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Abstract

Very little is known about the evolution of molluskan shell pigments, although
Mollusca is a highly diverse, species rich, and ecologically important group of animals
comprised of many brightly colored taxa. The marine snail genus Clanculus was cho-
sen as an exceptional model for studying the evolution of shell color, first, because in
Clanculus margaritarius and Clanculus pharaonius both shell and foot share similar
colors and patterns; and second, because recent studies have identified the pigments,
trochopuniceus (pink-red), and trochoxouthos (yellow-brown), both comprised of
uroporphyrin | and uroporphyrin lll, in both shell and colored foot tissue of these spe-
cies. These unusual characteristics provide a rare opportunity to identify the genes
involved in color production because, as the same pigments occur in the shell and
colored foot tissue, the same color-related genes may be simultaneously expressed in
both mantle (which produces the shell) and foot tissue. In this study, the transcrip-
tomes of these two Clanculus species along with a third species, Calliostoma zizyphi-
num, were sequenced to identify genes associated with the synthesis of porphyrins.
Calliostoma zizyphinum was selected as a negative control as trochopuniceus and tro-
choxouthos were not found to occur in this species. As expected, genes necessary for
the production of uroporphyrin | and Ill were found in all three species, but gene
expression levels were consistent with synthesis of uroporphyrins in mantle and
colored foot tissue only in Clanculus. These results are relevant not only to under-
standing the evolution of shell pigmentation in Clanculus but also to understanding
the evolution of color in other species with uroporphyrin pigmentation, including
(mainly marine) mollusks soft tissues and shells, annelid and platyhelminth worms, and

some bird feathers.

KEYWORDS
color, heme, mollusk, pigment, porphyrin, shell, uroporphyrin

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Ecology and Evolution. 2017;7:10379-10397.

www.ecolevol.org | 10379


www.ecolevol.org
http://orcid.org/0000-0003-2995-5823
http://creativecommons.org/licenses/by/4.0/
mailto:s.williams@nhm.ac.uk

WILLIAMS ET AL.

10380 Wl L EY_Ecology and Evolution

Open Access,

1 | BACKGROUND

Color and pattern are important features of morphological adaptive
variation and are often associated with crypsis, aposematism, and
mating displays (Ruxton, Sherratt, & Speed, 2004). Significant ad-
vances have been made toward the characterization of pigments and
their biosynthetic pathways for plants, vertebrates, and certain inver-
tebrate groups (e.g., Braasch, Schartl, & Volff, 2007; Grotewold, 2006;
Hodges & Derieg, 2009; Joron et al., 2006; Nijhout, 2010; Wittkopp
& Beldade, 2009; Wittkopp, Williams, Selegue, & Carroll, 2003); how-
ever, the molecular pathways leading to shell pigmentation have not
been completely elucidated for any mollusk (Mann & Jackson, 2014).
The phylum Mollusca is highly diverse, species rich, ecologically im-
portant, and abounding in colorful exemplars, so our lack of under-
standing about pigment evolution in this clade is a serious gap in our
knowledge of how color has evolved in the natural world (Williams,
2017).

Most molluskan groups are immediately recognizable by their cal-
careous shells, many of which are strongly pigmented. Mollusk shells
are secreted by the outer fold of the mantle, and both pigmentation and
shell growth are under neurosecretory control (Boettiger, Ermentrout,
& Oster, 2009; Budd, McDougall, Green, & Degnan, 2014). Although
shell color can be affected by food intake, and in some species may de-
pend entirely on diet (e.g., Ino, 1949, 1958; Leighton, 1961), breeding
studies in both bivalves and gastropods have shown that color varia-

tion in many species is a heritable trait, and in some cases, inheritance

patterns can be explained by variation at a single locus (e.g., Kobayashi,
Kawahara, Hasakura, & Kijima, 2004; Liu, Wu, Zhao, Zhang, & Guo,
2009).

The molecular processes involved in the synthesis of shell color
have been studied in some detail in only a few mollusks. Generally, a
suite of potential genes have been identified that may have some con-
trol over shell pigmentation, although in most studies it is not possible
to rule out that some of these genes may rather be involved in bio-
mineralization (e.g., Bai, Zheng, Lin, Wang, & Li, 2013; Guan, Huang, &
He, 2011; Lemer, Saulnier, Gueguen, & Planes, 2015; Qin, Liu, Zhang,
Zhang, & Guo, 2007; Richards et al., 2013; Yuan, He, & Huang, 2012;
Zou et al., 2014). A study on Haliotis asinina (abalone) showed that more
than one-quarter of the genes expressed in the mantle encode secreted
proteins, indicating that hundreds of proteins may be contributing
to shell construction (Jackson et al., 2006). Only one of these genes
was found to map precisely to gastropod shell pigmentation patterns
(Jackson, Worheide, & Degnan, 2007; Jackson et al., 2006), although
the pigment is unknown. Despite in-depth molecular investigations
trying to determine the genes involved in color production, to date,
no study has been able to completely elucidate the molecular pathway
used in shell pigmentation for mollusks (Mann & Jackson, 2014).

The vetigastropod genus, Clanculus, and in particular the species
C. margaritarius and C. pharaonius (Trochidae, Trochoidea), are suitable
models for studying the synthesis and evolution of molluskan shell color
(Figure 1) because their shell pigments are known. A recent study used
a combination of biochemical and multimodal spectroscopic methods
to identify pigments responsible for three predominant shell colors in
these species (Williams et al., 2016). Two pigments, trochopuniceus
and trochoxouthos, are responsible for the dominant colors of pink-
red and yellow-brown, respectively, and traces of eumelanin are likely
responsible for black spots on the shells. Trochopuniceus and trochox-
outhos are both comprised of uroporphyrin | and uroporphyrin I, but

FIGURE 1 Photographs of species used
in this study. (a-c) Clanculus margaritarius
C. (a, b) Two views of a shell of Clanculus
margaritarius C (specimen #2). Note that
this specimen is subadult. (c) Colored foot
of a live animal. Note that the color and
pattern are the same as found on the shell.
(d, ) Two views of a Clanculus pharaonius
shell (specimen #4). (f-h) Calliostoma
zizyphinum. (f, g) Two views of a shell of
Calliostoma zizyphinum (specimen #2). (h)
Living animal showing foot color (not the
same specimen). Note that the foot color
and pattern in this species do not match
the shell. Scale bars for Clanculus spp are in
mm. Scale bar for Calliostoma is 1 cm
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likely differ in the substituents on the porphyrin ring, which can affect
color. The substituents are not known. The same porphyrin pigments
were also found in colored foot tissue from these species. Conversely,
only traces of uroporphyrin were found in the shell of a third species,
Calliostoma zizyphinum (Calliostomatidae:Trochoidea), despite the fact
that it is from the same superfamily and has superficially similar col-
oration, suggesting that shell color in this species is due to different
shell pigments (Williams et al., 2016). The congruence of colors arising
from different pigments suggests that there may be selective pressures
leading to convergent evolution in these taxa (Williams et al., 2016).
Apart from Clanculus, uroporphyrin pigments are also responsible for
coloration of soft tissues and shells of other (mostly marine) mollusks
(reviewed in Williams, 2017), the integument of some annelids (Fox,
1979), and turaco bird feathers (Nicholas & Rimington, 1951).

