KURN\$ Progress Report 2019

Institute for Integrated Radiation and Nuclear Science, Kyoto University

KURNS Progress Report 2019

APRIL 2019 - MARCH 2020

Published by Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan It is a great pleasure for us to publish the KURNS Progress Report 2019. This report contains all of the accomplishments of research and related activities at Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS) during the fiscal year 2019 from April 2019 to March 2020. Our institute continues to play a distinctive role as a Joint Usage/Research Center, promoting an extensive range of studies from fundamental to applied research with research reactors and accelerators.

It is reassuring to note that the number of applications for Joint Research are still increasing although the reactors had sustained operations for several years. We are proud since this demonstrates that researchers and students support our activity, which endorses our facilities as indispensable tools in their research activities with quantum beam and radioisotope. In the past fiscal year, KUR was operated for 849 hours and KUCA was for 774 hours. In total, we accepted 4,477 man-day researchers and students for using research facilities and for attending scientific meetings. A large number of research subjects has been enrolled, which covers various fields of nuclear science and technology, material science, radiation life science and radiation medical science. We proudly announce that the clinical trial of the boron neutron capture therapy (BNCT) has finished successfully, and it becomes a practical medical care after long-term basic researches in KUR.

We strive for safe and stable operations for nationwide use, making it our primary mission to provide scientists the opportunity to conduct research and education. We are happy to dedicate our support to enable users conduct significant interdisciplinary research at KURNS.

> Kumatori, June 8, 2020 Yuji Kawabata Director, KURNS

CONTENTS

 Project I Project Research on Nuclear Spectroscopy and Condensed Matter Physics Using Short-Lived Nuclei Y. Ohkubo (31P1) PR1-1 Technique of Transferring Radioactive Atomic Nuclei Implanted in Dry Ice Film A. Taniguchi <i>et al.</i> (31P1-1) PR1-2 β-Decay Spectroscopic Studies of Fission Products Using a Clover Detector Y. Ishikawa <i>et al.</i> (31P1-2) PR1-3 Linear Polarization Measurement for γ Rays from ¹⁴⁸Pr Y. Kojima <i>et al.</i> (31P1-3) PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki <i>et al.</i> (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₂ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Real-time Subcriticality Monitor K. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P3-3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki (31P3-1) PR3-2 The Self-assembling AGK Peptide Nanotube as BSH Delivery System H. Michine <i>et al.</i> (31P3-2) PR3-4 Development of New Boron Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) P	ROJECT R	ESEARCHES
 Prodeta Y. Obkubo (31P1) PR1-1 Technique of Transferring Radioactive Atomic Nuclei Implanted in Dry Ice Film A. Taniguchi et al. (31P1-1) PR1-2 PR1-3 Linear Polarization Measurement for γ Rays from ¹⁴⁸Pr Y. Kojima et al. (31P1-3) PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki et al. (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato et al. (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₂ Studied by TDPAC Method S. Komatsuda et al. (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto et al. (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa et al. (31P2-2) PR2-3 Measurement of Z⁸⁴Am Fission Rates in Low-Enriched Uranium Region at A-core of KUC/2 A. Oizumi et al. (31P2-3) PR2-4 Development of Z⁸⁴Am Fission Rates in Low-Enriched Uranium Region at A-core of KUC/2 A. Oizumi et al. (31P2-3) PR2-5 Project 3 Preclinical Study for Development of New Drug for NCT M. Takagaki and M. Suzuki. (31P3-1) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling AGK Peptide Nanotube as BSH Delivery System H. Michiue et al. (31P3-2) PR3-4 Research and Development of NewL-generation A-BNCT Treatment S. Ishiyama et al. (31P3-7) PR3-5 Development on Next-generation A-BNCT Treatment S. Ishiyama et al. (31P3-7) PR3-6 Research and Development on Next-generation A-BN	Project 1 P	roject Research on Nuclear Spectroscopy and Condensed Matter Physics Using Short-Lived
 PR1-1 Technique of Transferring Radioactive Atomic Nuclei Implanted in Dry Ice Film A. Taniguchi <i>et al.</i> (31P1-1) PR1-2 β-Decay Spectroscopic Studies of Fission Products Using a Clover Detector Y. Ishikawa <i>et al.</i> (31P1-2) PR1-3 Linear Polarization Measurement for y Rays from ¹⁴⁸Pr Y. Kojima <i>et al.</i> (31P1-3) PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki <i>et al.</i> (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pycon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-3) PR2-3 Measurement of Reaction Rates in Low-Enriched Uranium Region at A-core of KUC4 A. Oizuni <i>et al.</i> (31P2-3) PR2-4 Development of Reacting System Termediate Neutrons on Accelerator-Driven System With Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-3) PR2-4 Development of Reacting System Termediate Neutrons on Accelerator-Oriven System With Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling AGK Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-4 Development of New Boron Drug for NCT K. Matsumoto <i>et al.</i> (31P3-1) PR3-5 Development of New Boron Drug for NCT K. Matsumoto <i>et al.</i> (31P3-1) PR3-6 Research and Development on	IN V	Obkuba (31P1)
 PR1-2 β-Decay Spectroscopic Studies of Fission Products Using a Clover Detector Y. Ishikawa <i>et al.</i> (31P1-2) PR1-3 Linear Polarization Measurement for γ Rays from ¹⁴⁸Pr Y. Kojima <i>et al.</i> (31P1-3) PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki <i>et al.</i> (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of Reaction Rates in Low-Enriched Uranium Region at A-core of KUC/ A. Oizumi <i>et al.</i> (31P2-2) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7)<td>PR1-1</td><td>Technique of Transferring Radioactive Atomic Nuclei Implanted in Dry Ice Film A. Taniguchi <i>et al.</i> (31P1-1)</td>	PR1-1	Technique of Transferring Radioactive Atomic Nuclei Implanted in Dry Ice Film A. Taniguchi <i>et al.</i> (31P1-1)
 PR1-3 Linear Polarization Measurement for γ Rays from ¹⁴⁸Pr Y. Kojima <i>et al.</i> (31P1-3) PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki <i>et al.</i> (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of Reaction Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Turnor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Turnor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation on Boron Neutron Capture Therapy (Mice Model) 	PR1-2	β-Decay Spectroscopic Studies of Fission Products Using a Clover Detector Y. Ishikawa <i>et al.</i> (31P1-2)
 PR1-4 Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techni M. Tanigaki et al. (31P1-5) PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato et al. (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda et al. (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto et al. (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizava et al. (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi et al. (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe et al. (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 EselFassembling A6K Peptide Nanotube as BSH Delivery System H. Michine et al. (31P3-2) PR3-2 The SelFassembling A6K Peptide Nanotube as BSH Delivery System H. Michine et al. (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto et al. (31P3-3) PR3-5 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang et al. (31P3-3) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama et al. (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama et al. (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR1-3	Linear Polarization Measurement for γ Rays from ¹⁴⁸ Pr Y. Kojima <i>et al.</i> (31P1-3)
 PR1-5 Temperature-Dependent Polaronic Local Structures in La_{0.7}Ca_{0.3}MnO₃ Observed through Relaxation of TDPAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6) PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUC/A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-4) PR3-4 Examining Efficacy of Tumor Models for BNCT F. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for NEXT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR1-4	Measurement of the Internal Pressure in Ultrafine Bubbles by Angular Correlation Techniqu M. Tanigaki <i>et al.</i> (31P1-5)
 PR1-6 Local Structure of In Impurities Doped in SrTiO₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7) Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pycon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³ Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wag <i>et al.</i> (31P3-4) PR3-5 Development of New Borug for NEXT Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR1-5	Temperature-Dependent Polaronic Local Structures in La _{0.7} Ca _{0.3} MnO ₃ Observed through Sp Relaxation of TDPAC Probe Nuclei W. Sato <i>et al.</i> (31P1-6)
 Project 2 Project Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-4) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR1-6	Local Structure of In Impurities Doped in SrTiO ₃ Studied by TDPAC Method S. Komatsuda <i>et al.</i> (31P1-7)
 Critical Assembly C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	Project 2 P	roject Research of Accelerator-Driven System with Spallation Neutrons at Kyoto University
 C. H. Pyeon (31P2) PR2-1 Subcriticality Monitoring for a Reactor System Driven by Spallation Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-4) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	C	ritical Assembly
 FR2-1 Subcritically Monitoring for a reactor System Driven by Spanaton Source (III) K. Hashimoto <i>et al.</i> (31P2-1) PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-4) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	DD 2 1	. H. Pyeon (31P2)
 PR2-2 Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa et al. (31P2-2) PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi et al. (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe et al. (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue et al. (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang et al. (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto et al. (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama et al. (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR2-1	K. Hashimoto <i>et al.</i> (31P2-1)
 PR2-3 Measurement of ²⁴³Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3) PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR2-2	Measurement of Reaction Rates of Intermediate Neutrons on Accelerator-Driven System with Spallation Neutrons N. Aizawa <i>et al.</i> (31P2-2)
 PR2-4 Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5) Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR2-3	Measurement of ²⁴³ Am Fission Rates in Low-Enriched Uranium Region at A-core of KUCA A. Oizumi <i>et al.</i> (31P2-3)
 Project 3 Preclinical Study for Development of New Drug for NCT M. Suzuki (31P3) PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR2-4	Development of Real-time Subcriticality Monitor K. Watanabe <i>et al.</i> (31P2-5)
 PR3-1 Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1) PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	Project 3 P	reclinical Study for Development of New Drug for NCT
 PR3-2 The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2) PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR3-1	Screening of Boron Compound for BNCT International Collaboration Studies M. Takagaki and M. Suzuki. (31P3-1)
 PR3-3 Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3) PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR3-2	The Self-assembling A6K Peptide Nanotube as BSH Delivery System H. Michiue <i>et al.</i> (31P3-2)
 PR3-4 Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4) PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR3-3	Chemical Functionalization of Boron-Containing Nanoparticle and its Application to Boron Neutron Capture Therapy Y. Wang <i>et al.</i> (31P3-3)
 PR3-5 Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7) PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR3-4	Examining Efficacy of Tumor Models for BNCT K. Matsumoto <i>et al.</i> (31P3-4)
 PR3-6 Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8) PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model 	PR3-5	Development of New Boron Drug for Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-7)
PR3-7 Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model	PR3-6	Research and Development on Next-generation A-BNCT Treatment S. Ishiyama <i>et al.</i> (31P3-8)
	PR3-7	Evaluation of Boron Neutron Capture Therapy (BNCT) Using Brain Tumor Bearing Rats or Mice Model

