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1. Introduction
This is a reply to a comment from De Santo & Rawski (DS&R) [1]
regarding our recent investigation of the gibbon song syntax [2].
The major objectives are to clarify the (i) difference between the
proposed analytical method and formal language theory (FLT)
advocated by DS&R and (ii) difficulties in applying the existing
FLT-based analysis to animal studies.
2. Difficulties in FLT analysis
Figure 1a depicts typical FLT-based human language analysis.
Herein, the researchers prepare a mathematically defined
language—a set of strings of symbols—termed L̂ in the figure.
It is essential to identify the strings that belong to L̂ and those
outside L̂, including those not observed: for example, unbounded
centre-embeddings—though never observed—are often assumed
to exist [3].

Once L̂ is well defined, the researchers search for the smallest
class of languages containing L̂. This search begins with smaller
classes; the researchers check whether each class contains L̂
using mathematical theorems [3,4].

The idealization, i.e. the inference of L̂, based on available
information, is the most challenging aspect of FLT-based
analysis. In the absence of systematic procedures, idealization
may result in loss of reproducibility and even fabrication of
data. However, linguists idealize languages unsystematically—
without a constructive algorithm or evaluation metric. Moreover,
idealization is not induced solely from collections of uttered
sentences (corpora). Instead, factors like interpretation and
grammatical judgement of sentences—seldom available from
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Figure 1. Schematic of research procedures in (a) FLT and (b) metric-based model comparison.
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animal studies and often unreliable [5,6]—are used. Thus, without significant changes, idealization
designed for human languages cannot be applied to animal data.
069
3. Non-FLT advantage of probabilistic context-free grammar
Based on difficulties due to idealization, it is more promising and practical to evaluate generative models
of animal voice sequences from observed data, as depicted in figure 1b. This is noted to yield the best
model among all hypothesized models; unlike FLT, it does not conclude that none of the models
work. Thus, a broader range of models must be included for comparison, given an appropriate search
algorithm. In [2], the hypothesis space for animal voice sequences was expanded to probabilistic
context-free grammars (PCFGs) from previous regular domain. This difference between the FLT and
proposed methods regarding search procedures has ‘pushed the scientific community towards
misguidance’ with respect to idealization and optimum-among-regulars [7].

The necessity of models in a particular class is assessed using the proposed model comparison paradigm
by defining themetric by its fit to data—likelihood under probabilistic settings. That is, a goodmodel predicts
the behaviour of real data with high probability and produces its generative simulation as realistically as
possible. Natural language processing (NLP) adopts this metric; for example, the neural network
parameters are optimized via likelihood maximization, which yields the current state-of-the-art language
model [8–10]. Although the neural language modelling of animal voice sequences has not been studied
extensively, it could become the empirical evidence for the necessity of superregular analysis if neural
network models outperform the classical regular models [11–14]. The neural language model would also
serve as the best animal voice sequence simulator currently available.

The likelihood metric is not suitable for non-neural, rule-based superregular models such as PCFG, as
no remarkable advantages are exhibited over regular models for both human language [15] and animal
voice sequences [2] (§4.2). Thus, NLP did not benefit much from superregularity prior to the deep
learning era; the previous state-of-the-art architecture was smoothed n-gram models, which can only
generate a subclass of regular languages (termed strictly locally testable languages) [16,17]. The results
might appear to be counteractive, as the FLT proves that data with centre-embeddings can only be
explained using superregular models. However, centre-embeddings are bounded and rare in real data
[18]; therefore, they do not have a significant effect on statistical evaluation.

To study the advantages of superregular models, the simplicity of the models should be measured as
well as the fit to data. The two submetrics can be balanced using the Bayesian posterior inference. A (non-
regular) PCFG had greater posterior for human language data than regular grammars, which grow in
size—decreasing the prior probability—to achieve the same degree of likelihood as the PCFG [15]. In
[2], we showed that PCFG had the same advantage of compactness for analysis of gibbon song data
(§4.3), to the extent that it outperformed regular grammars under the Bayesian metric (§4.1).

The compactness of PCFG probably arises from structural representation of frequent substrings.
These statistical patterns are prominent even in child-directed speech [15] and animal voice sequences
[19,20], where centre-embedding may not be observed. Improved versions of PCFG, such as adaptor
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grammars, have been designed to better capture frequent substructures of sentences, rather than the

centre-embeddings [21,22].
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4. Execution costs
The processing of sentences using PCFG is generally based on a O(n3)-time algorithm with respect to
length of the sentence n [23,24]; this method is polynomial but highly expensive for practical
applications. The algorithm also requires a working memory of size O(n2), which eventually exceeds
the capacity of human and animals. Contrarily, the finite-state automata run in linear time and the
memory size remains constant. As noted by DS&R, differences in the costs of execution are not
incorporated in the Bayesian analysis, which only focuses on Marr’s computational level of inquiry
and refrains from discussing the algorithmic or implementation levels [25].

It may be noted that biological organisms may not compute the exact probabilities as defined by
PCFG. A reliable approximation with fading memory is acceptable in practice. For example, recurrent
neural networks—including biologically plausible variants—act as universal approximators and run
in real time [11,13]. Actual algorithms and implementation used by humans and animals are
considered efficient but difficult to interpret, as in the case of neural networks. Hence, studies at the
computational level help us understand human and animal cognitive systems upon investigation of
their interpretable representations.
92069
5. What is FLT expected to do for animal cognition studies?
Herein, the difficulties in applying FLT-based analysis to studies on animals have been identified.
However, this does not mean that FLT is futile. For example, the discovery of more efficient
algorithms is always valuable. Perhaps what is expected from FLT-oriented linguists is the proposal of
a systematic idealization procedure that runs on real animal data. Various important achievements in
FLT cannot be exploited unless this fundamental technology is developed.
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