<table>
<thead>
<tr>
<th>Title</th>
<th>SyNRAC: A Maple package for solving real algebraic constraints (Computer Algebra: Design of Algorithms, Implementations and Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yanami, Hitoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1395: 238-244</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25955</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
SyNRAC: A Maple package for solving real algebraic constraints

YANAMI HITOSHI*
(Fujitsu Laboratories Ltd.)

Abstract
We present a Maple package called SyNRAC. This package is aimed at becoming a comprehensive toolbox for solving real algebraic constraints derived from various engineering problems. The current version of SyNRAC provides quantifier elimination for up to the quadratic case and basic simplifiers of formulas, as well as an environment dealing with first-order formulas over the reals on Maple.

1 Introduction
We presented Maple-package SyNRAC for solving real algebraic constraints in 2003 [1]. SyNRAC stands for a Symbolic-Numeric toolbox for Real Algebraic Constraints and is aimed to be a comprehensive toolbox composed of a collection of symbolic, numerical, and symbolic-numeric solvers for real algebraic constraints derived from various engineering problems.

In this paper we show the current status of development of SyNRAC. In the previous version of SyNRAC [1] the following algorithms were available
- a special QE by the Sturm-Habich sequence for a sign definite condition,
- a special QE by virtual substitution for linear formulas,
- some naive simplifications of quantifier-free formulas.

Besides, the current version of SyNRAC provides the following:
- an environment dealing with first-order formulas over the reals,
- a special QE by virtual substitution for quadratic formulas,
- some new standard simplifiers of formulas.

Since we firstly presented SyNRAC, we have introduced some new operational symbols and fixed a notation system for expressing formulas. We are now developing our tool under the basis of the new environment. The QE algorithms previously equipped have also been reimplemented after the latest setting. These new features greatly extend the applicability and tractability of SyNRAC for solving real algebraic constraints

*This work was partially supported by CREST, the Japan Science and Technology Agency, Japan.
†yanami@flab.fujitsu.co.jp
in engineering. The current notation for first-order logic over the reals is much easier to read than the previous one. This helps users describe mathematical formulas for various types of real algebraic constraints. A special QE method for quadratic formulas widens the application areas of SyNRAC in actual problems (see [2]). The simplifiers can reduce the size of a given formula. This contributes not only to improve recognition of formulas but also to remarkably increase the efficiency of special QE procedures based on virtual substitution.

Furthermore, using SyNRAC as a kernel, we are now pushing the further development of design tools based on computer algebra (in particular, QE) in various application fields: One successful attempt is the development of a toolbox for parametric robust control design on MATLAB [3] based on the authors' previous work concerning QE-based robust control design [4, 5, 6, 7].

2 A new environment for first-order formulas over the reals

When we say a real algebraic constraint, what we have in mind is a first-order formula over the reals. We describe what type of formulas we are dealing with and how they are expressed in SyNRAC.

An atomic formula is an equality or inequality \(f(x_1, \ldots, x_n) \equiv g(x_1, \ldots, x_n) \), where \(f \) and \(g \) are polynomials in a finite number of indeterminates over \(\mathbb{Q} \) and \(\equiv \) is one of the relational operators \{=, \neq, \leq, <\}. A formula is a string obtained by appropriately arranging atomic formulas, logical operators, or existential/universal quantifiers. Here is an example of existential formulas with respect to \(x, y, \) and \(z \)

\[
\exists x \exists y \exists z \left(f_1 \land f_2 \land (h_1 \lor h_2) \land f_3 \right) \implies \neg(g_1 \land g_2),
\]

where \(f_i, g_i, \) and \(h_i \) are atomic formulas.

To express a formula in SyNRAC, we need to prepare and fix notational symbols for \(\exists, \forall, \land, \lor, \neg \), and so forth. In the earlier stages of implementation, we were using relational and logical operators bundled in Maple. As we proceeded, it turned out that some of the Maple's operators are unsuitable for our purpose.

