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Abstract: Human transcriptomes are more divergent than genes and contribute to the sophistication
of life. This divergence is derived from various isoforms arising from alternative splicing. In
addition, alternative splicing regulated by spliceosomal factors and RNA structures, such as the RNA
G-quadruplex, is important not only for isoform diversity but also for regulating gene expression.
Therefore, abnormal splicing leads to serious diseases such as cancer and neurodegenerative disorders.
In the first part of this review, we describe the regulation of divergent transcriptomes using alternative
mRNA splicing. In the second part, we present the relationship between the disruption of splicing
and diseases. Recently, various compounds with splicing inhibitor activity were established. These
splicing inhibitors are recognized as a biological tool to investigate the molecular mechanism of
splicing and as a potential therapeutic agent for cancer treatment. Food-derived compounds with
similar functions were found and are expected to exhibit anticancer effects. In the final part, we describe
the compounds that modulate the messenger RNA (mRNA) splicing process and their availability for
basic research and future clinical potential.

Keywords: alternative mRNA splicing; cancer; neurodegenerative disorder; splicing inhibitor;
food-derived compound

1. Introduction

In eukaryotic cells, protein-coding genes are transcribed as pre-messenger RNA (mRNA) in
the nucleus and pre-mRNA undergoes several RNA processing steps, such as 5 -capping, splicing,
and 3’-end processing. These gene expression processes are tightly coordinated with each other to
achieve efficient and accurate gene expression [1]. After the mRNA processing steps, the mature
mRNA is exported from the nucleus to the cytoplasm for translation. Human transcriptomes are
more divergent than genes. This divergence is derived from various isoforms arising from alternative
splicing, which is an essential biological process for considerable proteomic diversity and complexity
despite the relatively limited number of human genes [2]. Furthermore, alternative splicing has
important roles not only for expressing proteins through transcript diversity but also for regulating
gene expression. Transcripts from most human protein-coding genes undergo one or more forms
of alternative splicing. Alternatively spliced isoforms vary greatly from tissue to tissue [3]. Recent
comprehensive analysis suggested that more than 40% of genes express multiple isoforms in a single
tissue [4]. In particular, many isoforms containing alternative exons are expressed in neurons; thus, the
brain displays the most complex pattern of alternative splicing [5]. Alternative splicing contributes to
cell differentiation and lineage determination, tissue identity acquisition and maintenance, and organ
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development [6-8]. Thus, alternative splicing is considered to be a key mechanism for regulating gene
expression networks, as well as for human diversity or sophistication.

The spliceosome, a multimegadalton ribonucleoprotein (RNP) complex comprising five snRNPs
and numerous proteins, carries out splicing of pre-mRNA molecules to remove introns, then conjoins
exons in different arrangements that potentially encode alternative protein isoforms [9]. Spliceosome
complexes are assembled at the splice sites in a pre-mRNA transcript, involving a stepwise assembly
pathway of the U1, U2, and U4/5/6 snRNP spliceosome subunits. The U1 snRNP binds the 5" splice site
(5’ ss), and splicing factor 1 (SF1) and U2 snRNP auxiliary factor (U2AF) 1/2 bind the branch point (BP),
polypyrimidine tract, and the 3’ ss, respectively (Figure 1). After binding, the U2 snRNP containing
the splicing factor 3A (SF3A) and splicing factor 3B (SF3B) subcomplex stably associates with BP,
following the engagement of U4/U6 and U5 snRNPs in the form of a tri-snRNP particle. This leads to
the destabilization of the U1 and U4 snRNPs. These conformational and compositional rearrangements
of spliceosomal components result in the activated spliceosome; this emergence triggers two sequential
transesterification reactions to produce the spliced-mRNA. Additional interactions that contribute to
the recognition of intron-exon boundaries and/or the spliceosome assembly are mediated by elements
of the cis-acting exonic-splicing enhancer (ESE) and intronic-splicing enhancer, and exonic-splicing
silencer (ESS) and intronic-splicing silencer, which are recognized by auxiliary splicing factors,
including the Ser/Arg-rich (SR) proteins (hereafter described as SRSFs) and heterogeneous nuclear
ribonucleoproteins (hnRNPs) [10]. Strict recognition of the splicing site by these factors enables
individual alternative splicing.

Splicing contributes to precise gene regulation in connection with other forms of processing in the
nucleus. For example, splicing of first introns feeds back to transcription elongation and the efficiency of
last intron removal affects cleavage and polyadenylation of mRNAs [11-13]. Coupling mRNA splicing
to mRNA export ensures efficient nuclear export of mature mRNPs for translation in the cytoplasm
mediated by the evolutionarily conserved transcription and export (TREX) complex [1,14]. The TREX
complex is recruited to mRNA in a splicing-dependent manner via splicing factor and UAP56, and it
triggers the association of nuclear RNA export factor 1 (NXF1), which is a final mRNA export factor,
onto the export competent mRNA. Recently, a molecular mechanism that suppresses the recruitment of
NXF1 to incompletely spliced mRNAs was partly demonstrated [15-17]. In addition, gene regulation
through nonsense-mediated mRNA decay (NMD) was shown [18-24].The aberrant transcript with the
pre-mature termination codon, derived from abnormal splicing, is removed by NMD.

Mis-regulation of complicated alternative splicing is associated with cancers, and abnormal
expression or mutations in splicing factors contribute to tumorigenesis and neurodegenerative
disorders [25]. Recently, various compounds with splicing inhibitor activity were established. These
chemical compounds are expected to act not only as a biological tool to investigate complicated splicing
processes but also for anti-cancer drugs targeted to the splicing machinery. Food-derived compounds
having similar functions were also identified and are receiving attention. In this review, we summarize
these compounds and discuss their potential validity in physiological function.
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Figure 1. Regulation of gene expression through alternative splicing. (A) Five types of alternative

ExoN '] EXoN

splicing events. "Cassette exons" means inclusion or skipping of an exon. (B) Outline of the alternative
splicing control by various factors. The U1 ribonucleoprotein (snRNP) function to recognize the 5’
splice site (ss) and the cryptic polyadenylation signals (PASs) with cleavage and polyadenylation factors
(CPAFs). Splicing factor 1 (SF1), U2 snRNP auxiliary factor 1 (U2AF1), and U2AF2 bind the branch
point (BP; shown as a blue “A”), polypyrimidine tract (shown as “Py-tract”), and 3’ ss (shown as a
blue “AG”), respectively. U2 snRNP containing splicing factor 3B1 (SF3B1), SURP and G-patch domain
containing 1 (SUGP1) displaces SF1 and binds to the BP. SR protein families and hnRNPs recognize the
exonic-splicing enhancer (ESE) and exonic-splicing silencer(ESS) elements, respectively, and contribute
to the recognition of the splice site and the spliceosome assembly by splicing factors. The cryptic 3’ ss
(shown as a red “AG”) recognition is repressed by hnRNP. RNA G-quadruplex (rG4) structures affect
splicing by acting as RNA-binding protein motifs. (C) Association of alternative splicing and gene
regulation. Without U1 snRNP, the CPAF recognizes intronic PASs and generates short transcripts due
to premature cleavage and polyadenylation. Some intron-containing transcripts are associated with Ul
snRNP, U2AF2, and SR proteins, and they are tethered in the nucleus. Intron-containing transcripts,
which are exported to the cytoplasm, often contain a premature termination codon (PTC) and are
eliminated by nonsense-mediated messenger RNA (mRNA) decay (NMD). Similarly, other alternative
and cryptic-spliced transcripts with PTC are also degraded by NMD.

