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Preface

In this thesis, we study two proximal type splitting methods for the structured convex

optimization problems: the alternating direction methods of multipliers (ADMM) and

the Peaceman-Rachford splitting methods (PRSM). These two first-order algorithms are

well studied for the structured convex optimization problems since applying the separable

properties of the objective functions. Besides, these algorithms are widely used in real

practical problems, particularly the large-scale problems arising in statistics, machine

learning, and related areas.

Due to the large scales, the subproblems in the classical ADMM and PRSM may be

difficult to be solved exactly in many applications. Thus proximal terms with a positive

semidefinite matrix had been added to the subproblems to make them easier. In the proximal

ADMM, it always solves subproblems with an approximate solution. Although such classical

and proximal version algorithms are efficient methods to solve the separated convex program

and have been widely studied, there still exist a lot of issues which should be considered.

For example, the two main problems as following: one is that the classical splitting method

can get a global solution within fewer iterative steps, but sometimes it needs a quite long

time to solve the subproblems exactly or cannot; another one is that the proximal versions

can reach approximate solutions with a faster time, but the solutions may be infected by

the proximal matrix and it uses more iterations. Recently, some modifications also have

been studied, such as replacing the semidefinite proximal term with an indefinite term for

the proximal ADMM, allowing two different stepsizes for the PRSM. From the mentioned

issues, we will directly have the question that: Do the proximal methods can reach nearly

the same optimal solutions as the classical ADMM, or more efficient on the iteration steps?

Hence, proposing efficient and practical solution methods to solve them is a worth studying

topic.

The main contribution of this thesis is to propose efficient proximal splitting methods for

solving large scale structured nonlinear programming problems.

We propose two classes of the splitting methods. One is the proximal ADMM, where we

propose to generate a variable positive semidefinite matrices sequence for an unconstraint

structured convex quadratic problem. We first construct these proximal matrices via the
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BFGS update at every iteration step which can satisfy the convergence conditions. Then

we extend this algorithm for two general convex optimization problems and also extend

the constructions of the proximal term by the Broyden family update. At last, we further

propose a variable metric indefinite proximal ADMM by replacing the semidefinite terms

to allow for a larger stepsize. We even show the sufficient conditions on the indefinite

proximal matrices for the global convergence. The other method is proximal PRSM with

an indefinite proximal term and two different constants step sizes in the dual updates. We

establish its global convergence and also the o(1/t) convergence rate in the nonergodic sense.

Moreover, for all of the methods, some numerical experiments have also been carried out,

which demonstrate the excellent performances of the proposed methods.

The author hopes that the results in this thesis will contribute to further studies on

the ADMM and PRSM for the structured convex optimization problems and their related

problems.

Yan Gu

November 2020
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Chapter 1

Introduction

The mathematical optimization is a branch of applied mathematics which was introduced by

professor Robert Dorfman in 1940s. Optimization is to maximize or minimize a specific

function or variable under a defined domain. Convex optimization is a subfield of the

optimization that studies the problem of minimizing convex functions over convex sets and

is very important because of the rapid development of the intersection between various

disciplines. In some applications such as machine learning, signal processing and statistics

problems, a general convex model fitting problem very often can be written in the form of

minimizing the sum of convex functions called structured convex optimization problem.

In this chapter, we give an overview of the structured convex optimization problem and

then outline the contents of the thesis.

1.1 Overview of problems

1.1.1 Structured convex optimization

It has long been recognized that many convex optimization problems can be put into the

following form:

minimize
x∈C

f(x) + g(x), (1.1.1)

where C is a finite-dimensional Euclidean space, f : C → R and g : C → R are closed convex

functions.

An equivalent formulation of Problem (1.1.1) is as follows:

minimize f(x) + g(y)

subject to x− y = 0, (1.1.2)

x ∈ C, y ∈ C.
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In this thesis, we consider a more general structured convex optimization problems related

to Problem (1.1.2):

minimize f(x) + g(y)

subject to Ax+By = b, (1.1.3)

x ∈ X , y ∈ Y ,

where f : Rn1 → R and g : Rn2 → R are closed convex (not necessarily smooth) functions;

A ∈ Rm×n1 and B ∈ Rm×n2 are given matrices; b ∈ Rm is a given vector; X and Y are

nonempty closed convex subsets of Rn1 and Rn2 (e.g., positive orthant, spheroidal or box

areas), respectively.

The above problems consist of two functions. Next, we describe another optimization

problem which is multi-block structured convex optimization problem. The objective function

is the sum of functions without coupled variables.

minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

Aixi = b, (1.1.4)

xi ∈ Xi, i = 1, · · · , N,

where fi : Rni → R(i = 1, · · · , N) are closed convex functions; Ai ∈ Rm×ni , b ∈ Rm and

Xi ⊆ Rni(i = 1, · · · , N) are closed convex sets. It is obvious that the problem (1.1.1) or

(1.1.3) is a special case when the N = 2 in the multi-block problem (1.1.4).

Various practical problems of science and engineering, such as machine learning [73, 115],

total variation denoising [102] and statistics [59] can be formulated as Problem (1.1.1). In

the following, we give some of such applications.

1.1.2 Applications

The problems (1.1.1) and (1.1.3) have been widely used in many applications. Generally, f is

a loss function and g is a structured regularization term. Regularization is a technique often

used in practice, either because in some cases the observation matrix can be ill-conditioned,

or to impose additional information on the model like sparsity to improve the conditioning

of the problem. The most common regularizers used are the squared l2 norm (Tikhonov

regularization), and the l1 norm. We list some common variants of function g(x) as follows.

(a) l1-regularization [73, 105, 106, 112] is a good technique for obtaining relatively sparse

solution that many elements of the variable x are 0, i.e.,

g(x) = ∥x∥1;
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(b) l2-regularization [91, 107] is introduced to prevent overfitting and to make the values

relatively dense and uniformly concentrated near zero, i.e.,

g(x) = ∥x∥2;

(c) Block l2-regularization [84, 116] is an extension of the l1-regularization, i.e.,

g(x) =
N∑
i=1

∥xJi∥2,

where {xJi}, i = 1, 2, . . . , N , denote the disjoint subvectors of vector x. Its sparsity

is obtained at the group level, that is, a group is picked or dropped. But within each

group, sparsity can not be guaranteed;

(d) The mixed norm penalty [71, 74] yields solutions that are sparse at both group and

individual elements, i.e.,

g(x) = ∥x∥1 +
N∑
i=1

∥xJi∥2;

(e) Indicator function with respect to closed separable convex set C, i.e.,

g(x) =

0 if x ∈ C,

∞ otherwise.
(1.1.5)

Apparently, the above regularization terms have different forms. However, from the

optimization point of view, they are special forms of models (1.1.1) and (1.1.3). Next,

some examples of functions f and g are described as follows.

(1) Quadratic Programming: The standard form of quadratic program (QP) is

minimize
1

2
x⊤Qx+ p⊤x

subject to Ax = b, x ≥ 0,

where x ∈ Rn and Q is a positive definite matrix. We can rewrite it as the (1.1.3) type

that

minimize f(x) + g(y)

subject to x− y = 0,

where the function f(x) = 1
2
x⊤Qx + p⊤x with domf = {x | Ax = b} and g(y) is

the indicator function of the nonnegative orthant. Note that when the matrix Q = 0,

this problem reduces to a standard form linear program (LP). More generally, the

constraint x ≥ 0 can be replaced by any conic constraint that x ∈ K when the problem

becomes a quadratic conic program.
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(2) l1-norm Problems: Here we show some problems that involve l1 norm, which are

important in statistics, signal processing and machine learning.

The Basis Pursuit problem [24], which plays a significant role in many applications

like the compressed sensing [15, 31, 115], is the equality constrained l1 minimization

problem

minimize ∥x∥1
subject to Ax = b,

with x ∈ Rn, A ∈ Rm×n, and b ∈ Rn. It is a basic technique to determine a sparse

solution of a underdetermined linear system that m < n (in some cases that m ≪ n).

Then we make the function f(x) be an indicator function of {x ∈ Rn | Ax = b}, the
problem can be reformulated by

minimize f(x) + ∥y∥1
subject to x− y = 0.

Lasso [106, 59] is an important l1 regularized linear regression case.

minimize
1

2
∥Ax− b∥22 + µ∥x∥1,

where µ is a scalar regularization parameter that is normally chosen by cross-validation.

The Lasso can be written as the structured form as

minimize f(x) + g(y)

subject to x− y = 0,

with f(x) = 1
2
∥Ax− b∥22 and g(y) = µ∥y∥1.

An another similar extension example which is called the Group Lasso [116], consider

replacing the regularization term ∥x∥1 with ΣN
i=1∥xi∥2, where x = (x1, . . . , xN), with

xi ∈ Rni . Group Lasso arises in applications (i.e. bioinformatics), where correlated

features can be put into groups.

(3) Model Fitting: Some large scale problems arising in model fitting like regression,

classification, and signal processing also can be written in the Problem (1.1.1) form.

A general convex model fitting problem can be written as

minimize l(Ax− b) + r(x),

where x ∈ Rn, A ∈ Rm×n is the feature matrix, b ∈ Rm is the output vector, l : Rm → R
is a convex loss function, and r is a convex regularization function. The common
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examples for r are r(x) = µ∥x∥22 and r(x) = µ∥x∥1 with a positive regularization

parameter µ. In some cases, one or more parameters are not regularized such as the

offset parameter in a classification model. Next we give some examples that have the

general form above.

Regression (see, e.g.[14, S7.1.1]) is a special case of the model fitting. First we assume

that l is additive, i.e.

l(Ax− b) =
m∑
i=1

li(a
⊤
i x− bi),

where li : R → R is the loss function for the ith example, ai ∈ Rn is the feature vector

and bi is the response for example i. Consider a linear model fitting problem with

bi = a⊤i x+ vi,

where ai is the ith feature vector and vi are independent measurement noises with

log-concave densities pi. Then the negative log-likelihood function is l(Ax − b) with

li(w) = −logpi(−w).

Classification [4, 73] problems can also be written in the general form above. Let

pi ∈ Rn−1 be the feature vector of the ith example and qi ∈ {−1, 1} be the binary

outcome or class label for i = 1, . . . ,m. Function l(Ax− b) is given by

l(Ax− b) =
1

m

m∑
i=1

li
(
qi(p

⊤
i w + v)

)
,

where x = (w, v) ∈ Rn with a weight vector w ∈ Rn−1 and offset v ∈ R, ai = (qipi,−qi),

and bi = 0 for i = 1, . . . ,m. (Here we need to scale li by 1/m.) Some common loss

functions are hinge loss
(
1− qi(p

⊤
i w+ v)

)
+
, exponential loss exp

(
− qi(p

⊤
i w+ v)

)
, and

logistic loss log
(
1 + exp

(
− qi(p

⊤
i w + v)

))
.

1.2 Solution methods

In many applied fields, particularly the data analysis, the problems are often large datasets

in high dimensions and contain huge number of training examples which have been referred

to as “Big Data”. It is challenging to directly solve the optimization problem like Problem

(1.1.1). Thus it is natural to look to parallel optimization algorithms as a mechanism for

solving large-scale statistical tasks.

In recent years, a number of efficient first-order algorithms have been developed for

problems (1.1.1) and (1.1.3) including operator splitting methods [1, 5, 26, 32, 35, 80],

gradient methods [88, 97, 108, 109], primal dual methods [18, 23, 39], Bregman iterative
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methods [16, 51], etc (see, e.g.[6, 111]). The dual version of the operator splitting method,

which is simple but powerful, known as Alternating Direction Method of Multipliers (ADMM)

[46, 48, 49] is well suited for such convex optimization problems.

1.2.1 Proximal Gradient Method

For simplicity, consider the problem (1.1.1) with C = Rn. The proximal gradient method

can solve the problem with assumption that g is differentiable.

The proximal operator proxf : Rn → Rn of f is defined by

proxf (x) = argmin
u

{
f(u) +

1

2
∥u− x∥22

}
.

The proximal operator of f with parameter λ > 0 can be expressed by

proxλf (x) = argmin
u

{
f(u) +

1

2λ
∥u− x∥22

}
,

which means that for a given point x, finding the optimal point u = proxλf (x) to minimize

f(u) + 1
2λ
∥u− x∥22.

The proximal gradient method for solving problem (1.1.1) is

xk+1 = proxλf
(
xk − λ∇g(xk)

)
, (1.2.1)

where λ > 0 can be viewed as step size.

There are two general ways to decide the step size λ. One is to take a fixed step size

λ ∈ (0, 1
L
] when the gradient ∇g(x) is Lipschitz continuous with a constant L. This method

converges with rate O(1/k)1 [6, 27]. Another one allows variable step size λk by a line search

when L is unknown [7].

However, it is always difficult to compute the proximal operation for structured sparsity

functions to capture complex structures of data. Examples of that include overlapped group

lasso, low rank tensor estimation, and graph lasso.

1.2.2 Augmented Lagrangian Method

One may solve problem (1.1.3) is the augmented Lagrangian method (ALM), which was

originally known as the method of multipliers. These methods were first discussed by

Hestenes [69] and Powell [99] in the late 1960s, and were also studied by Bertsekas [8].

1As the work [87, 88] and many others, a worst-case O(1/k) convergence rate means the accuracy to a

solution under certain criteria is of the order O(1/k) after k iterations of an iterative scheme; or equivalently,

it requires at most O(1/ϵ) iterations to achieve an approximate solution with an accuracy of ϵ.
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The Lagrangian function for problem (1.1.3) is

L(x, y, λ) = f(x) + g(y)− ⟨λ,Ax+By − b⟩, (1.2.2)

where λ ∈ Rm is the Lagrangian multiplier for the linear constraints Ax+By = b in (1.1.3).

The augmented Lagrangian function of (1.1.3) is

Lβ(x, y, λ) = f(x) + g(y)− ⟨λ,Ax+By − b⟩+ β

2
∥Ax+By − b∥2, (1.2.3)

where β > 0 is called the penalty parameter. It also can be viewed as the Lagrangian

function for the following problem:

minimize f(x) + g(y) +
β

2
∥Ax+By − b∥2

subject to Ax+By = b, (1.2.4)

x ∈ X , y ∈ Y .

Applying the dual ascent method to the problem (1.2.4) above, it generates the updates(xk+1, yk+1) = argmin
x,y

Lβ(x, y, λ
k),

λk+1 = λk − β(Axk+1 +Byk+1 − b).
(1.2.5)

This method of multipliers converges under very general conditions including the case that

f and g are not strictly convex. However, in this case, the vectors xk+1 and yk+1 should

be updated at the same time ignoring the separability of the original functions. Generally,

the joint minimization problem (1.1.3) is a challenge to be solved exactly or approximately

with a high accuracy. To exploit the separable property of (1.1.3), the classical ADMM is

developed to efficiently solve the x- and y-subproblems.

1.2.3 Alternating Direction Method of Multipliers and extensions

Our main problem is the structured convex optimization problem (1.1.3). Because of the

separability of the objective functions, we can effectively apply some properties of f and g

in algorithm design, respectively. We first introduce the ADMM method. ADMM was first

proposed by by Gabay and Mercier [46], Glowinski and Marrocco [49] in the mid-1970s. It

derived from the augmented Lagrangian method and also can be viewed as an application

of the Douglas-Rachford algorithm to the dual of (1.1.1).

The classical ADMM for solving (1.1.3) takes the iterative sequence via the following

recursions: 
xk+1 = argmin

x∈X
Lβ(x, y

k, λk), (1.2.6a)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk), (1.2.6b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (1.2.6c)
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ADMM is similar with dual ascent method and the method of multipliers. It consists of

an x-minimization step, a y-minimization step and a dual variable update step. The step-

size of dual variable λ update is equal to augmented Lagrangian parameter β. In ADMM,

the solutions of subproblem (1.2.6a) and (1.2.6b) are used to find the global solution of

the big problem. At the k iteration, for fixed yk and multiplier λk, the new point xk+1 is

obtained from the exact minimizer of the augmented Lagrangian with respect to x. The

yk+1 is updated with the new point xk+1 in a similar way. That is, the variables x and y are

updated in a Gauss-Seidel pass [52] that x is updated while y is fixed then the new value of

x is used to find a new y.

The convergence of ADMM has established in some literatures [13, 35, 44, 45]. One

approach [44] was to split the Lagrangian function of problem (1.1.3) into a sum of two

convex-concave functions by using the monotonicity of the subgradient of the Lagrangian.

Another approach [45] was based on Douglas-Rachford operator splitting theory, and yields

considerable insight into the convergence of the ADMM. An O(1/k) convergence rate had

been shown for two parts convex problems [65, 67, 85] with the k on behalf of the number of

iterations. A rate of O(1/k2) was given for the accelerated ADMM when the problems are

strongly convex [50]. Under the assumptions of strongly convex and Lipschitz continuous

gradient on one of the two functions, it turns out to have a global linear convergence rate

[30].

By noting the fact that the x-, y-subproblems in (1.2.6a)-(1.2.6c) may be difficult to

solve exactly in many applications, Eckstein [34, 36] have considered the proximal ADMM

by adding proximal terms to the subproblems which takes the following scheme:
xk+1 = argmin

x∈X
Lβ(x, y

k, λk) +
1

2
∥x− xk∥2S, (1.2.7a)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2T , (1.2.7b)

λk+1 = λk − γβ(Axk+1 +Byk+1 − b), (1.2.7c)

where β > 0, and ∥z∥G =
√
z⊤Gz for z ∈ Rn and G ∈ Rn×n. They proposed the proximal

matrices S and T to be positive definite, and the step size γ = 1 in this classical proximal

ADMM (1.2.7). The proximal ADMM covers the classical ADMM when S = T = 0.

Fazel et al. [40] proposed a semi-proximal ADMM with the semidefinite matrices S and

T , and the step size γ here to be in a range of γ ∈ (0, (1 +
√
5)/2). Fazel et al. [40]

showed its global convergence when S and T are positive semidefinite, in contrast to the

positive definite requirements in the classical proximal ADMM [34, 60], which makes the

algorithm more flexible. The proximal ADMM has an advantage that its subproblems are

easy to solve, and it also can efficiently handle the multi-block convex optimization problem

which is known as block-wise ADMM [66]. See [30, 40, 65, 114] for a brief history of the

developments of the semi-proximal ADMM and the corresponding convergence results.
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The global convergence of the semi-proximal ADMM is easy to prove. However, it is

not satisfactory in numerical performance since it always takes a lot of iterations. The

paper [30] mentioned that the proximal matrix T in (1.2.7b) could be indefinite if α ∈ (0, 1)

though it provided no further discussions on theoretical properties. Li et al. [77] proved the

global convergence. He et al. [63] proposed a linearized version of ADMM with an indefinite

proximal term. They considered the case that the matrix S = 0 and α = 1 in (1.2.7), and

generated the proximal matrix T as

T = τrI − βB⊤B with r > β∥B⊤B∥, τ ∈ (0.75, 1). (1.2.8)

The proximal matrix T is not necessarily positive semidefinite. A smaller value τ ∈ (0.75, 1)

can ensure the convergence and also give better numerical performance.

Among the family of alternating direction algorithms, inexact versions are allowed the

subproblems in (1.2.6) and (1.2.7) to be solved approximately with certain implementable

criteria. For the classical ADMM, the approximate ADMM was first developed in [35].

They showed an approximate solution replacing the exact minimizations of (1.2.6a) and

(1.2.6b) with absolute summable error criteria and some research papers are proposed such as

[21, 60, 117, 92]. For the proximal ADMM (1.2.7), let xk+1
exact and yk+1

exact be the exact solution of

the corresponding subproblems in (1.2.7). Inexact ADMM aims to find approximate solution

xk+1 and yk+1 of xk+1
exact and yk+1

exact, respectively. Based on (1.2.7), He et al. [60] proposed an

inexact proximal ADMM where the parameters β, S and T are replaced by some bounded

sequences of positive definite matrices {Hk}, {Sk} and {Tk}, respectively. The approximate

solution xk+1 and yk+1 are obtained by absolute summable error criteria

∥xk+1 − xk+1
exact∥ ≤ νk, ∥yk+1 − yk+1

exact∥ ≤ νk, and
∞∑
0

νk < +∞.