To meet our demands, we have introduced a user-defined operator \(\&= \) and replaced it for the Maple's equality symbol '"'. To maintain consistency, the other relational operators such as \(<, \leq, < \) are all redefined by adding 'k' at the forefront of the respective commands. Some of them are just an alias for the Maple's corresponding command. Logical operators and quantifier symbols have also been redefined in the same way as in Tables 1 and 2. In SyNRAC, the atomic formula \(x^2 - 2y^2 - 3z^2 \leq xy - 6yz - z + 7 \) is expressed in

\[
(x^2-2y^2-3z^2) \&<= (x+y-6y+z+7). \quad \text{2)}
\]

The example formula above is expressed in the following:

\[
\&Ex([x,y,z], (f_1 \&and f_2 \&and (h_1 \&or h_2) \&and f_3) \&impl \¬(g_1 \&and g_2)).
\]

The operators \(\&and \) and \(\&or \) can also be used as a prefix operator, taking a list of operands as an argument. The expression \(\&and([f_1, f_2, \ldots, f_n]) \) is equivalent in SyNRAC to \(f_1 \&and f_2 \&and \ldots \&and f_n \).

1) A Maple user can form a neutral operator symbol by using \(\&name \) (the ampersand character 'k' followed by one or more characters).
2) The polynomials both sides should be enclosed within parentheses since \(\&name \) has higher priority in Maple than the basic arithmetic operators. In the examples in the present paper, we leave them out when too convoluted.

XXXVII-2
Table 1: The logical operators in SyNRAC

<table>
<thead>
<tr>
<th>Operator</th>
<th>(\wedge)</th>
<th>(\vee)</th>
<th>(\neg)</th>
<th>(\impl)</th>
<th>(\repl)</th>
<th>(\equiv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>&and</td>
<td>&or</td>
<td>&not</td>
<td>&impl</td>
<td>&repl</td>
<td>&equiv</td>
</tr>
</tbody>
</table>

Table 2: The quantifiers in SyNRAC

<table>
<thead>
<tr>
<th>Operator</th>
<th>(\exists x_1 \cdots \exists x_n \varphi)</th>
<th>(\forall x_1 \cdots \forall x_n \varphi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>&Exists([x_1,..,x_n], \varphi)</td>
<td>&All([x_1,..,x_n], \varphi)</td>
</tr>
</tbody>
</table>

According to these notational rules, QE algorithms has been (re)implemented in SyNRAC. In addition, several basic utility functions on formulas are provided in SyNRAC, for example, functions for counting the number of atomic formulas, extracting formulas, and so on. Moreover, some computations for the disjunctive normal form\(^3\) are also available.

3 Solving quadratic algebraic constraints over the reals

Here we briefly explain a special QE by virtual substitution of parametric test points that is applicable to formulas in which the quantified variables appear at most quadratically (see [8] for details). We call a formula whose atomic subformulas are at most quadratic (linear) with respect to its quantified variables a quadratic (linear) formula, respectively.

Let

\[\psi(p_1, \ldots, p_m) = Q_1 z_1 \cdots Q_n z_n \varphi(p_1, \ldots, p_m, z_1, \ldots, z_n) \]

be a linear or quadratic formula, where \(Q_i \in \{ \forall, \exists \} \) and \(\varphi \) is a quantifier-free formula. By using the equivalence \(\forall x \varphi(x) \iff \neg(\exists x \neg \varphi(x)) \), we can change the formula into an equivalent one of the form \(\neg \exists x_1 \cdots \neg \exists x_n (\neg) \varphi \). The negation \(\neg \) that precedes a quantifier-free formula can be easily eliminated (use De Morgan's laws and rewrite the atomic subformulas), which is not essential part of QE. Therefore we may focus our attention on an existential formula, i.e., a formula of the form \(\exists x_1 \cdots \exists x_n \varphi(p_1, \ldots, p_m, z_1, \ldots, z_n) \). Furthermore, it is sufficient to show how to eliminate \(\exists x \) in \(\exists x \varphi \), since all the quantifiers in the formula can be eliminated by removing one by one from the innermost one.