PR3-8	Intracellular Target Delivery of Cell-penetrating Peptide-conjugated Dodecaborate for Boron Neutron Capture Therapy (BNCT) I. Nakase <i>et al.</i> (31P3-12)	25
PR3-9	A Novel Carbon Nanohrns for BNCT T. Tsurubuchi <i>et al.</i> (31P3-13)	26
PR3-10	Development of a Multifunctional Nanoparticle towards Next-generation Boron Neutron Capture Therapy	
	A. Kim et al. (31P3-14)	27
PR3-11	Design, Synthesis, and Evaluation of Glucose and Macrocyclic Polyamine-type Boron Carriers for BNCT	28
PR3-12	Boron Neutron Capture Therapy using Polymer-Based Boron Delivery Systems T. Nomoto <i>et al.</i> (31P3-16)	20 29
PR3-13	Development of Carrier Protein-based Boron Delivery System H. Nakamura <i>et al.</i> (31P3-17)	30
PR3-14	Development of Novel Boron Agents for BNCT against Malignant Brain Tumors A. Fujimura <i>et al.</i> (31P3-18)	31
PR3-15	Experiment on the Anti-tumor Effect of Pegylated BSH by Thermal Neutron Irradiation M. Shirakawa <i>et al.</i> (31P3-19)	32
PR3-16	Preparation and Characterization of BODIPY-Tethered Oligonucleotides for BNCT K. Tanabe <i>et al.</i> (31P3-20)	33
PR3-17	<i>In vivo</i> Evaluation of BNCT for 5-FU Resistant Oral Squamous Cell Carcinoma K. Igawa <i>et al.</i> (31P3-21)	34
PR3-18	Anti-tumor Evuluation of Gadolinium Neutron Capture Therapy through comparison of Tumor Size using Gd-DTPA-incorporated Calcium Phosphate Nanoparticles H Xuan <i>et al.</i> (31P3-22)	35
Project 4 Cli	inical Research on Explorations into New Application of BNCT	
M.	Suzuki and H. Yanagie. (31P4)	37
PR4-1	Clinical Research on Explorations into New Application of BNCT M. Suzuki <i>et al.</i> (31P4-1)	38
PR4-2	Preparation of Boron entrapped WOW emulsion by Mixing Medical Device for Boron Neutron Capture Therapy to Hepatocellular Carcinoma H. Yanagie <i>et al.</i> (31P4-2)	39
Project 5 Est Y.	tablishment of Integrated System for Dose Estimation in BNCT Sakurai (31P5)	41
PR5-1	Establishment of Characterization Estimation Method in BNCT Irradiation Field using Bonner Sphere and Ionization Chamber (III) Y. Sakurai <i>et al.</i> (31P5-1)	42
PR5-2	Study on New Type of Neutron Spctrometer for BNCT A. Uritani <i>et al.</i> (31P5-2)	43
PR5-3	Neutron Measurement by using the Self-activation of Iodine-added Plastic Scintillators A. Nohtomi <i>et al.</i> (31P5-4)	44
PR5-4	Characterization of Active Neutron Detector for Boron Neutron Capture Therapy M. Takada <i>et al.</i> (31P5-5)	45
PR5-5	Study for Microdosimetry using Silicon-on-insulator Microdosimeter in the BNCT Irradiation Field (III) Y. Sakurai <i>et al.</i> (31P5-6)	46
PR5-6	Measurement of BNCT Beam Component Fluence with Polymer Gel Detector K. Tanaka <i>et al.</i> (31P5-7)	47
PR5-7	Development of Neutron Fluence Distribution Measuring Device using Thermoluminescence Slabs K. Shinsho <i>et al.</i> (31P5-8)	48