A relaxed error criteria (relative error criterion) was further given in [117] as

∥xk+1 − xk+1
exact∥ ≤ νk∥xk − xk+1∥, ∥yk+1 − yk+1

exact∥ ≤ νk∥yk − yk+1∥, and
∞∑
0

ν2
k < +∞.

The convergence properties of such algorithms have been established in [3, 53, 82].

Recently, many researchers are interested in extending two block ADMM to multi-block

ADMM for solving the multi-block convex optimization problems (1.1.4). For the general

case, i.e., N ≥ 3, a straightway idea is to extend the classical ADMM as (1.2.9) and it indeed

works well for some applications, see e.g. [104].
xk+1
i = arg min

xi∈Xi

Lβ(x
k+1
1 , ..., xk+1

i−1 , xi, x
k
i+1, ..., x

k
N , λ

k), i = 1, · · · , N,

λk+1 = λk − β
(∑N

i=1
Aix

k+1
i − b

)
.

(1.2.9)
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However, according to [19], the classical ADMM for N -block (N > 2) convex optimization

problems is not necessarily convergent. In order to guarantee the convergence of the extended

ADMM, additional assumptions on the objective functions such as smooth, or at least N−2

functions are strongly convex are needed [17, 20, 56, 76, 79]. Some works imposed to slightly

change the order of the iterative scheme or add some restrictions to the Lagrangian multiplier

update step [57, 64, 70]. Moreover, some researchers considered to group the N functions in

the objective of (1.1.4) and all the variables, accordingly as two groups [66]. Problem (1.1.4)

can be written as

minimize

N1∑
i=1

Φi(xi) +

N2∑
j=1

Ψj(yj)

subject to

N1∑
i=1

Aixi +

N2∑
j=1

Bjyj = b, xi ∈ Xi, yj ∈ Yj, (1.2.10)

where N1 ≥ 1, N2 ≥ 1, N = N1 +N2 .

Then the original ADMM (1.2.6) becomes applicable in a block wise form and the

proximal techniques also can be applied to the block-wise ADMM (1.2.10) [66].

1.2.4 Peaceman-Rachford Splitting method

The solution for problem (1.1.1) is x∗ such that

0 ∈ ∂f(x∗) + ∂g(x∗).

We consider these two subdifferentials as two maximum monotone operator J1 and J2 such

that

0 ∈ (J1 + J2)(x
∗). (1.2.11)

The operator splitting methods are the methods for finding a zero of the sum of two maximum

monotone operators (1.2.11).

As known, the ADMM is a special case of a method called the Douglas-Rachford splitting

method (DRSM) for monotone operators [32, 80]. The variant of ADMM that performs

an extra λ-update between the x- and y-updates is equivalent to the Peaceman-Rachford

splitting method (PRSM) [80, 98] instead, as shown by [45, 48], one can derive the following

iterative scheme for (1.1.1) and (1.2.6):

xk+1 = argmin
x∈X

Lβ(x, y
k, λk), (1.2.12a)

λk+ 1
2 = λk − β(Axk+1 +Byk − b), (1.2.12b)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk+ 1

2 ), (1.2.12c)

λk+1 = λk+ 1
2 − β(Axk+1 +Byk+1 − b), (1.2.12d)
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where λ ∈ Rm, β have the same meaning as (1.2.6). Different from the global convergence of

the ADMM (1.2.6), which can be established under very mild conditions [13], the convergence

of the Peaceman-Rachford-based method (1.2.12) cannot be guaranteed without further

conditions [28]. As analyzed in [45], the PRSM has the addition of the intermediate update

of the multiplier λk+ 1
2 , and it thus offers the same set of advantages. However, the PRSM

scheme is less robust and thus it converges under more restrictive assumptions than ADMM.

Also as remarked in [45], under the Lipschitz continuity and coercivity of ∂g∗ (g∗ denotes the

conjugate function of g) assumptions, the PRSM (1.2.12) with optimal parameters converges

on the linear rate. Some numerical experiments for the efficiency of PRSM had been verified

[8, 48].

He et al. [61] proposed a modification of (1.2.12) by introducing a parameter α to the

update scheme of the dual variable λ in (1.2.12b) and (1.2.12d). Note that when α = 1, it

is the same as (1.2.12). They explained the non-convergence behavior of (1.2.12) from the

contract perspective, i.e., the distance from the iterative point to the solution set is merely

nonexpansive, but not contractive. Under the condition that α ∈ (0, 1), they proved the same

sublinear convergence rate as that for ADMM [65]. Particularly, they showed that it achieves

an approximate solution of (1.1.1) with the accuracy of O(1/t) after t iterations, both in

the ergodic and nonergodic sense. Besides, Gu [54] and He et al. [62] took two different

constants α and γ to different step sizes in (1.2.12b) and (1.2.12d). The convergence results,

including global convergence and the worst-case O(1/t) convergence rate in the ergodic and

nonergodic sense, have been established in [54]. Chen et al. [25] proposed a new Peaceman-

Rachford splitting method in a prediction-correction framework. For some recent advances

of the Peaceman-Rachford splitting method, one can refer to [2, 47, 68, 72, 75, 113], to name

a few.

1.3 Motivations and contributions

As mentioned above, the ADMM and PRSM are parallel methods that are verified to be very

efficient for large-scale optimization problems. Moreover, although these methods have been

widely studied, there still exist a lot of issues that should be considered. For example, does

the proximal ADMM reach nearly the same optimal solutions as the exact ADMM or more

efficient on the iteration steps? Therefore, such many applications and problems motivate

us to join the research on the proximal alternating direction methods.

In this thesis, we carry out our study from two aspects; one is the research for the ADMM

and the other is on another splitting method PRSM. In the following, the contributions of

this thesis are itemized.

(1) To propose a proximal ADMM with the BFGS update for structured convex
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quadratic problem

We present a new proximal ADMM with variable positive semidefinite matrices

sequence {Tk} for an unconstrained structured convex quadratic problem. Under some

sufficient conditions on Tk, the sequence generated by the proposed algorithm globally

converges to an optimal solution. Since the subproblems of normal proximal ADMM do

not include any second-order information on the objective function, the convergence of

it might be slower (actually it is fast on the computation time but takes more iteration

steps). We construct these Tk via the BFGS update at every iteration step which also

satisfy the above convergence conditions. The subproblems are easily solved and have

some information on the Hessian matrix.

(2) To extend the ADMM with the Broyden family update for two general

convex optimization problems

Inspired by the proposed ADMM with the BFGS update, we consider extending it

to more general problems. According to the results in the above algorithm. The

BFGS update for the positive semidefinite matrix of the proximal term only can be

applied when the Hessian matrix of the augmented Lagrangian function is constant. We

describe how to extend our algorithm for two general convex optimization problems and

the constructions of Tk via the Broyden family update. For the generic variable metric

semi-proximal ADMM, we establish the convergence under certain flexible conditions

on the proximal matrices sequence.

(3) To propose a variable metric indefinite proximal ADMM to allow for a larger

stepsize

The above two papers reported numerical results for LASSO and l1 regularized logistic

regression. The results show that the algorithms can get a solution faster than the

general indefinite proximal ADMM whose proximal term is fixed. Another interesting

numerical result is that a variable indefinite sequence via the BFGS update also shows

a good performance. Inspired by the interesting results and the indefinite proximal

ADMM, it is worth considering ADMMwith a sequence of indefinite proximal matrices.

We proposed a variable metric indefinite proximal ADMM (VMIP-ADMM), which can

unify the several existing ADMMs. We present sufficient conditions on the indefinite

proximal matrices for the global convergence of VMIP-ADMM. The proof is followed

by separating the constant indefinite term into two semidefinite parts. Moreover, we

provide a construction of the indefinite term via the BFGS update. We also show

that this construction of the proximal term satisfies the above conditions for the global

convergence property.

(4) To propose an indefinite proximal PRSM to allow for a larger stepsize
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We first extend the so-called strictly contractive Peaceman-Rachford splitting method

by using two different relaxation factors α and γ in (1.2.12b) and (1.2.12d). As already

mentioned in Section 1.2, the semi-proximal ADMM is flexible and easy to prove the

convergence. The ADMM with a positive indefinite proximal term also had been

studied for purpose of improved numerical performance. Li et al. [77] proved the

convergence under the assumption that f and g are smooth convex functions with

Lipschitz continuous gradient. Recently, He et al. [63] obtained a linearized version

of ADMM with a positive-indefinite proximal term by using a linearization technique

to the subproblem and showed the convergence without further condition. Motivated

by the recent advances on the ADMM type method with indefinite proximal terms,

we employ the indefinite proximal term in the strictly contractive Peaceman-Rachford

splitting method. Moreover, we show how to choose T under different α and γ. The

results of the proposed algorithm can unify that of several existing splitting methods.

1.4 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, we first introduce some preliminaries, including notations, basic definitions,

and some properties which are necessary for the later discussion.

In Chapter 3, we propose a variable metric semi-proximal ADMM whose regularized

matrix in the proximal term is generated by the BFGS update (or limited memory BFGS)

at every iteration for a structured convex quadratic problem. These types of matrices use

the second-order information of the objective function. We establish the global convergence

of the proposed method under certain assumptions. Finally, numerical results are given to

show the effectiveness of the proposed proximal ADMM.

In Chapter 4, we consider the extension of the variable metric semi-proximal ADMM for

more general convex optimization problems. We apply the ADMM with the Broyden family

update when the x-subproblems of these convex problems can be rewritten as unconstrained

quadratic programming problems, as shown in Chapter 3. Moreover, the global convergence

of such methods for general cases has also been established under some standard conditions.

The numerical results for the l1 regularized logistic regression problem are given to show the

feasibility and effectiveness of the proposed algorithms.

In Chapter 5, we consider a variable metric indefinite proximal ADMM and give sufficient

conditions on the proximal terms for the global convergence. Moreover, based on the BFGS

update, we propose a new indefinite proximal term which can satisfy the conditions for

the global convergence. Experiments on several datasets demonstrated that our proposed

variable metric indefinite proximal ADMM outperforms most of the compared proximal
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ADMMs.

In Chapter 6, we propose an indefinite-proximal strictly contractive Peaceman-Rachford

splitting method. We generalize the proximal matrix from positive definite to indefinite. We

show that the proposed indefinite-proximal strictly contractive Peaceman-Rachford splitting

method is convergent and also prove the o(1/t) convergence rate in the nonergodic sense.

The numerical tests on the l1 regularized least square problem demonstrate the efficiency of

the proposed method.

Finally, in Chapter 7, we give some concluding remarks and mention some issues for

future work.



Chapter 2

Preliminaries

In this chapter, we introduce some mathematical notations, basic definitions and properties

which will be used in the subsequent chapters.

2.1 Notations

Let Rn denote the n-dimensional real Euclidean space. All of the vectors in Rn are column

vectors and ⊤ means the transpose operation. For any vectors x, y ∈ Rn, the Euclidean inner

product ⟨x, y⟩ and x⊤y are defined by

⟨x, y⟩ = x⊤y = x1y1 + x2y2 + · · ·+ xnyn.

For any vector x ∈ Rn, we let

(x)+ = max(x, 0).

For a vector x ∈ Rn and a matrix G ∈ Rn×n, G ≽ 0, the norms ∥x∥1, ∥x∥2, ∥x∥∞ and ∥x∥G
are defined as follows:

∥x∥1 : = |x1|+ · · ·+ |xn|,

∥x∥2 : =
√

⟨x, x⟩ =
√

x2
1 + · · ·+ x2

n,

∥x∥∞ : = max {|x1|, · · · , |xn|} ,
∥x∥G : =

√
⟨x,Gx⟩.

Particularly, we let ∥ · ∥ denote the 2-norm ∥ · ∥2. For a matrix A ∈ Rn×n, ∥A∥ denotes the

operator norm defined by

∥A∥ = max
x ̸=0, x∈Rn

∥Ax∥
∥x∥

.
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For a nonsingular matrix A ∈ Rn×n, we define A−⊤ by

A−⊤ = (A−1)⊤ = (A⊤)−1.

Let S1, · · · , Sn be some sets. We define the Cartesian product of S1, · · · , Sn as

S1 × · · · × Sn : = {(s1, · · · , sn) | s1 ∈ S1, · · · , sn ∈ Sn} .

For a differentiable function f : Rn → R, the gradient of f at x, ∇f(x) ∈ Rn is defined

by

∇f(x) : =


∂f(x)
∂x1
...

∂f(x)
∂xn

 ∈ Rn,

where ∂f(x)
∂xi

denotes a partial derivative of f at x with respect to its i-th component.

Moreover, if f is twice differentiable, the Hessian matrix of f at x, ∇2f(x) ∈ Rn×n is

defined by

∇2f(x) : =


∂2f(x)

∂x2
1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2

n

 ∈ Rn×n.

For a differentiable vector-valued function F : Rn → Rm, ∇F (x) denotes the Jacobian of F

at x, that is,

∇F (x) : = (∇F1(x), · · · ,∇Fm(x)) : =


∂F1(x)
∂x1

· · · ∂Fm(x)
∂x1

...
. . .

...
∂F1(x)
∂xn

· · · ∂Fm(x)
∂xn

 ∈ Rn×m.

2.2 Basic properties

In this section, we introduce some preliminaries that will be useful in this thesis. We give

some basic definitions and properties of convex functions, variational inequality, and the

optimal conditions.

2.2.1 Convexity, monotonicity and Lipschitz continuity

To begin with, we give the definitions and relevant properties related to the convexity.

Definition 2.2.1. A set C ⊆ Rn is said to be convex if

(1− θ)x+ θy ∈ C, ∀x, y ∈ C, ∀θ ∈ [0, 1].
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Definition 2.2.2. For a given function f : Rm → (−∞,∞], we define the effective domain

of f by

domf : = {x ∈ Rn | f(x) < ∞}.

Then, we say that

1. the function f is proper if domf ̸= ∅;

2. the function f is closed if domf is closed and f is lower-semi-continuous.

Definition 2.2.3. Let C ⊆ dom f be a convex set and f : C → R be a scalar function. Then,

f is said to be

(1) convex if it holds that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ C, θ ∈ [0, 1].

(2) strictly convex if it holds that

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y), ∀x, y ∈ C, θ ∈ [0, 1].

(3) µf -strongly convex on C, µf > 0, if it holds that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− 1

2
µfθ(1− θ)∥x− y∥22, ∀x, y ∈ C, θ ∈ [0, 1].

Besides, the function f is called (strictly) concave on C if −f is (strictly) convex on C.

Additionally, if the function f is differentiable, we have the following necessary and sufficient

condition for convexity.

Proposition 2.2.1 ([10, 14, 100]). Let C ⊆ dom f be a convex set and f : C → R be a

differentiable function. Then, the function f is convex over C if and only if

f(y) ≥ f(x) +∇f(x)⊤(y − x), ∀x, y ∈ C.

Moreover, the function f is strictly convex on C if and only if the above inequality is strict

whenever x ̸= y.

Convexity plays an important role in the field of optimization. For example, the nonlinear

programming problem, if the objective function f and constraint functions are all convex,

then any local minimum of such problem is a global minimum.

Now we give the definition of monotonicity for a mapping f(·), both singe-valued and

set-valued.
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Definition 2.2.4. A mapping f : Rn ⇒ Rn is called

(1) monotone if it holds that

(x− y)⊤(u− v) ≥ 0, ∀ x, y ∈ Rn, and u ∈ f(x), v ∈ f(y),

and strictly monotone if the inequality is strict when x ̸= y.

(2) strongly monotone with modulus µ > 0 if it holds that

(x− y)⊤(u− v) ≥ µ∥x− y∥2, ∀ x, y ∈ Rn, and u ∈ f(x), v ∈ f(y).

(3) maximal monotone if no monotone mapping Ψ exists such that gph f ⊂ gphΨ. The

graph of the mapping f is defined by

gph f = {(x, y) ∈ Rn × Rn : y ∈ f(x)}.

When the f is single-valued, the monotonicity takes the form

(x− y)⊤(f(x)− f(y)) ≥ 0, ∀ x, y ∈ Rn.

Definition 2.2.5. A single-valued function f : Rn → R is said to be Lipschitz continuous

with the Lipschitz constant L > 0, if it holds that

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ dom f.

More generally, for a convex (not necessary smooth) function f , it has a similar character

as Proposition 2.2.1 by subgradient.

Definition 2.2.6. Let a function f : Rn → R be convex. A vector ξ ∈ Rn is a subgradient

of the function f at a point x ∈ dom f if

f(y) ≥ f(x) + ξ⊤(y − x), ∀y ∈ dom f.

The set of all subgradients of the function f at the point x ∈ dom f , denoted by ∂f(x), is

called the subdifferential of function f at the point x ∈ dom f , i.e.,

∂f(x) : =
{
ξ | ξ⊤(y − x) ≤ f(y)− f(x), ∀y ∈ dom f

}
.

In particular, there is a relation between monotonicity of subdifferential mappings and

convexity of functions. We define the subdifferential function ∂f : Rn → Rn of the convex

function f .

Proposition 2.2.2 ([40, Appendix B], [101, Theorem 12.17]). Let f : Rn → R be a proper

convex function. Then, its corresponding subdifferential mapping ∂f : Rn → Rn is monotone.

Moreover, consider a proper closed convex function f , its subdifferential mapping ∂f is

maximal monotone, and there exist a positive semidefinite matrices Σf such that for all

x, x̂ ∈ Rn,

f(x) ≥ f(x̂) + ∂f(x̂)⊤(x− x̂) +
1

2
∥x− x̂∥2Σf

, and (x− x̂)⊤(∂f(x)− ∂f(x̂)) ≥ ∥x− x̂∥2Σf
.
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2.2.2 Optimal solution and optimal conditions

In this subsection, we introduce the definitions of optimal solutions, as well as the first

order optimality condition of problem (1.1.3). For more details, see [9, 10, 14, 89, 100] and

references therein.

At first, we should give the definitions of cones that will be used.

Definition 2.2.7. A set C is called a cone if

α > 0, x ∈ C ⇒ αx ∈ C.

Definition 2.2.8. Given a nonempty set C, the polar cone of C is given by

C∗ = {y | y⊤x ≤ 0, ∀ x ∈ C}.

Definition 2.2.9. Given a subset C ⊆ Rn and a vector x ∈ C, a vector y ∈ Rn is said to

be a tangent of C at x if either y = 0 or there exits a sequence {xk} ⊂ C such that

xk → x,
xk − x

∥xk − x∥
→ y

∥y∥
, ∀ k, xk ̸= x.

Then the set of all tangents of C at x is called the tangent cone of C at x and denoted by

TC(x).

Definition 2.2.10. Given a set C and a vector x ∈ C, the normal cone of C at x is defined

by

NC(x) = {d ∈ Rn : d⊤(y − x) ≤ 0, ∀y ∈ C}.

Vectors in this set are called normal vectors of the set C at x.

Then we give the relation between the tangent cone and the norm cone for a convex set.

Proposition 2.2.3. Let C be a nonempty convex subset of Rn and x ∈ C.

1. d ∈ TC(x)
∗ ⇔ ∀y ∈ C d⊤(y − x) ≤ 0.

2. C is regular for all x ∈ C : TC(x)
∗ = NC(x).

3. TC(x) = NC(x)
∗.

Next, we give the definitions of optimal solutions. Let F (x) be denoted by F (x) : =

f(x) + g(x) in problem (1.1.1).

Definition 2.2.11. A vector x∗ is said to be
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(1) a locally optimal solution of problem (1.1.1) if there exists a scalar δ > 0 such that

F (x∗) ≤ F (x), ∀x ∈ {x | ∥x− x∗∥ ≤ δ, x ∈ domF}.

The value F (x∗) is called the local minimum of problem (1.1.1).

(2) a globally optimal solution of problem (1.1.1) if it holds that

F (x∗) ≤ F (x), ∀x ∈ domF.

The value F (x∗) is called the global minimum of problem (1.1.1).

