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Machine learning potentials for multicomponent systems: The Ti-Al binary system
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Machine learning potentials (MLPs) are becoming powerful tools for performing accurate atomistic sim-
ulations and crystal structure optimizations. An approach to developing MLPs employs a systematic set of
polynomial invariants including high-order ones to represent the neighboring atomic density. In this study, a
formulation of the polynomial invariants is extended to the case of multicomponent systems. The extended
formulation is more complex than the formulation for elemental systems. This study also shows its application
to the Ti-Al binary system. As a result, an MLP with the lowest error and MLPs with high computational
cost performance are selected from the many MLPs developed systematically. The predictive powers of the
developed MLPs for many properties, such as the formation energy, elastic constants, thermodynamic properties,
and mechanical properties, are examined. The MLPs exhibit high predictive power for the properties in a wide
variety of ordered structures. The present scheme should be systematically applicable to other multicomponent
systems.
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I. INTRODUCTION

Machine learning potentials (MLPs) have been developed
from extensive data sets generated by density functional
theory (DFT) calculation and can significantly improve the
accuracy and transferability of interatomic potentials. There-
fore, MLPs are becoming useful tools for performing crystal
structure optimizations and accurate large-scale atomistic
simulations, which are prohibitively expensive by DFT cal-
culation. Over the past decade, a number of methods that
can be used to develop MLPs and their applications have
been reported [1–23]. In these studies, the contribution of
an atom to the potential energy is given as a function
of quantities depending on its neighboring environment,
called structural features. Also, several models are em-
ployed to describe a mapping from structural features to the
atomic contribution, including artificial neural network mod-
els [1,2,4–7], Gaussian process models [3,8–11], and linear
models [12–19].

Structural features play an essential role in controlling the
accuracy and computational efficiency of MLPs, which are
conflicting properties in general [24–26]. A systematic set
of structural features is composed of polynomial invariants.
The polynomial invariants include second- and third-order
bond-orientational order parameters [27], angular Fourier se-
ries [28], the bispectrum [28,29], and moment tensors [19,30],
which have been adopted to develop MLPs and machine learn-
ing models of physical properties in compounds. Recently,
a group-theoretic procedure for enumerating the polynomial
invariants derived from spherical harmonics, including high-
order ones, was proposed [24]. The angular Fourier series,
bond-orientational order parameters, and bispectrum can be
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included in the enumeration by this procedure. Machine learn-
ing potentials developed with the polynomial invariants for
a wide variety of elemental systems exhibit high predictive
power for a wide range of structures. They are available in
the Machine Learning Potential Repository [31,32]. However,
the polynomial invariants and related potential energy models
must be generalized for developing MLPs in multicomponent
systems.

In this study, polynomial invariants for developing MLPs
for a multicomponent system are formulated. The present
formulation of the polynomial invariants should be help-
ful in developing MLPs for multicomponent systems even
within other frameworks. Polynomial models combined with
the polynomial invariants are also introduced to describe the
potential energy. This study also shows an application of
the polynomial models to the development of Pareto optimal
MLPs in the Ti-Al binary alloy system. The predictive power
of the Pareto optimal MLPs is examined for the cohesive
energy, the formation energy, the elastic constants, the phonon
density of states and dispersion curves, the thermal expansion,
the energy profile along the Bain path, and the stacking fault
properties.

Section II introduces potential energy models in mul-
ticomponent systems, including the polynomial invariants
representing the neighboring atomic density and polynomial
models for the potential energy. In Sec. III, data sets required
to develop MLPs for the Ti-Al binary system are explained.
Computational procedures for constructing data sets and es-
timating coefficients in the potential energy models are also
shown. In Sec. IV, the development of Pareto optimal MLPs
for the Ti-Al binary system is demonstrated. The predictive
power of the MLPs for many properties, such as the formation
energy, the elastic constants, the thermodynamic properties,
and the mechanical properties, is also investigated. The study
is summarized in Sec. V.
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FIG. 1. Schematic illustration of the neighboring atomic density
around atom i in a binary structure. Its decomposition into the neigh-
boring atomic densities of elements A and B around atom i is also
shown.

II. POTENTIAL ENERGY MODELS

This section shows an extension of polynomial models for
the potential energy proposed to develop MLPs for elemental
systems [24]. This section is composed of a general descrip-
tion of the potential energy that is useful for deriving potential
energy models for a multicomponent system, a systematic
set of structural features representing the neighboring atomic
densities, and polynomial models for the potential energy used
in this study.

A. General description of potential energy

Given a cutoff radius rc, the short-range part of the poten-
tial energy for a structure E may be decomposed as

E =
∑

i

E (i), (1)

where E (i) denotes the contribution of atom i within cutoff
radius rc. The atomic contribution to the potential energy can
be referred to as the atomic energy. The atomic energy is
then assumed to be expressed in a functional form of the
neighboring atomic densities. Figure 1 shows a schematic
illustration of the neighboring atomic density around atom i
within cutoff radius rc and its decomposition into the neigh-
boring atomic densities of the elements. In a multicomponent
system composed of elements {A, B, . . .}, the atomic energy is
written using functional F dependent on the element of atom
i as

E (i) = Fsi

[
ρ

(i)
(si,A), ρ

(i)
(si,B), . . .

]
, (2)

where ρ
(i)
(si,s) denotes the neighboring atomic density of ele-

ment s (s ∈ {A, B, . . .}) around atom i of element si.
Subsequently, the neighboring atomic density of element

s around atom i is expanded in terms of a basis set, because
the expansion enables the functional form to be replaced with
a function of its expansion coefficients. For a given basis set

{bn}, the neighboring atomic densities can be expanded as

ρ
(i)
(si,A)(r) =

∑
n

a(i)
n,(si,A)bn(r),

ρ
(i)
(si,B)(r) =

∑
n

a(i)
n,(si,B)bn(r), (3)

...

where a(i)
n,(si,s) denotes an order parameter characterizing the

neighboring atomic density of element s around atom i of
element si. Using the order parameters, the atomic energy may
be rewritten as

E (i) = F ′
si

(
a(i)

1,(si,A), a(i)
1,(si,B), . . . , a(i)

2,(si,A), a(i)
2,(si,B), . . .