PR5-8	The Study for Development and Application of Tissue Equivalent Neutron Dosimeter M. Oita <i>et al.</i> (31P5-9)	49
PR5-9	Development and Evaluation of 3D Gel Dosimeter for the Measurement of dose Distribution in BNCT S. Hayashi <i>et al.</i> (31P5-10)	50
PR5-10	Establishment of Beam-quality Estimation Method in BNCT Irradiation Field using Dual Phantom Technique (III) Y. Sakurai <i>et al.</i> (31P5-11)	51
PR5-11	Characteristics test of a Prpmpt Gamma-ray detector using LaBr ₃ (Ce) Scintillator and 8 x 8 Array MPPC for Boron Neutron Capture Therapy K. Okazaki <i>et al.</i> (31P5-12)	52
PR5-12	Development of Fiber-reading Radiation Monitoring System with a Red/ Infrared-emitting Scintillator at ⁶⁰ Co Radiation Facilities S. Kurosawa <i>et al.</i> (31P5-13)	53
PR5-13	Establishment of the Imaging Technology of 478 keV Prompt Gamma-rays of Boron-neutron Capture Reaction and the Measurement of the Intensity of the Neutron Field T. Mizumoto <i>et al.</i> (31P5-14)	54
PR5-14	Feasibility Study of a Gel-dosimeter for a Quality Assurance and a Quality Control in Boron Neutron Capture Therapy S. Nakamura <i>et al.</i> (31P5-15)	55
PR5-15	Optimization of Bolus Shape for Boron Neutron Capture Therapy Using Epi-thermal Neutron Beam T. Takata <i>et al.</i> (31P5-16) ······	56
PR5-16	Development of Novel Radiochromic Gels for Assessing 3-Dimensional dose Distribution in Brain H. Yasuda <i>et al.</i> (31P5-17)	57
PR5-17	Measurement of Neutron Distributions in the BNCT Irradiation Field using a GEM Detector S. Uno <i>et al.</i> (31P5-18)	58
PR5-18	Development of Epi-thermal Neutron Flux Intensity Detector for BNCT I. Murata <i>et al.</i> (31P5-20)	59
PR5-19	Investigation of Thermal Neutron-Induced Soft Errors in Semiconductor Devices H. Tanaka <i>et al.</i> (31P5-21)	60
Project 6	Analyzing Tumor Microenvironment and Exploiting its Characteristics in Search of Optimizing Cancer Therapy Including Neutron Capture Therapy	62
PR6-1	Effect of a Change in Reactor Power on Response of Murine Solid Tumors <i>in vivo</i> , Especially on that of Quiescent Tumor Cells, in Boron Neutron Capture Therapy S. Masunaga <i>et al.</i> (31P6-1)	63
PR6-2	Development of New Amino Acid-type Boron Carriers for BNCT A. Matsushita <i>et al.</i> (31P6-2)	64
PR6-3	Molecular Mechanism Underlying HISP2-mediated Radioresistance of Hypoxic Tumor Cells M. Kobayashi <i>et al.</i> (31P6-3)	65
PR6-4	OH Radicals from the Indirect Actions of Neutron Beam Induce Cell Killing R. Hirayama <i>et al.</i> (31P6-4)	66
PR6-5	Intracellular Delivery of Membrane-fluidity Sensitive Boron Liposomes with Tumor-specific Cell Penetrating Peptides S. Kasaoka <i>et al.</i> (31P6-5)	67
PR6-6	Preparation and Characterization of a Novel Bispecific Antibody That Targets Her2 and BSH Boron Neutron Capture Therapy T. Kanai <i>et al.</i> (31P6-6)	for 68

PR6-7	Development of Novel BPA-Tirapazamine Hybrid BNCT Agent Targeting Hypoxic Tumor Cells Y. Uto <i>et al.</i> (31P6-7)	69
PR6-8	The Tumor Invasion Enhanced by the Conditioned-medium after X-irradiation H. Yasui <i>et al.</i> (31P6-8)·····	70
PR6-9	Analysis of the Response of Tumor Tissue and Cells to BNCT S. Imamichi <i>et al.</i> (31P6-9)	71
PR6-10	The Contribution of Blood Boron-neutron Reaction to Subcutaneous Tumor Growth Suppression was Equal to that of Neutrons Irradiation Only Group K. Nakai <i>et al.</i> (31P6-10)	72
PR6-11	Cell Killing Effect of BNCT with Novel Boron Compound SMA Glucosamine Complex Y. Matsumoto <i>et al.</i> (31P6-11)·····	73
PR6-12	Attempts to Sensitize Tumor Cells by Exploiting the Tumor Microenvironment Y. Sanada <i>et al.</i> (31P6-12)	74
Project 8	Project Research on Advances in Isotope-Specific Studies Using Muti-Element Mössbauer Spectroscopy M. Seto (31P8)	76
PR8-1	Analysis of Iron-based Products Using Mössbauer Spectroscopy - Iron Oxide Scale Generated in the Boiler Feed-water in Thermal Power Plant – V. Akiyama et al. (31P8-1)	77
PR8-2	EFG Tensor of Fe ²⁺ in <i>M2</i> site of Orthopyroxene by Single Crystal Mössbauer Microspectroscopy K. Shinoda and Y. Kobayashi (31P8-2)	78
PR8-3	Temperature Dependence of Mössbauer Spectra for Fe_2O_3 -Al ₂ O ₃ Solid Solution S. Takai <i>et al.</i> (31P8-3)	79
PR8-4	A Nuclear Resonance Vibrational Spectroscopic Study of Oxy Myoglobin T. Ohta <i>et al.</i> (31P8-4)·····	80
PR8-5	Mössbauer Spectroscopy on the Antiperovskite Oxide Superconductor Sr _{3-x} SnO Y. Maeno <i>et al.</i> (31P8-5)	81
PR8-6	Researches on Magnetism in a Novel Kondo Lattice Y. Kamihara <i>et al.</i> (31P8-6)······	82
PR8-7	Study on Structure of Gold Complexes Coordinated with α -Amino Acids by Means of ¹⁹⁷ Au Mössbauer Spectroscopy	-
PR8-8	H. Murayama <i>et al.</i> (31P8-7) ······	83
PR8-9	Y. Kobayashi <i>et al.</i> (31P8-8) Development of Mössbauer Spectroscopy for ¹⁶⁶ Er S. Kitao <i>et al.</i> (31P8-9)	84 85
Project 9	Project Research on Boron Dynamics in Plants using Neutron Capture Reaction: Development of Boron Analytical Method and Elucidation of its Physiological Function T. Kinouchi (31P9)	87
PR9-1	Analysis of Boron Transport within Roots Using Neutron Capture Radiography M. Kobayashi and T. Kinouchi. (31P9-1)	88
PR9-2	Analysis of Localization of Boron in Root Tissues by Neutron Capture Radiography S. Kitajima <i>et al.</i> (31P9-2) ·····	89
PR9-3	Improvemnt of <i>In Situ</i> Visualization of Boron Distributed in Plants by Neutron Radiation T. Kinouchi (31P9-3)	90
Project 10	The Effect of Boron Neutron Capture Therapy on Normal Tissues M. Suzuki (31P10)	92
PR10-1	The Effect of Boron Neutron Capture Therapy (BNCT) on Normal Lung in Mice M. Suzuki and Y. Tamari. (31P10-1)·····	93