2. Understanding the Diversity of Transcriptomes by Controlling mRNA Splicing

Alternative splicing is typically classified into five types (Figure 1A): (1) inclusion or skipping of
individual “cassette” exons, (2) switching between alternative the 5’ and 3’ ss, (3) differential retention
of introns (RI), (4) mutually exclusive splicing of adjacent exons, and (5) alternative splicing coupled
with alternative first or last exons [3,26].

Alteration of alternatively spliced isoforms often results in changes in translational efficiency and
protein isoforms that exhibit a different enzymatic activity, location, and protein—protein interaction.
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Thus, alternative splicing contributes to the diversity of protein function [27,28]. In particular,
the intrinsically disordered region (IDR), also referred to as the low-complexity region, produced
by alterative splicing, attracted attention in recent studies [29,30]. The IDR is characteristic for
protein—protein interaction and regulated by post-translational modifications. The role of alternative
splicing in diversifying protein interaction capabilities was reported because region encoding of the
IDR is often controlled by alternative splicing [31-33]. The IDR, which contains the abundant GY motif,
was implicated in the formation of higher-order protein complexes that can undergo phase separation
and assemble into membraneless organelles and fibrillar-like structures [29,34,35]. Alternative splicing
events within corresponding mRNA that encode these IDR regions are significantly enriched in
members of the hnRNP A and D families, which have diverse roles in splicing and other RNA biological
processes. These alternative splicing events arose in mammals through evolution, and they are expected
to play an important role in controlling splice site recognition by the hnRNP A and D families [36].

2.1. Relationship between Alternative SPLICING and NMD and mRNA Localization

Alternatively spliced isoforms enable distinct regulatory properties in the cell, such as individual
cell mRNA stability and localization (Figure 1B,C) [37]. Regarding cell mRNA stability, the mechanism
for eliminating mRNA, which alters the reading frame, is NMD. NMD is an evolutionarily conserved
cellular quality control mechanism that inspects a premature termination codon (PTC) introduced by
the change in the reading frames on the mRNA. After recognizing the PTCs, mRNA containing PTC is
cleaved and eliminated from the transcriptome. PTCs are particularly problematic because they often
result in the production of nonfunctional and/or dominant-negative proteins [18,19].

Living organisms also regulate gene expression by efficiently using the NMD mechanism.
For example, SRSF3 is a member of the SR protein family that strictly regulates its own expression
by controlling the inclusion of PTC-containing cassette exons in its own transcript using alternative
splicing. This is referred to as a “poison cassette exon” because it leads to transcript degradation by
NMD [20]. Not only SRSE3 but all species in the SR protein families control the regulation of their
own expression through ultraconserved poison cassette exons [21]. These features are also observed in
some RNA-binding proteins (RBPs), including the hnRNP family [22-24].

The RI attracted attention in recent years because it was demonstrated that introns contribute to
the regulation of gene expression, nuclear mRNA export, and the production of new isoforms [38].
RI products can be roughly classified into two types. One class is exported to the cytoplasm without
retention in the nucleus. This class often contains PTCs, which are frequently observed in genes encoding
splicing factors and RBPs and generally serve to downregulate protein expression by irreversibly
eliminating the PTC-containing mRNAs [39—41]. In some cases, these transcripts without PTC undergo
a translation process. These were identified by ribosomal-profiling analysis and characterized by short
introns in the 5" UTR region, as well as enrichment of genes involved in the cell cycle [42]. The other
class is characterized as an intron-containing transcript stably retained in the nucleus and was distinctly
defined as the detained intron (DI) by Boutz and colleagues [41]. The DI products are insensitive to
NMD, and they negatively affect protein expression by preventing the respective mRNAs from being
translated because they are retained in the nucleus. Surprisingly, various stimuli, such as DNA damage
or neuronal activation, trigger the rapid post-transcriptional splicing of the DI. As a result, the spliced
DI product is immediately exported and undergoes translation [41,43—46]. In neuronal cells, genes
associated with neuronal activation tend to be long, and their transcriptional regulation is insufficient
for acute phase expression because it takes time to make a full-length transcript. Thus, divergent
transcripts with the DI synthetized from corresponding genes are pooled in the nucleus beforehand.
They are spliced and exported to the cytoplasm in response to a stimulus [46]. These findings suggest
that the DI has an important role in acute phase gene expression.

Incompletely spliced mRNAs are retained within nuclear speckles (NS) in mammalian cells [17].
NS are membraneless nuclear domains enriched in mRNA splicing factors, 3’ processing factors, and
export factors, and they are located in the interchromatin regions of the nucleoplasm. Recent studies
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suggested that NS act as a hub to coordinate all nuclear mRNA processing steps and quality control
steps [47]. How mRNPs gain export capacity and how they remain in the nucleus are current areas
of active research. The two mechanisms for nuclear retention are expected to be (1) active anchoring
within the nucleus and (2) prevention of export factors being recruited.

Early spliceosomal components, Ul snRNP and U2AF2 and SR proteins, are reported to be
associated with nuclear retention [17]. In one study, depletion of Ul snRNP protein component,
U1-70K, and U2AF2 prevented nuclear retention of unspliced human (3-globin reporter transcripts and
caused their leakage into the cytoplasm [48]. Tethering of U1-70K and U2AF2 reporter transcripts also
caused nuclear retention via their RS domain, which is rich in arginine and serine repeats. In addition,
depletion of U2 snRNA or specific subunits of the SE3B complex did not cause this prevention,
indicating that binding of the U2 snRNP is not required for nuclear retention. Moreover, it was shown
that unspliced polyadenylated RNAs that accumulate within NS were still associated with stalled
inactive spliceosomes [49]. SR proteins generally have an RS domain that can be phosphorylated at
multiple positions. The phosphorylation status of the SR protein is regulated by SR protein kinase
and cdc2-like kinase families, and protein phosphatase 1 contributes to nuclear retention and splicing
regulation activities [15,16,50]. Phosphorylated SR proteins are associated with splicing sites to
facilitate splicing and are dephosphorylated during splicing. After completion of splicing, SR proteins
are again phosphorylated to be recycled for the next splicing. Some SR proteins, in addition to the
TREX complex, support mRNA export only in their dephosphorylated state as a result of productive
splicing [15-17]. Therefore, in the case of an incomplete splicing condition, phosphorylated SR proteins
associated with the splicing site act as retention factors that do not recruit NXF1 for export (Figure 1C).
These spliceosomal components commonly contain IDR regions with the RS domain, which suggests
that the regulation of protein—protein interaction through the IDR region plays an important role in
mRNA retention in NS. Some intron-containing transcripts are efficiently exported to the cytoplasm
because they directly recruit NXF1 and override nuclear retention [51]. Consistently, a subset of
intron-containing cellular transcripts bound by NXF1 and SR proteins are stably detectable in the
cytoplasm [52]. These findings suggest that some of the intron-containing transcripts are efficiently
exported by recruiting NXF1 and SR proteins and by escaping from retention in the nucleus.