The identification of shell pigments offers an enormous advan-

tage when searching for genes involved in color synthesis, as some
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biochemical pathways involved in pigment production are known. In

[Open Access]

particular, uroporphyrin | and uroporphyrin Il are produced in several
forms of porphyria, a metabolic disorder affecting humans, and their
synthesis has been well studied (Layer, Reichelt, Jahn, & Heinz, 2010).
They are synthesized as side products of the evolutionarily ancient
heme pathway, which is conserved among metazoans and has been
well characterized in humans, Mus and Drosophila (Ajioka, Phillips, &
Kushner, 2006; Heinemann, Jahn, & Jahn, 2008; Figure 2). Normally in
the eight-step haem pathway (Figure 2), the third enzyme porphobilino-
gen deaminase (PBGD) condenses two molecules of porphobilinogen
to form hydroxymethylbilane (HMB), which is highly unstable. The
fourth enzyme in the pathway, uroporphyrinogen-Ill synthase (UROS)
then converts HMB to uroporphyrinogen Il by closing the linear tetra-
pyrrole molecule to form a ring (Ajioka et al., 2006). Uroporphyrin | is
produced when activity of UROS is diminished (Warner, Yoo, Roberts,
& Desnick, 1992) or the activity of PBGD is increased (Siersema, de
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FIGURE 2 Haem synthetic pathway. The eight enzymatic reactions needed to produce haem and the nonenzymatic side paths resulting
in the synthesis of uroporphyrin | and uroporphyrin Il pigments (chemical structures marked with a black box). Light blue arrows indicate
nonenzymatic processes. Enzyme names are in red font, metabolite names are in black font. Enzyme Commission (EC) numbers provide a

numerical classification scheme for enzymes, based on the chemical reactions they catalyze
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Rooij, Edixhoven-Bosdijk, & Wilson, 1990) leading to an accumulation
of HMB. Excess HMB can then be converted into uroporphyrinogen |
by the nonenzymatic, spontaneous closure of the ring (Warner et al.,
1992). Uroporphyrinogen | can then be oxidised to form uroporphy-
rin | (Figure 2; Layer et al., 2010). Uroporphyrin Il is produced by ox-
idation of uroporphyrinogen Il that builds up when there is reduced
activity of the fifth enzyme uroporphyrinogen decarboxylase (UROD),
although in humans iron and certain forms of cytochrome P-450 may
also enhance the oxidation of uroporphyrinogen Ill to uroporphyrin
Il (Ponka, 1997; Figure 2). The overproduction of intermediate me-
tabolites 8-aminolevulinic acid, porphobilinogen, and HMB can also
enhance the formation of uroporphyrin I, uroporphyrin Ill, and copro-
porphyrin 1l (Hibino, Petri, Buchs, & Ohtake, 2013; Piao, Kiatpapan,
Yamashita, & Murooka, 2004). In humans, regulation of the haem
pathway occurs primarily at the first step catalyzed by aminolevulinic
acid synthase (ALAS), the rate-limiting enzyme, by downregulating its
transcription, upregulating mRNA breakdown, blocking its uptake into
mitochondria, and increasing breakdown of the protein (Besur, Hou,
Schmeltzer, & Bonkovsky, 2014).

We predict that in porphyrin-producing tissues in Clanculus, the
first enzyme in the pathway (ALAS) may be upregulated in tissue pro-
ducing uroporphyrin I and uroporphyrin Ill, but UROS or UROD will be
downregulated. Our prediction is based on information known about
the metabolic disorders known generally as porphyrias. These disor-
ders arise from a deficiency in one of the eight enzymes in the haem
pathway and are usually inherited although some forms may be ac-
quired, and environmental factors may play an important role (Balwani
& Desnick, 2012). Uroporphyrins are produced in porphyrias with
decreased activity of PBGD, UROS, and UROD (Balwani & Desnick,
2012). Upregulation of ALAS has also been associated with increased
severity of particular types of porphyria that produce uroporphyrin
(To-Figueras et al., 2011). We do not make a prediction about PBGD
as both increased (Siersema et al., 1990) and decreased (Balwani &
Desnick, 2012) levels have been associated with uroporphyrin pro-
duction. Even though UROS and UROD might be downregulated, we
still expect all eight genes in the haem pathway to be expressed in all
tissues irrespective of porphyrin production, because haem serves as
a precursor to cytochrome prosthetic groups which are necessary for
cell function (Layer et al., 2010).

In order to test this hypothesis, we used transcriptomics in com-
bination with phylogenetically informed annotation (Speiser et al.,
2014) to determine whether C. margaritarius, C. pharaonius, and Ca.
zizyphinum express the enzymes necessary to produce uroporphyrin |
and uroporphyrin Ill. We then used gPCR to compare expression lev-
els within all three species between three tissue types: mantle tissue,
which is responsible for shell construction and potentially pigment
production, colored foot tissue (in Clanculus only), and unpigmented
columellar muscle tissue. Our expectations were that in Clanculus spe-
cies, UROS and UROD would be expressed at lower levels in tissue
that produces porphyrins (mantle and colored foot), than tissue that
does not produce porphyrins (columellar muscle), whereas the reverse
might be expected for ALAS. We did not expect to necessarily observe
the same pattern in Ca. zizyphinum, which has unknown shell pigments.