PR10-2	Study of the Influence on Normal Liver tissue by BNCT Y. Tamari <i>et al.</i> (31P10-4)·····	94
PR10-3	The Effect of Boron Neutron Capture Therapy to Normal Bones in Mice R. Iwasaki <i>et al.</i> (31P10-5)	95
Project 11	Preclinical Studies on Gadolinium Neutron Capture Therapy M. Suzuki (31P11)	97
PR11-1	Investigation of Cell Killing Effect by Auger Electrons Emitted during Gadolinium Neutron Capture Therapy (Gd-NCT) M. Suzuki and H. Tanaka (31P11-1)	98
PR11-2	Investigation of Gadolinium Neutron Capture Therapy (Gd-NCT) using Gadolinium-loaded Nano-particle M. Suzuki <i>et al.</i> (31P11-2)	99
PR11-3	Nanoparticulate Formulations for Neutron Capture Therapy: Evaluation of Amti-tumor Effect after Intratumor Injection T. Andoh <i>et al.</i> (31P11-3)	100
PR11-4	Examination on Gadolinium Neutron Capture Therapy in Mouse Malignant Melanoma Bone Metastasis Model T. Matsukawa <i>et al.</i> (31P11-4)	101
PR11-5	Preparation of Drugs Bearing Hoechst unit that Target Cell Nucleus K. Tanabe <i>et al.</i> (31P11-5) ······	102
PR11-6	Establishment of the Chicken Egg Tumor Model for GNCT K. Matsumoto <i>et al.</i> (31P11-6)	103
PR11-7	Evaluation of Antitumor Effectivity on Gd-neutron Capture Therapy with Polymeric Nanocarries	104
PR11-8	Development of Nano Carriers Installed with Gd(III)-Thiacalixarene Complex for Gd-NCT T. Yamatoya <i>et al.</i> (31P11-8)	104
Project 12	Enhancement of Research Methods for Material Irradiation and Defect Analysis A. Kinomura (31P12)	107
PR12-1	Study to Improve Transport and Measurement Performance of a Slow Positron Beamline A. Kinomura <i>et al.</i> (31P12-1)	108
PR12-2	Electron-irradiation Induced Defects in W-Re T. Toyama <i>et al.</i> (31P12-2)······	109
PR12-3	Change in the Positron Annihilation Lifetime of Electron-irradiated F82H by Hydrogen Charging K. Sato <i>et al.</i> (31P12-3)	110
PR12-4	The Effect of Gamma-ray Irradiation on Luminescence Properties of Collolidal Si Nanocryst T. Nakamura <i>et al.</i> (31P12-4)	als 111
PR12-5	Irradiation Technique for Study on Corrosion Resistance of Fusion Divertor Materials to liquid metal during irradiation M. Akiyoshi <i>et al.</i> (31P12-5)	112
PR12-6	Measurement of Positron Lifetimes of Various Diamond-like Carbon Thin Films K. Kanda <i>et al.</i> (31P12-6)	113
PR12-7	Positron Annihilation Spectroscopy on Diamond-like Carbon Films S. Nakao <i>et al.</i> (31P12-7)	114
Project 13	Chemical and Electronic Properties of Actinide Compounds and their Applications T. Yamamura (31P13)	116
PR13-1	Synthesis and Characterization of Actinide-based Compounds with Honeycomb Layer Y. Haga <i>et al.</i> (31P13-1) ·····	117

PR13-2	Crossover between Fermi-Liquid and Non-Fermi-Liquid States in $Th_{1-x}U_xBe_{13}$ ($0 \le x \le 1$)
	H. Amitsuka et al. (31P13-2) ·····	118
PR13-3	Adsortpion Chracterization of Actinide Chemical Species on Solid Adsorbents	
	- Measurement of Rare Earth Elements by ICP-MS -	
	T. Suzuki <i>et al.</i> (31P13-3)	119
PR13-4	Preparation of ²²⁸ Ra/ ²²⁸ Ac Stock Solution	
	K. Shirasaki et al. (31P13-4) ·····	120
PR13-5	Investigation on Complex Formation of Monoamide Compounds with Actinyl Ions	
	M. Nogami and T. Yamamura (31P13-5)·····	121
PR13-6	Consistency Verification between Relativistic Quantum Chemical Calculations and	
	Experiments in Uranium Compounds	
	M. Abe <i>et al.</i> (31P13-6)	122
PR13-7	Evaluation of Phase Diagram of Minor Actinide Oxides with CALPHAD	
	H. Shishido <i>et al.</i> (31P13-7) ······	123
PR13-8	Synthesis of Nobel Phthalovanine Derivatives and Effect of Substitutent on Recognition	
	of Light Actinide and Chemical Property	
	M Nakase <i>et al.</i> (31P13-8)	124
		121
		105
I-2. COLLABORA	ATION RESEARCHES	125
1. Slow Neutro	on Physics and Neutron Scattering	
CO1-1	First Neutron Diffraction Results of Fluoride-ion Battery Materials on VCND	
	K. Mori and F. Fujisaki (31008)	126
CO1-2	Current Status of Versatile Compact Neutron Diffractometer (VCND)	
001-2	on the B-3 Beam Port of KUR 2019	
	K. Mori <i>et al.</i> (31016)	127
CO1 3	Noutron contraine study on microstructure of vituified redicastive vestes	
01-5	K Koneko <i>et al.</i> (31027)	128
CO1 4	K. Kalleko <i>et al.</i> (31027)	120
CO1-4	Development of neutron spin flipper with large beam acceptance M . Kits much at rl (21020)	120
	M. Kitaguchi <i>et al.</i> (31030)	129
CO1-5	Development of $m=6.5$ neutron spuermirror on ellipsoidal metal substrate	
	M. Hino <i>et al.</i> (31109)	130
CO1-6	Development of high spatial resolution cold/ultracold neutron detector	
	using nuclear emulsion	
	N. Naganawa <i>et al.</i> (31135)	131
2 Nuclear Ph	usies and Nuclear Data	
$\frac{2. \text{ Nuclear I } n}{CO2}$	Measurement for thermal neutron canture cross sections and resonance integrals of the	
02-1	243 Am(n $_{\rm V}$) ^{244g} Am $^{244m+g}$ Am reactions	
	S. Nakamura $et al.$ (31020)	132
CO2-2	Quantitation of Gamma Ray Emission from Caputre Reaction of Uranium-238	
	Y. Nauchi <i>et al.</i> (31022)	133
CO12	Development of anomale mode marken detectors for DNCT folds	
002-3	Development of current-mode neutron detectors for BNC1 fields	124
	1. Matsumoto <i>et al.</i> (31102)	134
CO2-4	Measurements of thermal neutron total and scattering cross section of moderator materials	
	J. Nishiyama et al. (31108)	135
CO2-5	Measurement of Temperature Depended Themal Neutron Spectrum in Solid Moderator	
	T. Sano <i>et al.</i> (31156)	136
3. Reactor Phy	vsics and Reactor Engineering	
CO3-1	Basic Research for Sophistication of High-power Reactor Noise Analysis (II)	
	S. Hohara <i>et al.</i> (31025)	137
002.2		
003-2	Demonstration of advanced subcritical measurements: Time-Domain Decomposition-	
	T Endo <i>et al.</i> (CA3101)	129
	1. LING <i>et ut</i> . (CA5101)	100