2.2. Cryptic Splicing

The eukaryotic genome has a large number of cryptic splice sites that are rarely used under the
normal conditions but can be potentially recognized. They are often flanked by a high density of
corresponding motifs that bind to hnRNPs and some RBPs to repress their splicing recognition [30,53].
For example, hnRNP C can suppress cryptic exon recognition by binding to U-tracts in Alu elements
within the intron [54]. NOVA alternative splicing regulator (Nova), a neuron-specific splicing factor,
represses splicing by binding to long clusters of YCAY muotifs [55]. TAR DNA-binging protein
43 (TDP-43) and polypyrimidine tract-binding protein (PTBP)1/2, which are RBPs with various
molecular functions related to RNA metabolism, and hnRNP L act as repressors by binding to specific
repeats [56-58]. RBM17 is implicated in cancer and a neurodegenerative disease, and it can repress
cryptic splice site recognition [59]. The recognition sequence of RBM17 overlaps with the target
sequence of the cryptic exon suppressed by TDP-43. U2 snRNP is also believed to be involved in the
repression of cryptic splice site recognition [60—64]. These potential but inactive splice sites can be
recognized when an authentic strong splice site is mutated or when there are defects in the hnRNPs
and some RBPs [59]. The breakdown of the retention mechanism is linked to cancer and neuronal
diseases. We discuss these linkages in the next section.

2.3. Telescripting by U1-CPAFs

To prevent abnormal mRNA synthesis by mis-splicing, “telescripting” was identified, which
is accomplished by the unique role of Ul snRNPs in the central regulation of splicing and 3’ end
cleavage/polyadenylation. It was reported that inhibition of the U1 snRNP caused not only splicing
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inhibition but also premature cleavage and polyadenylation in numerous pre-mRNAs at cryptic
polyadenylation signals (PASs), frequently found in introns adjacent to the transcription start site
(less than 0.5 kilobases) [65,66]. This event was not observed in U2 snRNP inhibition, and it was
revealed that the Ul snRNP combined with intronic PASs form the complex of the U1l snRNP with
cleavage and polyadenylation factors (U1-CPAFs), which are distinct from Ul-spliceosomal complexes
because of the lack of essential splicing factors [67]. U1-CPAFs co-transcriptionally protect pre-mRNAs
from premature cleavage and polyadenylation (PCPA) at cryptic PASs in introns, thus ensuring
transcriptome integrity (Figure 1C). This function is termed “telescripting” and is separate from the role
in splicing [65,66]. In addition, U1 telescripting determines mRNA length and confers transcriptional
directionality from bidirectional promoters [66,68-70]. The Ul snRNP is abundantly expressed
compared with other snRNPs in human. These findings reveal a critical splicing-independent function
of Ul snRNP.

2.4. Splicing Regulation by RNA G-Quadruplex

RNA secondary structures were shown to play key roles in gene expression through regulating
various forms of mRNA metabolism [71,72]. Regarding the regulation of mRNA metabolism, one
stable nucleic acid structure is the G-quadruplex, which is formed within guanine-rich sequences. This
unique structure can be formed within a single strand or between multiple strands of RNA or DNA,
where four G-tracts of two or more guanines, separated by short stretches of other nucleotides, are
assembled in layered loops bound together through Hoogsteen hydrogen bonding. G-quadruplexes
were initially thought to focus on DNA, but they were recently found on RNA molecules as well [73].
Initially, several studies demonstrated that the RNA G-quadruplex (rG4) structures in 5" UTRs act as
regulatory elements for translation [74-76]. rG4 in 5"UTRs of mRNAs, such as NRAS, KRAS, TRF2,
FGF2, and VEGF can impair both cap-dependent and cap-independent translation [76-80]. Recently, it
was reported that the regulation of 1G4 folding by the cytoplasmic RNA helicase DHX36 was associated
with translational efficiency [73,81].

rG4 was also reported to be significant in regulating nuclear mRNA processing, such as 3’ end
processing [82-84], mRNA localization [85], and alternative splicing. Indeed, several studies provided
experimental evidence that 1G4 structures forming sequences proximal to the splice sites in introns
affect the splicing and expression patterns of Bcl-xL, FMR1, and TP53 in human [86-88]. In addition
to known linear RNA-binding motifs, rG4 was found to serve as an RNA-binding protein motif to
mediate RNA processing. To elucidate the splicing control by rG4, research on the identification of
factors recognizing rG4 is also been progressing. For example, the rG4 structure sequesters in hnRNP
H, resulting in the local depletion of hnRNP H and, thus, disruption of hnRNP H-dependent splicing
events occurs [89]. In addition, it was reported that alternative splicing regulation via the rG4 structure
may control cellular processes that are important for tumor progression. hnRNP F regulates the CD44
isoform switch in a rG4-dependent manner, which is associated with an epithelial-mesenchymal
transition and plays integral roles in normal development and cancer metastasis [90,91]. Profiling of
rG4 revealed widespread and evolutionarily conserved rG4 structures in the human transcriptome [92].
The relationship between the splicing factor recognition of 1G4 and regulation of alternative splicing is
required for detailed research to elucidate the exact role of rG4 in alternative splicing.

3. Diseases Associated with Aberrant mRNA Splicing

Aberrant mRNA processing is an important causative factor in various diseases. Aberrant
mRNA splicing underlies a growing number of human diseases, including inherited disorders, cancer,
diabetes, and neurodegenerative diseases [10]. Aberrant RNA splicing is caused by mutation of the
trans-acting mRNA splicing factor and the cis-element, which is an essential sequence for the binding
of splicing regulatory proteins and trans-acting mRNA splicing factor. Previous studies revealed
that a relationship between genetic diseases with abnormal splicing is associated with mutations in
cis-element and trans-acting factors [25]. Abnormalities in core constituents of spliceosome formation
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also underlie a discrete set of diseases, including neurodegenerative disorders and cancer. In this
section, we discuss the interaction between mRNA splicing factor mutations and disease.

3.1. Mutation of Spliceosomal Components and Cancer

Cancer has several typical characteristics, such as abnormal proliferation and alterations in cellular
metabolism. The acquisition of these features is driven by changes in gene expression [93]. It was
reported that gene regulation disorder caused by mRNA splicing factor mutation is linked to the
progression of various cancers.