2 | MATERIALS AND METHODS

2.1 | Samples

Clanculus pharaonius were collected from Saudi Arabia, C. margaritar-
ius were collected from two localities in Japan, and Calliostoma zizyphi-
num specimens came from the United Kingdom (see Table 1 for list of
specimens). In Williams et al. (2016), the authors noticed small differ-
ences in shell sculpture and pattern in specimens nominally described
as C. margaritarius and suggested that there may be two groups of
uncertain specific status. Given concerns for the possibility of cryp-
tic species, part of the mitochondrial gene cytochrome oxidase was
sequenced for C. margaritarius specimens #3, 6, 14, and 15 follow-
ing published methods (Williams & Ozawa, 2006) and compared with
homologous transcripts for specimens #1 and 2 in order to confirm

species identity.

2.2 | Transcriptome sequencing

Total RNA was extracted from mantle edge tissue from specimens
of two C. margaritarius, one C. pharaonius and one Ca. zizyphinum,
and from colored tissue from the side of the foot of one specimen
of C. margaritarius, which is also colored by porphyrins (Williams
et al., 2016; Table 1). RNA was extracted using the RNeasy Fibrous
Tissue Mini Kit (Qiagen) according to the manufacturer’s instructions.
Total RNA was quantified using a Qubit® 2.0 Fluorometer RNA assay
kit and the RNA integrity assessed on an Agilent 2200 Tapestation
using a high sensitivity R6K Screen Tape. Gastropod mRNA was iso-
lated using the Dynabeads® mRNA DIRECT" Micro Kit (Ambion, Life
Technologies) according to the 100 ng-1 pg total RNA samples proto-
col from the manufacturer.

Illumina-compatible indexed libraries were prepared for each tis-
sue sample using the ScriptSeq” v2 RNA-Seq Library Preparation Kit
from Epicentre (Epicentre Biotechnologies, Madison, WI, USA). The
libraries were size checked on an Agilent 2200 Tapestation with a
Tapestation HS D1K kit and quantified using gPCR. The libraries were
loaded onto a MiSeq V2 500 cycle sequencing run taking one-fifth of
a run according to the manufacturer’s instructions. The libraries for Ca.
zizyphinum and the two C. margaritarius mantle tissue samples were
then run additionally on a second MiSeq run. All libraries in each run

were equimolar.

2.3 | Transcriptome assembly

Transcriptomes were assembled using tools implemented in Galaxy,
an open-source workflow management system (Blankenberg et al.,
2010; Giardine et al., 2005; Goecks, Nekrutenko, & Taylor, 2010).
Reads for the two separate sequencing runs were concatenated
(where applicable). Filtering removed reads that were identical or dif-
fered at <3 bases. Further filtering using Trimmomatic (Lohse et al.,
2012) implemented the initial ILLUMINACLIP step (with default op-
tions selected), used a sliding window to trim reads (averaging across

four bases and requiring an average quality score of 24), and then
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TABLE 1 Sample details for Clanculus margaritarius, C. pharaonius, and Calliostoma zizyphinum

Species

C. margaritarius C

C. margaritarius A

C. margaritarius A

C. margaritarius A

C. margaritarius A

C. margaritarius A

C. margaritarius A

C. margaritarius B

C. margaritarius B

C. margaritarius B

C. margaritarius B

C. margaritarius B

C. margaritarius B

C. margaritarius A

C. margaritarius A

C. pharaonius

C. pharaonius
C. pharaonius
C. pharaonius
C. pharaonius
C. pharaonius
C. pharaonius

Ca. zizyphinum

Ca. zizyphinum
Ca. zizyphinum
Ca. zizyphinum
Ca. zizyphinum

Ca. zizyphinum

#
1

10
11

12

13
14

15

N O AW

o b wWN

Sampling locality

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.SHLI.1)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.SHI.2)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.SHL.3)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.APR.1)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.APR.2)

Fukushima, Saeki-shi, Oita Pref., Japan (CMAR.FUG.1)

Fukushima, Saeki-shi, Oita Pref., Japan (CMAR.FUG.2)

Not known - unlocalized NHMUK specimen (shell only)
Not known - unlocalized NHMUK specimen (shell only)

Not known - unlocalized NHMUK specimen (shell only)

Not known - unlocalized NHMUK specimen (shell only)

Not known - unlocalized NHMUK specimen (shell only)

Not known - unlocalized NHMUK specimen (shell only)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.SHI.4)

Kitahama, Shirahama, Nishimuro-gun, Wakayama Pref.,
Japan (CMAR.SHLI.5)

Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.2)

Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.6)
Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.4)
Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.1)
Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.7)
Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.3)
Rose Reef, Thuwal, Saudi Arabia (CPHA.KAU.5)
Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.1)

Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.2)
Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.q1
Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.q2
Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.q3

)
)
)
Shetland Islands, 60°14.9'N, 01°5.1'W, UK (CZIZ.SHT.q4)

Analyses

HPLC for melanins in shell; confocal on shell (not
shown); transcriptome of mantle and foot tissue;
COI GenBank accession number: KY200867

HPLC for melanins in shell; confocal on shell;
transcriptome of mantle tissue. Note that this
specimen is subadult.

Confocal on shell (not shown); EDS on shell; HPLC
for porphyrins in shell and foot tissue; PCR COI
(=AB505297)

Laser ablation; gPCR

Laser ablation; UV-visible spectrometry; gPCR

HPLC foot (ethanol; not shown); PCR COI
(=AB505297)

Raman on shell; confocal on shell (not shown); UV
and visible light photograph; laser ablation;
NHMUK 20150502

Confocal on shell (not shown); HPLC for melanins
on shell

Confocal on shell (not shown); HPLC for porphyrins
in shell

Confocal on shell; NHM EDS

UoM EDS; ToF-SIMS; FTIR; Microfocus
Synchrotron

Pigmented layer removed using EDTA; confocal on
nacreous layers of shell (not shown); HPLC for
porphyrins on dissolved pigment layer (not shown);
control shell HPLC for melanins

Confocal on shell (not shown)

PCR COI (=AB505297)

PCR COI (=AB505297)

HPLC for porphyrins in foot; visible/UV photo-
graph; transcriptome of mantle tissue. NHMUK
20150503

HPLC for porphyrins in shell, gPCR

HPLC for melanins in shell, gPCR

Confocal on shell, gPCR

Laser ablation; UV-visible spectrometry; gPCR
gPCR

gPCR

Confocal on shell (data not shown); transcriptome
of mantle tissue. NHMUK 20160315

HPLC for porphyrins in shell (not shown)
qPCR
qPCR
gPCR
qPCR

Specimen number, sampling locality, analyses undertaken in this study (red font) and in (Williams et al., 2016; black font).
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removed all reads with a length of <30 bases. Transcriptomes were as-
sembled using Trinity (Grabherr et al., 2011), with default settings and
a minimum contig length of 200 bases. Finally, ORFs were identified
(for nucleotides and predicted amino acid sequences) using the pro-
gram TransDecoder (Haas et al., 2013; predicted proteins >30 amino
acids or longer). Assembly statistics for transcriptomes are given in
Table 2. Raw reads for all transcriptomes have been published online
NCBI-SRA SRP092238, SRP092881, and SRP092239.

