−8i

−3.142× 10−5

 , (27)

λ(2,6) =


−0.9475
0.3030

6.300× 10−2

−4.867× 10−6 + 4.252× 10−6i
−4.867× 10−6 − 4.252× 10−6i

2.4167× 10−5

 . (28)

Figure 7 shows the eigenvalues plotted on the complex
plane. All the eigenvalues are placed within a unit circle,
so the one-period gaits obtained above are locally stable.

Besides the local stability, global attraction is also an
important property from the practical point of view. For
a purely passive gait, the basin of attraction of x̄ has been
obtained through numerical integration and the mecha-
nism of how it is formed in the state space has been

investigated [7–10]. Furthermore, for an actuated gait
with an impulsive excitation, the basin of attraction has
been obtained and it appears similar to the purely pas-
sive case [22]. On the basis of the fact, it is expected
that a similar basin can be obtained for the gait control
considered in this paper. Although the detailed analysis
of the basin itself is beyond the scope of this paper, it
is helpful for the discussion on the feasibility of the pro-
posed control to investigate a rough outline of the basin.
Thus, in what follows, we compute the basin in the case
of (n1, n2) = (6, 4) through numerical integration.

The basin lies in the five dimensional space (θ1,
θ̇1, θ̇2, i1, i2) 1 , which means the direct visualization is
difficult. We thus show the basin projected to the three
dimensional space (θ1, θ̇1, θ̇2) with (i1, i2) fixed at the
equilibrium value. The computation is conducted with a
set of 50× 50 initial state points placed on a planer lat-
tice. The lattice is set on the θ1-θ̇1 plane with θ̇2 fixed at
a specific value. By changing the value of θ̇2, we obtain
sliced views of the 3d basin. Figure 8 (a) shows the set
of initial state points used for the computation. The 3d
grid consists of 50, 50, and 9 points along the axes of θ1,
θ̇1, and θ̇2, respectively. The center of the grid coincides
with the equilibrium point. An initial point is regarded
to be a part of the basin if the gait converges to the
equilibrium point in 50 gait steps. Now the omission of
(i1, i2) can be justified by the fact that the initial value
of (i1, i2) is much smaller than the rated current of the
motors. In other words, the effect of current deviations
that can appear in a practical situation is considered to
be extremely small. This point is confirmed through nu-
merical simulations later.

Figures 8 (b)–(f) show the computed basin. On each
layer, the basin has a narrow band shape with the
branched point moving toward the equilibrium as θ̇2 de-
creases. The overall appearance seems similar to the pre-
vious results in a purely passive gait [8, 9] and in an ac-
tuated gait with pure impulses [22]. Note that the setup
of the grid does not include the whole basin. In other
words, the basin might continue to the state space out-
side the grid.

Now, in order to show an example of the attracting

1As we consider the point right after the impact, θ2 is dependent
on θ1 under the relationship of Eq. 12.
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Figure 8: Basin of attraction. (a) Set of initial state
points used for the computation. (b) – (f) Obtained basin
of attraction on each sliced layer indicated in (a).

property, we examine the gait of (n1, n2) = (6, 4) with
an initial state including the following sets of small de-
viation:

d1 =
[
0.030, 0.0, 0.0, 0.0, 0.0, 0.0

]>
, (29)

d2 =
[
0.0, 0.0, −0.14, −0.4, 0.0, 0.0

]>
, (30)

d3 =
[
0.0, 0.0, 0.0, 1.2, 0.0, 0.0

]>
, (31)

d4 =
[
0.0, 0.0, 0.0, 0.0, 0.6, 1.2

]>
. (32)

The initial state is defined using the deviation as

xdj
= x0 + dj (j = 1, . . . , 4). (33)

The deviation vectors d1, d2, and d3 are selected from
the basin calculated above. The deviation vector d4 is
selected to confirm the validity of the aforementioned as-
sumption that the effect of the initial current is relatively
small.

We conduct a numerical simulation of 100 steps for
each initial state. As a result, the gait succeeds with
all the initial states. The gait continues for 100 steps
without falling down, and the state approaches the fixed
point. In fact, at the last step, the distance ||x0 − x||2,
namely the distance between the fixed point and the state
point at each step, becomes less than 1.0 × 10−4 in all
the cases. The angle and velocity trajectories with
deviation d1, d2, d3, and d4 are shown in Figs. 9, 10, 11,
and 12, respectively. In Figs. 9-11, the effect of the dis-
turbance diminishes step by step. After several steps of
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Figure 9: Angle and angular velocity trajectories with
(n1, n2) = (6, 4) and with deviation d1.