Frequent and recurrent mutations are found within the early components of the RNA splicing
machinery. For example, mutations in SF3B1, U2AF1, SRSF2, and zinc finger CCCH-type, RNA-binding
motif and serinefarginine-rich 2 (ZRSR2) were found in a variety of hematological malignancies, including
myelodysplastic syndromes (MDSs) and chronic lymphocytic leukemia (CLL), and they are mutually
exclusive [94]. Heterozygous hotspot missense mutation was common characteristic for SF3B1, SRSF2,
and U2AF1 (Figure 2A). Mutations in ZRSR2 throughout the coding sequence caused loss-of-function
mutations [95]. Similar mutations were reported with a lower frequency in solid tumors [96]. Recently,
recurrent hotspot mutations at the third nucleotide of U1 snRNA were found in several cancer types,
including in medulloblastoma, with high frequency [97]. Further investigation revealed that hotspot
U1 mutations were present in about 50% of sonic hedgehog (SHH) medulloblastomas, which represents
one group of medulloblastomas [98]. In addition, mutations were not present across other subgroups of
medulloblastoma, indicating that Ul snRNA mutations are highly recurrent in and extremely specific
to SHH medulloblastoma. It was reported that 119 splicing factor genes carry putative driver mutations
in one or more cancer types from tumor cohort studies [99]. These reports suggested that spliceosomal
mutations were considered a new hallmark and driver of tumorigenesis rather than merely passenger
mutations [1]. Mutations of various mRNA splicing factors were globally analyzed and shown to
affect gene expression. In addition, cancer-specific splicing changes are increasingly recognized as
contributing to tumorigenesis via various mechanisms.

3.1.1. SF3B1

SE3BL1 is a member of the SF3B complex within the U2 snRNP and plays a pivotal role in the
early stages of spliceosome assembly and BP recognition [100]. Hotspot mutations in SF3B1’s HEAT
domains were reported in many tumor types. These mutations induced the cryptic 3’ ss usage
currently recognized as the most frequent splicing alteration [60]. These SE3B1 mutants are called
change-of-function mutants because SF3B1 knockdown or overexpression does not reproduce these
forms of aberrant splicing [61]. Nearly half of the aberrant mRNA transcripts are degraded by NMD,
resulting in the downregulation of gene expression [60]. There are several reports on the splicing control
mechanism by SF3B1 mutants. Mutant SE3B1 preferentially recognizes alternative BPs upstream of the
canonical BP(s), which results in deregulated usage of an alternative 3’ ss being weakly dependent on
U2AF1 [61]. Because SF3B1 mutation did not alter the SE3B1-U2AF complex formation and affinity
with RNA [101], U2AF1 hotspot mutations described later did not lead to the same aberrant splicing
phenotype, indicating that cryptic 3’ ss usage was specifically induced by SF3B1 mutants.

Structural analysis of the SF3B1 complex revealed that SF3B1’s HEAT domain was important
for multiple contacts with the BP-binding proteins [101]. However, it was unknown how SF3B1
mutations affect the protein interactions in the spliceosome because hotspot mutations did not affect
the stability of the SE3B1-U2AF complex and the affinity with RNA. Recently, it was reported that
hotspot mutations in SF3B1 specifically disrupted the interaction with the spliceosomal protein, SURP
and the G-patch domain-containing 1 (SUGP1), without the interference of other SF3B1-associated
proteins [64]. SUGP1, previously known as splicing factor 4 [102], has two tandem SURP domains and
a G-patch domain. SURP domains interact with SF1, and G-patch domains were shown to activate RNA
helicases for ATP hydrolysis. Both domains are required for BP recognition by the SF3B1-containing
U2 snRNP [103-105]. These findings strongly suggest that SUGP1 is involved in the BP recognition
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process. In fact, knockdown of SUGP1, but not any other members of SF3B1-associated proteins,
recapitulated the aberrant splicing induced by mutant SF3B1, indicating that SUGP1 acts as a splicing
regulator contributing to aberrant splicing. Those studies suggested the model shown in Figure 2B
for SUGP1 function. SUGP1 is important for accurate BP recognition by the U2 snRNP with SF3B1,
SF1, and U2AF. SUGP1 associates with and activates an unknown RNA helicase required for the
displacement of SF1 [103], allowing base pairing between the canonical BP and U2 snRNP. Furthermore,
SUGP1 overexpression partially rescued the splicing abnormalities induced by mutant SF3B1. Several
mechanisms of abnormal splicing by SE3B1 were proposed [60,61,106], implying that the structural
changes of SF3B1 induced by mutations are substantial and need to be solved. Those reports suggested
that the understanding of how SUGP1 restores the assembly of the mutant spliceosome can be used to
develop a potential cure for mutant SF3B1-driven cancers.
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Figure 2. Mutations in splicing factors and their impact on splicing. (A) Alteration of splicing caused
by splicing factor mutations are shown in the boxes. Ul snRNP: purple, SF3B1: green, U2AF1:
orange, Ser/Arg-rich (SR) protein 2 (SRSF2): pink, zinc finger CCCH-type, RNA-binding motif and
serine/arginine-rich 2 (ZRSR2): black. Mutations in Ul snRNA cause an alteration in the splicing
pattern from the canonical 5 ss to a slightly different 5" ss. SF3B1 mutation induces cryptic 3’ ss usage
(shown as a red “AG”) and enhances intron removal. U2AF1 mutations frequently alter the usage
of cassette exons. SRSF2 mutations enhance the greater binding affinity to CCwG than to GGwG in
ESE, which are equally recognized by wild-type SRSF2. ZRSR2 mutations induce aberrant retention
of Ul2-type introns. (B) Recognition of the cryptic 3’ ss induced by the mutation of SF3B1. Under
normal conditions, U2 snRNP containing wild-type (WT) SF3B1 associates with SUGP1, displaces
SF1 by activating RNA helicases and uses a canonical BP and 3’ ss (shown as a blue “A” and “AG")
for splicing. By contrast, U2 snRNP containing SF3B1 mutants disrupt the association with SUGP1,
resulting in the use of upstream BP and cryptic 3’ ss (shown as a red “A” and “AG”) for splicing.



Int. J. Mol. Sci. 2020, 21, 2026 9 of 27

In addition to cryptic 3’ ss usage, widespread reduction of intron-retaining isoforms was also
frequently identified in mutated SF3B1 samples [63]. The mutant SF3B1-associated decrease in intron
retention was not due to the activated degradation of intron-retaining transcripts by NMD but was
caused by the enhanced splicing of retained introns. The effect of this abnormality on cells is not yet
known. To understand the relationship between SF3B1 abnormalities and tumorigenesis, studies on
the pleiotropic splicing abnormalities are necessary.