)
. (4)

Although the function F ′ of Eq. (4) depends on the element
of atom i, it is convenient to introduce a unified function
that is independent of the element by combining functions
F ′ for all elements. In this study, a unified function for the
atomic energy is formulated using order parameters defined
for unordered pairs of elements. This means that the order
parameter a(i)

n,(si,s j )
of atom i and its swapped order parameter

a( j)
n,(s j ,si )

of atom j are considered as the same variable in the

unified function. They are represented by a(i)
n,{si,s j } and a( j)

n,{si,s j },

respectively. Defining the order parameter a(i)
n,{s1,s2} to be zero

if si is not included in {s1, s2} (si /∈ {s1, s2}), the atomic energy
is written in an independent form of the element of atom i as

E (i) = F ′′(a(i)
1,{A,A}, a(i)

1,{A,B}, a(i)
1,{B,B}, . . . , a(i)

2,{A,A},

a(i)
2,{A,B}, a(i)

2,{B,B}, . . .
)
, (5)

where all combinations with the replacement of elements are
enumerated for each n.

Moreover, an arbitrary rotation leaves the atomic en-
ergy invariant, although it generally changes the neighboring
atomic densities and their order parameters. Therefore, the
atomic energy is required to be a function of O(3) invariants
{d (i)

n′ } as

E (i) = F
(
d (i)

1 , d (i)
2 , . . .

)
, (6)

where the invariants are derived from the order parameters
{a(i)

n,{s1,s2}}. Hereafter, the invariants representing the neighbor-
ing atomic density are referred to as structural features. The
present formulation is useful for deriving potential energy
models, the accuracy and computational efficiency of which
can be controlled by the selections of structural features and
the function F .

B. Structural features

In this study, the neighboring atomic densities are ex-
panded in terms of a basis set composed of radial functions
or a basis set composed of products of radial functions and
spherical harmonics [24,28], although it is also possible to
use other basis sets in principle. When the neighboring atomic
density is expanded in terms of radial functions { fn}, the
neighboring atomic density around atom i is expressed as

ρ
(i)
(si,s)(r) =

∑
n

a(i)
n,{si,s} fn(r), (7)
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where r denotes the distance from the position of atom i. Since
the order parameter a(i)

n,{si,s} is invariant for the O(3) group, it
can be a pairwise structural feature defined as

d (i)
n0,t = a(i)

n,t , (8)

where t identifies the unordered pair of elements, i.e., t ∈
{{A, A}, {A, B}, . . . }.

When the neighboring atomic density is expanded in terms
of products of radial functions { fn} and spherical harmonics
{Ylm}, the neighboring atomic density of element s at a posi-
tion (r, θ, φ) in spherical coordinates centered at the position
of atom i is expressed as

ρ
(i)
(si,s)(r, θ, φ) =

∑
nlm

a(i)
nlm,{si,s} fn(r)Ylm(θ, φ), (9)

where the order parameter a(i)
nlm,{si,s} is the component nlm of

the neighboring atomic density. Since the order parameters
are not generally invariant for the O(3) group, polynomial
invariants of the order parameters are adopted as structural
features. A pth-order polynomial invariant for a radial index n
and a set of pairs composed of the angular number and the el-
ement unordered pair {(l1, t1), (l2, t2), . . . , (lp, tp)} is defined
as a linear combination of products of p order parameters,
expressed as

d (i)
nl1l2···lp,t1t2···tp,(σ )

=
∑

m1,m2,...,mp

c
l1l2···lp,(σ )
m1m2···mp a(i)

nl1m1,t1
a(i)

nl2m2,t2
· · · a(i)

nlpmp,tp
. (10)

Nonzero polynomial invariants are derived from the sets
satisfying the condition that the intersection of tp is not the
empty set, ∏

p

tp �= ∅. (11)

Therefore, possible sets of pairs composed of the
angular number and the element unordered pair
{(l1, t1), (l2, t2), . . . , (lp, tp)} are enumerated for a given
maximum angular number to obtain the entire set of
polynomial invariants. An example where the intersection
of element pairs becomes the empty set is the case that a
polynomial invariant is composed of order parameters with
t1 = {A, A} and t2 = {B, B}. Such polynomial invariants are
eliminated.

A coefficient set {cl1l2···lp,(σ )
m1m2···mp } is independent of the ra-

dial index n and the element unordered pair t . Therefore,
linearly independent coefficient sets are obtained using the
group-theoretic projector operation method for a given set
{l1, l2, . . . , lp}, as proposed in Ref. [24], ensuring that the
linear combinations are invariant for arbitrary rotation. In
terms of fourth- and higher-order polynomial invariants, mul-
tiple invariants are linearly independent for most of the set
{l1, l2, . . . , lp}, which are distinguished by index σ if nec-
essary. Note that the second- and third-order invariants are
equivalent to a multicomponent extension of the angular
Fourier series and the bispectrum reported in the literature,
respectively [28,29].

In this study, a finite set of Gaussian-type functions is
adopted as radial functions in basis sets to expand the neigh-

boring atomic density, expressed as

fn(r) = exp[−βn(r − rn)2] fc(r), (12)

where βn and rn are parameters. The cutoff function fc is given
by a cosine-based function as

fc(r) =
{ 1

2

[
cos

(
π r

rc

) + 1
]

(r � rc)
0 (r > rc).

(13)

The order parameters of atom i and element pair {si, s} are
approximately estimated from the neighboring atomic density
of element s around atom i as

a(i)
nlm,{si,s} =

∑
{ j|ri j�rc,s j=s}

fn(ri j )Y
∗

lm(θi j, φi j ), (14)

where (ri j, θi j, φi j ) denotes the spherical coordinates of neigh-
boring atom j centered at the position of atom i. Although
the Gaussian-type radial functions are not orthonormal, such
an approximation of the order parameters is acceptable in
the present polynomial-based framework, as also discussed in
Ref. [24].