0 1 2 3 4 5 6 7 8

Time / s

-0.4

-0.2

0

0.2

0.4

A
n
g
le

 /
 r

ad

0 1 2 3 4 5 6 7 8

Time / s

-2

-1

0

1

2

Figure 10: Angle and angular velocity trajectories with
(n1, n2) = (6, 4) and with deviation d2.
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Figure 11: Angle and angular velocity trajectories with
(n1, n2) = (6, 4) and with deviation d3.
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Figure 12: Angle and angular velocity trajectories with
(n1, n2) = (6, 4) and with deviation d4.
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Figure 13: Combinations of (n1, n2) which generate a
successful gait. The circles “o” and crosses “x” in the
plot represent the success and the failure in 100 steps
gait, respectively.

transient, the angle and velocity follow almost the same
trajectories as those of Fig. 5. In addition, Fig. 12 shows
the gait trajectories are almost same as those of Fig. 5
from the first gait step. This indicates the validity of
the aforementioned assumption that the effect of current
deviation on the gait is relatively small.These results sug-
gest the attracting property of the generated gait. This
is important in practical applications; even with uncer-
tainties such as a rough ground surface, the robot can be
attracted to a stable gait.

Lastly, as an application of the attracting property, we
examine the range of (n1, n2) that generate a successful
gait with a specific initial condition. Figure 13 shows the
combinations of (n1, n2) which generate a successful gait.
Here a gait is defined as “successful” if it continues 100
steps starting from the initial state x0 = x̄(6,4). The re-
sult shows that, for a single initial state, there are many

candidates of the input sets that generate a successful
gait. It indicates the possible application to a gait tran-
sition based on the digitized control by the power packet
supply.

5 Conclusions

In this paper, we discussed the impulsive torque con-
trol of a biped gait with the packetized supply of power.
First, we designed the packet-oriented method for sup-
plying the impulsive torque. Second, we demonstrated
the feasibility of the proposed method through numeri-
cal simulations. The successful generation of a gait was
confirmed. In addition, we confirmed that the robot gait
converged to the stable one even with the existence of a
small disturbance of the initial condition. Finally, we ob-
served that some properties of the gaits can be controlled
by supplying a different number of power packets. The
results are expected to be the basis of further research
on an active control method of the gait.

Although the biped gait generation has been studied
intensively for a long time, most of them are devoted to
the analysis of the rich mathematical properties. The
results of this paper, on the contrary, open the way to
the real-world implementation of the concept. Moreover,
they give some clues for a novel approach in the field of
motion control. For example, the torque (current) input
waveforms in the numerical simulation seem similar to
a rhythmic burst of neuron models [38]. Here arises the
possibility to replace a CPG network, which has been
defined in the cyber world, with a network based on a
flow of a physical quantity. This perspective offers a way
of the integration of information and physical quantities,
which is essential in cyber-physical systems [39].
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Interconnection and damping assignment passivity-
based control for a compass-like biped robot. In-
ternational Journal of Advanced Robotic Systems
14(4), 1729881417716593 (2017). DOI 10.1177/
1729881417716593

[16] Yeatman, M., Lv, G., Gregg, R.D.: Decentralized
Passivity-Based Control With a Generalized Energy
Storage Function for Robust Biped Locomotion.
Journal of Dynamic Systems, Measurement, and
Control 141(10) (2019). DOI 10.1115/1.4043801

[17] Fu, C., Tan, F., Chen, K.: A simple walking strat-
egy for biped walking based on an intermittent si-
nusoidal oscillator. Robotica 28(6), 869–884 (2010).
DOI 10.1017/S0263574709990713

[18] Fu, C., Wang, J., Chen, K., Yu, Z., Huang, Q.: A
walking control strategy combining global sensory
reflex and leg synchronization. Robotica 34(5), 973–
994 (2016). DOI 10.1017/S0263574714002008

[19] Gritli, H., Belghith, S., Khraief, N.: OGY-based
control of chaos in semi-passive dynamic walk-
ing of a torso-driven biped robot. Nonlinear Dy-
namics 79(2), 1363–1384 (2015). DOI 10.1007/
s11071-014-1747-9

[20] Gritli, H., Belghith, S.: Walking dynamics of the
passive compass-gait model under OGY-based con-
trol: Emergence of bifurcations and chaos. Commu-
nications in Nonlinear Science and Numerical Sim-
ulation 47, 308–327 (2017). DOI 10.1016/j.cnsns.
2016.11.022

[21] Kuo, A.D.: Energetics of Actively Powered Loco-
motion Using the Simplest Walking Model. Journal
of Biomechanical Engineering 124(1), 113 (2001).
DOI 10.1115/1.1427703

[22] Moon, J.S., Stipanović, D.M., Spong, M.W.: Gait
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