Among these types of abnormal splicing regulation, it was reported that diverse SF3B1 mutations
converge on the repression of BRD9, which is a core component of the recently described noncanonical
BAF chromatin-remodeling complex, which plays a suppressor role in tumorigenesis [62]. That study
found that mutant SF3B1 recognizes an aberrant intronic BP within BRD9, thereby inducing the
inclusion of a poison exon. This results in the repression of BRD9 mediated by NMD, thus promoting
tumor growth and metastasis. These results indicate that the poison exon of BRD9 becomes a target
of therapeutic potential in SF3B1-mutated cancers. Indeed, tumor-suppressive effects of correcting
BRD9 mis-splicing with multiple methods, including antisense oligonucleotides, were achieved [62].
In general, it is thought that the multiple splicing alterations may cooperatively contribute to the
pathogenesis of cancers. Thus, recent studies suggest the potential of new therapeutics targeting
mis-spliced transcripts in anticancer treatment (Figure 3B).
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Figure 3. Availability of compounds with splicing inhibition activities. (A) Effects of splicing inhibitors
on normal cells, cancer cells, and cancer cells with mutations in splicing factors. Cancer cells have more
transcripts than normal cells, resulting in splicing stress. In addition, cells with mutations in the splicing
factor cause splicing abnormalities. These splicing factor mutations are heterozygous, suggesting that
wild-type splicing factors have an essential role in cell survival in these cancers. Cancer cells with or
without splicing factor mutations are, thus, more sensitive to splicing inhibition than normal cells. (B)
The anti-cancer effect of various splicing inhibitions. SF3B1 inhibitors, such as H3B-8800, are anticipated
for clinical use. Food-derived compounds with similar splicing inhibition activity were also reported to
have anti-cancer effects, and they are expected to have cancer-preventing effects. In addition, inhibition
of mis-splicing on BRGY, which is widely observed in cancers with an SF3B1 mutation, using antisense
oligonucleotides (ASO) is expected to be a new strategy for cancer treatment.
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3.1.2. SRSF2

SRSF2 is a member of the SR protein family that promotes exon inclusion by binding to the
ESE sequences, CCNG or GGNG, through its RNA recognition motif (RRM) domain [9]. SRSF2
mutations consistently affect the P95 residue and have increased binding affinity toward CCNG, but
have decreased binding affinity toward the GGNG sites [107-109]. As a result, global alterations of
splicing, including exon inclusion and exclusion, are induced by SRSF2 mutation [63,107-109]. SRSF2
mutants promote the splicing alteration of key hematopoietic regulators, such as enhancer of zeste
homolog 2 (EZH2), which impairs hematopoietic differentiation. Because SRSF2 mutation did not affect
protein—protein interactions with key splicing factors in one study [107], it was assumed that SRSF2
mutations affect the conformation of the RNA-binding domain [108,110]. The structural information of
SRSF2 will uncover the mechanism of abnormal splicing induced by SRSF2 mutation.

In addition to the splicing alteration in SRSF2 mutant cells, DNA damage is also induced [111].
SRSF2 mutation causes impairment of transcription pause release and induces R-loop formation.
Accumulation of R-loops often results in increased cellular stress that leads to genomic instability [112].
The chromosomal instability could be a major driving force in tumorigenesis and cancer evolution.

3.1.3. U2AF1

Recurrent hotspot mutations in U2AF1 at the Zn-finger domain (S34 or Q157) were
reported [113,114]. These mutations altered the RNA-binding specificity [114-117] and the splicing
kinetics [118], resulting in a wide variety of splicing outcomes. Changes in the cassette exon were
observed most frequently in these mutations [94,115,119-123]. Although it was reported that the
U2AF1 mutant also induces abnormal splicing of EZH2 [63]; other splicing alterations are not linked
to a phenotype, leading some investigators to propose a nuclear RNA that processes defects such as
alterations in 3'UTRs [124] or an increase in R-loops induced by the U2AF1 mutant [111,125].

3.1.4. Ul snRNP

A recurrent A-to-C and A-to-G mutation in the third base of the U1 snRNA occurs at part of a
highly conserved 5’ ss recognition sequence (nucleotides 3-10) of U1, which forms base pairs directly
with the 5" ss [97,126]. This mutation changed the preferential A-U base-pairing between the Ul
snRNA and the 5 ss to C-G base-pairing, and it caused alternative 5’ cryptic splicing and alteration
of the splicing pattern in multiple genes, including known drivers and repressors of cancer [97,98].
These events are thought to be specific to Ul snRNA mutations because SF3B1 mutations tend not to
share these abnormal types of splicing [97].

As a novel link between cancer progression and splicing factors through noncanonical roles, the
association with splicing factor U2AF1 and translational regulation was reported [127]. That study
revealed that U2AF1 and U2AF2, bound to the 5’ UTR, were located on hundreds of mature RNA in the
cytoplasm and functioned as a translational repressor. The recurrent cancer-associated hotspot mutation
(S34F) in U2AF1 caused loss of binding and translational de-repression, resulting in increased synthesis
of the IL8 chemokine, which contributes to metastasis, inflammation, and cancer progression [128,129].
In addition to the contribution of U2AF1, it was reported that SF3B4, a component of the SF3B complex,
functions as a cofactor for p180, an essential factor for high-rate protein synthesis on the ER, and it
plays a key role in enhanced translation [130]. These findings suggest that mRNA splicing factors have
multiple roles in translation, and cancer-related mutations of mRINA splicing factors affect translation,
as well as splicing.

3.2. Spliceosome Abnormality and Neurodegenerative Disorders

It is widely accepted concept that abnormalities of a number of RBPs are related to neurological
diseases. Aberrant activity and localization of two RBPs, TDP-43 and FUS RNA binding protein (FUS),
are implicated as the pathogenicity of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
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(FTD), two fatal neurodegenerative disorders that share clinical, genetic, and pathologic hallmarks [131].
These proteins were found to mediate a number of pathways related to RNA metabolism in the
cytoplasm. In each disease, TDP-43 and FUS form mRNP aggregates in the cytoplasm [132-134].
The pathological consequences of mRNP aggregates are believed to be multifactorial in nature, but their
roles are not yet completely defined. These aggregates disturb their normal functions by disrupting
splicing [1].

Several reports demonstrate that spliceosomal components in the nucleus are mislocalized into an
aggregate commonly observed in these neurodegenerative disorders [135-137]. The U1 snRNP, the
most abundant FUS interacting complex, co-mislocalizes with FUS to the cytoplasm [135]. In addition,
cytoplasmic aggregation of TDP-43 causes mislocalization of spliceosome components [136]. In
zebrafish, knockdown of Ul snRNP components caused the truncation of the motor neuron axon,
and similar phenotypes were observed by knockdown of FUS and survival motor neuron protein
(SMN) [135]. Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by
synaptic dysfunction, amyloid plaques, and neurofibrillary tangles formed by the aggregation of Tau
protein encoded by the microtubule associated protein tau (MAPT) gene [138]. In the brains of patients with
AD, increased aggregation of insoluble U1 snRNP was identified by proteomic analysis [137]. Previous
studies showed that the Ul snRNP co-aggregates with Tau in the neurofibrillary tangles in human
AD postmortem brain tissue [139,140]. Similar findings were reported using in vitro experiments and
MAPT transgenic mice [141-143]. In Drosophila, panneuronal Tau expression triggers aggregation of
Ul-specific spliceosomal proteins [144]. That study suggested that mislocalization of spliceosomal
components is also associated with these neurodegenerative disorders.