C. Polynomial models for atomic energy

Polynomial models are here employed to represent the
atomic energy as a function of structural features. Given a set
of structural features D = {d1, d2, . . .}, polynomial functions
are written as

f1(D) =
∑

i′
wi′di′ ,

f2(D) =
∑
{i′, j′}

wi′ j′di′d j′ ,

f3(D) =
∑

{i′, j′,k′}
wi′ j′k′di′d j′dk′ ,

... (15)

where w denotes a regression coefficient. Although the
polynomial functions are described by all combinations of
structural features, only nonzero polynomial terms are re-
tained, which is analogous to the enumeration of nonzero
polynomial invariants. In a multicomponent system, a struc-
tural feature is composed of order parameters, each of which
has an attribute on the element unordered pair t . Therefore,
when the element pair of the p′th-order parameter in the
structure feature di′ of a polynomial term is denoted by ti′,p′ ,
a nonzero polynomial term satisfies the condition that the
intersection of {ti′,p′ } is not the empty set:(∏

p′
ti′,p′

)
∩

(∏
p′

t j′,p′

)
∩ · · · �= ∅. (16)

For example, the intersection of element pairs becomes the
empty set if a polynomial term is composed of structural fea-
tures with ti′,p′

i
= {A, A} and t j′,p′

j
= {B, B}. Such polynomial

terms are eliminated from the polynomial functions.
The following polynomial models for the atomic energy

are systematically applied to obtain Pareto optimal MLPs as
described in Sec. IV A. The first model is a polynomial of
pairwise structural features. When a set of pairwise structural
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FIG. 2. (a) Distribution of MLPs for the Ti-Al binary system.
The purple closed circles show Pareto optimal points of the distri-
bution with different trade-offs between accuracy and computational
efficiency. The green closed circles indicate the MLP with the lowest
prediction error denoted by MLP3 and the Pareto optimal MLPs with
high computational cost performance denoted by MLP1 and MLP2.
The computational time indicates the elapsed time for a single-
point calculation normalized by the number of atoms. The elapsed
time is measured using a single core of Intel® Xeon® E5-2695 v4
(2.10 GHz). (b) Dependence of the computational time required for
a single-point calculation on the number of atoms. The dependence
of the computational time using the EAM potential [41] is also shown
for comparison.

features is described as

D(i)
pair = {

d (i)
n0,t

}
, (17)

the first model is expressed as

E (i) = f1
(
D(i)

pair

) + f2
(
D(i)

pair

) + f3
(
D(i)

pair

) + · · · . (18)

The first model includes the special case that only powers
of the pairwise structural features are considered, which was
introduced for elemental systems in Refs. [12,13]. The first
model can also be regarded as a straightforward extension of
embedded-atom method (EAM) potentials [14].

The second model for the atomic energy is a linear poly-
nomial of polynomial invariants given by Eq. (10). A set of

polynomial invariants is described as

D(i) = D(i)
pair ∪ D(i)

2 ∪ D(i)
3 ∪ D(i)

4 ∪ · · · , (19)

where a set of pth-order polynomial invariants is given by

D(i)
2 = {

d (i)
nll,t1t2

}
,

D(i)
3 = {

d (i)
nl1l2l3,t1t2t3

}
, (20)

D(i)
4 = {

d (i)
nl1l2l3l4,t1t2t3t4,(σ )

}
.

A second-order invariant is identified with a single l value
because second-order linear combinations are invariant only
when l1 = l2 [33,34]. The second model is then written as

E (i) = f1(D(i) ), (21)

which was introduced in Ref. [24] for elemental systems. Note
that a linear polynomial model with up to third-order invari-
ants is equivalent to a spectral neighbor analysis potential
(SNAP) [15], expressed as

E (i) = f1
(
D(i)

pair ∪ D(i)
2 ∪ D(i)

3

)
. (22)

An extension of the second model is a polynomial of poly-
nomial invariants described as

E (i) = f1(D(i) ) + f2(D(i) ) + f3(D(i) ) + · · · . (23)

Note that a quadratic polynomial model of polynomial invari-
ants up to the third order is equivalent to a quadratic SNAP
[16]. Other extended models are also introduced, which are
given by

E (i) = f1(D(i) ) + f2
(
D(i)

pair

) + f3
(
D(i)

pair

)
,

E (i) = f1(D(i) ) + f2
(
D(i)

pair ∪ D(i)
2

)
, (24)

E (i) = f1(D(i) ) + f2
(
D(i)

pair ∪ D(i)
2 ∪ D(i)

3

)
.

They are decomposed into a linear polynomial of structural
features and a polynomial of a subset of the structural features.

The atomic energy in all the models is measured from the
sum of the energies of isolated atoms. Moreover, the forces
acting on atoms and the stress tensors in a multicomponent
system can be derived in a manner similar to those in the
elemental system derived in Ref. [24]. Note that the above
polynomial function forms were also applied to develop MLPs
for elemental systems included in the Machine Learning Po-
tential Repository [31,32].

III. DATA SETS AND COMPUTATIONAL PROCEDURE

A straightforward development of training and test data
sets for the Ti-Al binary system begins with a set of struc-
ture generators. In this study, prototype structures reported as
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TABLE I. List of structure generators used for developing the training and test data sets.

ICSD CollCode Structure type ICSD CollCode Structure type ICSD CollCode Structure type

239 Cu3Se2 106786 Hg2Pt 618295 MoC1−x

5258 FeSi2 107998 MoNi4 618702 ScTe
16504 CrSi2 108707 HgMn 625334 Laves(2H)-MgZn2

16606 Nb3Te4 108762 Hg4Pt 626692 NiAs
30446 Fe2B 150584 Fe13Ge3 629380 Al3Os2

42428 Fe3Pt 155842 Co5Fe11 629406 Cu4Ti3

42472 CoO 161109 CoSn 633467 FeSe(tP2)
42773 IrGe4 161133 Fe2Si(HT) 635060 FeSi
52294 GeTe 167735 Ru2B3 635208 CoGa3

55492 BaPt 168897 LaI 635642 Hg5Mn2

58471 CuZr2 169457 ZrH2 638227 CaF2

58607 Au2Ti 181127 AuCu3 639037 HgIn
58745 Fe6Ge6Mg 181788 NaCl 639148 NiHg4

59508 AuCu 185626 Al3Ni2 639227 Si2U3

59586 Pd5Th3 188260 Heusler-AlCu2Mn 639879 In5In4

69199 U3Si 189695 CuHg2Ti 640726 CuSmP2

69557 CdI2(hP9) 189711 Heusler-AlLiSi 643301 Au3Cd
73839 Ni3S2 240119 AlLi 644708 WC
97006 InMg2 246555 Co2Nd 648572 CuInPt2

99787 Fe3Pt 248490 Pt2Si 648748 Pd4Se
100654 BiSe 260285 UCl3 649037 Ni3Ti
102712 CoU 262070 AlLi(hP8) 650527 CsCl
103775 NaTl 409859 La2Sb 652553 AlCr2-MoSi2

103995 Ga3Ti2 416747 Al3Zr 655706 Cu2Te(HT)
104506 Ni3Sn 420250 LiPd2Tl 659806 GeTe
105191 Al3Ti 424636 MnGa4 659829 Al2Li3

105521 Al5W 609153 AlPt3 659856 LiPt
105636 PbU 610464 PbClF/Cu2Sb
105726 Pd5Ti3 611176 Fe2P
105948 InNi2 611457 NbAs
106325 BiIn 611618 TiAs

binary alloy entries in the Inorganic Crystal Structure
Database (ICSD) [35] are used as structure generators such
that the data sets can cover a wide variety of structures.
Moreover, the prototype structures are restricted to those rep-
resented by unit cells with up to eight atoms. A structure gen-
erator made by swapping elements in each prototype structure
is also introduced; hence, the total number of structure gener-
ators is 150. The structure generators are listed in Table I.