When F is a smooth function and C is a convex set, we can have the following basic

necessary condition for the local optimality.

Theorem 2.2.1 ([9, 10]). Let F (x) : Rn → R be a smooth function, and let x∗ be a local

minimum of F over a convex subset C of Rn. Then

∇F (x∗)⊤(x− x∗) ≥ 0, ∀ x ∈ C.

In the case where C = Rn, it reduces to ∇F (x∗) = 0.

Moreover, if the function F is convex, then the above condition∇F (x∗) = 0 is a necessary

and sufficient condition for a vector x∗ to be a globally optimal solution. Next we give a

general necessary and sufficient condition when the problem is convex but not necessarily

smooth.

Theorem 2.2.2 ([10, 12, 89]). Let F (x) : Rn → R be a convex function. A vector x∗

minimizes F over a convex set C ⊆ Rn if and only if one of the following equivalently

statements holds :

(1) 0 ∈ ∂F (x∗) +NC(x
∗).

(2) there exists a subgradient d ∈ ∂F (x∗) such that

d⊤(x− x∗) ≥ 0, ∀ x ∈ C.

The optimality condition in Theorem 2.2.2 (2) of the constrained nonsmooth convex

problem is always used in the convergence analysis. Specially when C = Rn, we obtain a

necessary and sufficient condition for the unconstrained optimality of x∗ :

0 ∈ ∂F (x∗).

Next we consider the structured convex problem (1.1.3) with the linear constraint, and

the set constraints X,Y to be Rn. We have the first-order necessary conditions for a solution

to be optimal, which is named Karush-Kuhn-Tucker (KKT) conditions, also known as the

Kuhn-Tucker conditions.
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Definition 2.2.12. Let the objective functions f and g are continuously differentiable and

convex. A pair of point (x∗, y∗) is called a KKT point, along with a Lagrange multiplier λ∗

(KKT multiplier) if they satisfy

∇f(x∗)− A⊤λ∗ = 0, (Stationarity)

∇g(y∗)−B⊤λ∗ = 0, (Stationarity) (2.2.1)

Ax∗ +By∗ − b = 0, (Primal feasiblility)

where

L(x, y, λ) : = f(x) + g(y)− λ⊤(Ax+By − b) (2.2.2)

is the Lagrangian function of the problem (1.1.3).

If some of the objective functions are non-differentiable, the subdifferential version of

the KKT conditions are available via replacing the gradients in (2.2.1) by subgradients.

When a triple (x∗, y∗, λ∗) satisfies the KKT conditions (2.2.1), then (x∗, y∗) is the optimal

solution of problem (1.1.3). Conversely, in order for a optimal solution (x∗, y∗) to satisfy the

above KKT conditions, the problem should satisfy a suitable constraint qualification (CQ)

such as linearity constraint qualification (LCQ), linear independence constraint qualification

(LICQ), Mangasarian-Fromovitz constraint qualification (MFCQ), etc.

For example, we consider the problem (1.1.3) with certain set constraints X and Y .

Let (x̄, ȳ) ∈ dom f × dom g be an optimal solution, and (x̄, ȳ.λ̄) be the KKT point for

problem (1.1.3). The existence of such KKT points can be guaranteed if a certain constraint

qualification such as the Slater condition holds:

∃ (x′, y′) ∈ ri(dom f × dom g) ∩ {(x, y) ∈ X × Y : Ax+By = b},

where ri(S) denotes the relative interior of a given convex set S.

2.2.3 Variational Inequality

The variational inequality (VI) problem is another class of problems but closely related with

convex optimization problems. The KKT conditions of convex optimization problems can

be expressed as forms of these VI problems although the VI problem is not the optimization

problem for minimizing a specific objective function. In a sense, a differentiable convex

optimization problem is a kind of VI problem with special characters. First we focus on

some basic concepts of the VI and describe the problem (1.1.3) to the VI.

Definition 2.2.13. Given a nonempty closed subset K of Rn and a continuous mapping

H : K → Rn, the variational inequality (VI), denoted by VI(K,H) is a problem to find a

vector x∗ ∈ K such that

(x− x∗)⊤H(x∗) ≥ 0, ∀x ∈ K. (2.2.3)
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The set of solutions to this problem is denoted as SOL(K,H).

From the definition of the VI, it is clear that a vector x ∈ K solves the VI(K,H) if and

only if −H(x) is a norm vector to K at x, equivalently,

0 ∈ H(x) +NK(x).

A number of results on the existence and uniqueness of a solution in the VI(K,H) problem

have been studied [96]. One of the most basic results relies on the compactness and convexity

of the set K. Instead of the compactness of K, some other existence results can be obtained

by imposing another condition such as the coerciveness of the mapping H. On the other

hand, we have the following results on the uniqueness of the solution under the monotonicity

assumptions on H.

Proposition 2.2.4 ([96, Proposition 3.2]). The VI(K,H) has at least one solution if H is

strictly monotone.

Proposition 2.2.5. If H is strictly monotone, then there exists a unique solution to the

problem VI(K,H).

Now we relate the VI(K,H) problem to some projection equations.

Definition 2.2.14. The projection of a vector x ∈ Rn onto a set K under the Euclidean

norm is denoted by PK(x), i.e.,

PK(x) = argmin{∥x− y∥ | y ∈ K}.

The mapping PK : Rn → K is called the projection operator.

Basic properties of the projection are obtained.

Proposition 2.2.6 ([96]). Let K be a nonempty closed convex subset of Rn.

(1) For each x ∈ Rn, PK(x) exists and is unique.

(2) PK(x) is nonexpansive, that is for any two vectors u, v ∈ Rn,

∥PK(u)− PK(v)∥ ≤ ∥u− v∥.

The following lemma describes the solution of VI(K,H) and the projection.

Lemma 2.2.1 ([11, 96]). Let VI(K,H) be defined in (2.2.3) and γ be any positive constant.

Then x∗ ∈ K is a solution of VI(K,H) if and only if

x∗ = PK [x
∗ − γH(x∗)].
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Therefor, it is obvious to see that solving VI(K,H) is equivalent to finding a zero point

of the following equation,

e(x,K, γH) : = x− PK [x− γH(x)]. (2.2.4)

Many applications of the VI can be found in various areas [96, 41, 86], such as the

economics, transportation systems, mechanics, etc. Next we explain some relations between

the convex problems with the VI problems. First we consider the convex optimization

problem (1.1.1), with the feasible set C defined by

C = {x ∈ Rn | Ax = b, x ∈ C}.

By introducing a Lagrangian multiplier λ ∈ Rm for the linear constraint Ax = b, we can

obtain the following Lagrangian function which is defined on C × Rm

L(x, λ) = f(x) + g(x)− λ⊤(Ax− b).

(x∗, λ∗) is called the saddle point if it satisfies

Lλ∈Rm(x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈C(x, λ
∗).

It is equivalent to find (x∗, λ∗) ∈ C × Rm, f ′(x∗) ∈ ∂f(x∗) and g′(x∗) ∈ ∂g(x∗), such that{
(x− x∗)⊤(f ′(x∗) + g′(x∗)− A⊤λ∗) ≥ 0, ∀x ∈ C,

(λ− λ∗)⊤(Ax∗ − b) ≥ 0, ∀λ ∈ Rm.
(2.2.5)

Similarly, we consider the structured convex optimization problem (1.1.3). The

Lagrangian function of this problem is written as (2.2.2), where λ is the Lagrangian multiplier

for the linear constraint Ax+By = b in (1.1.3). Let Ω be the set defined by Ω = X ×Y×Rm,

(x∗, y∗, λ∗) be an saddle point of the Lagrangian function, then (x∗, y∗, λ∗) ∈ Ω and it satisfies
(x− x∗)⊤(f ′(x∗)− A⊤λ∗) ≥ 0,

(y − y∗)⊤(g′(y∗)−B⊤λ∗) ≥ 0, ∀(x, y, λ) ∈ Ω,

(λ− λ∗)⊤(Ax∗ +By∗ − b) ≥ 0,

(2.2.6)

where f ′(x∗) ∈ ∂f(x∗) and g′(y∗) ∈ ∂g(y∗). Furthermore, by denoting

u =

(
x

y

)
, w =

 x

y

λ

 , F (w) =

 f ′(x)− A⊤λ

g′(y)−B⊤λ

Ax+By − b

 ,

where the subgradients f ′(x) ∈ ∂f(x) and g′(y) ∈ ∂g(y), the first-order optimal condition

(2.2.6) can be rewritten in the VI(Ω, F ) form as

(w − w∗)⊤F (w∗) ≥ 0, ∀w ∈ Ω. (2.2.7)
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As mentioned in subsection 2.2.2, ∂f(x) and ∂g(y) are maximal monotone operators.

Therefor, according to [96], the VI(Ω, F ) (2.2.7) is solvable. We use Ω∗ for the solution

set of VI(Ω, F ), and it is nonempty when under the assumption that the solution set of

(1.1.3) is not empty.

From the above Lemma 2.2.1 and (2.2.4), we have the following relations between the

VI(Ω, F ) with projection.

Lemma 2.2.2. Let VI(Ω, F ) be defined in (2.2.7) and γ be any positive constant. Then

solving VI(Ω, F ) is equivalent to finding a zero point of

e(x,Ω, γF ) : = x− PΩ[x− γF (x)] =

 x− PX
[
x− γ

(
f ′(x)− A⊤λ

)]
y − PY

[
y − γ

(
g′(y)−B⊤λ

)]
γ(Ax+By − b)

 .

Normally, we can choose the constant γ = 1.



Chapter 3

An Alternating Direction Method of

Multipliers with the BFGS update for

Structured Convex Quadratic

Optimization

3.1 Introduction

In this Chapter, we first consider the following convex optimization problem:

minimize 1
2
∥Ax− b∥2 + g(x)

subject to x ∈ Rn,
(3.1.1)

where g : Rn → R ∪ {∞} is a proper convex function, A ∈ Rm×n and b ∈ Rm. For example,

“g” here can be an indicator function on a convex set or the l1 penalty function defined as

∥x∥1 :=
∑m

i=1 |xi|. Problem (3.1.1) includes many important statistical learning problems

such as the LASSO problem [106]. The number n of variables in these learning problems is

usually large.

Let f(x) = 1
2
∥Ax− b∥2. Then problem (3.1.1) can be written as

minimize f(x) + g(y)

subject to x− y = 0

x, y ∈ Rn.

(3.1.2)

As mentioned in Introduction 1.2.3, the semi-proximal ADMM scheme are given as:
xk+1 = argmin

x
Lβ(x, y

k, λk) +
1

2
∥x− xk∥2T , (3.1.3a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S, (3.1.3b)

λk+1 = λk − αβ(xk+1 − yk+1), (3.1.3c)
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where α ∈ (0, (1 +
√
5)/2), ∥z∥G =

√
z⊤Gz for z ∈ Rn and G ∈ Rn×n.

In this chapter, we assume that yk+1 in (3.1.3b) can be easily obtained. For example,

if g(y) = τ∥y∥1 with τ > 0 and S = diag(s1, · · · , sn) is diagonal positive semidefinite, then

yk+1 is calculated by

yk+1
i = Sτ/(β+si)

(
1

β + si

(
βxk+1

i − λk
i + siy

k
i

))
, i = 1, · · · , n,

where Sν is the shrinkage operator defined by Sν(z) := sgn(z) ⊙ max{|z| − ν, 0}. We may

also consider a problem where g(x) = τ∥Bx∥1, B is a certain matrix, and B⊤B is positive

definite. Note that some existing first-order methods are difficult to solve such a problem.

For the ADMM, we may set S = ρB⊤B−βI, where ρ is a parameter such that S is positive

semidefinite. The subproblem of y is written as

yk+1 = argmin
y

{
τ∥By∥1 − ⟨λk, xk+1 − y⟩+ β

2
∥xk+1 − y∥2 + 1

2
∥y − yk∥2S

}
= argmin

y

{
τ∥By∥1 +

ρ

2
(y − a)⊤B⊤B(y − a)

}
,

where a = yk + β
ρ
(B⊤B)−1

(
xk+1 − yk − (1/β)λk

)
. This subproblem is equivalent to

zk+1 = argmin
z

{
τ |z|1 +

ρ

2
∥z − zk∥2

}
,

where z = By, zk = Ba. Then we can easily get zk+1 by using the shrinkage operator,

and set yk+1 = (B⊤B)−1B⊤zk+1. We note that for some applications (e.g., Total Variation

regularization), (B⊤B)−1 is easily calculated.

Therefore, our main focus is how to solve (3.1.3a) when n is large. We may select a

reasonable positive semidefinite matrix T such that xk+1 can be obtained quickly.

One of such examples of T is T = ξI − A⊤A with ξ > λmax(A
⊤A), where λmax(A

⊤A)

denotes the maximum eigenvalue of A⊤A. Then (3.1.3a) is written as

xk+1 = argmin
x

{
f(x)− ⟨λk, x− yk⟩+ β

2
∥x− yk∥2 + 1

2
∥x− xk∥2T

}
= argmin

x

{
⟨Axk − b, Ax⟩ − ⟨λk, x⟩+ β

2
∥x− yk∥2 + ξ

2
∥x− xk∥2

}
= (λk + βyk + ξxk − A⊤Axk + A⊤b)/(β + ξ).

The other example is T = ξI−βI−A⊤A with ξ > λmax(βI+A⊤A). Then (3.1.3a) is written

as

xk+1 = xk − ξ−1(A⊤Axk − A⊤b− λk + βxk − βyk).

In both cases, xk+1 is calculated within O(mn) time complexity. However, since these

subproblems do not include second-order information on f , the convergence of ADMM with

such T might be slow.
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We desire a matrix T that is positive semidefinite, enables subproblem (3.1.3a) to be easily

solved, and contains some second-order information on f . Let M be the Hessian matrix of

the augmented Lagrangian function Lβ, that is, M : = ∇2
xxLβ(x, y, λ) = A⊤A + βI. Note

that M ≻ 0 whenever β > 0. Subsequently, we consider a matrix B that has the following

three properties:

(i) T = B −M ;

(ii) B ≽ M ;

(iii) B retains some second-order information from M .

Properties (i) and (ii) imply that T is positive semidefinite. Moreover, subproblem (3.1.3a)

is written as

xk+1 = argmin
x

{
f(x)− ⟨λk, x− yk⟩+ β

2
∥x− yk∥2 + 1

2
∥x− xk∥2T

}
= argmin

x

{
⟨A⊤(Axk − b) + β(xk − yk)− λk, x⟩+ 1

2
∥x− xk∥2B

}
= xk −B−1

(
A⊤Axk − A⊤b− λk + β(xk − yk)

)
.

In this chapter, we propose to construct B−1 via the BFGS update at every iteration.

Then subproblem (3.1.3a) can be solved easily. Note that matrices B and T at every step

depend on k, that is, they become Bk and Tk, respectively, and the resulting ADMM is a

variable metric semi-proximal ADMM (abbreviated as VMSP-ADMM) expressed as follows:
xk+1 = argmin

x
Lβ(x, y

k, λk) +
1

2
∥x− xk∥2Tk

, (3.1.4a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S, (3.1.4b)

λk+1 = λk − β(xk+1 − yk+1). (3.1.4c)

The VMSP-ADMM was studied in [60] where the Tk was assumed to be positive

definite. Additionally, the convergence and complexity results have been studied in

[3, 53, 82]. Moreover, the VMSP-ADMM is closely related to the inexact ADMM, where the

subproblems in (3.1.3) are to be solved approximately with certain implementable criteria

[21, 35, 37, 38, 60, 117]. In this chapter, we suppose that subproblems (3.1.4a)-(3.1.4b) are

solved exactly.

The main contributions of the chapter are as follows:

1. An update formula on positive semidefinite matrices Tk and Bk is proposed via the

BFGS update that satisfies the three properties (i)-(iii) above.
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2. Numerical results for the proposed methods are reported, demonstrating that they

outperform the existing ADMM when n and m are large.

The rest of this chapter is organized as follows. In Section 3.2, we propose a new ADMM

with the BFGS update, and show its global convergence. In Section 3.4, we present some

numerical experiment results for the ADMM with the BFGS and limited memory BFGS

update. Finally, we make some concluding remarks in Section 3.5.

3.2 Construction of the proximal matrix

In this section, we first propose the updating rule of Tk via the BFGS update for VMSP-

ADMM, and show a key property on Tk for the convergence.

3.2.1 Construction of the regularized matrix Tk via the BFGS

update

As discussed in Introduction, we propose to construct Tk as Tk = Bk − M , where M =

∇2
xxLβ(x, y, λ). We want Tk to be positive semidefinite for global convergence as a usual

semi-proximal ADMM. Moreover we want Bk to be as close to M as possible for rapid

convergence. To this end, we propose to generate Bk by the BFGS update with respect to

M . Then we may consider the BFGS update with a given s ∈ Rn and l = Ms. Note that

s⊤l > 0 when s ̸= 0. Since BFGS usually constructs the inverse of Bk, we let Hk = B−1
k .

Using Hk, we can easily solve subproblem (3.1.4a).

Now we briefly sketch the BFGS update and the limited memory BFGS (L-BFGS) [93,

55]. Let sk = xk+1 − xk, lk = Msk. Then the BFGS updates for Bk+1 and Hk+1 are given as

BBFGS
k+1 = Bk +

lkl
⊤
k

l⊤k sk
− Bksks

⊤
k B

⊤
k

s⊤k Bksk
, (3.2.1)

HBFGS
k+1 =

(
I − skl

⊤
k

s⊤k lk

)
Hk

(
I − lks

⊤
k

s⊤k lk

)
+

sks
⊤
k

s⊤k lk
. (3.2.2)

Since s⊤k lk > 0, BBFGS
k+1 and HBFGS

k+1 are positive definite whenever Bk, Hk ≻ 0. Moreover

lk = BBFGS
k+1 sk and sk = HBFGS

k+1 lk.

The BFGS update requires only matrix-vector multiplications, which results in the

computational cost at each iteration being O(n2) time complexity. If the number of variables

is very large, even O(n2) per iteration is too expensive in terms of both CPU time and

memory usage.
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A less computationally intensive method is the limited memory BFGS method [55, 93].

Instead of updating and storing the entire approximated inverse Hessian matrix, the L-BFGS

method uses the vectors (si, li) in the last h iterations and constructs Hk+1 by using these

vectors. The updating in L-BFGS reduces the computational cost to O(hn) time complexity

per iteration.

3.2.2 Property of the regularized matrix Tk via the BFGS update

For the global convergence, we need Tk = Bk − M ≽ 0, that is Bk ≽ M . Note that

Bk ≽ M is equivalent to Hk ≼ M−1, where Hk = (Bk)
−1. We will show that Hk ≼ M−1 for

all k when the initial matrix H0 satisfies

H0 ≼ M−1.

We first show a technical lemma on s and l.

Lemma 3.2.1. Let s ∈ Rn such that s ̸= 0. Moreover let l = Ms and Φ = {z ∈ Rn | ⟨s, z⟩ =
0}. Then for any v ∈ Rn, there exist c ∈ R and z ∈ Φ such that v = cl + z.

Proof. Let v ∈ Rn. Then there exist c1, c2 ∈ R and z1, z2 ∈ Φ such that v = c1s+ z1

and l = c2s + z2. Since s⊤l > 0, we have c2 ̸= 0. Thus s = 1
c2
l − 1

c2
z2. Substituting it into

v = c1s+ z1 yields

v = c1

(
1

c2
l − 1

c2
z2
)
+ z1 =

c1
c2
l + z1 − c1

c2
z2.

Let c = c1
c2

and z = z1 − c1
c2
z2. Then z ∈ Φ and v = cl + z.

Note that the BFGS update (3.2.2) can be

Hnext = H − Hls⊤ + sl⊤H

s⊤l
+

(
1 +

l⊤Hl

s⊤l

)
ss⊤

s⊤l
, (3.2.3)

where H is the proximal matrix for the current step, s = xnext − x and Hnext is the new

matrix generated via BFGS update. Moreover we have

Hnextl = s = M−1l. (3.2.4)

The following theorem will play a key role for the global convergence of the proposed

method.