The functions of TDP-43 include repressing the splicing of nonconserved cryptic exons, maintaining
intron integrity and preventing cell death [56,145]. RNA-seq analysis in human postmortem brain
with TDP-43 mutations revealed cryptic exon expression [56]. This feature is common in ALS/FTD
patients [56,138]. Whether the mislocalization of spliceosomal components induced by the aggregation
of FUS or TDP-43 directly contributes to the cryptic splicing is still unknown. However, in AD, Tau
pathology associates with splicing errors, including cryptic splicing and intron retention in human
brains [144]. The mislocalization of the Ul snRNP-mediated aggregation of Tau causes a loss of nuclear
U1 snRNP. A similar profile of cryptic splicing and intron retention was reported in Tau transgenic
fly and small nuclear ribonucleoprotein-associated protein B (SmB), a component of snRNP, mutant
fly [144,146]. Furthermore, mutation of SmB causes progressive neurodegeneration. The loss of the
U2 snRNA also induced cryptic splice junctions and intron retention along with prominent cerebellar
degeneration. These reports suggested that disruption or alteration of spliceosome function causes
severe and toxic transcriptome formation and neurodegenerative diseases. In addition to the above
evidence, findings showed that, preceding the onset of neurodegeneration, splicing changes were
detectable in young flies [147]. Furthermore, direct manipulation of a core spliceosome component
also caused neurodegeneration, which raises the possibility that splicing errors are likely a cause
rather than a consequence of neurodegenerative disorders. The observation that alternative splicing
occurred at the highest rate in the brain is consistent with the idea that the regulation of splicing in the
brain has an important role in neuronal diversity and brain health [148]. Investigating connections
between the unique role of core spliceosomal components and a molecular mechanism associated
with neurodegenerative disorders will increase the understanding of therapeutic strategies targeting
these factors.

4. Compounds that Control mRNA Splicing

As mentioned above, mRNA splicing is a complicated and dynamic process with a number of
interacting splicing factors. One effective investigation strategy is to analyze the mechanism of mRNA
processing using chemical compounds as biological tools that function to inhibit mRNA processes.
In this section, we discuss the various compounds with splicing inhibitors discovered recently and
modulators of rG4 formation.
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4.1. Chemical Compounds That Control mRNA Splicing

Various compounds with inhibitory activity on splicing were identified from several
microorganisms. Some of these compounds were found as cancer-specific effectors in early research,
and the studies that followed revealed that the target proteins of these compounds were mRNA splicing
factors. Synthetic derivatives of these compounds are, therefore, established as more effective splicing
inhibitors. To date, the best-studied group of splicing inhibitors involves SF3B1 inhibitors, which
contain pladienolide B (PlaB), spliceostatin A (SSA), GEX1A, and their analogues. We briefly introduce
representative SF3B1 inhibitors and isoginkgetin, which inhibits a different target (Table 1).

4.1.1. Representative SF3B1 Inhibitors and Isoginkgetin

SF3B1 inhibitors were individually identified as having distinct structures based on different
assays. PlaB, isolated from a natural product derived from Streptomyces platensis Mer-11107, has cellular
splicing inhibition activity [149]. E7107 has enhanced stability compared with PlaB and directly binds
to SF3B3, a component of the SF3B complex. This results in the inhibition of SF3B1 and the impairment
of U2 snRNP interaction with pre-mRNA [149]. Other studies reported that E7107 interacts with the
SE3B complex in the branch point adenosine-binding pocket [150,151], which results in reducing the
stability of early “A complex” formation by weakening the interaction between the U2 snRNA and
pre-mRNA [152-156]. H3B-8800, an analogue of PlaB, was identified as a compound that competed
with PlaB for binding to SF3B complexes. H3B-8800 received focus as a next-generation splicing
inhibitor to enter clinical trials because of its similar, but not identical, activity to E7107, as described
later [157].

SSA is a methylated derivative of the natural product, FR901464, which was isolated from the
fermented broth of the bacterium Pseudomonas sp. as an anticancer compound [158]. In subsequent
research, it was found that SSA binds to the SF3B complex, decreases the U2 snRNA interactions
with the BP and results in the inhibition of splicing [153]. Sudemycin was designed based on the
pharmacophore model between FR901464 and PlaB. Sudemycin shows splicing inhibition activity in a
similar manner to SSA, and exhibits better chemical stability and half-maximal inhibitory concentration
(ICsp) values in cell lines [159,160].

GEX1A was originally isolated from a culture broth of Streptomyces sp. [161] and serves as a
splicing inhibitor that specifically impairs the SE3B function by binding to SF3B1 [162]. Studies involved
in the search for synthetic analogues of GEX1A revealed that the splicing inhibitory potency of the
analogues and the modification of carboxylic acid moiety are well correlated with the antiproliferative
activity against cancer cell lines [163,164].

The plant-derived splicing inhibitor, isoginkgetin, was identified from the leaves of the gingko
tree by the screening of its mRNA splicing inhibitor [165]. Biflavones such as isoginkgetin belong
to a subclass of the plant flavonoid family, which were reported to show anti-cancer activity [166].
Isoginkgetin inhibits splicing by preventing the stable recruitment of the U4/U5/U6 tri-small nuclear
ribonucleoprotein, resulting in the accumulation of prespliceosomal A complex [165].

4.1.2. Molecular Mechanism of Splicing Investigated by Splicing Inhibitors

Inhibitors introduced in this review were also used to provide detailed mechanistic insight into
spliceosome formation and remodeling, as well as its impact on gene expression in cells.

SE3B1 inhibitors are powerful tools to elucidate the function of SF3B1 and the SE3B complex in
complicated splicing mechanisms such as the spliceosome assembly. Previously, the association of
SF3B1 with the recruitment and/or stabilization of the U2 snRNP at the BP was reported [100,167-170].
However, the mechanisms of BP recognition by the U2 snRNP and SF3B1 are still unknown. The study,
using the chemical compound, E7107, which affects U2 snRNP interactions at the BP, concluded that
SE3B1 plays a role in mediating a conformational change of the U2 snRNP [154]. Similarly, SSA
reduces the fidelity of U2 snRNA interactions with the BP, suggesting that SF3B1 participates in BP
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discrimination [153]. Cryo-EM structure analysis of the SF3B complex with or without E7107 showed
that the compound bound to the mRNA-unbound SF3B complex and this SF3B complex was different
from the RNA-bound closed conformation. This provided evidence that RNA and possibly other
splicing factors trigger a conformational change in the SF3B complex for the spliceosome assembly;,
and E7107 causes splicing abnormalities by disrupting the conformational change [171]. In addition,
using SSA and PlaB, it was reported that SF3B1 is involved not only in the early splicing reaction
by BP recognition but also in the exon-ligation reaction [172], suggesting additional roles for SF3B1
throughout the splicing process.