Given the structure generators, the atomic positions and
lattice constants of the structure generators are fully op-
timized by DFT calculation to obtain their equilibrium
structures. A structure in the data sets is then generated by
introducing random lattice expansion, random lattice dis-
tortion, and random atomic displacements into a supercell
of each of the equilibrium structures. A mathematical de-
scription of the procedure can be found in Ref. [24]. By
repeatedly applying the procedure to the structure genera-
tors, 27 394 binary structures are generated for the data
sets. In addition to the binary structures and the equilib-
rium structures of the structure generators, existing data for
elemental Ti and Al [31] are also included in the present data
sets.

For a total of 41 508 structures, DFT calculations are per-
formed using the plane-wave-basis projector augmented wave
method [36] within the Perdew-Burke-Ernzerhof exchange-

correlation functional [37] as implemented in the VASP code
[38–40]. The cutoff energy is set to 300 eV. The total ener-
gies converge to less than 10−3 meV/supercell. The atomic
positions and lattice constants for the structure generators are
optimized until the residual forces are less than 10−2 eV/Å.

The regression coefficients of a potential energy model are
estimated by linear ridge regression. The DFT total energies,
the DFT forces acting on atoms, and the DFT stress ten-
sors of structures in the training data set are simultaneously
used to estimate the regression coefficients, as adopted in
Refs. [24,31]. Therefore, the total number of training data
reaches 5 178 510.

IV. RESULTS AND DISCUSSION

A. Pareto optimal MLPs

The polynomial models given in Sec. II C are systemati-
cally applied to develop MLPs in the Ti-Al binary system.
Because the accuracy and computational efficiency of the
MLPs strongly depend on several input parameters, a sys-
tematic grid search is performed to find their optimal values.
The parameters in the grid search are the cutoff radius, the
type of structural features, the type of potential energy model,
the number of radial functions, the polynomial order in the
potential energy model, and the truncation of the polynomial
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FIG. 3. (a) Distribution of the prediction errors for structures in the training and test data sets. Histograms with a bin size of 2 meV/atom
are also shown. (b) Distribution of the prediction errors for the equilibrium structure generators listed in Table I.

invariants, i.e., the maximum angular numbers of spherical
harmonics {l (2)

max, l (3)
max, . . . , l (pmax )

max } and the polynomial order of
the invariants pmax.

Figure 2(a) shows the distribution of MLPs obtained from
the grid search. The root mean square (rms) error for the
test data set is used as an estimator of the accuracy of
MLPs. The computational time indicates the elapsed time
for a single-point calculation normalized by the number of
atoms. Figure 2(a) also shows the Pareto optimal MLPs when
optimizing both the accuracy and computational efficiency
simultaneously. As can be seen in Fig. 2(a), the accuracy and

TABLE II. Model parameters and prediction errors of MLP1,
MLP2, and MLP3 for the Ti-Al binary system.

Parameter MLP1 MLP2 MLP3

number of coefficients 7875 27,520 61,605
rms error (energy, meV/atom) 4.51 2.09 1.67
rms error (force, eV/Å) 0.138 0.074 0.066
cutoff radius (Å) 8.0 6.0 8.0
number of radial functions 10 10 15
polynomial order (function F ) 2 2 2
polynomial order (invariants) 3 2 2
{l (2)

max, l (3)
max, . . .} [0,0] [4] [4]

computational efficiency of MLPs are conflicting properties;
hence the Pareto optimal MLPs can be optimal ones with
different trade-offs.

In performing an atomistic simulation, an appropriate MLP
must be chosen from the Pareto optimal ones according
to its target system and purpose. Therefore, a convenient
score that can estimate the computational cost performance
is required to find an MLP with high computational cost
performance in a simplified manner. In this study, functions
t + �E and 10t + �E that should be minimized are intro-
duced, where t and �E denote the computational time in units
of ms/atom/step and the rms error in units of meV/atom,
respectively.

Another approach to choosing an appropriate MLP is to
examine the convergence behavior of the target property in
terms of the computational time using the whole set of Pareto
optimal MLPs. For example, the MLP that requires the lowest
computational time among the MLPs showing convergence
for the grain boundary energy can accurately predict the
grain boundary energies of larger models [42]. Therefore,
in Sec. IV G the convergence behavior of the stacking fault
energy in terms of the computational time will be shown.

Figure 2(a) shows the MLP with the lowest rms error
and two Pareto optimal MLPs showing high computational
cost performance. The MLP with the lowest rms error is
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FIG. 4. Formation energies of selected ordered structures. The convex hull obtained from the formation energies of selected ordered
structures is also shown.

denoted by MLP3, whereas the two MLPs showing high
computational cost performance are denoted by MLP1 and
MLP2; MLP1 and MLP2 are obtained by minimizing the
scores 10t + �E and t + �E , respectively. As can be seen in
Fig. 2(a), they exhibit high computational efficiency without
significantly increasing the rms error. The model parameters
and rms errors of MLP1, MLP2, and MLP3 are listed in
Table II. The rms errors of MLP2 and MLP3 are close, 2.09
and 1.67 meV/atom, respectively. The rms error of MLP1 is
4.51 meV/atom, which is greater than those of MLP2 and
MLP3, whereas MLP1 is ten times more computationally
efficient than MLP2. As described in Table II, all the MLPs
are derived from polynomial invariants. However, MLP1 is
developed only using the l = 0 component of spherical har-
monics. Therefore, MLP1 can be regarded as a polynomial
model of pairwise structural features.