CO3-3	Measurement of Gamma Ray from Short Lived Fission Product under Background of Fission Prompt Gamma Ray Y. Nauchi <i>et al.</i> (CA3102)	139
CO3-4	Reactor Noise Power-Spectral Analysis for a Graphite-Moderated and -Reflected Core (II) A. Sakon <i>et al.</i> (CA3104)	140
CO3-5	Measurement of fundamental characteristics of nuclear reactor at KUCA (IV)	
	Y. Kitamura (CA3106)	141
CO3-6	Reactor Physis Experiment in Graphite Moderation System for HTGR (II)	1.40
CO3-7	Sample Worth Measurements of Lead and Bismuth in Low-enriched Uranium Region at A-core of KUCA for ADS M. Fukushima <i>et al.</i> (CA3109)	142
CO3-8	Subcriticality Measurement by using a Small Neutron Detector T. Misawa <i>et al.</i> (CA3110)	144
CO3-9	Verification of an Improved Method to Estimate Reactivity Y. Yamane <i>et al.</i> (CA3111)	145
CO3-10	Measurement of Fundamental Characteristics of Nuclear Reactor at KUCA (V) Y. Kitamura <i>et al.</i> (CA3112)	146
CO3-11	Measurement of Neutronics Characteristics for Th loaed core at KUCA (II) T. Sano <i>et al.</i> (CA3113)	147
4. Material Sci	ience and Radiation Effects	
CO4-1	Characterization of Additive in Lubricant using Small-Angle X-ray Scattering	
	Y. Oba (31002)·····	148
CO4-2	Synthesis of alloy nanoparticles in water solution by two steps reduction and one time γ-ray irradiation F. Hori <i>et al.</i> (31004)	149
CO4-3	Defects structure and characterization of electron irradiated intermetallic alloys F. Hori <i>et al.</i> (31005)	150
CO4-4	Magnetic Scattering Contribution in Iron Characterzed by Neutron Diffraction Y. Oba <i>et al.</i> (31007)	151
CO4-5	What Exists in a 2-nm-sized Molecular Caspule Assembeld in Water? YY. Zhan et al. (31009)	152
CO4-6	Damage Evolution in Neutron-irradiated Metals during Neutron Irradiation at Elevated Temperatures I. Mukouda and Q. Xu. (31041)	153
CO4-7	Radiation Resistivity of Ferrite Permanent Magnets Against Neutrons Y. Iwashita <i>et al.</i> (31042)	154
CO4-8	Elucidation of the Mechanism of the Screw-sense Induction of Polymer Backbone Based on the Small Angle X-ray Scattering and Dynamic Light Scattering Measurements Y. Nagata <i>et al.</i> (31051)	155
CO4-9	Crystal structure analysis of Abalone shell K. Iwase and K. Mori (31055) ······	156
CO4-10	Radiochemical Research for the Advancement of ${}^{99}Mo/{}^{99}mTc$ Generator by (n, γ) Method (2) Y. Fujita <i>et al.</i> (31065)	157
CO4-11	Radiophotoluminescence phenomenon in Cu-doped silica glasses prepared from porous silica glass Y. Takada <i>et al.</i> (31066)	158
CO4-12	Study of resonant frequency change with irradiation dose of piezoelectric PZT element M. Kobayashi <i>et al.</i> (31067)	159
CO4-13	Formation of radiation defects on tungsten and their influence on effect of hydrogen isotope retention	1.60
CO4-14	K. Tokunaga <i>et al.</i> (31086) Tritium release behavior from neutron-irradiated FLiNaBe K. Katayama <i>et al.</i> (31090)	160 161