Now our main purpose is to eliminate the quantified variable \(\exists x \) in

\[\psi'(p_1, \ldots, p_m) = \exists z \, \varphi(p_1, \ldots, p_m, z) \]

with \(\varphi(p_1, \ldots, p_m, z) \) quantifier-free and quadratic, and obtain an equivalent quantifier-free formula \(\psi'(p_1, \ldots, p_m) \). For fixed real values \(q_1, \ldots, q_m \) for the parameters \(p_1, \ldots, p_m \), all the polynomials appearing in \(\varphi(x) \) are linear or quadratic. Therefore, the set \(M = \{ r \in \mathbb{R} | \varphi(q_1, \ldots, q_m, r) \} \) of real values \(r \) for \(z \) satisfying \(\varphi \) is a finite union of closed, open, or half-open intervals over \(\mathbb{R} \). The endpoints of these intervals are among \(\pm \infty \) and the real zeros of atomic formulas in \(\varphi \). Then candidate terms, say, \(t_1, \ldots, t_s \), for those zeros can be constructed by the solution formulas for linear or quadratic equations.

If \(\varphi \) does not contain any strict inequalities, all the intervals composing \(M \) are either unbounded or closed. In the closed case such an interval contains its real endpoint. So \(M \) is nonempty if and only if

\(^3\)A formula is called a disjunctive normal form if it is a disjunction (a sequence of or's) consisting of one or more disjunctions, each of which is a conjunction (a sequence of and's) of one or more atomic formulas.
the substitution of \(\pm\infty\) or of one of the candidate solutions \(t_j\) for \(x\) satisfies \(\varphi\). Let \(S\) be the candidate set \(S = \{t_1, \ldots, t_k, \pm\infty\}\). Such a set is called an elimination set for \(\exists x\varphi\). We obtain a quantifier-free formula equivalent to \(\exists x\varphi\) by substituting all candidates in \(S\) into \(\varphi\) disjunctively:

\[
\exists x\varphi \iff \bigvee_{t \in S} \varphi(x/t).
\]

We note that there is a procedure assigning the expression \(\varphi(x/t)\) obtained from \(\varphi\) by substituting \(t\) for \(x\) an equivalent formula [8]. We denote the resulting formula by \(\varphi(x/t)\).

If \(\varphi\) contains strict inequalities, we need to add to \(S\) other candidates of the form \(s \pm \epsilon\), where \(s\) is a candidate solution for some left-hand polynomial in a strict inequality and \(\epsilon\) is a positive infinitesimal.

For improving the efficiency of this method, the following two points are crucial: (i) refining the elimination set \(S\) by a scrupulous selection of a smaller number of candidates in \(S\); (ii) integrating with sophisticated simplifications of quantifier-free formulas. SyNRAC now employs three types of elimination sets proposed by Loos and Weispfenning [9]. Simplifications in SyNRAC are discussed in the next section.

Moreover, heuristic techniques for decreasing the degree during elimination are important for raising the applicability of quadratic QE, because after one quantifier is eliminated for a quadratic case the degree of other quantified variables may increase. Only simple degree-decreasing functions are implemented in the current version of SyNRAC.

4 Simplification

The term simplification is used here for the process for changing a quantifier-free formula equivalently into more concise one. When a quantifier is eliminated in a given formula with a special QE procedure, its quantifier-free part usually gets larger. During a QE algorithm, formulas under manipulation tend to get extremely large, deeply nested and highly redundant. That is why simplification procedures are important. Utilizing simplification algorithms combined with a special QE algorithm contributes to improve not only readability of the resulting formula but efficiency of the computation.

Dolzmann and Sturm [10] summarize the rule for simplifying the formula \('%\ f \rho_1 \ 0 \ and/\or \ g \ \rho_2 \ 0\%', where \(f\) and \(g\) differ only by a constant \(c\), and \(\rho_1\) and \(\rho_2\) are an (in)equality. They called these laws ordering theoretical smart simplification when \(c = 0\), i.e., \(f = g\) and additive smart simplification when \(c \neq 0\), respectively.