The present MLPs are derived from order parameters,
given by Eq. (9), depending on both the central and neigh-
boring element types. Therefore, they are compared with
MLPs derived from order parameters depending only on the
central element type, commonly used to develop MLPs in
multicomponent systems. When developing MLPs using or-
der parameters depending only on the central element type,
the rms errors of MLP1, MLP2, and MLP3 models with 990,
3780, and 8370 regression coefficients are 48.79, 42.80, and
30.10 meV/atom, respectively. They are much greater than
those of MLPs derived from order parameters depending on
both the central and neighboring element types. This indicates
that order parameters depending on the neighboring element
type are useful to develop accurate MLPs in multicomponent
systems. Note that the computational efficiency of an MLP
with order parameters depending only on the central element
type is almost the same as that of the corresponding present
MLP.

Figure 2(b) shows the computational time required for a
single-point calculation using the EAM potential [41], MLP1,
MLP2, and MLP3. The computational time is evaluated for
structures with up to 32 000 atoms constructed by the expan-
sions of the four-atom unit cell of a AuCu-type (L10) structure
with a lattice constant of 4 Å. The computational time is
measured by implementing the present MLPs [43] in the
LAMMPS code [44,45]. As can be seen in Fig. 2(b), the EAM
potential and the MLPs show linear scaling of the computa-
tional time with respect to the number of atoms. Therefore,
the computational time normalized by the number of atoms
can be an estimator of the computational efficiency of MLPs
and the computational time required for a simulation of nstep

steps using a structure with natom atoms can be estimated as
t × natom × nstep.

As described above, the accuracy and computational ef-
ficiency of the MLPs strongly depend on several input
parameters. Therefore, the Pareto optimal MLPs also depend
on the grid used for the grid search. The dependence of the
Pareto optimal MLPs on the grid, i.e., the maximum value
of the input parameter used for the grid search, is shown in
Appendix A. Also, the accuracy of the MLPs depends on the
size of the training data set. Hence, the learning curve or the
dependence of the accuracy on the training data-set size is
shown in Appendix B.

B. Cohesive energy

Figure 3(a) shows the distribution of the prediction errors
for structures in the training and test data sets. The degree of
scattering in the distribution decreases in the order of MLP1,
MLP2, and MLP3, which coincides with the decreasing order
of the rms errors shown in Table II. Figure 3(b) shows the dis-
tribution of the prediction errors for the equilibrium structure
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generators listed in Table I. The distribution of the prediction
errors for the structure generators indicates the predictive
power for the cohesive energy. The prediction errors for
some of the structure generators are significant in MLP1. On
the other hand, the prediction errors are trivial for all the
structure generators in MLP2 and MLP3, which indicates that
MLP2 and MLP3 should have high predictive power for the
cohesive energy in a wide variety of binary ordered structures.

C. Formation energy

The formation energy of a given ordered structure is
more challenging to predict accurately than its cohesive
energy because high predictive power is required not only
for the ordered structure but also for the reference struc-
tures of hexagonal-close-packed Ti and face-centered-cubic
Al. Furthermore, the local geometry relaxation for the ordered
structure is crucial for evaluating the formation energy. There-
fore, MLPs are needed to derive an accurate potential energy
surface around the initial and equilibrium structures.

Figure 4 shows the formation energies of selected ordered
structures predicted using the EAM potential, MLP1, MLP2,
and MLP3, compared with those predicted by DFT calcula-
tion. The values of the formation energy are listed in Tables III
and IV. Note that the ordered structures cover a wide range of
compositions. The rms errors of the EAM potential, MLP1,
MLP2, and MLP3 for the formation energy are 68.0, 13.8, 2.0,
and 1.5 meV/atom, respectively. This reveals that MLP2 and
MLP3 have high predictive power for the formation energy
in a wide range of structures. The rms error of MLP1 for
the formation energy is significant as a consequence of the
systematic deviation of the formation energy for the overall
ordered structures. As can be seen in Tables III and IV, the
formation energies of most of the ordered structures predicted
using MLP1 are approximately 10 meV/atom lower than
those predicted by DFT calculation, which originates from the
fact that the prediction error of MLP1 for hexagonal-close-
packed Ti is significant (+27.4 meV/atom). Moreover, the
prediction error of the EAM potential is much more significant
and the EAM potential fails to reconstruct the hierarchy of the
formation energies predicted by DFT calculation.

D. Elastic constants
Tables V–VII show the lattice constants and the elastic

constants of nine structures, i.e., TiAl (L10), TiAl (B2), TiAl
(B81), Ti3Al (D019), Ti3Al (D022), Ti3Al (L12), TiAl3 (D022),
TiAl3 (D019), and TiAl3 (L12), which are predicted using the
EAM potential, MLP1, MLP2, and MLP3, along with the
lattice constants and the elastic constants obtained by DFT
calculation. The lattice constants predicted using the EAM
potential deviate from those obtained by DFT calculation in
most of the structures. This deviation may arise from the fact
that the EAM potential was developed by fitting to experi-
mental lattice constants [41], excluding the descriptive power
of the EAM potential. In contrast, the MLPs can compute the
lattice constants accurately in all of the structures. Regarding
the elastic constants, the elastic constants predicted using the
EAM potential and MLP1 are close to those obtained by DFT
calculation in many structures; however, the EAM potential
and MLP1 fail to predict the elastic constants accurately in

TABLE III. Formation energies of selected ordered structures
(units of meV/atom). The values of the formation energy closest to
those obtained by the DFT are highlighted in boldface.

Structure type EAMa MLP1 MLP2 MLP3 DFT

Ti5Al
Al5W −180 −156 −135 −134 −136

Ti4Al
MoNi4 (D1a) −221 −202 −180 −178 −179

Ti3Al
Ni3Sn (D019) −288 −294 −278 −277 −280
Ni3Ti (D024) −288 −290 −267 −265 −267
AuCu3 (L12) −288 −283 −263 −262 −264
Al3Zr (D023) −282 −276 −258 −257 −259
Al3Ti (D022) −275 −275 −253 −252 −254
AlCu2Mn (L21) −229 −164 −143 −142 −143

Ti5Al2

Hg5Mn2 −161 −70 −53 −51 −53

Ti11Al5

Co5Fe11 −246 −254 −235 −234 −236

Ti2Al
InNi2 (B82) −208 −317 −305 −304 −305
CuZr2 −299 −284 −268 −267 −269
Fe2P (C22) −276 −205 −237 −228 −228
CrSi2 (C40) −245 −210 −187 −185 −186
Fe2B −137 −160 −143 −141 −143
Cu2Sb (C38) −128 −160 −139 −137 −139
FeSi2 −118 −22 −7 −4 −7