CO4-15	Positron Age-Momentum Correlation Mesurements of γ-rays Irradited Polystyrene H. Tsuchida <i>et al.</i> (31093)	162
CO4-16	Formation of nano-structures on Ge surfaces by ion irradiation and study on its formation mechanism J. Yanagisawa <i>et al.</i> (31097)	ıs 163
CO4-17	Evaluation of Structural Vacancies in Icosahedral Cluster Solids using Positron Annihilation J. Takahashi <i>et al.</i> (31100)	י 164
CO4-18	Absorption Coefficient of Amino Acid in the Sub-THz region using CTR T. Takahashi <i>et al.</i> (31111)·····	165
CO4-19	Vacancy migration behavior in CoCrFeMnNi high entropy alloys and their subsystems K. Sugita <i>et al.</i> (31112)	166
CO4-20	Observation of Gamma-ray Induced Current on Coaxial Cable for Analog Data Transfer Y. Gotoh (31118)·····	167
CO4-21	Correlation between Damage Accumulation by Neutron Irradiation and Hydrogen isotope Retention for Plasma Facing Materials Y. Oya <i>et al.</i> (31120)	168
CO4-22	Complex Structure of Ions Coordinated with Hydrophilic Polymer 20. Ionic Diffusion in Polymeric Structure Utilized by Polyiodide Ions. (1) A. Kawaguchi and Y. Morimoto. (31122)	169
CO4-23	A study on destruction of cesium aluminosilicate cage by gamma irradiation (1) H. Ohashi <i>et al.</i> (31128)	170
CO4-24	Effects of Buffers and Salts on Nanostructure of Soybean Proteins as Revealed by SAXS N. Sato <i>et al.</i> (31137)	171
CO4-25	Porosity Measurements of Sintered-Silver Bonding Plates K. Wakamoto <i>et al.</i> (31143)	172
CO4-26	Differences in the Recovery Behavior of Electron-Irradiation-Induced Vacancies in Metals with Different Purities A. Yabuuchi <i>et al.</i> (31157)	173
CO4-27	Differences in the Development of Vacancy-Type Defects During Annealing with Different Irradiated Ion Species A. Yabuuchi <i>et al.</i> (31158)·····	t 174
CO4-28	Defect Characterization of Ion-Irradiated GdBa2Cu3O7–δ Superconducting Tapes Probed by a Slow Positron Beam T. Ozaki <i>et al.</i> (31159)	175
CO4-29	Neutron irradiation tests for ITER plasma diagnostics M. Ishikawa <i>et al.</i> (31167)·····	176
Geochemist	ry and Environmental Science	
CO5-1	Volcanic and Tectonic History of Philippine Sea Plate (South of Japan) Revealed by ⁴⁰ Ar/ ³⁹ Ar Dating Technique O Ishizuka <i>et al.</i> (31012)	177
CO5-2	Long Term Observation of Element Concentrations in the Atmospheric Aerosols at Sakai, Osaka, 1995-2017 N. Ito <i>et al.</i> (31024)	178
CO5-3	Ar-Ar dating of submarine basalts N. Hirano <i>et al.</i> (31039)	179
CO5-4	Recrystallization of an amorphous Si layer by H^+ ion beam and electron beam irradiation J. Nakata <i>et al.</i> (31049)	180
CO5-5	Study on Elemental Concentration in the Atmospheric Particulate Matter by INAA N. Hagura <i>et al.</i> (31052)	181
CO5-6	Neutron activation analysis for sediments, phytoplankton, lake water of Lake Akagi Onuma Y. Okada <i>et al.</i> (31053)	182
CO5-7	Formation age of Precambrian metamorphic rocks and thermal history H. Hyodo <i>et al.</i> (31057)	183
CO5-8	A Study on Evaluation of Redox Condition of Tokyo Bay using Redox Sensitive Elements as an Indicator by Means of Instrumental Neutron Activation Analysis M. Matsuo <i>et al.</i> (31061)	184

5.

CO5-9	Absorption of alkali metal ions by white radish sprouts M. Yanaga <i>et al.</i> (31064)	185
CO5-10	INAA and Ar-Ar Dating for Micro-sized Extraterrestrail Materials R. Okazaki and S. Sekimoto (31068)	186
CO5-11	Determination of Abundance of Rare Metal Elements in Seafloor Hydrothermal Ore Deposits by INAA Techniques-6: Evaluation of analytical accuracy J. Ishibashi <i>et al.</i> (31077)	187
CO5-12	Research on Earth Surface Processes by Use of Mineral Luminescence N. Hasebe <i>et al.</i> (31079)	188
CO5-13	Geochemistry of unbrecciated eucrite, Northwest Africa 10962 N. Shirai <i>et al.</i> (31081)	189
CO5-14	Neutron Activation Analysis of Environmental Samples Y. Oura and Md. S. Reza. (31088)	190
CO5-15	Bulk Chemical Compositions of CB and CH Chondrites M. Ebihara <i>et al.</i> (31091)	191
CO5-16	Determination of Cl, Br and I contents in geochemical reference samples by radiochemical neutron activation analysis - revisited M. Ebihara <i>et al.</i> (31092)	192
CO5-17	Spatial Distribution of Halogen Compositions in the Wedge Mantle-derived Metaserpentinite Body in Southwest Japan H. Sumino <i>et al.</i> (31113)	192
CO5-18	Fission track age and thermal history of clay deposit of the Tsuchihashi Mine	175
	H. Ohira and Y. Sampei (31119) ·····	194
CO5-19	⁴⁰ Ar- ³⁹ Ar Dating of Extraterrestrial Materials in KURNS	
CO5-20	N. Iwata <i>et al.</i> (31126) Neutron activation analysis of carbonate reference materials: coral (JCp-1) and giant clam (JCt-1)	195
005.01	S. Sekimoto <i>et al.</i> (31132)	196
CO5-21	Y. Shibahara <i>et al.</i> (31160)	197
CO5-22	Analysis of Cd and As in the rice seed detected from the remains by NAA T. Inamura <i>et al.</i> (31165)	198
CO5-23	Ananysis method of strontium in seawater Y. Ogata <i>et al.</i> (31168)	199
CO5-24	INAA using KUR for the determination of elemental content in air particulate samples J.H. Moon <i>et al.</i> (31169, 31170)	200
I ifa Saianaa	and Medical Science	
CO6-1	Effect of inter-protein interaction on SAXS profile in concentrated MurD solution H. Nakagawa <i>et al.</i> (31001) ······	201
CO6-2	Physicochemical study on ILEI suppressing amyloid-β generation E. Hibino <i>et al.</i> (31003)·····	202
CO6-3	Structural characterization of circadian clock potein complexes H. Yagi <i>et al.</i> (31006)	203
CO6-4	Interaction between Mint3 and FIH-1 involved in hypoxia stress responses R. Maeda <i>et al.</i> (31011)	204
CO6-5	Supramolecular Tholos-Like Architecture Constituted by Archaeal Proteins Without Functional Annotation M. Yagi-Utsumi <i>et al.</i> (31013)	205
CO6-6	Small Angle X-ray Scattering Measurements on Insulin B-Chain Nucleation Intermediate Complexed with Fibrinogen N. Yamamoto <i>et al.</i> (31028)	206
CO6-7	Character of DNA damage induced by nuclear palnt neutron beams H. Terato <i>et al.</i> (31040) ·····	207

6.