2.4 | ldentification of genes associated with
pigment synthesis

We searched for potential orthologs of the eight genes in the haem
pathway using phylogenetically informed annotation (PIA), a tree-
based approach for annotating transcriptomes and genomes (Speiser
et al.,, 2014). Briefly, PIA involves a set of precalculated gene trees
produced using tools for phylogenetic analysis by maximum likelihood
available in the Osiris package for Galaxy (Oakley et al., 2014). These
trees incorporated sequences from the predicted protein databases
associated with 29 fully sequenced genomes, including those from 24
metazoans, two choanoflagellates, and three fungi (see Speiser et al.,
2014 for details). Each analysis also included “landmark” sequences
from GenBank, which represent genes that have been well character-
ized functionally. The BLASTp algorithm searched translated versions
of the transcriptomes using the same queries that were used to iden-
tify sequences for the precalculated gene trees described above. For
searches using BLASTp, the ten hits that had the lowest e-value scores
were retained, provided that these e-values were below 1e-4. Next,
MAFFT-profile (Katoh & Standley, 2013) was used to align the hits
from BLAST searches against the sequences that comprised the pre-
calculated gene trees. Finally, the evolutionary placement algorithm
(Berger, Krompass, & Stamatakis, 2011; Berger et al., 2010; imple-
mented in RAXML; Stamatakis, 2014) was used to place hits from the

TABLE 2 Assembly statistics for transcriptomes

Clanculus

Assembly statistics pharaonius mantle C #1 mantle
Minimum contig length 201 201
Maximum contig length 12,989 10,772
Mean contig length 485.23 415.35
Standard deviation of 475.35 344.32

contig length
Median contig length 332 307
N50 contig length 541 434
Number of contigs 90,248 113,249
Number of contigs 21 kb 6,884 5,090
Number of contigs in N50 20,970 30,436
Number of bases in all 43,791,415 47,038,272

contigs
Number of bases in contigs 11,897,645 8,110,215

21 kb
GC Content of contigs (%) 40.49 39.74

Clanculus margaritarius Clanculus margaritarius

BLAST searches on to the precalculated gene trees using maximum
likelihood. Hits from the transcriptomes were scored as potential or-
thologs of genes if they: (1) had an orthologous relationship to genes
with well-characterized functions and (2) fell on short branches that
were in positions consistent with established relationships between
species. Apparent multiple hits were conservatively scored only once
because without a completely sequenced genome it is not possible
to tell whether these sequences represent different loci, different al-
leles or isoforms of the same locus, or sequence or assembly errors.
For comparison, we also performed BLASTx searches against all se-
quences on GenBank, recording the top score with an identified gene.

2.5 | Quantitative analysis of gene expression

Total RNA was extracted from columellar, mantle, and colored foot
tissue samples using the RNeasy Fibrous Tissue Mini Kit (Qiagen) ac-
cording to the manufacturer’s protocol from C. pharaonius (n = 6 indi-
viduals), C. margaritarius A (n = 2 individuals), and Ca. zizyphinum (n = 4
individuals, no colored foot tissue). This kit includes DNAse treatment
to eliminate genomic DNA contamination. cDNA synthesis was car-
ried out using 30 ng total RNA from each individual using QuantiTect
Reverse Transcription Kit, (Qiagen) according to the manufacturer’s
protocol. This kit also has an integrated genomic DNA removal step
prior to cDNA synthesis.

Specific primers were designed to amplify the five haem genes
using Primer3Plus (Untergasser etal., 2007). One set of primers
worked for both Clanculus species and a separate set of primers were
designed for Calliostoma (Table 3). We used 18S as the reference gene
and the same amount of RNA (quantified by nanodrop) was used for
each cDNA synthesis, with all giving very similar C; results for 18S.
Primers were designed for 18S that worked on all species.

Two divergent sequences of PBGD easily separable by alignment of

amino acids were found in transcriptomes of C. pharaonius mantle and

Clanculus margaritarius A Calliostoma

C #1 foot #2 mantle zizyphinum mantle
201 201 201
12,734 10,772 10,772
417 402.05 44424
353.33 321.35 371.52
307 298 323
435 415 481
129,021 85,061 118,165
5,967 3,547 6,761
34,360 23,060 30,427
53,801,440 34,198,859 52,494,157
9,547,572 5,514,410 10,673,841
39.40 39.35 40.99
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TABLE 3 Primer pairs used for gPCR, amplicon product size, and PCR annealing temperature
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Product Annealing

Gene Forward primer Reverse primer size (bp) temperature (°C)
Clanculus (2 species)

ALAS CACAGCCCCAGTCACATCAT AGTTGGGGCCACACGAAGTC 156 61

ALAD CGGATCACGCAGTTCTTCAC AAGTGGTTCAATGGCTTCTTGTAG 200 61

PBGD-1 GGCCCCGAATATGAGAAGAG CTCTCGGCGACGACTCTGAT 170 61

UROS TGAATTTGCAGTGTTCTTCAGTCC TGGTTCTGGTTTGGCTGTAA 172 61

UROD GGTTATCCCCCTTGCCTTG ACCCAGCTCCTTGTGAATATCA 133 61
Calliostoma

ALAS GTGCCTAAAATTGTTGCCTTTGA CCCACAACATAGCCTCCCATATT 245 61

ALAD ATGTCACGGACACTGTGGTATTC AGGTCCATAAAAACTGGATGCAAA 241 65

PBGD-2 AGACCTGCCCACATCACTTC ACCCACAACACTTCCCTCTG 166 61

UROS GGATTGCCCGAGTTTGCAGT GGCTGTGATACCATGGAGTTTGAA 168 64

UROD TTTTGGTTATCCCCCTTGC GGCTTCATACACATAGCCCAGTTC 152 59
All species

18S AAACGGCTACCACATCCAAG CCAGACTTGCCCTCCAATAG 165 57

C. margaritarius A #1 mantle. As PBGD is known to exist as two isoforms
in humans (Deybach & Puy, 1995), primers were made specifically for
PBGD-1 for Clanculus (the most highly expressed isoform in this species
where the two isoforms were found) and PBGD-2 for Calliostoma (the
only isoform expressed in this species). Primers for PBGD-1 and PBGD-2
were designed to match to regions that varied between the two iso-
forms, so that amplification of only the target isoform was possible (see
Appendix S1 for primer positions in gene alignments).