Table 1. Chemical compounds which control splicing.

Name of Compounds and Chemical Formulas

Origin and Reference

Features of Inhibitor

pladienolide B (PlaB)

be derived from Streptomyces
platensis Mer-11107 [149]

inhibit splicing

E7107
) Je )I\ﬁ an analog of PlaB [149-156] d1recsti:y3 gl:ld. t(t) SF3:3 cir}rl1plex arll{cll\;[r;hlblt
L /W I @ o interact with pre-m
H3B-8800
I . have entered clinical trials as anti-cancer
- JACFLJK/\ an analog of PlaB [157] drug because of preferential killing effect to
@\r\/\r ‘ LA spliceosome-mutant cancer

FR901464

SQPUL

be derived from fermented broth
of bacterium Pseudomonas sp. [158]

inhibit splicing

spliceostatin A (SSA)

Neove e pu

an analog of FR901464 [153]

directly bind to SF3B complex and inhibit
SE3B to interact with pre-mRNA

sudemycin C1

be designed based on
pharmacophore model between
FR901464 and PlaB [159,160]

exhibit better chemical stability than SSA
and PlaB

GEX1A

be derived from a culture broth of
Streptomyces sp. [161,162]

directly bind to SF3B complex and inhibit
SE3B to interact with pre-mRNA

9g, synthetic analogue of GEX1A

T4 i K\/\/
eIV voNve

an analog of GEX1A [163,164]

be expected as the lead compound for the
development of novel antitumor agents

isoginkgetin

be derived from the leaves of the
gingko tree [165,166]

prevent transition of the spliceosome

an analog of isoginkgetin [173]

induce SUMOylation of splicing factors by
inhibiting SENP1 activity, and prevent
transition of the spliceosome

The relationship between splicing factor and SUMOYylation, a post-translational modification,
was partially clarified by hinokiflavone, which is an analogue of isoginkgetin [173]. Previously,
spliceosomal proteins were revealed as SUMO conjugation targets; however, little is known about
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the involvement of SUMO in spliceosome biogenesis and splicing regulation [174]. Hinokiflavone
induced SUMOylation of pre-mRNA splicing factors, which contain six components of the U2
snRNP spliceosome subunit, by inhibiting SUMO protease SUMO-specific peptidase 1 (SENP1) activity.
Consequently, hinokiflavone prevented transition of the spliceosome from its A to B complexes, resulting
in global splicing modulation. It was also reported that inhibition of pre-mRNA processing factor 3
(PRPF3) SUMOylation prevented the interaction of U4/U6 di-snRNP with U5 to form tri-snRNP [175].
These reports suggested the notion that SUMOylation cycles were involved in spliceosome assembly
and catalytic activity, and that they also affected alternative splicing regulation. An investigation using
a compound like hinokiflavone is expected to facilitate the relationship between SUMO modification
and alternative splicing.

These splicing-modulating compounds generally function as splicing inhibitors. However,
affected transcripts are part of mRNAs. The sequence features which caused aberrant splicing
by SSA and sudemycin, E7107, and H3B-8800 treatment were analyzed from recent transcriptome
analyses [156,157,176]. Commonly, compound-induced retained introns are typically shorter and
display a higher GC content and weaker polypyrimidine tracts and BP sequence. In addition,
the presence of multiple BPs has an important role in determining sensitivity [156]. Interestingly;,
despite their structural similarities, SSA and sudemycin show common and differential effects on
splicing regulation. SSA generally displays stronger effects on intron retention, and sudemycin
affects exon skipping [156]. H3B-8800 is also more effective than E7107 on short introns that are
rich in GC content [157]. Understanding of the relationships between these compounds and the
differences in genome-wide splicing control will provide support for high-resolution observations of
the splicing mechanism.

4.1.3. Focusing on Splicing Regulation for Therapeutics of Cancer

Mutations of splicing factors found in various cancers are all heterozygous, probably because
wild-type splicing factor has an essential role for cell survival in these cancers. Cancers that have the
splicing factor mutation, therefore, show higher sensitivity to splicing inhibitors [177]. Some cancers
without the splicing factor mutation also show sensitivity to splicing inhibitors. This observation
is explained by the stress in splicing because primary transcripts are more abundantly expressed in
cancer cells than in normal cells [178]. In fact, as previously mentioned, many splicing inhibitors were
discovered to be cytotoxic compounds to cancer cells in early research. Based on this information,
a splicing inhibitor is expected to act as an anti-cancer drug with a new mechanistic movement
(Figure 3A).

The first splicing inhibitor to enter clinical trials was pladienolide derivative E7107 [179,180].
Unfortunately, this trial was discontinued because of vision loss occurring in some study
participants [180]. Recently, H3B-8800 showed greater preferential cytotoxicity in spliceosome-mutant
cells than E7107 by retaining short and GC-rich introns, which are enriched in genes encoding
spliceosome components [157]. The enrichment of retained introns in mRNAs encoding spliceosome
factors provides a rationale for H3B-8800 giving a preferential killing effect to spliceosome-mutant
cancer cells compared with normal cells with a wild-type spliceosome. Consequently, H3B-8800
selectively killed acute myeloid leukemia cells and xenograft tumors. H3B-8800 entered phase 1 clinical
trials [157], and it is expected to be the first anti-cancer drug with splicing inhibition (Figure 3B).

4.2. Compounds Regulating mRNA Splicing by G-Quadruplex Control

Initially, compounds with regulating rG4 structures associated with translational control were
explored. RGB-1, RR82, and RR110, which bind selectively to rG4, affect the stability of NRAS
mRNA rG4 and the translational efficiency of the NRAS 5’ UTR (Table 2) [181,182]. TREF2 is a protein
with a central role in telomere maintenance. Three bisquinolinium compounds, 360A, PhenDC3,
and PhenDC6, potentially bind to the TRF2 mRNA rG4 to alter its translation [183]. In addition,
a compound that affected alternative mRNA splicing through regulating rG4 structures was also
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found. Previously, it was shown that there are two rG4 forming sites in Bcl-X mRNA, each being
located close to an individual alternative 5’ ss. The compound, GQC-05, affects only one site by
enhancing the stability of 1G4 dependent on its structure [184]. The binding results in the reduced
usage of the major 5 ss that expresses the anti-apoptotic isoform of Bcl-X and the increased usage of
an alternative 5’ ss that expresses a pro-apoptotic isoform. Moreover, alteration of splicing induces
apoptosis. It was also reported that emetine and its analogue, cephaeline, disrupted rG4, resulting in
the inhibition of rG4-dependent alternative splicing. Transcriptome analysis revealed that emetine
globally regulates alternative splicing with variable exons that contain rG4 near proximal splice sites.
This analysis revealed that rG4 controls alternative splicing at a genome-wide scale. Interestingly,
emetine promotes the EMT state, suggesting that small molecules may alter cell fates associated with
cancer progression [72].