CO6-8	Radiation-induced clustered DNA damage estimated by homo-FRET analysis K. Akamatsu <i>et al.</i> (31063)	208
CO6-9	Photoproduction of Medical ¹⁸ F and ^{99m} Tc Isotopes M. Kurosawa <i>et al.</i> (31069)	209
CO6-10	Small Angle X-ray Scattering Measurements on Insulin B chain; a Time-Resolved Measure-ment to Monitor the Amyloid Fibril Formation via Prefibrillar Intermediates N. Yamamoto <i>et al.</i> (31070)	210
CO6-11	Generation of radioresistant Escherichia coli by adaptive evolution using gamma rays as selection pressure II T. Saito <i>et al.</i> (31072) ·····	211
CO6-12	Structural study for the nucleosome containing histone variant H2A.B R. Hirano <i>et al.</i> (31073)	212
CO6-13	Effect of High-Intensity Pulsed Coherent Radiation on the Stability of the Gene Y. Tanaka <i>et al.</i> (31078)·····	213
CO6-14	Structural analysis of multi-domain protein as studied by complementary use of molecular dynamics simulation and small-angle X-ray scattering R. Inoue <i>et al.</i> (31082)	214
CO6-15	Oligomeric structure and its temperature-dependent change of HspB1 from Chinese hamster ovary cell M. Yohda <i>et al.</i> (31083)	215
CO6-16	Quantitative analysis of contribution of tumor vascular damage to antitumor effect of X-ray using BNCR	215
CO6-17	Observation of Water Uptake in Alternate Grafting of Tomato and Eggplant Using D ₂ O as Tracer U. Matsushima <i>et al.</i> (31107)	210
CO6-18	Production of medical radioisotopes using electron linear accelerator S. Sekimoto and T. Ohtsuki. (31131)	218
CO6-19	N-Acetylneuraminic acid functioned as the scavenger for reacive oxygen species generated by the gamma-ray irradiation N. Fujii <i>et al.</i> (31134)	219
CO6-20	Preliminary analysis of structural composition of menaquinone-7 produced by <i>Bacillus subtilis natto</i> T. Chatake <i>et al.</i> (31140)	220
CO6-21	Measurement of Absorption Spectra of a Humann Calcified Aorta Tissue in the Sub-Terahertz Region, which Dependented on the Thickness (III) N. Miyoshi and T. Takahashi (31162)	221
7. Neutron Capt	ure Therapy	
CO7-1	Analyses of the immune-cell reaction and activation mechanisms in the tumor tissue after boron neutron capture therapy T. Watanabe <i>et al.</i> (31014)	222
CO7-2	Boron nitride (¹⁰ BN) a prospective material for boron neutron capture therapy M. Kaur <i>et al.</i> (31017)	223
CO7-3	A Fundamental Investigation on Contents of Important Elements for Activation in Various Concrete	224
CO7-4	Evaluation of the abscopal effect observed by mouse head irradiation following thermal neutron irradiation Y Kinashi and T Takata (31043)	224
CO7-5	The feasibility study of Eu:LiCAF neutron detector for an accelerator-based BNCT	223
CO7-6	T. Nakamura <i>et al.</i> (31076) Enhancement of the cancer cell-killing effects of boron neutron capture therapy by overexpression of <i>LAT1</i> in human cancer cells	226
CO7-7	K. Ohnishi <i>et al.</i> (31084) Clinical Outcome of BNCT for Advanced or Recurrent Head and Neck Cancer	227
CO7-8	Establichment of a novel mutation breeding using Boron Neutron Capture Reaction (BNCR) M. Kirihata <i>et al.</i> (31104)	228 229
	X	

CO7-9	Effects on Dissemination or Invasion of glioma cells by BNCT	
CO7 10	N. Kondo <i>et al.</i> (31144)	230
CO/-10	N Kondo <i>et al.</i> (31145)	231
CO7-11	Resistant Mechanism of Glioma Conferred by Tumor Microenvironment after BNCT	231
	N. Kondo <i>et al.</i> (31146)	232
CO7-12	Improvement of the method for analysis of micro boron distribution in tissues	222
CO7-13	M. SUZUKI <i>et al.</i> (31150)	233 Г
07-15	Y. Sakurai <i>et al.</i> (31151)	234
CO7-14	Establishment of protocol for neutron capture therapy for head and neck cancer	225
CO7-15	Anti-tumor evuluation of Gadolinium Neutron Capture Therapy through comparison of	233
00110	tumor size using with polymeric nanocarries	
	X. Hou <i>et al.</i> (31163)	236
CO7-16	Accelerated deterioration assessment of SOF detector under high neutron flux environment	<u> </u>
	M. Ishikawa <i>et al.</i> (31166)	237
8. Neutron Rad	iography and Radiation Application	
CO8-1	Neutron Phase Imaging with Talbot-Lau Interferometer at CN-3	
	Y. Seki <i>et al.</i> (31019)	238
CO8-2	Study on the Visualization of Organic Matter between Metals to Contribute to the Advancement	
	of the Industrial Products K. Hirota <i>et al.</i> (21021)	220
CO8-3	K. Initia et ul. (51051) Measurements of multiphase flow dynamics using neutron radiography	239
0000	Y. Saito and D. Ito (31034)	240
CO8-4	Visualization of Hydrogen in Pure Palladium via Neutron Radiography and Tomography	
	K. Shimizu <i>et al.</i> (31036)	241
CO8-5	Visualization and Measurement of Boiling Flow Behaviors in Parallel Mini-channel	
	Heat Exchanger	212
CO8-6	Figure 1. Asato et al. (51045) Evaluation of Water Distribution and Electrochemical Characteristics in Polymer	242
0000	Electrolyte Fuel Cell	
	H. Murakawa <i>et al.</i> (31046) ·····	243
CO8-7	Meltwater Behavior During the Defrosting Process by Using Neutron Radiography	
	R. Matsumoto <i>et al.</i> (31048)	244
08-8	T Tsukada <i>et al.</i> (31074)	245
CO8-9	Analysis of moisture transfer in high-strength concrete embedded rebar exposed to fire	273
	M. Kanematsu <i>et al.</i> (31103)	246
CO8-10	Development of capillary-plate-based flourescent plates for neutron radiography	
CO9 11	T. Sakai <i>et al.</i> (31106)	247
08-11	Visualization of a Microchannel Heat Exchanger under Non-uniformly Heated Condition	2/18
CO8-12	Diffusion Measurements on NASICON-Type Structured Lithium Ion Conductors by	240
	Means of Neutron Radiography	
	S. Takai <i>et al.</i> (31130)	249
CO8-13	Study on the non-destructive nuclide assay for nuclear materials with a self-indication method	250
CO8-14	J. Hori <i>et al.</i> (31136) The measurability of photofission reaction of uranium induced by bremsstrahlung photons	250
000-14	K W Chin <i>et al</i> (31155)	251
CO8-15	Distribution of coolant inside a flat laminate vapor chamber in a vertical posture	201
	K. Mizuta et al. (31161)	252
CO8-16	Demonstration experiments of an innovative method to detect nuclear material	
	M. Komeda et al. (CA3108)	253
9 TRI and Nu	lear Chemistry	
CO9-1	Leaching behavior of fission products from simulated MCCI debris	
007-1	T. Sasaki <i>et al.</i> (31015)	254
CO9-2	Complex formation of zirconium with hydroxycarboxylic acids	

)9-2	Complex formation of zirconium with hydroxycarboxylic acids	
	T. Kobayashi <i>et al.</i> (31023)	255