Theorem 3.2.1. Let s ∈ Rn such that s ̸= 0, and let l = Ms. If H ≼ M−1, then

Hnext ≼ M−1.
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Proof. Let v be an arbitrary nonzero vector in Rn. Let Φ = {z ∈ Rn | ⟨s, z⟩ = 0}.
From Lemma 3.2.1 there exist c ∈ R and z ∈ Φ such that v = cl + z. It then follows from

(3.2.4) and the definition of z that

v⊤Hnextv = (cl + z)⊤Hnext(cl + z)

= c2l⊤s+ 2cs⊤z + z⊤Hnextz

= c2l⊤s+ z⊤Hnextz

= c2l⊤M−1l + z⊤Hnextz.

We now consider the last term of the right-hand side of the last equation. Since z ∈ Φ, we

have

z⊤
(
sl⊤

s⊤l
H
ls⊤

s⊤l

)
z = 0,

z⊤
(
sl⊤

s⊤l
H

)
z = 0

and

z⊤
(
ss⊤

s⊤l

)
z = 0.

It then follows from (3.2.3) that

z⊤Hnextz = z⊤Hz − 2z⊤
(
sl⊤

s⊤l
H

)
z + z⊤

(
sl⊤

s⊤l
H
ls⊤

s⊤l

)
z +

z⊤ss⊤z

s⊤l
= z⊤Hz.

Moreover equation (3.2.4) implies

l⊤M−1z = s⊤z = 0.

Consequently we have

v⊤Hnextv = c2l⊤M−1l + z⊤Hz

≤ c2l⊤M−1l + z⊤M−1z

= (cl + z)⊤M−1(cl + z)− 2cl⊤M−1z

= v⊤M−1v,

where the inequality follows from the assumption. Since v is arbitrary, we have Hnext ≼ M−1.

This theorem shows that if H0 ≼ M−1, then Hk ≼ M−1, and hence Tk ≽ 0.
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3.3 Global convergence

We propose the following variable metric semi-proximal ADMM with the BFGS update

algorithm (ADM-BFGS).

Variable metric semi-proximal ADMM with the BFGS update (ADM-BFGS)

Input : data matrix A, initial point (x0, y0, λ0), penalty parameter β, maxIter;

initial matrix H0 ≼ M−1, constant k̄ ∈ [1,∞], stopping criterion ϵ.

Output:

approximative solution (xk, yk, λk)

1 initialization;

2 while k < maxIter or not converged do

3 if k ≤ k̄ and xk − xk−1 ̸= 0 then

4 update Hk via BFGS (or L-BFGS) with the initial matrix H0;

5 else

6 Hk = Hk−1;

7 end

8 update xk+1 by solving the x-subproblem:

xk+1 = xk +Hk

(
λk + βyk +A⊤b−Mxk

)
;

9 update yk+1 by solving the y−subproblem:

yk+1 = argminy

{
g(y)− ⟨λk, xk+1 − y⟩+ β

2 ∥x
k+1 − y∥2 + 1

2∥y − yk∥2S
}
;

10 update Lagrange multipliers: λk+1 = λk − β(xk+1 − yk+1).

11 end

3.3.1 Convergence of variable metric semi-proximal ADMM

We now develop a general convergence result for variable metric semi-proximal ADMM

(3.1.4) for problem (3.1.2) with a general convex function f . We first give some notations

and properties which will be frequently used in the analysis.

Let (x∗, y∗) be an optimal solution of problem (3.1.2), and let λ∗ be a Lagrange multiplier

that satisfies the following KKT conditions of problem (3.1.2):
η∗f − λ∗ = 0, (3.3.1a)

η∗g + λ∗ = 0, (3.3.1b)

x∗ − y∗ = 0, (3.3.1c)

where η∗f ∈ ∂f(x∗) and η∗g ∈ ∂g(y∗).

Now we rewrite the iteration schemes (3.1.4a)-(3.1.4b). Let Ω = Rn × Rn × Rn. Using

the first-order optimality conditions for subproblems (3.1.4a)-(3.1.4b), we see that the new

iterate (xk+1, yk+1) is generated by the following procedure.
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� step 1: Find xk+1 ∈ Rn such that ηk+1
f ∈ ∂f(xk+1) and

ηk+1
f − λk + β(xk+1 − yk) + Tk(x

k+1 − xk) = 0,

� step 2: Find yk+1 ∈ Rn such that ηk+1
g ∈ ∂g(yk+1) and

ηk+1
g + λk − β(xk+1 − yk+1) + S(yk+1 − yk) = 0.

For k = 0, 1, 2, ..., we use the following notation:

u∗ =

(
x∗

y∗

)
, uk =

(
xk

yk

)
, wk =

 xk

yk

λk

 , Dk =

(
Tk 0

0 S

)
, and Gk =

 Tk 0 0

0 S + βI 0

0 0 1
β
I

 .

(3.3.2)

Moreover, for simplicity, we denote

F k =

 ηkf − λk

ηkg + λk

xk − yk

 , (3.3.3)

where ηkf and ηkg are obtained in steps 1 and 2 in VMSP-ADMM.

For the sequences {wk} and {F k}, we have the following lemma, which is a direct

consequence of [60, Theorem 1] and [60, Lemma 3].

Lemma 3.3.1. Let w∗ = (x∗, y∗, λ∗), and {wk} be generated by the scheme (3.1.4). Then

we have the following two statements.

(i) ∥wk+1 − w∗∥2Gk
≤ ∥wk − w∗∥2Gk

− (∥uk+1 − uk∥2Dk
+ β∥xk+1 − yk∥2).

(ii) Suppose that sequence {Tk} is bounded. Then, there exists a constant µ > 0 such that

for all k ≥ 0, we have

∥F k+1∥ ≤ µ
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
.

Proof. The proofs of (i) and (ii) can be found in [60, Theorem 1] and [60, Lemma 3],

respectively.

We give some conditions for sequence {Tk} that should be obeyed to guarantee the global

convergence.
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Condition 3.3.1. For a sequence {Tk} in framework (3.1.4), there exist T ≽ 0 and a

sequence {γk} such that

(i) T ≼ Tk+1 ≼ (1 + γk)Tk for all k,

(ii)
∞∑
0

γk < ∞ and γk ≥ 0 for all k.

From the definitions of {Dk} and {Gk} in (3.3.2), together with Tk ≽ T ≽ 0, S ≽ 0 and

β > 0, it follows that the sequences {Dk} and {Gk} also satisfy 0 ≼ D ≼ Dk+1 ≼ (1+γk)Dk,

and 0 ≼ Ḡ ≼ Gk+1 ≼ (1+ γk)Gk for all k, where D =

(
T 0

0 S

)
and Ḡ =

 T 0 0

0 S + βI 0

0 0 1
β
I

,

respectively.

We define two constants Cs and Cp as follows:

Cs : =
∞∑
k=0

γk and Cp : =
∞∏
k=0

(1 + γk). (3.3.4)

Condition 3.3.1 (ii) implies that 0 ≤ Cs < ∞ and 1 ≤ Cp < ∞. Moreover, we have

T ≼ Tk ≼ CpT0 for all k, which means that the sequences {Tk} and {Dk} are bounded.

Under the conditions, we have the following convergence result.

Theorem 3.3.1. Let {(xk, yk, λk)} be generated by (3.1.4), and let {Tk} be a sequence

satisfying Condition 3.3.1. Then sequence {(xk, yk, λk)} converges to a point (x∗, y∗, λ∗) ∈
Ω∗.

Proof. First we show that the sequence {wk} is bounded. Since Ḡ ≼ Gk+1 ≼ (1 +

γk)Gk, we have

∥wk+1 − w∗∥2Gk+1
≤ (1 + γk)∥wk+1 − w∗∥2Gk

. (3.3.5)

Combining the inequality (3.3.5) with Lemma 3.3.1 (i), we have

∥wk+1 − w∗∥2Gk+1
≤ (1 + γk)∥wk − w∗∥2Gk

− (1 + γk)
(
∥uk+1 − uk∥2Dk

+ β∥xk+1 − yk∥2
)

≤ (1 + γk)∥wk − w∗∥2Gk
− c1

(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
, (3.3.6)

where c1 = min{1, β}. It then follows that we have for all k,

∥wk+1−w∗∥2Gk+1
≤ (1+γk)∥wk−w∗∥2Gk

≤ · · · ≤

(
k∏

i=0

(1 + γi)

)
∥w0−w∗∥2G0

≤ Cp∥w0−w∗∥2G0
.

(3.3.7)

Note that ∥wk+1−w∗∥2Gk+1
= ∥xk+1−x∗∥2Tk+1

+ ∥yk+1− y∗∥2S+βI +
1
β
∥λk+1−λ∗∥2, S+βI

is positive definite, and Cp∥w0 − w∗∥2G0
is a constant. It then follows from (3.3.7) that {yk}

and {λk} are bounded. We now show that {xk} is also bounded.
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From (3.3.6) and (3.3.7), we have

c1
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
≤ ∥wk − w∗∥2Gk

− ∥wk+1 − w∗∥2Gk+1
+ γkCp∥w0 − w∗∥2G0

.

Summing up the inequalities, we obtain

∞∑
k=0

c1
(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)

≤ ∥w0 − w∗∥2G0
− ∥wk+1 − w∗∥2Gk+1

+

(
∞∑
k=0

γk

)
Cp∥w0 − w∗∥2G0

≤ (1 + CsCp)∥w0 − w∗∥2G0
.

Since (1 + CsCp)∥w0 − w∗∥2G0
is a finite constant, we have

lim
k→∞

(
∥uk+1 − uk∥2Dk

+ ∥xk+1 − yk∥2
)
= 0, (3.3.8)

which indicates that

lim
k→∞

∥xk+1 − yk∥ = 0. (3.3.9)

Note that x∗ = y∗ and ∥xk+1−x∗∥ = ∥xk+1− yk + yk − y∗∥ ≤ ∥xk+1− yk∥+ ∥yk − y∗∥. It
then follows from (3.3.9) that {xk} is bounded. Consequently, the sequence {wk} is bounded.

Next we show that any cluster point of the sequence {wk} is a KKT point of (3.1.2).

Since the sequence {wk} is bounded, it has at least one cluster point in Ω. Let w∞ =

(x∞, y∞, λ∞) ∈ Ω be a cluster point of {wk}, and let {wkj} be a subsequence of {wk} that

converges to point w∞.

From (3.3.8) and Lemma 3.3.1 (ii), we have limj→∞ ∥F kj∥ = 0. It then follows from the

definition of F k that x∞ = y∞. Moreover, since ∂f and ∂g are upper semi-continuous, there

exists η∞f and η∞g such that η∞f ∈ ∂f(x∞), η∞g ∈ ∂g(y∞), η
kj
f → η∞f and η

kj
g → η∞g , taking

a subsequence if necessary. It then follows from limj→∞ ∥F kj∥ = 0 that η∞f − λ∞ = 0 and

η∞g + λ∞ = 0. Consequently w∞ satisfies the KKT conditions of problem (3.1.2).

Finally, we show that the whole sequence {wk} converges to w∞.

Since {wkj} converges to w∞, for any positive scalar ϵ, there exists positive integer q such

that

∥wkq − w∞∥Gkq
<

ϵ

C
1
2
p

, (3.3.10)

Note that (3.3.7) holds for an arbitrary KKT point w∗ of problem (3.1.2). It then follows

from (3.3.7) with w∗ = w∞ that for any k ≥ kq, we have

∥wk − w∞∥Gk
≤

k−1∏
i=kq

(1 + γi)

1/2

∥wkq − w∞∥Gkq
≤

(
∞∏
i=0

(1 + γi)

)1/2

∥wkq − w∞∥Gkq
< ϵ,
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where the second inequality follows from Condition 3.3.1 (ii), and the last inequality

follows from (3.3.10) and the definition of Cp. Since ϵ is an arbitrary positive scalar, this

shows that {wk} converges to w∞.

3.3.2 Convergence of variable metric semi-proximal ADMM with

the BFGS update

Now we give the global convergence of ADM-BFGS as a consequence of Theorem 3.3.1.

Theorem 3.3.2. Suppose that sequence {Tk} is generated by the BFGS (or L-BFGS) update

with M . Suppose also that {Tk} satisfies Condition 3.3.1. Then sequence {(xk, yk, λk)}
generated by ADM-BFGS converges to a point (x∗, y∗, λ∗) ∈ Ω∗.

Proof. The theorem directly follows from Theorem 3.3.1.

Currently, we cannot show that {Tk} satisfies Condition 3.3.1 when {Hk} is updated by a

pure BFGS (or L-BFGS) update and k̄ = ∞. Hence we give the following two remedies for

Tk to be satisfied Condition 3.3.1.

Remedy 1: Let k̄ be finite, and the updating of Bk to be stopped at k̄, that is

Bk = Bk̄, Tk = Tk̄ for all k ≥ k̄,

i.e., γk = 0 in Condition 3.3.1 when k ≥ k̄. Thus, it is reasonable to say that the

sequence {Tk} generated by ADM-BFGS and some existing {γk} satisfy the Condition

3.3.1. Note that the resulting ADM-BFGS becomes ADMM (3.1.3) with T = Tk̄ for

large k.

Remedy 2: Suppose that k̄ = ∞. We generate {Bk} as follows:

Bk+1 = Bk + ck

(
l̃k l̃

⊤
k

l̃⊤k sk
− Bksks

⊤
k B

⊤
k

s⊤k Bksk

)
, (3.3.11)

where l̃k = Msk + δsk with δ > 0, and {ck} is a sequence such that ck ∈ [0, 1], and
∞∑
k=0

ck < ∞.

Now we show that Condition 3.3.1 holds when B0 ≽ M + δI. Suppose that B0 ≽
M + δI. Note that Bk+1 = Bk + ck(B̄k+1 − Bk), where B̄k+1 is updated by the pure

BFGS update (3.2.1) with sk and l̃k. From Theorem 3.2.1, B̄k+1 ≽ M + δI when

Bk ≽ M + δI. Since Bk+1 = ckB̄k+1 + (1− ck)Bk, we have Bk+1 ≽ M + δI, and hence

Tk+1 = Bk+1 −M ≽ δI ≻ 0. Therefore the first matrix inequality in Condition 3.3.1

(i) holds.
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Next we show the second inequality in Condition 3.3.1 (i) holds. Note that s⊤k Bksk ≥
δ∥sk∥2, l̃⊤k sk = s⊤k Msk + δ∥sk∥2 ≥ δ∥sk∥2, and M is the constant matrix. Thus we

have

∥B̄k+1 −Bk∥ ≤

∥∥∥∥∥ l̃k l̃⊤kl̃⊤k sk

∥∥∥∥∥+
∥∥∥∥Bksks

⊤
k Bk

s⊤k Bksk

∥∥∥∥ ≤ ∥(M + δI)sks
⊤
k (M + δI)∥

δ∥sk∥2
+

∥Bksks
⊤
k Bk∥

δ∥sk∥2
.

The first term in the right-hand side is bounded. The second term is also bounded

since Bk is bounded which could be seen in [94, Theorem 6.3]. Therefore, ∥B̄k+1−Bk∥
is bounded above by some Q > 0, that is, ∥B̄k+1 −Bk∥ ≤ Q. Then we have

ck(B̄k+1 −Bk) ≼ ck∥B̄k+1 −Bk∥ · I ≼ ck
Q

δ
· δI ≼ ck

Q

δ
Tk.

Therefore,

Tk+1 = Bk+1 −M

= Bk + ck(B̄k+1 −Bk)−M

= Tk + ck(B̄k+1 −Bk)

≼ Tk +
ckQ

δ
Tk

= (1 +
ckQ

δ
)Tk.

Let γk =
Q
δ
ck. Then Tk+1 ≼ (1 + γk)Tk.

Finally we show that Condition 3.3.1 (ii) holds. From the definition of γk, we have
∞∑
k=0

γk =
Q
δ

∞∑
k=0

ck < ∞.

We will present numerical results for the BFGS with Remedy 2 and L-BFGS with Remedy

1 in the next section.

3.4 Numerical results

In this section, we demonstrate the potential efficiency of our method by some numerical

experiments. All the experiments are implemented by Matlab R2018b on Windows 10 pro

with a 2.10 GHz Intel Xeon E5-2620 v4 processor and 128 GB of RAM.

3.4.1 Detail settings in the numerical experiments

In this subsection, we give the settings used in the numerical experiments.
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Test problems

We consider to solve the following Lasso problem:

min
x∈Rn

1

2
∥Ax− b∥22 + τ∥x∥1, (3.4.1)

where

� A ∈ Rm×n is a given data matrix;

� x ∈ Rn is a vector of feature coefficients to be estimated;

� b ∈ Rm is an observation vector and τ ∈ R is a positive regularization parameter;

� m is the number of data points, and n is the number of features.

By introducing an auxiliary variable y ∈ Rn, we reformulate problem (3.4.1) as follows:

min
x∈Rn, y∈Rn

1

2
∥Ax− b∥22 + τ∥y∥1 s.t. x− y = 0. (3.4.2)

We randomly generate A and b as follows. We first randomly select x̄ ∈ Rn with the

sparsity s, i.e., the number of nonzero elements in x̄ over n is s. The Matlab code is given

as

xbar = sprandn(n,1,s).

We generate A by the standard normal N (0, 1) distribution whose sparsity density is p:

A = sprandn(m,n,p). % N(0,1) with the density p

Then we calculate b = Ax̄ + ϱ, where ϱ is a noise under an N (0, 10−3) distribution. The

Matlab code is

b = A*xbar + sqrt(0.001)*randn(m,1).

The regularization parameter is set to τ = 0.1τmax, where τmax = ∥A⊤b∥∞:

tau = 0.1* norm(A’*b, ’inf’).
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Test ADMMs

In the numerical experiments, we test the following seven different versions of the ADMM.

The differences of the versions of ADMM are the choices of the proximal term Tk in x-

subproblems.

ADM-OPT: the classical ADMM [46, 49]. ADM-OPT solves the original subproblem

exactly, that is, Tk = 0 for all k;

ADM-SPRO: the semi-proximal ADMM in [40]. A positive semidefinite matrix Tk is

chosen as

Tk = ξI − βI − A⊤A with ξ = κ1 ∗ λmax

(
βI + A⊤A

)
, κ1 > 1, for all k; (3.4.3)

ADM-IPRO: the indefinite proximal ADMM based on [77] and [63]. An indefinite proximal

matrix Tk is chosen as

Tk = ξI − A⊤A with ξ = κ2 ∗ λmax

(
A⊤A

)
, κ2 > 0.75, for all k; (3.4.4)

ADM-BFGS: the proximal ADMM with the BFGS update with k̄ = ∞, which is not

guaranteed to converge theoretically. An initial matrix of Bk (or Hk) is given as

B0 = ξI, ξ = κ3 ∗ λmax(βI + A⊤A), κ3 > 0.75; (3.4.5)

ADM-LBFGS: the proximal ADMM with the L-BFGS update with k̄ = ∞. The initial

semidefinite proximal matrix for the limited memory BFGS is the same as (3.4.5).

Note that H0 =
1
ξ
I. We fix Hk

0 = H0 in each updating step for the L-BFGS matrix;

ADM-BFGS-R: the ADMM-BFGS with Remedy 2 given in Subsection 3.3.2;

ADM-LBFGS-R: the proximal ADMM with the L-BFGS update with Remedy 1, that is

ADM-LBFGS with k̄ < ∞.

These ADMMs except for ADM-OPT require the maximum eigenvalues λmax

(
βI + A⊤A

)
and λmax

(
A⊤A

)
. We adopt the following Matlab codes to compute these eigenvalues:

eig_max = svds(A,1)^2 + beta;

eig_max = svds(A,1)^2.

Whereas ADM-OPT must solve the unconstrained quadratic optimization. We use a

Cholesky factorization to solve it. When m = n, we use “chol” in Matlab for (A⊤A + βI).