Automatic formula simplifiers are implemented in REDLOG\(^4\) and QEPCAD\(^5\) (see [13, 10] for possible simplifications). Several simplification rules including ordering theoretical and additive smart simplification are implemented in SyNRAC, which boost the efficiency of our QE commands. These rules dramatically work especially when an input formula contains lots of quantified variables to be eliminated.

5 Commands in SyNRAC

In this section we show some computational examples to illustrate how commands in SyNRAC are used.\(^6\)

\(^4\)REDLOG is a QE package based on virtual substitution on REDUCE.

\(^5\)QEPCAD is a general QE package that is applicable to all first-order formulas based on cylindrical algebraic decomposition (CAD) [11, 12].

\(^6\)All computations were executed on a Pentium III 1 GHz processor.
> read "synrac"; with(combinat);
You can use qe_sdc to solve the formula $\forall x > 0$, $f(x) > 0$, called the sign definite condition (SDC). The first argument of qe_sdc is polynomial f and the second is the variable to be eliminated. The next example shows how to use the command to solve the problem $\forall x > 0$, $a_2x^2 + a_1x + a_0 > 0$,
> qe_sdc(a2*x^2+a1*x+a0, x);

$\begin{align*}
- a_0 &< 0 \land \ a_1 &< 0 \land -4*a_0+a1^2 &< 0 \ \& \ \text{or} \\
- a_0 &< 0 \land -a_1 &< 0 \land -4*a_0+a1^2 &< 0 \ \& \ \text{or} \\
- a_0 &< 0 \land -a_1 &< 0 \land 4*a_0-a1^2 &< 0
\end{align*}$

time = 0.02, bytes = 123614
By using qe_lin command, you can solve the existential linear QE problem. This command takes two arguments; the former is a list of quantified variables and the latter a quantifier-free formula. In the following example, qe_lin eliminates the two quantified variables in $\exists x \exists y (y > 2x + 3 \land x > 0 \land y < s)$ and returns a condition with regard to s.
> qe_lin($\exists x, y \exists[(x,y), yk>2*x+3 \land xk>0 \land yk<s]$);

-1/2*s < -3/2
time = 0.03, bytes = 144686
The qe_quad command can deal with quadratic QE problems. You can solve the quadratic QE problem $\exists x\exists y(x^2 - 4x - 5 \leq y \land 3 \leq x \land y \leq -5x + 6)$ as follows:
> qe_quad($\exists x, y$, $\land\{(x^2-4x-5)\&\&y<x, 3\&\&x, y\&\&(-5x+6)\}$);

-14+5*s \&\& 0
time = 0.03 sec, bytes = 233514
The two examples below show that if a decision problem is given, i.e., the input contains no free variables, each command returns the true or false value. And if it is true, a sample point (one making the formula true) is also returned.
> qe_sdc(x^5-x^2+3*x-9,x);

false
time = 1.11, bytes = 8774262
> qe_lin($\exists x, y$, $y<2*x+2 \land y<3*x+12 \land y>(1/3)*x+5$);

true
A sample point: [x, y], [62/25, 144/25]
time = 0.03, bytes = 155078
By calling the qfsimple command, you can simplify quantifier-free formulas with ordering theoretical and additive smart simplification.
> qfsimple((xk<5 \&\& x<k \&\& xk>10) \&\& (xk<3 \&\& x<k<5 \&\& xk<-5 \&\& xk>5) \&\& (xk<3) \&\& (xk>7 \&\& x<k<d));

(-3+x \&\& 0 \land -5-x \&\& 0 \&\& (-x \&\& -7 \land -d+x \&\& 0)

\begin{align*}
time = 0.00, bytes = 44974
\end{align*}$

The substsimple command simplifies quantifier-free formulas by making use of simple atomic equations. This command repeats the following two procedures: (i) solving the linear atomic equations with only one variable in each conjunctive formula and substituting its solution for the variable as far as its influence goes; (ii) calling the qfsimple command and simplifying the resulting formula. These are redone until such linear equations run out.
In the next example, z in the input formula is firstly substituted by 3/2 except in the 4th atomic one, and then by using the 1st equation in the resulting formula, x is replaced by 3/5 in three places.
> substsimple(5*xk=2*y \&\& 9 bk=3*y-x \&\& x+4*y+zk>0 \&\& 2*x-3bk=0 \&\& 5*x+2*yk<=x+3);

x \&\& 3/5 \&\& -40*y \&\& 21 \&\& z \&\& 3/2 \&\& -3+4*y \&\& 0
time = 0.00, bytes = 97406

XXXVII-5
6 Examples

We show two example problems from mathematical programming and solve them with SyNRAC.