PCRs of 20 pl contained Power SYBR® Green Master Mix ac-
cording to the manufacturers protocol (Applied Biosystems), 10
pmol of each primer, and 2 pl of 1/10 dilution of cDNA synthesized
from individual snails. PCR cycling conditions were as follows: 50°C
for 2 min, 95°C for 10 min, then 40 cycles of 95°C for 30 s, X°C for
1 min, using the CFX96 real-time PCR detection system (Bio-Rad),
where X is the optimized annealing temperature for each primer pair
(see Table 3). A dissociation curve was generated in each case to
check that only a single band was amplified. The gPCRs were per-
formed in triplicate for each individual snail/tissue and normalized
to 18S using qGene (Muller, Janovjak, Miserez, & Dobbie, 2002) tak-
ing into account amplification efficiency, which was calculated using
a dilution series for each primer pair (Pfaffl, 2001). 18S was chosen
as a commonly used reference gene, and no consistent variation was
found in its expression between tissue types or species. The individ-
ual mean normalized gene expression levels between tissues within
each species were compared for each gene using paired two-tail
Student’s t tests performed in Excel (T.TEST function).

3 | RESULTS

3.1 | Deep divergence in C. margaritarius

Two divergent genetic lineages were found in C. margaritarius, here
referred to as “A” or “C”. A third morphologically divergent group

referred to as “B” was identified in (Williams et al., 2016). We were
not able to include C. margaritarius B in this study as only dry shells
are available and there are no tissue samples for genetic studies. All
COI sequences corresponding to C. margaritarius A were identical
to each other and to a published COIl sequence on GenBank for
the same species (AB505297), but differed from the single speci-
men of C. margaritarius C by 22 synonymous substitutions over
the 658 bp used as a barcode in most molluskan studies (GenBank
accession number for C. margaritarius C: KY200867; photographs
showing exemplar shells in Appendix S2). This difference (~3.3%
uncorrected) was unexpected and may reflect cryptic species or
highly divergent populations. Further studies are needed to con-
firm the status of these groups. Both C. margaritarius A and C were
included in transcriptomics studies, but only C. margaritarius A was
used in gPCR studies as no further specimens of C. margaritarius C
were available.

3.2 | Identification of genes associated with
pigment synthesis

We used transcriptomics in combination with phylogenetically in-
formed annotation (Speiser et al.,, 2014) to determine whether C.
margaritarius, C. pharaonius, and Ca. zizyphinum express the enzymes
necessary to produce uroporphyrin | and uroporphyrin Ill. Transcripts
that code for enzymes comprising the haem synthesis pathway
(Figure 2) were expressed in all species and tissues, but all eight genes
were found only in Ca. zizyphinum mantle (Figure 3; Table 4; Appendix
S3). Transcripts corresponding to the first three enzymes (aminole-
vulinic acid synthase—ALAS, aminolevulinic acid dehydratase—ALAD,
porphobilinogen deaminase—PBGD) were found in all transcrip-
tomes, for all species (Figure 3; Table 4; Appendix S3). We did not
limit the number of potential orthologues, and in some cases, more
than one was identified. These orthologues were then included in a
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phylogenetic analysis including published sequences from mollusks
and other organisms in order to confirm their evolutionary relation-
ships. For comparison, we also performed BLASTx searches against all
sequences in GenBank, recording the top hit with an identified gene
(Table 5). All transcripts were most similar to molluskan or inverte-
brate haem genes as expected, with only two exceptions (Table 5);
two transcripts identified in the PIA analysis of ALAS were more simi-
lar to serine palmitoyltransferase than ALAS (marked with red font in
Figure 3a).

No transcripts corresponding to uroporphyrinogen-lll synthase
(UROS) were identified in transcriptomes from C. margaritarius C #1
foot or C. margaritarius A #2 mantle, and uroporphyrinogen decar-
boxylase (UROD) was also missing from the latter (Figure 3). No se-
quences corresponding to coproporphyrinogen oxidase (CPOX) were
recovered from C. margaritarius transcriptomes, protoporphyrinogen
oxidase (PPOX) was missing from all Clanculus transcriptomes, and
ferrochelatase (FECH) was missing from C. margaritarius C #1 foot
(Figure 3). Predicted translated sequences of the identified haem
synthesis genes showed a high degree of amino acid conservation
with human proteins, which have been characterized experimentally
(Appendix S1; sequences in Appendix S3).

In all trees, transcripts corresponding to potential orthologues of
haem synthesis genes form clusters with each other and with pub-
lished genomic sequences for the limpet Lottia gigantea and pearl
oyster Pinctada fucata, and with landmark sequences from other taxa,
which represent genes that have been characterized experimentally
(Figure 3). The only exceptions were in the CPOX and ALAS trees.
In the ALAS tree, all our transcripts, except Clanculus margaritarius 1
mantle ¢37020 g and Clanculus margaritarius 1 foot c45104 g1 clus-
ter together, and BLASTx results suggest that these are not haem
genes, confirming PIA results. Primers used in qPCR were designed
to avoid amplification of these two sequences. The four transcripts
initially identified as CPOX do not come out in a cluster, and only one,
Calliostoma zizyphinum mantle c25229 g1 i1, clusters with a published
molluskan transcript (Lottia gigantea); however, BLASTx results suggest
that all are CPOX genes, although they may represent different loci.