When A is fat (i.e., m < n), we apply the Sherman-Morrison formula to (βI + A⊤A)−1 as

(βI + A⊤A)−1 =
1

β
I − 1

β2
· A⊤ ·

(
I +

1

β
AA⊤

)−1

· A,
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and compute the factorization LL⊤ of a smaller matrix (I + (1/β)AA⊤) by the “chol”

function. Then the x-subproblems are solved as

q = A’*b + lambda + beta*y;

x = q/beta - (A’*(L’ \ ( L \ (A*q) )))/beta^2.

Note that the Cholesky factorization of (A⊤A + βI) or (I + (1/β)AA⊤) is calculated only

once for each test problem.

Other setting and notations

Stopping criterion: We adopt the same stopping criterion as in [13] for all the numerical

experiments, that is, if the primal and dual residuals rk and σk satisfy

∥rk∥2 ≤ ϵprik and ∥σk∥2 ≤ ϵdualk , (3.4.6)

then we stop the algorithms, where rk = xk − yk, σk = −β(yk − yk−1), and ϵpri > 0 and

ϵdual > 0 are feasibility tolerances for the primal and dual feasibility conditions, respectively.

These tolerances can be selected using an absolute and relative criterion from the suggestion

in [13], such as

ϵprik =
√
nϵabs + ϵrelmax{∥xk∥2, ∥ − yk∥2},

ϵdualk =
√
nϵabs + ϵrel∥λk∥2,

where ϵabs > 0 is an absolute tolerance and ϵrel > 0 is a relative tolerance.

The stopping criteria are set to ϵabs = 10−4 and ϵrel = 10−3 in all the experiments.

Other setting: We always select S = 0 for (3.1.4b). We set the initial points as x0 =

y0 = 0 and λ0 = 0. The maximum iterations are set to be 20000 in all randomly generated

experiments.

Notations in tables for numerical results:

• Iter.: the iteration steps for each algorithm;

• Time: the total CPU time for each algorithm;

• T-L: the CPU time for the Cholesky factorization and the calculation of AA⊤ or A⊤A;

• T-ME: the CPU time for computing for the maximum eigenvalue;

• T-A: the CPU time for the algorithm proceed without T-L or T-ME;

• T-QN: the CPU time for BFGS update (matrix Hk) of ADM-BFGS.

All of the CPU times are recorded in seconds.
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3.4.2 Test I: ADMM with the BFGS update

In the subsection, we first compare four different methods: ADM-OPT, ADM-SPRO

with κ1 = 1.01, ADM-IPRO with κ2 = 0.8, and ADM-BFGS with κ3 = 1.01. We also

present numerical results for the ADMM with Remedy 2 given in Subsection 3.3.2 for the

global convergence.

We solve problem (3.4.2) with n = 2000, m = 1000, s = 0.1 and p ∈ {0.1, 0.5}. All of

the other settings and calculations are based on Subsection 3.4.1. We solve 10 problems in

each test, and Table 3.1 shows the average of iterative steps and CPU time.

Table 3.1: Comparison on iteration steps and CPU time among the methods

Problem
β

ADM-OPT ADM-SPRO ADM-IPRO ADM-BFGS

n m s p Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s) T-QN(s)

2000 1000 0.1 0.1 100 20.5 0.21 64.3 0.15 54.3 0.14 38.4 3.64 2.89

2000 1000 0.1 0.5 100 63.1 0.67 197.9 0.45 160.0 0.41 71.4 7.35 5.49

2000 1000 0.1 0.5 500 20.9 0.55 68.5 0.32 58.4 0.31 37.3 4.50 2.84

From the table, it is obvious to see that the classical ADMM finds solutions within the

least iterative steps, while the indefinite proximal ADMM admits the faster one at the CPU

time. The ADMM with BFGS can get solutions with relatively fewer iterations. However,

it spends much time to compute the Hk as indicated in the T-QN column. When data

matrix A is ill-condition or it is impossible to compute the inverse of the Hessian matrix of

augmented Lagrangian function, it is meaningful to use the matrix Hk since it can yield a

solution with fewer iterative steps.

Next, we present numerical results for the iteration steps of ADM-BFGS-R in Table 3.2.

We update ck by ck = ζk with ζ ∈ [0, 1], and chose a positive δ ∈ {100, 1e-5}. We solve

problem (3.4.2) using the same settings as those shown in Table 3.1, that is, n = 2000,

m = 1000, s = 0.1 and p ∈ {0.1, 0.5}. The results are compared with those of the ADM-

BFGS.

Table 3.2: Results for Remedy 2 with different δ and ck (ck = ζk)

Problem
β

ADM-BFGS
ADM-BFGS-R δ = 100 ADM-BFGS-R δ = 1e-5

ζ = 0.1 ζ = 0.5 ζ = 0.99 ζ = 0.1 ζ = 0.5 ζ = 0.99

n m s p Iter. Iter. Iter. Iter. Iter. Iter. Iter.

2000 1000 0.1 0.1 100 38.4 75.7 71.3 43.9 67.6 63.0 38.8

2000 1000 0.1 0.5 100 71.4 204.4 198.6 74.7 197.0 190.4 71.8

2000 1000 0.1 0.5 500 37.3 74.0 68.7 39.4 71.9 66.6 37.8

Table 3.2 shows that for each δ > 0 and ζ ∈ [0, 1], ADM-BFGS-R can find a solution.

When δ is approximately 0 and ζ is close to 1, the iterative steps of ADM-BFGS-R approach

those of ADM-BFGS .
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3.4.3 Test II: ADMM with limited memory BFGS update

In this subsection, we test how the ADMM with limited memory BFGS (ADM-LBFGS)

works.

We set the number h of vectors stored in L-BFGS to be 10. The comparisons are

among the ADM-OPT, ADM-IPRO, and the proposed ADM-LBFGS. We consider large

scale problems with n = 10000 and s = 0.1.

Behaviors of ADMMs for different β

First, we analyzed the behaviors of ADMMs for different β. We solve problem (3.4.2)

with m ∈ {1000, 5000, 10000} and p ∈ {0.1, 0.5, 1}. We take κ2 = 0.8 for ADM-IPRO (3.4.4)

and κ3 = 1.01 for ADM-LBFGS (3.4.5). The other settings used in the test problems are

given in Subsection 3.4.

The results of the iteration steps and CPU time (seconds) averaged over 10 random trials

are shown in Table 3.3.

From Table 3.3, we can observe that the ADMM with L-BFGS performs well for different

β. In each case, ADM-LBFGS can obtain solutions within the same amount of CPU time for

the algorithm proceed (T-A) as that of the classical ADMM (ADM-OPT). The ADM-OPT

appears to be the best method to find a solution with the least iterations and CPU time

when the size m = 1000 and sparsity p = 0.1. However, it becomes slower due to the CPU

time for Cholesky factorization (T-L) when p = 0.5 and 1. Note that the T-L requires more

time compared with the computations of the maximum eigenvalue (T-ME) for ADM-LBFGS

and ADM-IPRO when the size m of matrix A is larger than 1000, especially when A is less

sparse with p = 0.5 and 1. Compared with ADM-OPT when m = 5000, ADM-LBFGS can

reduce the CPU time to approximately 50% for the sparse case of p = 0.1, and about 80%

for the hard cases, where p = 0.5 and 1. Besides, for a large and dense matrix A with

m = 10000 and p = 1, ADM-LBFGS can reduce the CPU time by 93% as compared to

ADM-OPT. On the other hand, ADM-LBFGS is a bit faster than ADM-IPRO when ξ is

selected appropriately with the maximum eigenvalue.

Behaviors of ADM-IPRO and ADM-LBFGS for some different ξ

In the above experiments, we have chosen ξ = 0.8∗λmax

(
A⊤A

)
for the indefinite proximal

term and ξ = 1.01∗λmax(βI+A⊤A) for the semidefinite proximal term. This is unrealistic for

some large scale applications where the calculation of the maximum eigenvalue is expensive.

Next we test the behaviours of ADM-LBFGS and proximal ADMM (ADM-IPRO) with

different κ2 and κ3.

We solve problem (3.4.2) with m = 5000 and p ∈ {0.5, 1}. Since the results in Table 3.3
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Table 3.3: Comparison among ADMMs for different β

Size β
ADM-OPT ADM-IPRO ADM-LBFGS

Iter. Time(s) T-A(s) T-L(s) Iter. Time(s) T-A(s) T-ME(s) Iter. Time(s) T-A(s) T-ME(s)

m=1000 50 90.9 0.66 0.34 0.32 280.1 0.92 0.46 0.46 247.3 1.27 0.81 0.46

p=0.1 100 59.1 0.56 0.22 0.34 175.7 0.74 0.29 0.45 182.2 1.04 0.59 0.45

150 67.7 0.57 0.25 0.32 197.9 0.77 0.33 0.44 157.3 0.95 0.51 0.44

200 88.4 0.67 0.33 0.34 240.2 0.82 0.38 0.44 147.4 0.90 0.46 0.44

m=1000 200 93.3 4.63 0.99 3.64 288.6 4.40 2.46 1.94 247.5 4.57 2.63 1.94

p=0.5 300 69.9 4.38 0.73 3.65 218.8 3.79 1.83 1.96 209.0 4.15 2.19 1.96

500 60.3 4.37 0.62 3.75 179.2 3.39 1.49 1.90 174.2 3.72 1.82 1.90

800 85.0 4.29 0.87 3.42 240.6 3.91 1.98 1.93 143.4 3.42 1.49 1.93

m=1000 200 131.7 9.73 2.01 7.72 428.2 9.02 5.84 3.18 325.9 8.29 5.11 3.18

p=1 300 97.3 9.13 1.53 7.60 305.4 7.43 4.24 3.19 273.5 7.56 4.37 3.19

500 67.8 8.97 1.05 7.92 213.0 6.05 2.85 3.20 220.9 6.66 3.46 3.20

800 67.5 9.17 1.05 8.12 195.9 5.85 2.65 3.20 183.9 6.08 2.88 3.20

m=5000 100 80.4 15.67 4.48 11.19 176.6 7.24 2.29 4.95 86.6 6.25 1.30 4.95

p=0.1 200 41.2 13.90 2.34 11.56 103.1 6.24 1.32 4.92 55.9 5.75 0.83 4.92

500 20.4 12.38 1.14 11.24 51.2 5.62 0.64 4.98 38.0 5.55 0.57 4.98

800 22.0 12.87 1.27 11.60 61.0 5.81 0.78 5.03 37.2 5.58 0.55 5.03

m=5000 500 67.1 95.46 6.36 89.10 151.3 24.45 7.54 16.91 75.6 20.84 3.93 16.91

p=0.5 1000 34.3 92.83 3.02 89.81 86.7 21.00 4.09 16.91 50.2 19.44 2.53 16.91

2000 20.4 93.28 1.79 91.49 51.4 19.91 2.36 17.55 38.1 19.45 1.90 17.55

2500 20.6 91.92 1.88 90.04 53.6 19.94 2.61 17.33 36.0 19.13 1.80 17.33

m=5000 1000 52.9 201.69 6.16 195.53 130.8 33.67 10.00 23.67 65.6 28.82 5.15 23.67

p=1 2000 27.2 200.39 3.07 197.32 73.0 29.23 5.39 23.84 44.9 27.27 3.43 23.84

3000 20.3 210.74 2.45 208.29 55.0 31.01 4.16 26.85 39.3 29.98 3.13 26.85

3200 20.7 208.26 2.54 205.72 53.2 30.78 4.08 26.70 38.8 29.81 3.11 26.70

m=10000 200 59.2 59.57 10.72 48.85 100.3 15.90 3.02 12.88 60.2 14.85 1.97 12.88

p=0.1 500 24.5 51.97 4.75 47.22 48.0 14.39 1.50 12.89 30.6 13.93 1.04 12.89

1000 15.9 51.13 3.06 48.07 30.0 13.82 0.95 12.87 23.7 13.66 0.79 12.87

1500 16.9 50.61 3.19 47.42 34.4 13.88 1.08 12.80 24.4 13.62 0.82 12.80

m=10000 1000 49.8 426.04 9.69 416.35 88.2 52.69 9.42 43.27 50.2 48.77 5.50 43.27

p=0.5 2000 25.7 413.19 5.20 407.99 49.0 48.17 5.40 42.77 31.2 46.26 3.49 42.77

3000 17.6 432.36 3.28 429.08 38.6 47.64 4.26 43.38 26.0 46.29 2.91 43.38

3500 15.9 408.71 2.86 405.85 34.4 45.14 3.31 41.83 25.0 44.37 2.54 41.83

m=10000 2000 40.8 983.12 6.91 976.21 72.0 67.15 10.49 56.66 42.6 62.94 6.28 56.66

p=1 3000 27.6 948.20 4.68 943.52 52.2 64.34 7.60 56.74 34.0 61.74 5.00 56.74

5000 17.4 947.22 3.06 944.16 36.4 62.45 5.34 57.11 26.0 60.97 3.86 57.11

5500 16.4 931.24 2.87 928.37 33.8 61.88 4.96 56.92 25.0 60.62 3.70 56.92
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for m = 5000 indicate that a reasonable β is around 2000, we take β ∈ {1000, 2000, 3000} in

this experiments. We also take κ2, κ3 ∈ {0.75, 0.8, 1.01, 5.0, 10.0, 100} in (3.4.4) and (3.4.5).

The other settings and notations used are shown in Subsection 3.4. Table 3.4 shows the

results of iteration steps and CPU time (seconds) averaged over 10 random trials for every

κ2 and κ3.

Table 3.4: Different κ2 and κ3 for proximal ADMM

Setting κ2, κ3

ADM-IPRO ADM-LBFGS

Iter. T-A(s) Time(s) Iter. T-A(s) Time(s)

p = 0.5 0.75 74.6 3.40 20.20 46.4 2.21 19.01

β = 1000 0.80 80.3 3.67 20.47 47.3 2.26 19.06

T-ME = 16.80s 1.01 99.6 4.56 21.36 49.7 2.42 19.22

5.0 400.6 18.44 35.24 102.9 5.01 21.81

10.0 734.2 33.57 50.37 147.7 7.02 23.82

100.0 4626.3 211.53 228.33 330.7 15.91 32.71

p = 0.5 0.75 42.0 1.95 18.30 33.6 1.62 17.97

β = 2000 0.80 44.3 2.06 18.41 34.7 1.68 18.03

T-ME = 16.35s 1.01 53.8 2.51 18.86 38.2 1.85 18.20

5.0 213.5 9.85 26.20 100.4 4.89 21.24

10.0 376.6 17.39 33.74 137.2 6.63 22.98

100.0 2324.4 107.59 123.94 327.7 16.02 32.37

p = 1 0.75 62.0 4.38 30.38 41.0 3.00 29.00

β = 2000 0.80 64.9 4.58 30.58 41.5 3.02 29.02

T-ME = 26.00s 1.01 81.8 5.78 31.78 44.6 3.22 29.22

5.0 334.7 23.59 49.59 105.3 7.71 33.71

10.0 593.8 41.76 67.76 145.1 10.67 36.67

100.0 3623.6 254.90 280.90 344.2 25.06 51.06

p = 1 0.75 43.8 3.13 27.29 34.5 2.49 26.65

β = 3000 0.80 46.0 3.28 27.44 35.5 2.59 26.75

T-ME = 24.16s 1.01 56.5 4.02 28.18 39.1 2.85 27.01

5.0 222.6 15.61 39.77 104.7 7.58 31.74

10.0 405.5 28.40 52.56 139.8 10.11 34.27

100.0 2467.4 172.53 196.69 359.7 26.17 50.33

As shown in Table 3.4, the ADM-LBFGS always works well and remains stable. Note

that ADM-LBFGS is slightly faster than ADM-IPRO when ξ is chosen nearly around the

maximum eigenvalue, κ2, κ3 = 0.75, 0.80, 1.01 for instance. On average, this can lead to
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a 30% reduction in the number of iterations. There are no much differences in the CPU

time because T-ME counts for a lot. When κ2, κ3 = 100 which are chosen far away from

maximum eigenvalue, ADM-LBFGS can always bring out a 85-90% improvement in the

number of iterations and a 75-85% improvement in the CPU time compared with the ADM-

IPRO. Moreover, we find that ADM-LBFGS also works well even when the proximal term

is a slightly indefinite matrix, i.e., κ3 < 1.

Remedy 1: ADM-LBFGS stops updating of Hk for some finite k̄

Finally, we investigate the behavior of ADM-LBFGS-R with various k̄ when the updating

of Hk stops.

We solve problem (3.4.2) with m = 5000, p ∈ {0.5, 1}, β ∈ {1000, 2000}, and set k̄ =

{5, 10, 20, 40, 50, 100} and κ3 = 1.01 in (3.4.5). All the other settings are the same as those

used in the above-mentioned experiments. The results of CPU time and iterations of different

stopping k̄ averaged over 10 random trials are provided in Table 3.5.

Table 3.5: Results for stopping at different k̄

k̄
ADM-LBFGS-R

Iter. T-A(s) Time(s)

p = 0.5 5 106.0 4.89 19.25

β = 1000 10 93.2 4.35 18.51

T-ME = 14.16s 20 76.8 3.63 17.79

40 54.2 2.56 16.72

50 50.2 2.43 16.59

100 50.1 2.42 16.58

p = 1 5 85.7 6.06 32.76

β = 2000 10 76.1 5.37 32.07

T-ME = 26.70s 20 62.9 4.49 31.19

40 43.8 3.15 29.85

50 44.3 3.19 29.89

100 44.3 3.22 29.92

The results above indicate that for all k̄, the ADM-LBFGS-R can successfully obtain a

solution within the maximum iteration. In particular, the results for k̄ = 50 and 100 are

similar, indicating that k̄50 is a well-tuned proximal matrix for the test problems.
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3.4.4 Test III: Numerical experiments for real-world datasets

In this subsection, we investigate the behaviour of the proposed method for three

real-world models “dbworld-bodies”, “Madelon” and “sido0” which are selected from the

literature [33, 81, 110], respectively. The main purpose of the experiments is to justify the

feasibility of the proposed proximal ADMM with the BFGS update. We thus choose the

existing proximal ADMMs (ADM-SPRO and ADM-IPRO) as the benchmark for a numerical

comparison in this subsection.

We solve the Lasso problem (3.4.1) with “dbworld-bodies”, “Madelon” and “sido0”. Since

the reasonable parameters in the methods are different for each real-world data, we should

predefine them. We choose parameter β based on the sizes of the problems and considering

the results in the previous subsections. The concrete values of β are shown in Table 3.7.

Moreover, we set κ1 = 1.01 for ADM-SPRO, κ2 = 0.8 for ADM-IPRO, and κ3 = 1.01 for

ADM-BFGS and ADM-LBFGS.

Table 3.6 lists the sizes m and n, sources of the dataset, and some parameters used in

the methods. Note that “dbworld-bodies” contains 64 instances and 4702 features, which

means that the matrix A has more columns than rows. This dataset is useful for illustrating

the behaviors of the various algorithms used for the sparse optimization, such as the Lasso

problem (3.4.1). We exploit only the stopping criterion (3.4.6) for the dataset since all

the algorithms successfully solve it. Dataset ‘Madelon” consists of 2000 samples and 500

attributes, which implies that the matrix A has more rows than columns. The first-order

method such as the ADMM usually takes a lot of iterations for such data. In our experiments,

all the algorithms did not find a solution that satisfied the stopping criterion (3.4.6). Thus

we set the maximum iteration to 10000 and observe the behaviors of the algorithms from

Figure 2. Dataset “sido0” is a larger one with 12678 examples and 4932 variables. For the

data, we set εabs and εrel to larger values in the stopping criterion.

Table 3.6: Summary of datasets and some parameters used in the experiments

Datasets
sizes

source stopping criterion maximum iterations
m n

dbworld-bodies 64 4702 [33] ϵabs = 10−4 ϵrel = 10−3 -

Madelon 2000 500 [33] - - 10000

sido0 12678 4932 [110] ϵabs = 10−3 ϵrel = 10−2 20000

Table 3.7 shows the results averaged over 10 trials. Since datasets “dbworld-bodies”

and “Madelon” are small, we omit T-L and T-M and present the total CPU time, “Time”.

Moreover, we omit to give the results of the ADM-BFGS for datasets “Madelon” and “sido0”.