Example 1 First consider the following convex quadratic programming:

\[
\begin{align*}
\text{minimize} & \quad x_1^2 + x_1x_2 + 2x_2^2, \\
\text{subject to} & \quad x_1 + 4x_2 \geq 16, 3x_1 + 2x_2 \geq 18, x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]

To obtain a description of the first-order formula, we add an unqualified variable \(z \) and express the problem in

\[
\exists x_1 \exists x_2 (z - (x_1^2 + x_1x_2 + 2x_2^2) \geq 0 \land x_1 + 4x_2 \geq 16 \land 3x_1 + 2x_2 \geq 18 \land x_1 \geq 0 \land x_2 \geq 0).
\]

Eliminating the quantified variables \(x_1 \) and \(x_2 \), we can obtain a condition on \(z \), from which we would obtain the range of the objective function. Quantifier elimination procedure in SyNRAC outputs the condition below in 1.78 sec:

\[
\begin{align*}
\forall x \in \mathbb{R} : & \quad 25 \leq 46 - z \leq 567 - 16z, \\
\forall x \in \mathbb{R} : & \quad 25 \leq 46 - z \leq 567 - 16z, \\
\forall x \in \mathbb{R} : & \quad -155 + 25 \leq -256 + z, \\
\forall x \in \mathbb{R} : & \quad -155 + 25 \leq -256 + z.
\end{align*}
\]

A little computation tells us that this formula is equivalent to \(z \geq 46 \). Thus the minimum of the objective function \(x_1^2 + x_1x_2 + 2x_2^2 \) equals 46.

Example 2 Next we consider the following nonconvex programming:

\[
\begin{align*}
\text{minimize} & \quad x_1 + 3x_2, \\
\text{subject to} & \quad x_1^2 + x_2 - 4x_1 - 3 \geq 0, x_1^2 + 2x_2 - 12x_1 + 32 \geq 0, x_1 \geq 0, x_2 \geq 0.
\end{align*}
\]

As in the first example, we rewrite the problem by using a slack variable \(z \) into

\[
\exists x_1 \exists x_2 (z - (x_1^2 + x_2 - 4x_1 - 3 \geq 0 \land x_1^2 + 2x_2 - 12x_1 + 32 \geq 0 \land x_1 \geq 0 \land x_2 \geq 0).
\]

Quantifier elimination procedure as well as simplification after QE outputs the condition below in 6.12 sec:

\[
-155 + 25 \cdot 42^{(1/2)} - z \leq 0
\]

Thus the minimum of the objective function \(x_1 + 3x_2 \) is \(-155 + 25\sqrt{42}\), or approximately 7.02.

7 Conclusion

We have presented the current version of SyNRAC, which has added newly provides quantifier elimination for the quadratic case and some standard simplifiers of formulas based on a new environment for first-order formulas over the reals on Maple. The new features greatly extend the applicability and tractability of SyNRAC for solving real algebraic constraints in engineering. We are continually improving the efficiency of implemented algorithms and are going to implement other algorithms (including symbolic-numeric algorithms) for solving real algebraic constraints into SyNRAC.

Now we note that based on SyNRAC the development of a toolbox for parametric robust control design on MATLAB is ongoing.

We are aware that there is still a considerable way for SyNRAC to be a sophisticated symbolic-numeric tool. Hence we will keep progressing to bridge the gap. Our goal is to develop innovative symbolic-numeric methods and to build novel design tools via SyNRAC for various fields in engineering.

Acknowledgements The author thanks Volker Weispfenning for his helpful advice.
References

XXXVII-7