3.3 | Quantification of gene expression levels

Quantitative real-time PCR (gPCR) was used to estimate the expres-
sion levels of transcripts for the first five enzymes in the haem synthe-
sis pathway (Figure 2) in columellar muscle, colored foot tissue, and
mantle tissue from C. pharaonius, C. margaritarius A, and Ca. zizyphi-
num (no foot tissue; Figure 4, Appendix S4). Mantle tissue was tested
because it is responsible for shell construction and potentially pigment

production, if pigments are produced de novo by the animal. Colored

foot tissue was also used because previous studies have shown that
the two Clanculus species used in this study also produce uroporphy-
rin | and Ill in colored foot tissue (Williams et al., 2016). Our expec-
tations were that in Clanculus species, UROS and UROD would be
expressed at lower levels in tissue that produces porphyrins (mantle
and colored foot) than tissue that does not produce porphyrins (col-
umellar muscle). In humans, an upregulation of the first gene in the
haem pathway (ALAS) has been associated with increased severity of
particular types of porphyria that produce uroporphyrin (To-Figueras
et al.,, 2011), so an increase in ALAS, along with a reduction in UROS
and/or UROD would also be consistent with porphyrin production.
We did not expect to necessarily observe the same patterns in Ca.
zizyphinum, which has only trace amounts of uroporphyrin | and Il in
the shell (Williams et al., 2016).

Our results are consistent with the idea that Clanculus species are
producing uroporphyrin | and Il de novo in colored foot and man-
tle tissue. Several comparisons of relative levels of gene expression
between tissue types (comparing putatively porphyrin-producing tis-
sues versus control, nonporphyrin-producing tissue) were statistically
significant using two-tail Student’s t tests (see Table 6 for p values).
Namely, in C. pharaonius, both colored foot and mantle tissue show
significantly lower expression levels than columellar muscle for UROS
(p < .01), as does colored foot for UROD (p < .001). Conversely, ALAS
levels were higher in colored foot than columellar muscle (p < .05).
Similarly, in C. margaritarius, expression levels were lower in colored
foot than columellar muscle for both UROS and UROD, although only
the value for UROS was significant (p < .05). Values of ALAS were
also significantly different between columellar muscle and mantle
(b < .05), with ALAS upregulated in mantle. Conversely, in Ca. zizyph-
inum, only ALAD was significantly upregulated in mantle versus col-
umellar muscle (p < .05), which is not consistent with the production

of uroporphyrin.

4 | DISCUSSION

4.1 | Biosynthesis of uroporphyrin | and lll

Understanding the evolution of shell color first requires identification
of pigments and then linking those pigments to a biosynthetic path-
way. In this study, we investigated the biosynthesis of two dominant
shell porphyrin pigments that have recently been found to contribute
to shell color in the marine snails Clanculus pharaonius and C. marga-
ritarius. The shell pigments uroporphyrin | and uroporphyrin Il are
produced as side products of the haem pathway (Hendry & Jones,
1980). Therefore, we expected to find differences in the expres-

sion of the haem pathway genes in tissues producing uroporphyrins

FIGURE 3 Maximum likelihood trees for enzymes used in the haem pathway. Sequences in each tree are from predicted protein databases
associated with complete genomes. The exceptions are sequences marked “LANDMARK” and highlighted with red squares; these are sequences
from GenBank that have been well characterized functionally. Sequences highlighted with yellow circles represent assembled transcripts

from our transcriptomes. (a) First four enzymes in the haem biosynthetic pathway. Enzymes are aminolevulinic acid synthase, aminolevulinic

acid dehydratase, porphobilinogen deaminase, and uroporphyrinogen-Ill synthase. (b) Last four enzymes in the pathway. Enzymes are
uroporphyrinogen decarboxylase, coproporphyrinogen oxidase, protoporphyrinogen oxidase, and ferrochelatase. Sequences in red font are likely

not haem genes
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BLANDMARK1 CPOX Homo sapiens NP 000088
I Xenopus tropicalis jgi Xentr4 159352
~ Danio rerio ENSDARP00000083605
— Helobdella robusta jgi Helro1 86324
Trichoplax adhaerens jgi Triad1 50218
Trichoplax adhaerens jgi Triad1 25736
Allomyces macrogynus AMAG 03377T0
Allomyces macrogynus AMAG 04686 TO

FECH

Mnemiopsis leidyi ML305537a
Amphimedon queenslandica Aqu1 223574
Trichoplax adhaerens jgi Triad1 50124
EPetromyzon marinus ENSPMAP00000003284
Acropora digitifera adi v1 11632
EStrongylocemrotus purpuratus XP 787759

—

Saccoglossus kowalevskii XP 002734283
Hydra magnipapillata XP 002159643
Hydra magnipapillata XP 002161921
Ciona intestinalis jgi Cioin2 283668
Allomyces macrogynus AMAG 03323T0
Allomyces macrogynus AMAG 04666T0
Neurospora crassa NCU08291TO
Saccharomyces cerevisiae jgi Sacce1 5832
Pinctada fucata aug1 0 3739 1 37681 t1
Capitella teleta jgi Capcal 181169
Helobdella robusta jgi Helro1 69010
Xenopus tropicalis jgi Xentr4 199456
LANDMARK1 Fech Mus musculus P22315
Mus musculus ENSMUSP00000025484
Mus musculus ENSMUSP00000088581
LANDMARK1 FECH Homo sapiens NP 000131
Gallus gallus ENSGALP00000028757
Gallus gallus ENSGALP00000004832
= Danio rerio ENSDARP00000125028
Lottia gigantea jgi Lotgi1 174413
rO Clanculus pharaonius mantle c70866 g1 i1
tO Clanculus margaritarius 2 mantle c1654 g1 i1
rO Clanculus margaritarius 1 mantle c87276 g1 i1
O Calliostoma zizyphinum mantle c10706 g1 2
'O Calliostoma zizyphinum mantle c10706 g1 i
C Ixodes scapularis ISCW016187 PA
Caenorhabditis elegans KO7G5 6 1
— Daphnia pulex jgi Dappu1 128379
Apis mellifera gnl Amel GB15952 PA
Tribolium castaneum TC014202 GLEAN 14202
LANDMARK?1 ferr Drosophila melanogaster NP 524613
Drosophila melanogaster FBpp0085208
Drosophila melanogaster FBpp0085210
— Xenopus tropicalis jgi Xentr4 474318
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(Continued)

-

L—— Salpingoeca rosetta PTSG 06315T0
- Acropora digitifera adi v1 20820

Nematostella vectensis jgi Nemve1 186132

- Nematostella vectensis jgi Nemve1 150838

Mus musculus ENSMUSP00000031729

Mus musculus ENSMUSP00000106638
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. Clanculus Clanculus Clanculus Clanculus Calliostoma
presence or absence of transcripts . . . . . .
dine o the eight h Gene/ pharaonius margaritarius ~ margaritarius  margaritarius  zizyphinum
corresponding to the eig aem genes transcriptome  mantle 1 mantle 1 foot 2 mantle mantle
ALAS + + + + +
ALAD + + + + +
PBGD + + + + +
UROS + + = = +
UROD + + + - +
CPOX o = = = +
PPOX - - - - +
FECH + + = + +