The reason is that the ADM-BFGS takes much longer time due to the size of n.
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Table 3.7: Results for real dataset

Datasets β
ADM-OPT ADM-SPRO ADM-IPRO ADM-BFGS ADM-LBFGS

Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

dbworld-bodies 10 120.0 0.03 725.0 0.13 600.0 0.11 206.0 64.92 238.0 0.13

m = 64 50 51.0 0.01 191.0 0.05 167.0 0.05 143.0 45.21 51.0 0.04

n = 4702 95 92.0 0.02 167.0 0.05 169.0 0.05 174.0 55.01 99.0 0.05

100 97.0 0.02 172.0 0.05 186.0 0.05 119.0 37.58 153.0 0.08

β Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s) Iter. Time(s)

Madelon 100 10000 4.88 10000 3.03 10000 3.05 - - 10000 3.80

m = 2000 150 10000 4.70 10000 3.02 10000 3.01 - - 10000 3.50

n = 500 200 10000 4.67 10000 3.38 10000 3.26 - - 10000 3.71

500 10000 4.80 10000 3.28 10000 3.25 - - 10000 3.75

β Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s)

sido0 100 1430.0 54.23 1638.0 26.44 1636.0 23.73 - - 1435.0 23.32

m = 12678 1000 145.0 5.52 169.0 3.07 181.0 3.36 - - 162.0 2.99

n = 4932 3000 50.0 1.62 59.0 0.75 56.0 0.70 - - 55.0 0.72

T-L = 14.46s 5000 31.0 1.12 38.0 0.53 37.0 0.52 - - 34.0 0.53

T-ME = 0.46s 6500 24.0 0.82 30.0 0.39 29.0 0.38 - - 26.0 0.37

We also plot the objective function values with respect to the iterations for dataset

“dbworld-bodies” based on five methods: ADM-OPT, ADM-SPRO, ADM-IPRO, ADM-

BFGS, and ADM-LBFGS in Figure 3.1. Figure 3.2 shows the same graph for the “Madelon”

dataset among four methods: ADM-OPT, ADM-SPRO, ADM-IPRO, and ADM-LBFGS.

Overall, we see from Table 3.7 and Figure 3.1 that the ADM-OPT is the best method

to find a solution with the least iterations and CPU time for the “dbworld-bodies” datasets.

The proposed ADM-LBFGS outperforms the proximal ADMMs in terms of the iterations

but does not have an improvement in computational time. For such a small dataset, the

classical ADMM is the best choice. For the “Madelon” dataset, as we mentioned above, all

of the methods cannot stop by the maximum iteration. Thus we compare the methods from

Figure 3.2. The ADM-IPRO solves this problem with the least CPU time. The figures show

that the graphs of ADM-LBFGS are close to those of ADM-OPT, and are better than those

of the proximal ADMMs. This indicates that the proposed ADM-LBFGS can obtain a more

accurate solution than the proximal ADMM. We also conclude from the results for “sido0”

that the CPU times of the proximal methods are much shorter than 14.46 seconds of the

computation of Cholesky factorization. The computational times of the proximal ADMMs

are almost the same. At the same time, the numbers of iterative steps of ADM-LBFGS are

close to those of the classical ADMM.
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Figure 3.1: Evolution of the objective function values with respect to iterations for “dbworld-
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3.4.5 Conclusions of the numerical experiments

Based on the numerical results above, we conclude the following:

1. For the problems with a well-condition or small size matrix A, all of the ADMMs can

solve them efficiently. The classical ADMM (ADM-OPT) always performs the best;

2. For the problems whose maximum eigenvalues λmax

(
A⊤A

)
are large, the classical

ADMM can directly solve them while the proximal ADMM could be applied after

normalizing the columns of matrix A;

3. Compared with the classical ADMM (ADM-OPT), the ADM-LBFGS is more suitable

for dense large scale problems because the calculation of the inverse of A⊤A is not

necessary for ADM-LBFGS;

4. ADM-LBFGS can outperform the general proximal ADMM (ADM-SPRO or ADM-

IPRO) in terms of iteration count, especially when the accurate estimation of the

maximum eigenvalues is difficult. ADM-LBFGS could obtain a more precise solution

than that of the proximal ADMM.

3.5 Conclusions

In this chapter, we have proposed a special proximal ADMM where the proximal matrix

is derived from the BFGS update or limited memory BFGS method. We have given two

remedies for the proximal matrix with the BFGS update to ensure the global convergence

of the proposed method. Numerical results of several random problems with large scale

data and several real-world datasets have been provided to illustrate the effectiveness of the

proposed method.

Recall that Theorem 3.2.1 holds only when the Hessian matrix of the augmented

Lagrangian function, that is, M = βI + A⊤A is a constant matrix. We will consider more

general problems using the ADMM with the BFGS update whose x-subproblems become an

unconstrained quadratic programming problem, as presented in this chapter. Then we may

apply Theorem 3.2.1 for global convergence. On the other hand, as shown in the numerical

results, the ADMM with the L-BFGS also performs well with a slightly indefinite proximal

matrix. This will facilitate the exploration for an indefinite proximal ADMM with the BFGS

update.



Chapter 4

A Proximal Alternating Direction

Method of Multipliers with the

Broyden family for Convex

Optimization Problems

4.1 Introduction

In this Chapter, we consider the general convex optimization problem:

minimize f(x) + g(y)

subject to Ax+By = b,

x ∈ Rn1 , y ∈ Rn2 ,

(4.1.1)

where f : Rn1 → R ∪ {∞} and g : Rn2 → R ∪ {∞} are proper convex functions, A ∈ Rm×n1 , B ∈
Rm×n2 and b ∈ Rm. We define the augmented Lagrangian function for (4.1.1) as Lβ : Rn1 × Rn2 ×
Rm → R:

Lβ(x, y, λ) := f(x) + g(y)− ⟨λ,Ax+By − b⟩+ β

2
∥Ax+By − b∥2. (4.1.2)

Here λ ∈ Rm are multipliers associated to the equality constraints and β > 0 is a penalty parameter.

When we apply ADMM for solving some concrete applications, we usually assume one of the

subproblems is relatively easy to solve. Therefore, we suppose that y-subproblems in the proximal

ADMM (3.1.3) are easily solved throughout this chapter. We allow the positive semidefinite matrix

T in the proximal term (3.1.3a) to be changed at every step as that in the inexact ADMM [60].

Then T depends on k, and thus we denote it by Tk. The resulting ADMM is a variable metric

semi-proximal ADMM. The iterative scheme of the variable metric semi-proximal ADMM (VMSP-
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ADMM) algorithm is given as
xk+1 = argmin

x
Lβ(x, y

k, λk) +
1

2
∥x− xk∥2Tk

, (4.1.3a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2S , (4.1.3b)

λk+1 = λk − β(Axk+1 +Byk+1 − b). (4.1.3c)

In this chapter, we assume that (4.1.3b) is solved exactly, and focus on how to construct Tk.

When f(x) = 1
2∥x∥

2, B = I and b = 0, a new construction of the proximal matrix Tk has been

proposed in Chapter 3 to let the Tk be Tk = Bk −M , where M = ∇2
xxLβ(x, y, λ) = βA⊤A+ I and

Bk was a certain positive definite matrix. Note that M ≻ 0, where V ≽ 0 (V ≻ 0) means that

V is symmetric and positive semidefinite (positive definite). This chapter proposed to generate

Bk via the BFGS update with respect to M at every iteration, and then showed that Bk+1 ≽ M

for all k whenever Bk ≽ M . Therefore Tk ≽ 0 if the initial matrix B0 satisfies B0 ≽ M . The

x-subproblem of the variable metric semi-proximal ADMM with BFGS update (ADM-BFGS) for

this special problem was given as

xk+1 = xk +Hk

(
A⊤λk − βA⊤yk −Mxk

)
, (4.1.4)

where Hk = B−1
k . The numerical experiments in Chapter 3 reported that the numbers of iterations

were almost same as those by the exact ADMM.

In this chapter, we extend this method to more general convex problems. In particular, we

consider the following two problems.

One is formulated as

Problem 1: minimize
N∑
i=1

fi(Aix)

subject to x ∈ Rn,

(4.1.5)

where fi : Rmi → R ∪ {∞}, i = 1, 2, ..., N are proper convex functions, and Ai ∈ Rmi×n,

i = 1, 2, ..., N .

The other problem is

Problem 2: minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

Aixi = b,

xi ∈ Rni , i = 1, 2, ..., N,

(4.1.6)

where n =
N∑
i=1

ni, fi : Rni → R ∪ {∞}, i = 1, 2, ..., N are proper convex functions, Ai ∈ Rm×ni ,

i = 1, 2, ..., N and b ∈ Rm.

Now, we apply the ADMM (4.1.3a)-(4.1.3b) to the above two convex problems. To this end,

we reformulate the problems as (4.1.1). By introducing some auxiliary variables yi ∈ Rmi(i =
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1, 2, ..., N), problem (4.1.5) can be reformulated as

minimize
N∑
i=1

fi(yi)

subject to yi = Aix, i = 1, 2, ..., N

x ∈ Rn, yi ∈ Rmi , i = 1, 2, ..., N.

(4.1.7)

Letting y = (y⊤1 , y
⊤
2 , ..., y

⊤
N )⊤, f(x) ≡ 0, g(y) =

N∑
i=1

fi(yi), A = [A⊤
1 , A

⊤
2 , ..., A

⊤
N ]⊤, B = −I, b = 0,

problem (4.1.7) is reduced to (4.1.1).

Similarly, by introducing some auxiliary variables yi ∈ Rni(i = 1, 2, ..., N), problem (4.1.6) can

be reformulated as

minimize
N∑
i=1

fi(yi)

subject to
N∑
i=1

Aixi = b,

xi = yi, i = 1, 2, ..., N

xi, yi ∈ Rni , i = 1, 2, ..., N.

(4.1.8)

Letting x = (x⊤1 , x
⊤
2 , ..., x

⊤
N )⊤, y = (y⊤1 , y

⊤
2 , ..., y

⊤
N )⊤, f(x) ≡ 0, g(y) =

N∑
i=1

fi(yi), Ã =

[A1, A2, ..., AN ], and A =

[
Ã

I

]
, B =

[
0

−I

]
, b =

[
b

0

]
, problem (4.1.8) is also reduced to

(4.1.1).

The main contributions of this chapter are as follows. At first, inspired by the work in

Chapter 3, which considered the proximal ADMM with the BFGS update for structured quadratic

optimization problems, we further extend the proximal ADMM with the Broyden family update

for two general convex problems (4.1.7) and (4.1.8). Moreover, we show the global convergence of

the proposed method. We also present some numerical results of the proposed method for solving

the l1 regularized logistic regression problem.

The rest of the chapter is organized as follows. We describe the construction of Tk via the

Broyden family update and show the details on applying the ADMM for the above two convex

problems (4.1.5) and (4.1.6) in Section 4.2. Section 4.3 discusses the global convergence of the

proposed method under certain flexible conditions on the proximal matrices sequence. In Section

4.4, we test the l1 regularized logistic regression problem to illustrate the efficiency of the proposed

method. Finally, we make some concluding remarks in Section 4.5.

4.2 Proximal ADMMs with Broyden family update for

two convex optimization problems

In this section, we first explain how to construct Tk via the Broyden family update, and then

present concrete algorithms for two convex optimization problems (4.1.5) and (4.1.6).
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4.2.1 Construction of the regularized matrix Tk via the Broyden

family

Throughout this chapter, we assume that x-subproblems (4.1.3a) are unconstrained quadratic

programming problem, and that the Hessian matrix of the augmented Lagrangian function (4.1.2)

is a constant matrix defined as

M : = ∇2
xxLβ(x, y, λ). (4.2.1)

Note that M is always positive semidefinite. Note also that x-subproblems for (4.1.7) and (4.1.8)

become unconstrained quadratic programming problems as seen later.

The Hessian of the objective function of x-subproblem (4.1.3a) is Bk = Tk +M . Note that if

Tk = 0, that is, we consider the standard ADMM, then Bk = M . In order to avoid computing the

inverse of M but still has some information on M , we consider a matrix Bk that has the following

two properties:

Property (i) Bk ≽ M ;

Property (ii) Bk has some second order information on M .

Property (i) implies that Tk = Bk − M is positive semidefinite, which is reguired for global

convergence. Property (ii) is needed for rapid convergence, since Tk ≈ 0 as Bk ≈ M . A new

construction of Bk was proposed in Chapter 3 to construct Bk via the BFGS update with respect

to M at every iteration. Since the BFGS update usually constructs the inverse of Bk, let Hk = B−1
k .

Using Hk, we can easily solve the x-subproblems as in (4.1.4).

When M ≻ 0, we consider the normal BFGS update with a given s ∈ Rn and l = Ms. Note

that s⊤l > 0 when s ̸= 0. Let sk = xk+1 − xk, lk = Msk. Then BFGS recursions for BBFGS
k+1 and

HBFGS
k+1 are given as

BBFGS
k+1 = Bk +

lkl
⊤
k

l⊤k sk
−

Bksks
⊤
k B

⊤
k

s⊤k Bksk
, (4.2.2)

HBFGS
k+1 =

(
I −

skl
⊤
k

s⊤k lk

)
Hk

(
I −

lks
⊤
k

s⊤k lk

)
+

sks
⊤
k

s⊤k lk
. (4.2.3)

Besides, the DFP updates for BDFP
k+1 and HDFP

k+1 are given as

BDFP
k+1 =

(
I −

lks
⊤
k

l⊤k sk

)
Bk

(
I −

skl
⊤
k

l⊤k sk

)
+

lkl
⊤
k

l⊤k sk
(4.2.4)

HDFP
k+1 = Hk +

sks
⊤
k

s⊤k lk
−

Hklkl
⊤
k H

⊤
k

l⊤k Hklk
. (4.2.5)

Since s⊤k lk > 0, all matrices BBFGS
k+1 , HBFGS

k+1 , BDFP
k+1 and HDFP

k+1 are positive definite whenever

Bk,Hk ≻ 0.
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Motivated by the proximal ADMM with the BFGS update, we propose an extension of the

proximal ADMM with the Broyden family update [83, 43, 94, 42], that is, a linear combination of

the BFGS and DFP updates for Bk+1 as follows:

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

lkl
⊤
k

l⊤k sk
+ t(s⊤k Bksk)vkv

⊤
k , vk =

lk

l⊤k sk
− Bksk

s⊤k Bksk
, t ∈ [0, 1], (4.2.6)

which is equivalent to

Bk+1 = (1− t)BBFGS
k+1 + tBDFP

k+1 , with t ∈ [0, 1]. (4.2.7)

Similarly, we have the Broyden family update for Hk+1 with a t ∈ [0, 1] as follows:

Hk+1 = Hk −
Hklkl

⊤
k Hk

l⊤k Hklk
+

sks
⊤
k

l⊤k sk
+ (1− t)(l⊤k Hklk)vkv

⊤
k , vk =

sk

s⊤k lk
− Hklk

l⊤k Hklk
, (4.2.8)

which yields

Hk+1 = (1− t)HBFGS
k+1 + tHDFP

k+1 , with t ∈ [0, 1]. (4.2.9)

The update scheme (4.2.7) becomes the pure BFGS update (4.2.2) when t = 0, and becomes the

pure DFP update (4.2.4) when t = 1.

Now we consider when Property (i) holds. For the pure BFGS update, the following useful

property has been shown in Chapter 3.

Lemma 4.2.1. Let s ∈ Rn such that s ̸= 0, and let l = Ms. If H ≼ M−1, then HBFGS ≼ M−1.

This lemma is based on Lemma 3.2.1 in Chapter 3. We extend Lemma 4.2.1 to the Broyden

family.

Lemma 4.2.2. Let l ∈ Rn such that l ̸= 0. Moreover let s = M−1l and Φ = {z ∈ Rn | ⟨l, z⟩ = 0}.
Then for any v ∈ Rn, there exist c ∈ R and z ∈ Φ such that v = cs+ z.

Proof. We can easily show the lemma in a way similar to the proof of Lemma 3.2.1.

We can rewrite the DFP update (4.2.4) as

BDFP = B − Bsl⊤ + ls⊤B

l⊤s
+

(
1 +

s⊤Bs

l⊤s

)
ll⊤

l⊤s
. (4.2.10)

Moreover we have

BDFPs = l = Ms. (4.2.11)

Then we can obtain the following lemma for BDFP.

Lemma 4.2.3. Let l ∈ Rn such that l ̸= 0, and let s = M−1l. If B ≽ M , then BDFP ≽ M .
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Proof. Let v be an arbitrary nonzero vector in Rn. Let Φ = {z ∈ Rn | ⟨l, z⟩ = 0}. From

Lemma 4.2.2 there exist c ∈ R and z ∈ Φ such that v = cs + z. It then follows from (4.2.11) and

the definition of z that

v⊤BDFPv = (cs+ z)⊤BDFP(cs+ z)

= c2s⊤l + 2cz⊤l + z⊤BDFPz

= c2s⊤l + z⊤BDFPz

= c2s⊤Ms+ z⊤BDFPz. (4.2.12)

Since z ∈ Φ, we have

z⊤
(
ls⊤

l⊤s
B
sl⊤

l⊤s

)
z = 0, z⊤

(
ls⊤

l⊤s
B

)
z = 0 and

z⊤ll⊤z

l⊤s
= 0. (4.2.13)

It then follows from (4.2.10) that

z⊤BDFPz = z⊤Bz − 2z⊤
(
ls⊤

l⊤s
B

)
z + z⊤

(
ls⊤

l⊤s
B
sl⊤

l⊤s

)
z +

z⊤ll⊤z

l⊤s
= z⊤Bz. (4.2.14)

Furthermore, equation (4.2.11) implies

s⊤Mz = l⊤z = 0. (4.2.15)

Combining (4.2.12) and (4.2.14), we have

v⊤BDFPv = c2s⊤Ms+ z⊤Bz

≥ c2s⊤Ms+ z⊤Mz

= (cs+ z)⊤M(cs+ z)− 2cs⊤Mz

= v⊤Mv,

where the inequality follows from the assumption. Since v is arbitrary, we have BDFP ≽ M .

Using the above lemmas, we can show the following desired property for the Broyden family update.

Theorem 4.2.1. Let s, l ∈ Rn such that s, l ̸= 0, and let l = Ms. Suppose that Bk is updated by

the Broyden family (4.2.7) for all k > 0. If B0 ≽ M , then Bk ≽ M for any t ∈ [0, 1] and k > 0.

Proof. Due to Lemmas 4.2.1 and 4.2.3 we show that if (H0)
−1 = B0 ≽ M , then

BBFGS
k ≽ M and BDFP

k ≽ M for all k > 0. It follows from (4.2.7) that for any t ∈ [0, 1] and k > 0,

Bk ≽ M .

Theorem 4.2.1 implies that Tk = Bk −M ≽ 0 when the initial matrix B0 satisfies B0 ≽ M.

When M is merely positive semidefinite, we cannot directly use the BFGS and DFP updates.

In this case we may consider M δ : = M + δI with sufficiently small δ > 0, and construct Bk

by the BFGS and DFP updates for M δ. That is, BBFGS and BDFP are updated by the BFGS

and DFP with respect to M δ at every iteration, respectively, and lδ = Mδs = Ms + δs. Then
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Tk = Bk−M ≽ δI ≻ 0 is a positive definite matrix. Note that s⊤lδ > 0 when s ̸= 0, and recursions

(4.2.3) and (4.2.4) still hold. When δ is small enough, Bk is also close to M .

In the subsequent subsections, we describe the details of applying the VMSP-ADMM with the

Broyden family update for two convex problems (4.1.5) and (4.1.6) given in Introduction. Note

that the y-subproblems also can be applied with the Broyden family update when they do not have

closed-form solutions. For simplicity, we suppose the y-subproblems are easily solved here.