Ti5Al3

Pd5Th3 −255 −204 −192 −191 −193

Ti3Al2

Ga3Ti2 −363 −344 −332 −331 −331
Al3Os2 −290 −302 −288 −287 −288
Si2U3 (D5a) −140 −253 −246 −244 −245

Ti4Al3

Nb3Te4 −340 −340 −327 −327 −329
Cu4Ti3 −281 −232 −217 −216 −217

TiAl
AuCu (L10) −404 −417 −404 −403 −404
PbU −370 −375 −366 −367 −368
CoU (Ba) −340 −298 −283 −282 −283
CsCl (B2) −286 −280 −265 −263 −262
NiAs (B81) −311 −263 −257 −251 −251
WC (Bh) −296 −255 −250 −249 −250
ScTe −307 −238 −223 −224 −225
BiSe −265 −185 −172 −172 −173
FeSi (B20) −206 −145 −118 −118 −120
NaTl (B32) −319 −83 −70 −69 −71

Ti2Al3

Ga3Ti2 −370 −408 −416 −418 −419
Al3Os2 −353 −319 −309 −309 −310
Si2U3 (D5a) −91 −80 −73 −72 −72

aReference [41].

a few structures. Also, the elastic constants predicted using
MLP2 and MLP3 are almost the same as those obtained by
DFT calculation in all structures.
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K
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FIG. 5. (a) Phonon density of states for 13 selected compounds in the Ti-Al binary system, predicted using the EAM potential and the
MLPs. The shaded region indicates the phonon density of states computed by DFT calculation. (b) Phonon dispersion curves for γ -TiAl
predicted using the EAM potential and the MLPs. The solid black lines indicate the phonon dispersion curves predicted by the DFT calculation.
(c) Temperature dependence of the thermal expansion predicted using the EAM potential and the MLPs. The dotted black lines show the
thermal expansion computed by the DFT calculation.
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TABLE IV. Formation energies of selected ordered structures
(units of meV/atom).

Structure type EAMa MLP1 MLP2 MLP3 DFT

Ti3Al5

Pd5Th3 −239 −332 −322 −324 −325
Pd5Ti3 −340 −293 −285 −284 −284

TiAl2

MgZn2 (C14) −331 −334 −326 −325 −326
Co2Nd −313 −323 −315 −314 −315
CuZr2 −320 −252 −244 −243 −245
La2Sb −181 −248 −238 −238 −239
Cu2Sb (C38) −184 −239 −232 −229 −230
FeSi2 −156 −212 −210 −210 −212
Fe2P (C22) −232 −206 −191 −192 −195
Hg2Pt 183 −45 −40 −41 −43

Ti5Al11

Co5Fe11 −331 −380 −373 −373 −374

Ti2Al5

Hg5Mn2 −168 −295 −289 −289 −289

TiAl3

Al3Zr (D023) −297 −407 −402 −402 −403
Al3Ti (D022) −289 −407 −403 −397 −397
AuCu3 (L12) −303 −375 −369 −369 −370
Ni3Ti (D024) −293 −349 −338 −338 −338
Ni3Sn (D019) −286 −321 −318 −318 −319

TiAl4

MoNi4 (D1a) −240 −223 −216 −215 −216

TiAl5

Al5W −188 −184 −180 −180 −180

aReference [41].

E. Phonon properties

The predictive power of the MLPs for phonon properties
and thermal expansion is examined. The phonon properties
and thermal expansion are calculated using a finite dis-

FIG. 6. Energy profiles along the Bain path between the L10

structure and the B2 structure.

TABLE V. Lattice constants and elastic constants of TiAl (L10,
B2, and B81).

Constant EAMa MLP1 MLP2 MLP3 DFT

γ -TiAl (CuAu, L10)
a0 (Å) 2.827 2.812 2.812 2.812 2.813
c0 (Å) 4.187 4.080 4.078 4.080 4.079
C11 (GPa) 237 219 195 190 195
C12 (GPa) 67 35 63 65 66
C13 (GPa) 114 87 90 90 89
C33 (GPa) 213 189 176 176 173
C44 (GPa) 92 112 114 114 113
C66 (GPa) 45 52 39 39 38

TiAl (CsCl, B2)
a0 (Å) 3.278 3.184 3.183 3.182 3.182
C11 (GPa) 80 67 82 69 74
C12 (GPa) 121 132 134 141 136
C44 (GPa) 95 80 87 82 66

TiAl (NiAs, B81)
a0 (Å) 2.853 2.880 2.878 2.877 2.879
c0 (Å) 9.370 9.269 9.264 9.276 9.263
C11 (GPa) 157 149 126 132 136
C12 (GPa) 94 113 99 94 96
C13 (GPa) 93 88 65 72 74
C33 (GPa) 292 277 250 220 223
C44 (GPa) 67 73 73 71 75
C66 (GPa) 32 18 14 19 20

aReference [41].

TABLE VI. Lattice constants and elastic constants of Ti3Al
(D019, D022, and L12).

Constant EAMa MLP1 MLP2 MLP3 DFT

Ti3Al (Ni3Sn, D019)
a0 (Å) 5.784 5.728 5.731 5.729 5.726
c0 (Å) 4.750 4.646 4.643 4.644 4.646
C11 (GPa) 199 187 181 196 195
C12 (GPa) 89 113 104 99 90
C13 (GPa) 74 61 67 71 70
C33 (GPa) 224 237 235 231 232
C44 (GPa) 51 44 47 63 59
C66 (GPa) 55 37 39 48 53

Ti3Al (TiAl3, D022)
a0 (Å) 4.082 3.943 3.961 3.962 3.960
c0 (Å) 8.252 8.479 8.423 8.433 8.444
C11 (GPa) 161 192 173 177 173
C12 (GPa) 100 145 105 92 97
C13 (GPa) 93 119 101 89 87
C33 (GPa) 146 260 168 151 171
C44 (GPa) 71 73 84 79 87
C66 (GPa) 78 98 94 98 89

Ti3Al (Cu3Au, L12)
a0 (Å) 4.089 4.036 4.036 4.036 4.035
C11 (GPa) 165 143 165 172 175
C12 (GPa) 97 102 91 89 89
C44 (GPa) 76 92 93 92 90

aReference [41].
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TABLE VII. Lattice constants and elastic constants of TiAl3

(D022, D019, and L12).