CO9-3	Electrodeposition Behaviors of Uranium and Aluminum on Copper Cathode in LiCl-KCl Eutectic Melts Y. Sakamura <i>et al.</i> (31035)	256	
CO9-4	Structural Change of Borosilicate Glass by Boron Isotope CompositionT. Nagai et al. (31038)2		
CO9-5	Study on leaching behavior of carbon-14 from neutron irradiated stainless steel R. Nakabayashi <i>et al.</i> (31060)		
CO9-6	Solvent extraction of selenium in the nitric acid solution with selected elements T. Kawakami <i>et al.</i> (31062)	259	
CO9-7	Effect of γ-Ray Irradiation in HNO3 on Adsorptivity of Long-Chain 6-Membered Cyclic Monoamide Resin Y. Yoshimura <i>et al.</i> (31114)		
CO9-8	Roll of Electrostatic Interaction in Attachment Process of Fission Products to Solution Aerosol Particles K. Takamiya <i>et al.</i> (31139)	261	
CO9-9	Precipitation of alkaline earth elements toward the chemical study of Nobelium S. Hayami <i>et al.</i> (31153)	262	
10. Health Phys	sics and Waste Management		
CO10-1	Effective Measures on Safety, Security, Hygiene and Disaster Prevention in Laboratories \cdot		
	T. Iimoto <i>et al.</i> (31018)	263	
CO10-2	Scientific Ethnography for Nuclear Science, Part 1		
	-Responsibility of Science, Post 3.11, Iltate Village, Fukushima-		
	M. Takagaki and S. Masunaga (31033)	264	
CO10-3	Assessment of non-homogenous exposure of radiation workers in accelerator facility		
	Situation in the small linac facility - M. Kowatari and T. Kubata (31050)	265	
CO10-4	Investigation for valiation of trace elements concentration in accelerator room concrete	205	
00101	G. Yoshida <i>et al.</i> (31056)	266	
CO10-5	Comparison of Chlorine Concentration in Each Municipal Solid Waste Fraction Measured by Neutron Activation Analysis and Bomb Calorimeter- Ion Chromatography	200	
	K. Ohita et al. (31075)	267	
CO10-6	Effect of Ammonium Ion Washing of Radiocesium Contaminated Soil K. Daiku <i>et al.</i> (31129)	268	
CO10-7	Measurement of Radioactivity-Based Particle Size of Radiation-Induced Aerosols using a Diffusion Battery System in Accelerator Facilities Y Oki (31154)	269	
CO10-8	Consideration of radon concentration measurement under natural fluctuation environment	_0,	
	by a new monitor using two filter method	270	
		270	
12. Others			
CO12-1	Isotope Dilution-Neutron Activation Analysis for Quantifying Hafnium		
	T. Takatsuka <i>et al.</i> (31026)	271	
CO12-2	Study on Superposition of Terahertz Coherent Radiation using a Ring Resonator		
~~	N. Sei and T. Takahashi (31029)	272	
CO12-3	High-count-rate ³ He position-sensitive detector readout system S. Sato <i>et al.</i> (31044)	273	
CO12-4	Neutron activation analysis of Ar in titanium metal T. Miura <i>et al.</i> (31047)	274	
CO12-5	A response of inner-through type ionization chamber to 41 Ar	075	
CO12-6	A. Tunoki <i>et al.</i> (\$1059) Development of neutron imager based on hole-type MPGD with glass capillary plate F. Tokanai <i>et al.</i> (\$1080)	275 276	
CO12-7	Gamma ray measurement in the basement of the K voto University Research Reactor facility	_,0	
	K. Okada <i>et al.</i> (31089)	277	

-

CO12-8	Neutron efficiency of a two-dimensional neutron detector with MPPC (Mpix) H. Ohshita <i>et al.</i> (31094)	278
CO12-9	Research on Activation Assessment of a Reactor Structural Materials for Decommissioning (2) M. Seki <i>et al.</i> (31096)	279
CO12-10	Beam Test of a micro-cell MWPC for a muon-electron conversion search experiment, DeeMe M. Aoki <i>et al.</i> (31105)	280
CO12-11	An attempt to produce carrier free tracer through photonuclear reaction and hot atom effect T. Kubota <i>et al.</i> (31110)	281
CO12-12	Study of Isotope Separation via Chemical Exchange Reaction R. Hazama <i>et al.</i> (31115)	282
CO12-13	Radius of Gyration of Polymer for Viscosity Index Improver at Various Temperatures Evaluated by Small-Angle X-Ray Scattering T. Hirayama <i>et al.</i> (31116)	283
CO12-14	Friction Reduction by the Combination Use of MoDTC and Organic Friction Modifier T. Hirayama <i>et al.</i> (31117)	284
CO12-15	Multi-element neutron activation analysis of selected Japanese food samples by neutron activation analysis M. Fukushima <i>et al.</i> (31123)	285
CO12-16	Installation of Flowing Sample Neutron Activation Analysis at KUR M.A. Soliman <i>et al.</i> (31138)	286
CO12-17	Neutron Resonance Spectrometry of Urinium for Nuclear Security and Safeguards Education J. Kawarabayashi <i>et al.</i> (31141)	287
CO12-18	Evaluation test of SEL recovering system used in CubeSat by using ²⁵² Cf H. Masui <i>et al.</i> (31142)	288

II. PUBLICATION LIST (April 2019 – March 2020)	 289
11. FUBLICATION LIST (April 2019 – March 2020)	202

I. ANNUAL SUMMARY OF EXPERIMENTAL RESEARCH ACTIVITIES

I-2. COLLABORATION RESEARCHES

- 1. Slow Neutron Physics and Neutron Scattering
- 2. Nuclear Physics and Nuclear Data
- 3. Reactor Physics and Reactor Engineering
- 4. Material Science and Radiation Effects
- 5. Geochemistry and Environmental Science
- 6. Life Science and Medical Science
- 7. Neutron Capture Therapy
- 8. Neutron Radiography and Radiation Application
- 9. TRU and Nuclear Chemistry
- 10. Health Physics and Waste Management
- 12. Others

KURNS Progress Report 2019

Issued in August 2020

Issued by the Institute for Integrated Radiation and Nuclear Science, Kyoto University Kumatori-cho, Sennan-gun, Osaka 590-0494 Japan

> Tel. +81-72-451-2300 Fax. +81-72-451-2600

In case that corrections are made, an errata will be provided in the following webpage: https://www.rri.kyoto-u.ac.jp/PUB/report/PR/ProgRep2019/ProgRep2019.html

Publication Team

IINUMA, Yuto INOUE, Rintaro (Subchief) KINASHI, Yuko KITAMURA, Yasunori MORI, Kazuhiro (Chief) NAKAYAMA, Chiyoko SAKURAI, Yoshinori (Subchief) SANO, Hiroaki TAKATA, Takushi TOMINAGA, Yuta TSURUTA, Yachiyo YOKOTA, Kaori