4.2.2 VMSP-ADMM for convex problem 1

First, we consider problem 1. Let L1
β(x, y1, ..., yN , λ1, ..., λN ) be the augmented Lagrangian function

for (4.1.7) defined by

L1
β(x, y1, ..., yN , λ1, ..., λN ) :=

N∑
i=1

fi(yi)−
N∑
i=1

⟨λi, Aix− yi⟩+
N∑
i=1

β

2
∥Aix− yi∥2, (4.2.16)

where λi ∈ Rmi(i = 1, 2, ..., N) are multipliers associated to the linear constraints and β > 0 is

a penalty parameter. As shown in Introduction, we further define y = (y⊤1 , y
⊤
2 , ..., y

⊤
N )⊤, A1 =

[A⊤
1 , A

⊤
2 , ..., A

⊤
N ]⊤, λ = (λ⊤

1 , λ
⊤
2 , ..., λ

⊤
N )⊤, g(y) =

∑N
i=1 fi(yi), and m =

∑N
i=1mi. Then y ∈ Rm,

λ ∈ Rm and the augmented Lagrangian function is rewritten as

L1
β(x, y, λ) := g(y)− ⟨λ,A1x− y⟩+ β

2
∥A1x− y∥2. (4.2.17)

By using a proximal matrix T 1
k ∈ Rn×n, the x-subproblem (4.1.3a) for (4.1.7) is written as

xk+1 = argmin
x

{
−⟨λk,A1x− yk⟩+ β

2
∥A1x− yk∥2 + 1

2
∥x− xk∥2T 1

k

}
=
(
βA⊤

1 A1 + T 1
k

)−1 (
A⊤

1 λ
k + βA⊤

1 y
k + T 1

kx
k
)
. (4.2.18)

Note that βA⊤
1 A1 =

N∑
i=1

βA⊤
i Ai = ∇2

xxL1
β(x, y, λ). Let M

1 be defined as

M1 : = ∇2
xxL1

β(x, y, λ) = βA⊤
1 A1 ≽ 0. (4.2.19)

Note that M1 is not necessarily positive definite. Then, as written in the previous subsection,

we may not apply the BFGS and DFP updates for M . Therefore we use the following perturbed

matrix M δ1 instead of M1.

M δ1 : = M1 + δ1I ≻ 0 with δ1 > 0. (4.2.20)

Then, we propose to construct a matrix B1
k by the Broyden family with sk = xk+1

1 − xk1 and

lk = M δ1sk, and set

T 1
k = B1

k −M1. (4.2.21)

Note that Theorem 4.2.1 implies that T 1
k ≻ 0 if B1

0 ≽ M δ1 .
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Using B1
k, x-subproblem (4.2.18) is written as

xk+1 = xk + (B1
k)

−1
(
A⊤

1 λ
k + βA⊤

1 y
k −M1xk

)
. (4.2.22)

Based on the descriptions of the BFGS (or limited memory BFGS, abbreviated to L-BFGS)

and DFP updates, we first give our algorithm for problem (4.1.5).

Algorithm 2: VMSP-ADMM with the Broyden family update (ADM-BD1) for

convex Problem 1 (4.1.5)

Input : data matrix A1, initial point (x
0, y0, λ0), penalty parameter β, δ1;

maxIter, initial matrix H1
0 ≼ (M δ1)−1, coefficient t1 ∈ [0, 1];

constant k̄1 ∈ [1,∞], stopping criterion ϵ.

Output: approximative solution (xk, yk, λk)

1 initialization;

2 while k < maxIter or not convergence do

3 if k ≤ k̄1 and xk − xk−1 ̸= 0 then

4 update H1
k via (4.2.8) or L-BFGS;

5 else

6 H1
k = H1

k−1;

7 end

8 update xk+1 by solving the x-subproblem:

xk+1 = xk +H1
k

(
A⊤

1 λ
k + βA⊤

1 y
k −M1xk

)
;

9 update yk+1 by solving the y-subproblem:

yk+1 = argmin
y

{
g(y)− ⟨λk,A1x

k+1 − y⟩+ β
2 ∥A1x

k+1 − y∥2 + 1
2∥y − yk∥2S

}
;

10 update Lagrangian multipliers: λk+1 = λk − β(A1x
k+1 − yk+1).

11 end

Remark 4.2.1. Note that constant k̄1 ∈ [1,∞] in the algorithm means that the B1
k (H1

k) updated by

the BFGS (or L-BFGS) and DFP procedures will be stopped at k̄1, that is, B1
k = B1

k̄1
(H1

k = H1
k̄1
)

for k ≥ k̄1. Specially,

• k̄1 < ∞ we can show the global convergence since it is reduced to the usual proximal ADMM

after k̄1 steps;

• k̄1 = ∞ the B1
k (H1

k) are updated for all k, and the numerical experiments in Chapter 3 show

it works;

• k̄1 is small it is not efficient, since B1
k̄1

is not close to M δ1.

4.2.3 VMSP-ADMM for convex problem 2

For problem 2, let the augmented Lagrangian function for (4.1.8)

L2
β(x1, ..., xN , y1, ..., yN , λ, µ1, ..., µN ) be defined by

L2
β(x1, ..., xN , y1, ..., yN , λ, µ1, ..., µN )
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=
N∑
i=1

fi(yi)− ⟨λ,
N∑
i=1

Aixi − b⟩ −
N∑
i=1

⟨µi, xi − yi⟩

+
β1
2
∥

N∑
i=1

Aixi − b∥2 +
N∑
i=1

β2
2
∥xi − yi∥2, (4.2.23)

where λ ∈ Rm, µi ∈ Rn1(i = 1, 2, ..., N) are multipliers associated to the linear constraints and

β1, β2 > 0 are the penalty parameters, respectively.

We also define x = (x⊤1 , x
⊤
2 , ..., x

⊤
N )⊤, y = (y⊤1 , y

⊤
2 , ..., y

⊤
N )⊤, g(y) =

∑N
i=1 fi(yi), A2 =

[A1, A2, ..., AN ], and n =
∑N

i=1 ni. Then x, y ∈ Rn and A2 ∈ Rm×n. Moreover let µ =

(µ⊤
1 , µ

⊤
2 , ..., µ

⊤
N )⊤ ∈ Rn. The augmented Lagrangian function (4.2.23) can be written as

L2
β(x, y, λ, µ) = g(y)− ⟨λ,A2x− b⟩ − ⟨µ, x− y⟩+ β1

2
∥A2x− b∥2 + β2

2
∥x− y∥2. (4.2.24)

Similar to problem 1 in Subsection 4.2.2, by using a proximal matrix T 2
k ∈ Rn×n, the x-subproblem

(4.1.3a) for (4.1.8) is written as

xk+1 = argmin
x

{
−⟨λk,A2x− b⟩ − ⟨µk, x− yk⟩

+
β1
2
∥A2x− b∥2 + β2

2
∥x− yk∥2 + 1

2
∥x− xk∥2T 2

k

}
=
(
β1A⊤

2 A2 + β2I + T 2
k

)−1 (
A⊤

2 λ
k + µk + β1A⊤

2 b+ β2y
k + T 2

kx
k
)
. (4.2.25)

Let M2 be defined as

M2 : = ∇2
xxL2

β(x, y, λ, µ) = β1A⊤
2 A2 + β2I. (4.2.26)

Note that M2 ≻ 0 whenever β2 > 0. Then, we construct a matrix B2
k via the Broyden family for

M2 and set:

T 2
k = B2

k −M2. (4.2.27)

Theorem 4.2.1 implies that T 2
k ≽ 0 if B2

0 ≽ M2. By using B2
k, x-subproblem (4.2.25) is written as

xk+1 = xk + (B2
k)

−1
(
A⊤

2 λ
k + µk + β1A⊤

2 b+ β2y
k −M2xk

)
. (4.2.28)

The algorithm for problem (4.1.6) is as follows:
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Algorithm 3: VMSP-ADMM with the Broyden family update (ADM-BD2) for

convex Problem 2 (4.1.6)

Input : data matrix A2, initial point (x
0, y0, λ0, µ0), penalty parameters β1, β2;

initial matrix H2
0 ≼ (M2)−1, coefficient t2 ∈ [0, 1], constant k̄2 ∈ [1,∞];

maxIter, stopping criterion ϵ.

Output: approximative solution (xk, yk, λk, µk)

1 initialization;

2 while k < maxIter or not convergence do

3 if k ≤ k̄2 and xk − xk−1 ̸= 0 then

4 update H2
k via (4.2.8) or L-BFGS;

5 else

6 H2
k = H2

k−1;

7 end

8 update xk+1 by solving the x-subproblem:

xk+1 = xk +H2
k

(
A⊤

2 λ
k + µk + β1A⊤

2 b+ β2y
k −M2xk

)
;

9 update yk+1 by solving the y-subproblem:

yk+1 = argminy

{
g(y)− ⟨µk, xk+1 − y⟩+ β2

2 ∥x
k+1 − y∥2 + 1

2∥y − yk∥2S
}
;

10 update Lagrangian multipliers: λk+1 = λk − β1(A2x
k+1 − b);

11 update Lagrangian multipliers: µk+1 = µk − β2(x
k+1 − yk+1).

12 end

The constant k̄2 in the Algorithm 2 plays the same role as k̄1 in Algorithm 1.

4.3 Convergence analysis

In this section, we first consider general convergence properties for the variable metric semi-proximal

ADMM (4.1.3a)-(4.1.3c) (VMSP-ADMM). Then we discuss the convergence of VMSP-ADMM with

the Broyden family update (ADM-BD1 and ADM-BD2) for problem 1 and problem 2.

4.3.1 Global convergence of the variable metric semi-proximal

ADMM

Let Ω∗ be a set of (x∗, y∗, λ∗) satisfying the KKT condition of problem (4.1.1). Since the

subdifferential mapping of the closed proper convex functions are maximal monotone [101], there

exist two positive semidefinite matrices Σf and Σg such that for all x, x̂ ∈ Rn1 , f ′(x) ∈ ∂f(x), and

f ′(x̂) ∈ ∂f(x̂),

(x− x̂)⊤(f ′(x)− f ′(x̂)) ≥ ∥x− x̂∥2Σf
, (4.3.1)

and for all y, ŷ ∈ Rn2 , g′(y) ∈ ∂g(y), and g′(ŷ) ∈ ∂g(ŷ),

(y − ŷ)⊤(g′(y)− g′(ŷ)) ≥ ∥y − ŷ∥2Σg
. (4.3.2)
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Throughout this chapter, we make the following assumptions.

Assumption 4.3.1. The set Ω∗ of KKT points is non-empty.

Assumption 4.3.2. For all k > 0, Tk +Σf + βA⊤A and S +Σg + βB⊤B are positive definite.

Now, we begin to investigate the convergence of VMSP-ADMM. First, we assume some

conditions for the sequence {Tk} to guarantee the convergence.

Condition 4.3.1. For the sequence {Tk} generated by the framework (4.1.3), there exist T ≽ 0

and a non-negative sequence {γk} such that

1 T ≼ Tk+1 ≼ (1 + γk)Tk, for all k,

2 T +Σf + βA⊤A is positive definite,

3
∞∑
0
γk < ∞.

Now we give the main theorem of this subsection.

Theorem 4.3.1. Suppose that Assumptions 4.3.1 and 4.3.2 hold. Suppose also that {Tk} is a

sequence satisfying Condition 4.3.1. Let {(xk, yk, λk)} be generated by (4.1.3). Then the following

statements hold:

(a) we have for k ≥ 1 that

∥xk − x∗∥2Tk
+ ∥yk − y∗∥2S + β∥B(yk − y∗)∥2 + 1

β
∥λk − λ∗∥2 + ∥yk − yk−1∥2S

−
(
∥xk+1 − x∗∥2Tk

+ ∥yk+1 − y∗∥2S + β∥B(yk+1 − y∗)∥2 + 1

β
∥λk+1 − λ∗∥2

+ ∥yk+1 − yk∥2S
)

≥ ∥xk+1 − xk∥2Tk
+ ∥yk+1 − yk∥2S + β∥B(yk+1 − yk)∥2

+ β∥Axk+1 +Byk+1 − b∥2 + 2∥xk+1 − x∗∥2Σf
+ 2∥yk+1 − y∗∥2Σg

.

(b) the sequence {(xk, yk, λk)} converges to a point (x∗, y∗, λ∗) ∈ Ω∗.

Proof. The proof can be done in a way similar to the proofs in 3.3.1 and [40, Theorem

B.1].
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4.3.2 Global convergences of Algorithms 2 and 3

We establish the global convergences of Algorithms 2 and 3 as corollaries of the convergence results

in Subsection 4.3.1.

For the global convergence, we require condition 4.3.1 holds. In particular, we need that

0 ≼ T ≼ Tk for all k, that is, Tk should be positive semidefinite for all k. To see this, we first note

that initial matrices H1
0 and H2

0 satisfy H1
0 ≼ (M δ1)−1 and H2

0 ≼ (M2)−1. Then Theorem 4.2.1

implies H1
k ≼ (M δ1)−1 and H2

k ≼ (M2)−1 for all k, and hence T 1
k , T

2
k ≽ 0 for all k.

Therefore, Algorithms 2 and 3 are well-defined, that is, they can generate a sequence

{xk, yk, λk}. Moreover, we get the following convergence properties based on Theorem 4.3.1.

Theorem 4.3.2. Suppose that the sequence {T 1
k } satisfies Condition 4.3.1. Let a sequence

{(xk, yk, λk)} be generated by Algorithm 2. Then the sequence {(xk, yk, λk)} converges to a KKT

point of (4.1.7).

Theorem 4.3.3. Suppose that the sequence {T 2
k } satisfies Condition 4.3.1. Let a sequence

{(xk, yk, λk, µk)} be generated by Algorithm 3. Then the sequence {(xk, yk, λk, µk)} converges to

a KKT point of (4.1.8).

Until now, we cannot give sufficient conditions for Condition 4.3.1 to hold when {Bk} is updated

by a pure Broyden family. As those remedies shown in Chapter 3, now we provide two amendments

for the sequences {T 1
k } and {T 2

k } with the Broyden family (4.2.7) to guarantee Condition 4.3.1.

Amendment I Let k̄1 be finite in Algorithm 2. Then the updating of B1
k stops at k̄1, and thus

the sequence {T 1
k } satisfies Condition 4.3.1. Similarly, let k̄2 be finite in Algorithm 3. Then

the sequence {T 2
k } satisfies Condition 4.3.1 as well.

Amendment II Suppose that k̄1 = ∞ in Algorithm 2. We generate {B1
k} as follows:

B1
k+1 = B1

k + c1k
(
B̄1

k+1 −B1
k

)
, (4.3.3)

where B̄1
k+1 is updated by the pure Broyden family (4.2.6) for M δ1 ≻ 0 with δ1 > 0, and

{c1k} is a sequence such that c1k ∈ [0, 1], and
∞∑
k=0

c1k < ∞. We can easily obtain that Condition

4.3.1 holds for the sequence {T 1
k } as shown in Chapter 3.

Suppose that k̄2 = ∞ in Algorithm 3. We generate {B2
k} as follows:

B2
k+1 = B2

k + c2k

(
l̃2k(l̃

2
k)

⊤

(l̃2k)
⊤s2k

−
B2

ks
2
k(s

2
k)

⊤(B2
k)

⊤

(s2k)
⊤B2

ks
2
k

+ t2

(
(s2k)

⊤B2
ks

2
k

)
ṽ2k(ṽ

2
k)

⊤

)
, (4.3.4)

where l̃2k = M δ2s2k = M2s2k + δ2s
2
k with δ2 > 0, t2 ∈ [0, 1] is a scalar parameter,

ṽ2k =

(
l̃2k

(l̃2k)
⊤s2k

−
B2

ks
2
k

(s2k)
⊤B2

ks
2
k

)
, (4.3.5)

and {c2k} is a sequence such that c2k ∈ [0, 1], and
∞∑
k=0

c2k < ∞.
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We can rewrite (4.3.4) as

B2
k+1 = B2

k + c2k
(
B̄2

k+1 −B2
k

)
, (4.3.6)

B̄2
k+1 = (1− t2)B

B2
k+1 + t2B

D2
k+1, with t2 ∈ [0, 1], (4.3.7)

where BB2
k+1 and BD2

k+1 are updated by the pure BFGS and DFP updates with respect to M δ2 ,

respectively.

As shown in Chapter 3, Condition 4.3.1 holds for the sequence {T 2
k }.

4.4 Numerical Experiments

In this section, we test the proposed proximal ADMM by solving a popular sparse learning problem,

l1 regularized logistic regression model. All the experiments are implemented by Matlab R2018b

on Windows 10 pro with a 2.10 GHz Intel Xeon E5-2620 v4 processor and 128 GB of RAM. The

l1 regularized logistic regression model is given as

min

{
1

m

m∑
i=1

log
(
1 + exp

(
− ri(Aix+ σ)

))
+ ρ∥x∥1

∣∣∣ x ∈ Rn

}
, (4.4.1)

where A ∈ Rm×n is a feature matrix, Ai ∈ R1×n is the row vector of matrix A, and r ∈ Rm

is a response vector. The scalar m is the number of data points, and n is the dimension of data.

Moreover, σ ∈ R is a decided intercept scalar, and ρ > 0 is a regularization parameter. The decision

variable of (4.4.1) is x ∈ Rn.

4.4.1 Reformulation and algorithms

Our purpose is to justify the advantages of the proximal ADMM with the Broyden family update

(Algorithm 2). We choose some classical ADMMs as the benchmark for numerical comparison in

this subsection.

By introducing some auxiliary variables yi ∈ R (i = 1, 2, ...,m) and z ∈ Rn, the l1 regularized

logistic regression model (4.4.1) can be reformulated as

minimize 1
m

m∑
i=1

log
(
1 + exp

(
− ri(yi + σ)

))
+ ρ∥z∥1

subject to yi = Aix, i = 1, 2, ...,m

z = x,

x, z ∈ Rn, yi ∈ R.

(4.4.2)

Note that, letting ỹ =

(
y

z

)
, g(ỹ) = 1

m

m∑
i=1

log
(
1 + exp

(
− ri(yi + σ)

))
+ ρ∥z∥1, Ã =

[
A

In

]
,

B = −Im+n, and b = 0, problem (4.4.2) is reduced to (4.1.1).

The augmented Lagrangian function of (4.4.2) can be written as

Lβ(x, y, z, λ, µ) = g(ỹ)− ⟨λ,Ax− y⟩ − ⟨µ, x− z⟩+ β

2
∥Ax− y∥2 + β

2
∥x− z∥2, (4.4.3)
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where λ ∈ Rm, µ ∈ Rn are multipliers associated to the linear constraints and β > 0 is the

penalty parameter. We further define λ̃ =

(
λ

µ

)
. Let M be the Hessian matrix of the augmented

Lagrangian function (4.4.3), that is, M : = ∇2
xxLβ(x, y, z, λ, µ) = βÃ⊤Ã = βA⊤A+ βI. Note that

M ≻ 0 whenever β > 0. Therefore, we set δ1 = 0 in Algorithm 2.

The maximum eigenvalue λmax

(
βI + βA⊤A

)
is needed in some algorithms. We adopt the the

following codes in Matlab to compute the maximum eigenvalue λmax

(
A⊤A

)
:

AAfun = @(x )A’ * (A*x ) ; eig max = e i g s (AAfun , n , 1 ) .

The inverse of matrix M will also be used later for some x-subproblems. We use a Cholesky

factorization to solve it. When m ≥ n, we use “chol” in Matlab for (A⊤A+ βI). When m < n, we

apply Sherman-Morrison formula to (βI +A⊤A)−1:

(βI +A⊤A)−1 =
1

β
I − 1

β2
·A⊤ ·

(
I +

1

β
AA⊤

)−1

·A, (4.4.4)

and compute the factorization LL⊤ of a smaller matrix (I + (1/β)AA⊤) by the “chol” function.

Note that the maximum eigenvalue and the Cholesky factorization are calculated only once for each

test problem.

Besides, a soft-thresholding operator Sκ : Rn → Rn will be used in y-subproblems, which is

defined as (Sκ(a))i = (1− κ/|ai|)+ · ai, for all i = 1, ...,m, κ > 0 and a ∈ Rm.