Constant EAMa MLP1 MLP2 MLP3 DFT

TiAl3 (TiAl3, D022)
a0 (Å) 4.049 3.838 3.842 3.842 3.841
c0 (Å) 8.139 8.626 8.621 8.609 8.608
C11 (GPa) 170 190 213 188 196
C12 (GPa) 98 100 76 81 87
C13 (GPa) 89 2 26 38 47
C33 (GPa) 140 212 192 223 220
C44 (GPa) 62 70 83 83 95
C66 (GPa) 71 140 126 120 129

TiAl3 (Ni3Sn, D019)
a0 (Å) 5.704 5.565 5.565 5.564 5.563
c0 (Å) 4.810 4.722 4.724 4.725 4.726
C11 (GPa) 205 219 203 206 209
C12 (GPa) 88 58 67 66 67
C13 (GPa) 62 53 63 59 60
C33 (GPa) 189 163 161 168 167
C44 (GPa) 34 46 53 62 65
C66 (GPa) 58 80 68 70 71

TiAl3 (Cu3Au, L12)
a0 (Å) 4.050 3.976 3.977 3.977 3.979
C11 (GPa) 179 183 181 190 191
C12 (GPa) 95 56 68 69 66
C44 (GPa) 73 84 77 76 77

aReference [41].

placement method implemented in the PHONOPY code [46].
Figure 5(a) shows the phonon density of states for 13 struc-
tures predicted using the EAM potential, MLP1, MLP2, and
MLP3. The supercells required to compute the phonon prop-
erties are constructed by the expansions of the conventional
unit cells of the structures. The number of atoms included
in the supercells ranges from 54 to 162. The EAM potential
predicts the phonon density of states well in the low-frequency
region for many structures, while the deviation from the DFT
phonon density of states is large in the high-frequency region.
Conversely, the phonon density of states predicted using the
MLPs and those predicted by DFT calculation overlap for all
the structures, particularly those predicted using MLP2 and
MLP3..

Figure 5(b) shows the phonon dispersion curves for TiAl
(AuCu-type, L10) predicted using the EAM potential and the
MLPs, compared with those predicted by the DFT calculation.
The deviation of the EAM phonon dispersions from the DFT
phonon dispersions is significant in the high-frequency region.

TABLE VIII. Excessive energies of special stacking faults in γ -
TiAl (units of mJ/m2).

Stacking fault EAMa MLP1 MLP2 MLP3 DFT

SISF (111) 108 281 165 258 194
APB (111) 249 680 616 681 694
CSF (111) 282 555 431 410 388

aReference [41].

FIG. 7. Excessive energies of special stacking faults in γ -TiAl,
predicted using the Pareto optimal MLPs.

On the other hand, the phonon dispersions of MLP2 and
MLP3 are consistent with those of the DFT calculation.

FIG. 8. (a) Profile of the stacking fault energy in γ -TiAl along
the path γ -TiAl → SISF → APB → CSF → γ -TiAl → APB.
(b) GSFE surface in γ -TiAl obtained using the EAM, the MLPs, and
the DFT calculation.
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[Eq. (21)]
[Eq. (21)]
[Eq. (21)]
[Eq. (21)]

[Eqs. (23) and (24)]
[Eqs. (23) and (24)]

FIG. 9. Dependences of the Pareto optimal MLPs on (a) the maximum order of polynomial invariants pmax, (b) the maximum angular
number of spherical harmonics lmax, (c) the maximum number of radial functions nmax, and (d) the maximum cutoff radius rc,max. The Pareto
optimal MLPs in (b)–(d) are obtained only from linear polynomial models given by Eq. (21).

Figure 5(c) shows the temperature dependence of the
thermal expansion, calculated using a quasiharmonic approx-
imation, in Ti3Al (D019), TiAl (L10), and TiAl3 (D022),
which are experimentally observed in the Ti-Al binary
system. As can be seen in Fig. 5(c), the thermal ex-
pansion of the EAM potential differs from that of the
DFT calculation in all the structures. On the other hand,
MLP2 and MLP3 derive the temperature dependence of
the thermal expansion accurately in all the structures, even
though the thermal expansion is more challenging to predict
accurately than the phonon density of states and the phonon
dispersion curves. The accurate prediction of the thermal
expansion indicates that MLP2 and MLP3 can accurately
evaluate the volume dependence of the whole range of phonon
frequencies.

F. Bain path between γ-TiAl and B2

The energy profile along the Bain path between the γ -
TiAl (L10) structure and the B2 structure is calculated using
the EAM potential and the MLPs and compared with that
obtained by DFT calculation. The structures required to com-
pute the energy profile are obtained by transforming the c/a

ratio while keeping their volumes fixed to that of the equi-
librium L10 structure. The energy profile is then evaluated
by single-point calculations without geometry optimization
for the structures. Figure 6 shows the energy profiles along
the Bain path predicted using the EAM potential, the MLPs,
and DFT calculation. The energy profiles along the Bain
path of the MLPs, particularly MLP2 and MLP3, are con-
sistent with that obtained by DFT calculation. The EAM
profile is also close to the DFT profile for a c/a ratio of
1.0–1.5, although the c/a ratio of the equilibrium L10 struc-
ture of the EAM potential is slightly different from that
obtained by DFT calculation. The behavior of the energy
profile along the Bain path predicted by the EAM and the
deviation of the c/a ratio are the same as those discussed
by Zope and Mishin in Ref. [41], who developed the EAM
potential.

G. Stacking faults in γ-TiAl

Computational models for the superlattice intrinsic stack-
ing fault (SISF), the antiphase boundary (APB), and the
complex stacking fault (CSF) are constructed using the
procedure shown in Ref. [47]. First, the supercell is con-
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structed by the expansion along the 〈111〉 direction of γ -TiAl
with ideal cubic lattice parameters and the resultant super-
cell is composed of 24 atoms. The equilibrium structure
of the supercell is then obtained by local geometry opti-
mization. A computational model with a stacking fault is
generated by introducing a tilt into the equilibrium structure.
A displacement vector defining a tilt is given by a linear
combination of two vectors corresponding to the 〈1̄10〉/2
and 〈112̄〉/2 directions in ideal cubic γ -TiAl. The displace-
ment vectors for the SISF, the APB, and the CSF are
expressed as

bSISF = 1
3

[
1
2 〈112̄〉],

bAPB = 1
2

[
1
2 〈1̄10〉] + 1

2

[
1
2 〈112̄〉], (25)

bCSF = 1
2

[
1
2 〈1̄10〉] + 5

6

[
1
2 〈112̄〉],

respectively. Finally, single-point calculations are performed
for the tilted structures.