+, sequence identified and clusters with other molluskan sequences; -, no sequences found in tran-
scriptome; o, transcript found but does not cluster with other molluskan sequences.

when compared to nonporphyrin-producing tissues in Clanculus spe-
cies. We identified the first four genes of the haem pathway, which
are necessary for the production of uroporphyrin | and Ill, in at least
one transcriptome from each of the three study species, although
the fourth enzyme, UROS, was not recovered in all tissues. All four
remaining genes in the haem pathway were also identified in Ca.
zizyphinum but were not recovered from all Clanculus transcriptomes.
In two transcriptomes (C. margaritarius C #1 foot and C. margaritarius
A #2 mantle), transcripts for UROS were not recovered, and UROD
was not recovered from C. margaritarius A #2 mantle. The absence of
transcripts corresponding to some haem genes does not mean these
genes are completely absent, as the synthesis of haem is essential for
life, because haem serves as a precursor to cytochrome prosthetic
groups which are necessary for cell function (Layer et al., 2010). Our
inability to find some transcripts corresponding to some genes may
suggest either low levels of expression, or that the depth of sequenc-
ing was insufficient, or that sequences were too divergent to be rec-
ognized using BLAST-based searches.

Comparison of relative expression levels between tissue types
demonstrated differences in gene expression levels between pig-
mented and nonpigmented tissues consistent with our hypothe-
sis. This was most pronounced in C. pharaonius colored foot tissue
where the first enzyme in the haem pathway (ALAS) was signifi-
cantly upregulated, and UROS and UROD were significantly down-
regulated. Based on human clinical trials, increased levels of ALAS,
along with decreased levels of UROS and UROD would likely result
in increased production of uroporphyrin (To-Figueras et al., 2011).
UROS was also significantly downregulated in mantle tissue versus
columellar muscle. ALAS levels were also higher in mantle than col-
umellar muscle, although the values were marginally nonsignificant
(p = .05125; Table 6).

The second species, C. margaritarius, showed similar differences,
but, perhaps due to only being able to obtain a few samples of this
rare species, only the upregulation of ALAS in mantle and downregu-
lation of UROS in colored foot (both compared to collumellar tissue)
were statistically significant. The effect on uroporphyrin production
of an increase in activity of ALAS, without a concomitant decrease
in UROS or UROD, is not known, and further samples are needed

to see whether this result is typical. Even with the caveat that num-
bers of individuals examined were small, the results for the colored
foot are consistent with our expectations for porphyrin-producing
tissues.

Contrary to observations for Clanculus, expression levels of haem
genes did not differ significantly between mantle and columellar
muscle from Ca. zizyphinum, with the exception of ALAD, which was
expressed more highly in mantle tissue. Increased activity of ALAD
is not associated with production of uroporphyrins, although re-
duced activity is associated with some forms of porphyria (Balwani
& Desnick, 2012). We did not expect to observe the same patterns
of haem gene expression in Ca. zizyphinum, a species that does not
produce shell porphyrins. The shell pigments of Ca. zizyphinum are un-
known, although based on the observation that some pigments appear
to be phylogenetically distributed (Williams, 2017), they may include
bilins, which are found in other trochoidean families (Tixier, 1952).
Bilins may be taken up in the diet (Fox, 1979; MacCaoll et al., 1990) or
produced by the organism through the breakdown of hemoproteins
(Bandaranayake, 2006; Hudson & Smith, 1975), and the pathways for
production of trochoidean bilins are unknown.

Taken together, the genetic data presented here along with
previously published chemical data that identified shell pigments
as uroporphyrin | and Il (Williams et al., 2016) support the sug-
gestion that shell porphyrins are produced de novo by two spe-
cies of Clanculus. An interesting side effect of the incorporation of
trochopuniceus and trochoxouthos into the shell and colored foot
tissue of the two Clanculus species is that the production of haem
may be reduced in mantle and foot tissues as neither uroporphyrin
| nor uroporphyrin Ill can be converted into heme. Earlier authors
(Comfort, 1949; Hendry & Jones, 1980; Kennedy, 1975) noted that
molluskan taxa that have uroporphyrin | in shell and integument
generally do not use hemoglobin as their respiratory pigment. Many
mollusks, including many vetigastropods, use hemocyanin, which,
despite the name, is not synthesized via the haem biosynthetic
pathway (Hanzlik, 1976). It has been suggested that the haem bio-
synthetic pathway is likely of lesser importance in such organisms
and therefore that haem production can be reduced without harm
to the animal (Hendry & Jones, 1980).
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FIGURE 4 Relative expression levels for the first five genes in the heme synthesis pathway compared between tissues predicted to produce
porphyrin (Clanculus mantle (man) & coloured foot (colfoot)) versus those that are not (Clanculus columellar muscle (coll)). Calliostoma zizyphinum
is included as a negative control as none of its tissues are predicted to produce porphyrins. Normalised expression was calculated relative to
expression of 18S and comparisons were made between columellar tissue and mantle and between columellar tissue and coloured foot. The P
values from a students t-test demonstrated * < 0.05 or ** < 0.01 significance. (a) Clanclus pharaonius. (b) Clanclus margaritarius. (c) Calliostoma
zizyphinum. The smaller boxed graphs for Calliostoma zizyphinum show the same data, but with a changed y-axis to allow the lower normalised

gene expression levels to be visualised.

TABLE 6 Probabilities for two-tailed, paired t tests for differences in gene regulation among tissues in three trochoidean species of

gastropod

Species Tissue comparisons ALAS

Clanculus Columellar muscle versus mantle 0.03667*
margaritarius Columellar muscle versus colored foot 0.09060

Clanculus Columellar muscle versus mantle 0.05125
pharaonius Columellar muscle versus colored foot 0.02389*

Calliostoma Columellar muscle versus mantle 0.16621
zizyphinum

Significant values are marked with an asterisk.