Table 2. Modulators of G-quadroplex which control translation or splicing.

Name of Compounds and Chemical Formulas Origin and Reference Features of Inhibitor
RGB-1
o .
&i(j;g:% synthetic molecules [181,182] modulate translational efficiency of TRF2
- J
RR82
L
ﬁijj\r synthetic molecules [181,182] modulate translational efficiency of TRF2
RR110

Q

Y@\f an analog of RR82 [181,182] modulate translational efficiency of TRF2
o
360A
S
ES;//EDY ~ synthetic molecules [183] modulate translational efficiency of TRF2
I
[ 1 )
PhenDC3
g\*g 27\5
) synthetic molecules [183] modulate translational efficiency of TRF2
PhenDC6
. B an analog of PhenDC3 [183] modulate translational efficiency of TRF2
GCQ-05
o~ %§_} synthetic molecules [184] modulate alternative splicing of Bcl-X
G
emetine
:D%\ modulate alternative splicing with variable
PN be contained in ipecas root [72] exons which contain rG4 near proximal
o splice sites
o
cephaeline
; ij\ an analog of emetine [72] show similar effect with emetine
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Regulation of mRNA processing by rG4 is still unclear. Newly identified compounds that regulate
rG4 will uncover the underlying RNA processing mechanism by rG4. In addition, several studies also
indicated that rG4 structures are associated with human diseases, including neurological disorders [99]
and cancer [185,186]. Uncovering these relationships will aid in therapy against diseases caused by rG4.

4.3. Food-Derived Natural Compounds Capable of Controlling mRNA Splicing

The above compounds are anticipated for clinical use. In addition, food-derived natural
compounds with similar activity to the above compounds may function as anti-cancer drugs. Recent
studies suggested that compounds originating from food also contain various anti-cancer activities,
showing a variety of physiological activities within cells and the whole body (Figure 3B). For example,
daily intake of bioactive food compounds is expected to be effective for preventing chronic diseases.
Polyphenols and carotenoids have antioxidant activity and function to prevent lifestyle-related
diseases [187-189]. In this section, we discuss some reports that were published on food-derived
natural compounds with the ability to modulate mRNA processing.

Resveratrol is a polyphenolic flavonoid found in grape skins, grape seeds, and red wine [190],
and it was shown to protect against cardiovascular disease, type 2 diabetes, and neurological disorders
(Table 3) [190-192]. It was found that resveratrol modulates alternative splicing of SRSF3 and SMIN2
mRNAs. The splicing abnormalities of these mRNAs are associated with the above-mentioned
diseases [193]. This effect may be partly due to the ability of resveratrol to affect the protein level
of several RNA processing factors, ASF/SF2, hnRNP A1, and human antigen R (HuR). Previously,
although the SIRT1 protein was regarded as a major target of resveratrol, the knockdown of SIRT1
did not modulate alternative splicing of SRSF3 and SMN2 mRNAs, suggesting that another splicing
regulatory protein is regulated by resveratrol for modulating these mRNAs.

Caffeine, abundant in coffee and tea, modulates the cell cycle and growth arrest, and induces
apoptosis via the expression of various alternatively spliced p53 isoforms [194]. In one study, caffeine
altered the expression levels of the p53« and p53f3 isoforms that are mediated by the downregulation
of the SRSF3 mRNA and protein. In addition to p53 isoforms, other SRSF3 target genes were also
alternatively spliced in response to caffeine treatment [195]. That study provided a new pathway of
caffeine-modulated tumor suppression via the alternative splicing of target genes of SRSF3.

Curcumin is a dietary polyphenolic compound enriched in the roots of turmeric with a broad
therapeutic potential for cancer because of curcumin’s antitumor activity in various cancer cells [196,197].
Recently, it was reported that curcumin caused a splicing switch from a cancer-specific PKM2 isoform
to normal PKM1 isoform in head and neck cancer cells, resulting in reduced tumor growth. In addition,
global transcriptome analysis of curcumin-treated cells revealed curcumin’s effect on the alternative
splicing of various genes involved in head and neck cancer [198].

We examined whether food-derived compounds provide inhibitory activity toward mRNA
processing in the nucleus using a previously established screening system [199,200]. We identified
the activity of inhibiting mRNA processing in the soybean-derived isoflavonoid fraction [200,201].
Furthermore, this activity was mainly exerted by compounds with a flavone skeleton [200]. Among
them, apigenin and luteolin exhibited the strongest activity among 21 compounds with a flavone
skeleton [202]. These compounds most intensely interacted with the U2 and U5 snRNP, suggesting
that apigenin and luteolin were associated with spliceosomal components to directly prevent the
function of spliceosomes, thus affecting alternative splicing at the genome-wide level. We observed
more prominent sensitivity of tumorigenic cells to apigenin and luteolin than that observed for
nontumorigenic cells, suggesting the potential anti-cancer activity of these compounds. We also
screened for active constituents from spices and detected the inhibition of mRNA processing activity
in ginger, cinnamon, and clove extracts. It seems that there may be many constituents with inhibitory
activity toward mRNA processing in spices. Furthermore, 6-gingerol and 6-shogaol, active components
in ginger, showed inhibitory activity toward mRNA processing [203]. The anti-cancer activity that
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was observed in ginger extract and 6-gingerol [204] might be partly exerted through anti-mRNA
processing activity.

Table 3. Food derived compounds which control mRNA processing or splicing.

Name of Compounds and Chemical Formulas Origin and Reference Features of Inhibitor
Resveratrol
o \v©/ be contained in grape skins, grape seeds  modulate alternative splicing of SRSF3 and
| P and red wine [191-194] SMN?2
Caffeine
\
SIS . . _ modulate alternative splicing of p53, and
j/ [ WN\ be contained in coffee and tea [195,196] SRSF3 target mRNAs
Curcumin
o o . . modulate alternative splicing of PKM2 and
be contained in the roots of - R .
P s o . various mRNAs involved in head and neck
| turmeric [197-199]
PN - cancer
apigenin
o o O . . interact with the U2 and U5 snRNP and
O be contained in parsley and celery [203] affect alternative splicing
luteolin

be contained in parsley and celery [203] show similar effect with apigenin

6-gingerol

/QD/\)W be contained in ginger [204] inhibit mRNA processing

6-shogaol

/“:@MK/\/\/\ be contained in ginger [204] inhibit mRNA processing
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