Table VIII summarizes the stacking fault energies com-
puted using the EAM potential, the MLPs, and DFT
calculation. The cohesive energy of the equilibrium structure
of γ -TiAl is used as a reference to compute the stacking
fault energy. As can be seen in Table VIII, the MLPs pre-
dict the stacking fault energies of the SISF, the APB, and
the CSF accurately. On the other hand, the EAM potential
lacks the predictive power for the stacking fault energy of
the APB.

Figure 7 shows the convergence behavior of the stacking
fault energies in terms of the computational time obtained
using the whole set of Pareto optimal MLPs. Figure 7 in-
dicates the slow convergence of the stacking fault energy,
which is relevant to the slow convergence of the prediction
error. Therefore, it is reliable to use MLP2 or MLP3 for pre-
dicting the stacking fault energy accurately. Simultaneously,
several Pareto optimal MLPs with lower computational cost
also predict the stacking fault energy accurately. Therefore, an
accurate large-scale atomistic simulation related to stacking
faults in γ -TiAl may be possible in their careful use.

The stacking fault energy can be defined not only for
these special stacking faults but also for other general stack-
ing faults defined by displacement vectors. A collection of
the excessive energies of the general stacking faults com-
prises a generalized stacking fault energy (GSFE) surface. The
displacement vector identifying a tilt of the supercell for a
general stacking fault is given by

b = u
[

1
2 〈1̄10〉] + v

[
1
2 〈112̄〉], (26)

where u and v denote the fractional coordinates defined by the
vectors 〈1̄10〉/2 and 〈112̄〉/2, respectively.

Figure 8(a) shows the profiles of the stacking fault energy
along the path γ -TiAl → SISF → APB → CSF → γ -TiAl
→ APB, predicted using the EAM potential, the MLPs, and
DFT calculation. The displacement vector changes continu-
ously along the path. The stacking fault energy profiles of
MLP2 and MLP3 are close to that obtained by the DFT
calculation. The MLP1 profile agrees with the DFT profile
along a major part of the path, while it deviates from the
DFT profile along the path between the APB and the CSF.
The EAM profile also deviates from the DFT profile along the

FIG. 10. Training data-set size dependence of the prediction er-
ror for MLP1, MLP2, MLP3, and an MLP with up to fourth-order
polynomial invariants denoted by MLP4. The cutoff radius, the
number of radial functions, and the maximum angular numbers of
spherical harmonics used to develop MLP4 are 10 Å, 20, and [4,4,2],
respectively. MLP4 is a linear polynomial model of the polynomial
invariants represented by Eq. (21); hence it consists of 6940 regres-
sion coefficients.

path between the SISF and the CSF. Figure 8(b) shows the
GSFE surface in γ -TiAl predicted using the EAM potential,
the MLPs, and DFT calculation. The GSFE surfaces predicted
using the MLPs and DFT calculation are similar, while that
predicted using the EAM potential is different from that pre-
dicted by the DFT calculation. Thus, the present MLPs should
have high predictive power for the stacking faults and related
properties.

V. CONCLUSION

In this study, O(3) polynomial invariants representing the
neighboring atomic density in a multicomponent system have
been formulated. Polynomial models have also been intro-
duced to describe the relationship between the atomic energy
and the polynomial invariants. Although the present formula-
tion to develop MLPs in a multicomponent system is more
complex than the formulation for elemental systems, it en-
ables the accuracy and computational efficiency of MLPs to
be controlled systematically.

This study also showed an application of the formulation
of MLPs to the Ti-Al binary alloy system. Pareto optimal
MLPs have been developed by applying the polynomial mod-
els combined with the polynomial invariants. These MLPs
are available in the Machine Learning Potential Repository
[31,32]. Moreover, a user package that combines the MLPs
with atomistic simulations using the LAMMPS code and input
script files used in this study are also available on a website
[43]. The predictive power of the Pareto optimal MLPs has
been examined for the cohesive energy, the formation energy,
the elastic constants, the phonon density of states and disper-
sion curves, the thermal expansion, the energy profile along
the Bain path, and the stacking fault properties. The MLP
with the lowest prediction error (MLP3) and that with high
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computational cost performance (MLP2) have high predictive
power for all the properties, whereas an MLP showing higher
computational cost performance (MLP1) than MLP2 fails to
predict some of the properties with high accuracy. This study
has revealed that the present framework provides a systematic
way to develop MLPs with high computational cost perfor-
mance in multicomponent systems.
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APPENDIX A: HYPERPARAMETER DEPENDENCE
OF PARETO OPTIMAL MLPS

Figure 9 shows the dependence of the Pareto optimal
MLPs on the parameter range used for the grid search, i.e.,
the maximum order of polynomial invariants [Fig. 9(a)], the
maximum angular number of spherical harmonics [Fig. 9(b)],
the maximum number of radial functions [Fig. 9(c)], and
the maximum cutoff radius [Fig. 9(d)]. The dependence of

the Pareto optimal MLPs on the polynomial model is also
shown in Fig. 9(a). Figure 9(a) indicates that the polynomial
models of Eqs. (23) and (24) are significantly useful to in-
crease the accuracy and computational efficiency of the MLPs.
Moreover, second-, third-, and fourth-order polynomial in-
variants can increase the accuracy of the MLPs, although
high-order polynomial invariants only with small angular
numbers are considered in this study. As shown in Fig. 9(b),
the spherical harmonics are essential for developing accurate
MLPs in the Ti-Al system. The number of radial functions and
cutoff radius are also essential factors for developing MLPs,
while their importance is not recognized in the current grid
search, as shown in Figs. 9(c) and 9(d).

APPENDIX B: LEARNING CURVE

Figure 10 shows the training data-set size dependence of
the prediction error for MLP1, MLP2, MLP3, and an MLP
with up to fourth-order polynomial invariants and 6940 re-
gression coefficients. A set of structures for a sampling ratio
is randomly selected from the whole training data set. As can
be seen in Fig. 10, the prediction error converges well at the
number of structures in the training data set of approximately
8000–12 000.
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