4.2 | Diet versus de novo synthesis—evidence from
other studies

Although the evidence obtained in this study suggests that porphy-
rin shell pigmentation is produced de novo by the animal, the origin
of porphyrin pigments in molluskan shells was considered uncertain
throughout the last century (Fox, 1976). For instance, Comfort (1950)
suggested that the uroporphyrin | found in vetigastropod shells is de-
rived from the animal’s diet, but tellingly, admitted that there was no
evidence that uroporphyrins can be synthesized from chlorophyll (a

ALAD PBGD UROS UROD
0.28708 0.07258 0.57494 0.79846
0.08156 0.34498 0.07430 0.04432*
0.07516 0.23290 0.00531** 0.47822
0.12462 0.90237 0.00050** 0.00003**
0.01222* 0.54429 0.07822 0.59242

porphyrin derivative), and no relationship was observed between pig-
ment type and molluskan feeding mode.

Two more recent studies by Underwood and Creese also sug-
gested that shell uroporphyrin is derived from the diet. Underwood
and Creese (1976) showed that the width of black bands on shells of
the trochid Austrocochlea porcata (as A. constricta) differed between
estuary and open coast habitats and was correlated with chlorophyll
availability at each site. These authors detected and measured uro-
porphyrin | in the shells and showed that concentrations were also
correlated with shell banding pattern (Creese & Underwood, 1976).
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On the basis of their results, the authors suggested that shell pig-
mentation was not under genetic control but rather affected by en-
vironmental factors (Creese & Underwood, 1976). The authors did
not, however, show that the distribution of uroporphyrin | was con-
gruent with pigmentation patterns, although they did show that the
black pigment dissolved in acid, as would be expected for a porphyrin.
However, shells of this species examined under ultraviolet light do not
demonstrate the strong fluorescence seen in Clanculus. It is possible
that uroporphyrin occurs in the shell without contributing color, and
that instead banding patterns are due to bilins (also known as bile pig-
ments); both classes of shell pigments have been found to co-occur
in another trochoidean, Cittarium pica (Comfort, 1951). A biliprotein
(bilin complexed to a protein) has also been found in foot and shell
of Phorcus turbinatus (as Monodonta turbinata; Bannister, Bannister,
& Micallef, 1968a,b, 1970), a species from the same subfamily as
Austrocochlea. Unlike porphyrins, bilins can be obtained from the diet.
For instance, the bilin portions of three biliproteins in the ink of the sea
hare Aplysia californica are derived from bilins occurring as biliproteins
in red algae consumed by the animals (MacColl et al., 1990). Another
(not mutually exclusive) explanation is that the synthesis of pigmenta-
tion in the banding pattern occurs at some energetic cost to the animal
(Williams, 2017). In favor of this, hypothesis is the fact that synthesis
of porphyrins and bile pigments has been shown to be energetically
costly in other taxa (e.g., in bird egg shell pigments Miksik, Holan, &
Deyl, 1994; Morales, Velando, & Torres, 2010; Moreno & Osorno,
2003; Soler, Navarro, Contreras, Avilés, & Cuervo, 2008).

Further evidence for the de novo synthesis of porphyrin pigments in
mollusks comes from studies on marine pearl oyster shells. Porphyrins
have been found in oyster shells and pearls and are thought to con-
tribute to visible pigmentation in some species (Fischer & Haarer,
1932; Kosaki, 1947; Miyoshi, Matsuda, & Komatsu, 1987; Nicholas &
Comfort, 1949; Tixier, 1945), and heritability of shell and pearl color
has been confirmed by breeding experiments (Ky et al., 2013, 2015;
Lemer et al., 2015). De novo synthesis of shell pigments is confirmed
by aquaculture techniques, where mantle tissue from one animal is
grafted into another to produce pearls that match the color of those
obtained from the donor animal (Ky et al., 2013, 2015). These even in-
clude xenografts between species, where black pearls were produced
by placing mantle tissue of Pinctada margaritifera in gonad tissue of
Pinctada maxima (McGinty, Zenger, Jones, & Jerry, 2012). Black shell
coloration in P. margaritifera is due to porphyrins, but porphyrins are
not found in P. maxima (Miyoshi et al., 1987), which does not normally
produce black pearls (McGinty et al., 2012).

4.3 | Color pattern

The production of color patterns has been the focus of many compu-
tational and modeling studies that have sought to find a mechanism
for the production of shell patterns (e.g., Meinhardt, 1995). Based on
these ideas, we can hypothesize on how color patterns are formed in
Clanculus species. Three pigments are responsible for the dominant
colors in the two Clanculus species studied: trochopuniceus for the
pink-red, trochoxouthos for yellow-brown, and eumelanin for black

(Williams et al., 2016). In both species, trochopuniceus is produced in
spots in early whorls. The color pattern in later whorls of C. pharaonius
shells would suggest that some mantle cells are producing only eu-
melanin and others only trochopuniceus. The production of eumelanin
is switched on and off producing black and white spots that are con-
gruent with small granules in the shell sculpture. The production of
trochopuniceus is almost continuous. On the other hand, in C. marga-
ritarius, in later whorls, all mantle cells alternate between production
of eumelanin and trochoxouthos. Shell patterns suggest that pigment-
producing cells pause in pigment production when shifting from one
pigment to the other, with a greater break in pigment production after
the production of eumelanin, creating unevenly sized patches of white

on either side of the black spots.

5 | CONCLUSIONS

Our work advances studies on the evolution of shell color in mollusks
by matching known shell pigments with the identification of the ge-
netic pathway responsible for their biosynthesis. We identify genes
associated with the production of porphyrin pigments in colored foot
tissue and mantle tissue in two species known to have porphyrin pig-
mentation and one that does not. Relative expression data based on
gPCR are consistent with the evidence of taxonomic distribution of
porphyrin as determined in recent biochemical studies and with the
hypothesis that porphyrin-based pigments uroporphyrin | and uropor-
phyrin 1l are synthesized de novo by two Clanculus species but not
by Ca. zizyphinum. These results are relevant not only to understand-
ing the evolution of shell pigmentation in Clanculus but also to un-
derstanding the evolution of color in other species with uroporphyrin
pigmentation, including (mainly marine) mollusks, annelid and platy-
helminth worms, and turaco bird feathers.

We recommend the use of species such as C. margaritarius and
C. pharaonius that share the same pigments in the foot and shell as
an aid to identify the genes involved in pigment production. Although
a foot that shares the same color and pattern as the shell is unusual,
occurring in only a few molluskan groups, where it does occur, it pro-
vides an almost unique opportunity to identify the genes involved in
the inheritance and control of color. In such taxa, it becomes possible
to distinguish between genes that are involved in pigmentation, and
those involved in biomineralization as the latter will not be expressed
in the foot. This may be particularly useful in identification of novel

proteins that may be associated with bilins or carotenoids.
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