We test the following methods:

ADMM-1 the classical ADMM [46, 49] which is applied for the original problem (4.4.1):
xk+1 = argmin

x

1

m

m∑
i=1

log
(
1 + exp

(
− ri(Aix+ σ)

))
+

β

2
∥x− yk − λk

β
∥22,

yk+1 = Sρ/β(x
k+1 − λk/β),

λk+1 = λk − β(xk+1 − yk+1);

(4.4.5)

ADMM-2 the classical ADMM [46, 49] applied for problem (4.4.2);

ADM-PRO the proximal ADMM for problem (4.4.2) with an indefinite proximal matrix T as

[63, 77]:

T = ξI − βI − βA⊤A, with ξ = 0.8 ∗ λmax

(
βI + βA⊤A

)
; (4.4.6)

ADM-Broyden the proximal ADMM with the Broyden family update for problem (4.4.2) with

a semidefinite proximal matrix sequence {Tk}:

xk+1 = xk + (Bk)
−1
(
A⊤λk + µk + βA⊤yk + βzk −Mxk

)
,

yk+1 = argmin
y

1

m

m∑
i=1

log
(
1 + exp

(
− ri(yi + σ)

))
+

β

2
∥Axk+1 − y − λk

β
∥22,

zk+1 = Sρ/β(x
k+1 − µk/β),

λk+1 = λk − β(Axk+1 − yk+1),

µk+1 = µk − β(xk+1 − zk+1),

(4.4.7)
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where Bk is generated by Broyden family (4.2.6), and the initial matrix B0 is chosen as

B0 = ξI, with ξ = 1.01 ∗ λmax(βI + βA⊤A). (4.4.8)

It becomes the pure BFGS update when t = 0 (ADM-BFGS) and becomes the pure DFP

update when t = 1;

ADM-BFGS (or ADM-LBFGS) the proximal ADMM with the BFGS (or L-BFGS) update

for problem (4.4.2) with a semidefinite proximal matrix sequence {Tk}. The matrix Bk is

generated by BFGS (4.2.10), and the initial matrix B0 is chosen as (4.4.8);

ADM-ILBFGS the proximal ADMM with the L-BFGS update for problem (4.4.2) with an

indefinite proximal matrix sequence {Tk} where the initial matrix B0 is chosen as

B0 = ξI, ξ = 0.8 ∗ λmax(βI + βA⊤A).

Since the x-subproblems in (4.4.5) and y-subproblems in (4.4.7) have no closed-form solution,

we adopt a custom Newton solver for these subproblems with the tolerance of 10−6. We set a

maximum iteration number of the Newton solver to 50. The codes for the original ADMM (4.4.5)

are referred to the paper [13].

4.4.2 Problem data and algorithm settings

Now we specify the data for the l1 regularized logistic regression model (4.4.1) to be tested. We

generate data by the codes of [13] as follows. We first generate D ∈ Rm×n as a sparse matrix

normally distributed with p sparsity nonzero entries, where p ∈ (0, 1]. Then we generate σ, r, A

and ρ as follows:

� the intercept σ is chosen from N (0, 1);

� the vector r is generated by r = sign(Dw+σ+ ϵ), where ϵ is the noise drawn from N (0, 0.1),

and w ∈ Rn is a random and sparse vector with approximately 10% normally distributed

nonzero entries;

� the matrix A can be written as A = spdiags(r, 0,m,m)∗D by MATLAB, which is the product

of a banded sparse matrix with D;

� ρ = 0.1ρmax, where ρmax is the maximum regularization parameter when the solution is

x∗ = 0. The concrete definition of ρmax can be found in [73, Subsection 2.1].

Then we give the settings of initial points, maximum iterations and stopping criterions for the

above algorithms. We set the initial points as x0 = y0 = z0 = 0 and λ0 = µ0 = 0. The maximum

outer iteration step is 5000.

We adopt the stopping criterion as in [13] that the primal residual and dual residual are small

at the iteration k:

∥Ãxk +Bỹk∥2 ≤ ϵprik and ∥βÃ⊤B(ỹk − ỹk−1)∥2 ≤ ϵdualk , (4.4.9)
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where ϵpri > 0 and ϵdual > 0 are feasibility tolerances for the primal and dual feasibility conditions,

respectively. These tolerances can be chosen using absolute and relative criteria from the suggestion

in [13], such as

ϵprik =
√
nϵabs + ϵrelmax{∥Ãxk∥2, ∥Bỹk∥2},

ϵdualk =
√
nϵabs + ϵrel∥Ã⊤λ̃k∥2,

where ϵabs > 0 is an absolute tolerance and ϵrel > 0 is a relative tolerance. We set ϵabs = 10−4, ϵrel =

10−3.

We give the notations that will be used in the following tables for numerical results.

� Iter.: the outer iteration steps for each algorithm;

� Int.It.: the total internal iterations of Newton method for each algorithm;

� Time: the total CPU time for each algorithm;

� T-M: the CPU time of computing for the Cholesky factorization of ADMM-2; or the CPU

time of computing for the maximum eigenvalue of ADM-PRO, ADM-LBFGS, and ADM-

ILBFGS;

� T-A: the CPU time for the algorithm proceed without T-M.

All of the CPU times are recorded in seconds.

4.4.3 Numerical results

It is well known that the BFGS update is more effective than the DFP update from computational

experience. We first choose t ∈ {−0.1, 0, 0.1} in (4.2.6). Note that t = −0.1 cannot guarantee the

positive definiteness in theory but work in practice. At first, we set the sizes and sparsity of the

matrix D be m ∈ {500, 1000}, n ∈ {200, 500}, and p = 0.1. We test different β ∈ (0, 500] and chose

the best one. The results on iterations and CPU time (in seconds) for ADM-Broyden with different

t are provided in Table 4.1. All the results are averaged over 10 trials.

Table 4.1: Comparison on iteration steps and CPU time for different t of ADM-Broyden

Setting ADM-Broyden t = −0.1 ADM-Broyden t = 0 ADM-Broyden t = 0.1

m n p β Iter. Int.It. Time(s) β Iter. Int.It. Time(s) β Iter. Int.It. Time(s)

500 200 0.1 2.4 72.0 216.0 0.16 2.3 74.0 222.0 0.16 2.4 72.0 216.0 0.16

500 500 0.1 3.3 81.0 243.0 0.46 3.5 83.0 249.0 0.49 2.2 82.0 246.0 0.44

1000 500 0.1 2.3 158.0 474.0 1.14 2.2 155.0 465.0 1.11 2.2 157.0 471.0 1.12

Table 4.1 shows that ADM-Broyden with t = −0.1 and 0.1 some times work well from the

viewpoint of the number of iteration.
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Table 4.2: Comparison on iteration steps and CPU time among the four methods

Setting ADMM-1 ADMM-2 ADM-PRO ADM-BFGS

m n p β Iter. Int.It. Time(s) β Iter. Int.It. Time(s) β Iter. Int.It. Time(s) β Iter. Int.It. Time(s)

500 200 0.1 4.0 15.0 60.0 0.35 0.6 77.0 306.0 0.14 0.3 131.0 524.0 0.23 2.3 74.0 222.0 0.16

500 500 0.1 4.0 20.0 100.0 2.50 0.6 105.0 418.0 0.26 0.3 390.0 1559.0 0.75 3.5 83.0 249.0 0.49

1000 500 0.1 9.0 19.0 85.0 4.59 0.8 128.0 510.0 0.51 0.3 233.0 931.0 0.88 2.2 155.0 465.0 1.11

Next we test the same problems as those in Table 4.1 among the different classical ADMMs,

proximal ADMM and ADMM with the BFGS update. Table 4.2 shows the iterative steps and the

CPU time (in seconds) results.

It is obvious to see from Table 4.2 that the classical ADMM-1 always gets a solution within

least iterative steps but takes a lot of time computing the x-subproblems by the Newton method.

We also know that classical ADMM-2 spends less CPU time to get the solution. The ADMM with

the BFGS update (ADM-BFGS) is better than the proximal ADMM (ADM-PRO) on the number

of iterations. When the data matrix A is ill-conditioned, or the inverse of the Hessian matrix of

augmented Lagrangian function is impossible to be computed, it is meaningful to use the proximal

matrix Hk. ADM-BFGS needs more memories to save the Hk, and thus we consider to use the

L-BFGS update to construct the Hk for some larger cases.

We take the memory as 40 for the ADMM with the L-BFGS update. The upper results in Table

4.3 show the iteration steps and CPU time (in seconds) for a smaller and sparse matrix D when

m = 1000, n ∈ {500, 1000, 2000} and p = 0.1. The middle part in Table 4.3 shows the iteration

steps and CPU time results when m = 5000, n = 1000 and p ∈ {0.1, 0.5, 1}. The results are

compared among ADMM-1, ADMM-2, ADM-PRO, ADM-LBFGS, and ADM-ILBFGS. We also

plot the objective function values with respect to the CPU time of matrix D (same as matrix A)

with different sparsities among three methods, ADMM-2, ADM-PRO and ADM-LBFGS in Figure

4.1. In the lower part of Table 4.3, we test the behaviours of ADMMs for a larger matrix D when

m = 10000, n = 5000 and p ∈ {0.1, 0.5, 1}. The best CPU time is highlighted with red color of each

item, while the best iteration colors with blue except for ADMM-1. The iterations of ADM-LBFGS

are highlighted with purple color in order to compare clearly with the classical ADMM-2.

From Table 4.3 and Figure 4.1, we conclude that ADM-LBFGS performs well. When matrix

A is larger and has more non-zero elements, ADMM-1 spends too much time. The usual

proximal ADMM (ADM-PRO) takes much more iteration steps. ADM-LBFGS and ADM-ILBFGS

algorithms can reach the solutions within the same levels both at iteration and CPU time for

the algorithm (T-A) as the ADMM-2 while the indefinite ADM-ILBFGS is a slight better than

the semidefinite ADM-LBFGS. If matrix A is large enough, non-sparse or ill-conditioned, i.e.,

it is difficult or impossible to compute the inverse of the matrix
(
βI + βA⊤A

)
, the CPU time

of computing for the Cholesky factorization of ADMM-2 (T-M) is longer than the CPU time of

computing for the maximum eigenvalue of ADM-LBFGS, and thus it is useful to choose ADMM

with the L-BFGS update methods.
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(b) m = 5000, n = 1000, p = 0.5

0 10 20 30 40 50 60 70 80 90 100

CPU Time (s)

2100

2200

2300

2400

2500

2600

2700

2800

2900

f(
xk ) 

+
 g

(x
k )

ADMM-2
ADM-PRO
ADM-LBFGS

(c) m = 5000, n = 1000, p = 1

Figure 4.1: Evolution of the objective function values with respect to CPU time for small

problems
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Table 4.3: Comparison on iteration steps and CPU time among the five methods

Algorithm
m = 1000, n = 500, p = 0.1 m = 1000, n = 1000, p = 0.1 m = 1000, n = 2000, p = 0.1

β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s)

ADMM-1 9.0 17.0 85.0 4.59 − − 10.0 19.0 95.0 13.46 − − 9.0 23.0 115.0 53.47 − −
ADMM-2 0.8 128.0 510.0 0.51 0.46 0.05 0.8 159.0 633.0 1.18 0.99 0.19 0.6 223.0 891.0 3.13 2.93 0.20

ADM-PRO 0.3 233.0 931.0 0.86 0.83 0.03 0.4 550.0 2199.0 2.64 2.59 0.05 0.2 941.0 3764.0 10.68 10.61 0.07

ADM-LBFGS 0.7 143.0 570.0 0.55 0.52 0.03 0.8 184.0 733.0 0.94 0.89 0.05 0.8 305.0 1217.0 3.75 3.68 0.07

ADM-ILBFGS 0.7 139.0 554.0 0.55 0.52 0.03 1.0 185.0 736.0 0.95 0.90 0.05 0.9 294.0 1173.0 3.58 3.51 0.07

m = 5000, n = 1000, p = 0.1 m = 5000, n = 1000, p = 0.5 m = 5000, n = 1000, p = 1.0

β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s)

ADMM-1 40 16.0 80.0 153.79 − − 161 15.0 74.0 612.32 − − 250 15.0 74.0 984.23 − −
ADMM-2 1.7 266.0 1057.0 11.67 11.41 0.26 3.9 526.0 1578.0 81.18 79.56 1.62 4.6 665.0 1995.0 142.19 138.47 3.72

ADM-PRO 1.1 344.0 1373.0 14.40 14.19 0.12 2.1 719.0 2859.0 111.96 111.41 0.55 2.6 920.0 3625.0 196.81 195.91 0.90

ADM-LBFGS 1.7 268.0 1064.0 11.22 11.10 0.12 3.7 531.0 1593.0 80.30 79.75 0.55 4.6 669.0 2007.0 142.71 141.81 0.90

ADM-ILBFGS 1.7 267.0 1061.0 11.02 10.90 0.12 3.8 528.0 1584.0 79.80 79.25 0.55 4.6 667.0 2001.0 141.63 140.73 0.90

m = 10000, n = 5000, p = 0.1 m = 10000, n = 5000, p = 0.5 m = 10000, n = 5000, p = 1.0

β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s) β Iter. Int.It. Time(s) T-A(s) T-M(s)

ADMM-2 2.2 475.0 1892.0 193.10 181.67 11.43 4.3 1005.0 3015.0 1407.36 1316.69 90.67 5.3 1258.0 3774.0 2769.45 2554.13 215.32

ADM-PRO 0.6 736.0 2944.0 262.77 259.87 2.90 0.9 1405.0 5618.0 1843.21 1834.80 8.41 1.0 1780.0 7118.0 3664.39 3653.84 10.55

ADM-LBFGS 2.2 486.0 1935.0 178.95 176.05 2.90 4.0 1038.0 3114.0 1370.20 1361.79 8.41 4.5 1319.0 3957.0 2712.25 2701.70 10.55

ADM-ILBFGS 2.3 477.0 1898.0 175.98 173.08 2.90 4.2 1024.0 3072.0 1359.35 1350.94 8.41 5.0 1278.0 3834.0 2629.89 2619.34 10.55

‘−′ means that no such result in this item

4.5 Conclusions

In this chapter, we proposed a proximal ADMM where the proximal matrix derived from the

Broyden family update for the general convex optimization problems (4.1.5) and (4.1.6). The x-

subproblems of these convex problems can be rewritten as unconstrained quadratic programming

problems in Subsections 4.2.2 and 4.2.3 as that in the Chapter 3, and hence the Hessian matrix

of the augmented Lagrangian function is a constant matrix. The global convergences of such

methods have also been established under some standard conditions. The numerical results for the

l1 regularized logistic regression problem are given to show the feasibility and effectiveness of the

proposed algorithms.





Chapter 5

Alternating Direction Method of

Multipliers with Variable Metric

Indefinite Proximal Terms for Convex

Optimization

5.1 Introduction

We consider the following convex composite optimization problem in this Chapter:

min
{
f(x) + g(y) | Ax+By = b, x ∈ Rl, y ∈ Rn

}
, (5.1.1)

where f : Rl → R∪ {∞} and g : Rn → R∪ {∞} are proper convex functions, A ∈ Rm×l, B ∈ Rm×n

and b ∈ Rm. Various practical problems of science and engineering, such as machine learning [115],

total variation denoising [102] and statistics [59] can be formulated as problem (5.1.1).

The augmented Lagrangian function Lβ : Rl × Rn × Rm → R ∪ {∞} of (5.1.1) is defined as

Lβ(x, y, λ) := f(x) + g(y)− ⟨λ,Ax+By − b⟩+ β

2
∥Ax+By − b∥2, (5.1.2)

where λ ∈ Rm is the Lagrange multiplier for the linear constraints Ax + By = b in (5.1.1), and

β is a positive scalar. For a vector z ∈ Rn and a positive semidefinite matrix G, the norm ∥ · ∥G
is defined by ∥z∥G =

√
z⊤Gz. In this chapter, even if G ∈ Rn×n is not positive semidefinite, we

denote ∥z∥2G = z⊤Gz for simplicity.

As discussed in the previous Chapters, how to choose the proximal term is also one of the

important research topics for ADMM. The popular proximal term is always chosen as a constant

matrix. He et al. [60] extended the work to allow the parameters β, proximal terms T and S to

be replaced by some bounded sequences of positive definite matrices {Tk} and {Sk}. The resulting

ADMM is a variable metric proximal ADMM, which is also closely related to the inexact ADMM

[38]. The convergences of such methods have been studied in [53, 82] but a better selection of the

sequence {Tk} has not been provided.
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In Chapter 3, we constructed a variable positive semidefinite sequence {Tk} with Tk = Bk −
∇2

xxLβ(x, y, λ) when f is quadratic. Note that M = ∇2
xxLβ(x, y, λ) is a constant matrix. They

generated Bk via the BFGS update with respect to M at every iteration. In Chapter 4, we further

extended such a proximal ADMM for more general convex optimization problems with the proximal

term generated by the Broyden family update. In these ADMMs, the proximal terms Tk contain

some second order information on the augmented Lagrangian function. Chapters 3 and 4 report

some numerical results for LASSO and l1 regularized logistic regression. The results show that the

algorithms can get a solution faster than the general indefinite proximal ADMM whose proximal

matrix T is fixed. Another interesting numerical result in Chapters 3 and 4 is that a variable

indefinite sequence via the BFGS update also shows a good performance.

Inspired by the variable metric semi-proximal ADMM in Chapters 3, 4 and the indefinite

proximal ADMM [63], it is worth considering ADMM with a sequence of indefinite proximal

matrices. We call the resulting ADMM a variable metric indefinite proximal ADMM (VMIP-

ADMM). Throughout our discussion, we always choose the stepsize α for the dual update to be 1

as that in [63], which is good enough for such methods in practice and simple for the convergence

analysis.

We now introduce the whole update scheme of the VMIP-ADMM:
xk+1 = argmin

x
Lβ(x, y

k, λk) +
1

2
∥x− xk∥2S , (5.1.3a)

yk+1 = argmin
y

Lβ(x
k+1, y, λk) +

1

2
∥y − yk∥2Tk

, (5.1.3b)

λk+1 = λk − β(Axk+1 +Byk+1 − b), (5.1.3c)

where S is a fixed positive semi-definite and Tk is possibly indefinite. Note that the proximal matrix

S in x-subproblems could also be variable indefinite sequence {Sk} with further conditions as {Tk},
and penalty parameter β could also be a positive sequence {βk} which shown in previously research

[60]. However, for the sake of simplicity, we only consider the fixed matrix S and parameter β.

Note also that the VMIP-ADMM can unify the several existing ADMMs.

� Let S = 0, Tk ≡ 0, VMIP-ADMM reduces to the classical ADMM;

� Let S and Tk ≡ T be positive semidefinite matrices, VMIP-ADMM turns to be the semi-

proximal ADMM;

� Let {Tk} be a positive semidefinite sequence, that is, Tk ≽ 0 for all k. VMIP-ADMM becomes

the variable semi-proximal ADMM;

� Let S = 0, Tk ≡ T be an indefinite matrix, VMIP-ADMM covers the indefinite-proximal

ADMM proposed in [63].

We present sufficient conditions on {Tk} for the global convergence of VMIP-ADMM. The

analysis technique of the proof is to split the indefinite matrix “Tk” into two positive semidefinite

parts as Tk = T k
+−T−. Moreover, we provide a construction of the indefinite term Tk via the BFGS

update. We extend a useful theorem in Chapter 3 for a special case when y-subproblems (5.1.3b)
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are unconstrained quadratic programming problems. We construct the Tk with Tk = Bk − M ,

where M is the Hessian matrix of the augmented Lagrangian function (5.1.2) and Bk is generated

by the BFGS update with respect to τM , τ < 1. We also show that this construction of Tk satisfies

the above conditions for the global convergence property when τ ∈ (0.75, 1). We use Table 5.1 to

compare the conditions for global convergence with some existing methods.

Table 5.1: Comparisons among existing methods

method S, T α τ

Classical ADMM [46, 49] S = T = 0 (0, (1 +
√
5)/2) -

Semi-proximal ADMM [40] fixed positive semidefinite matrices (0, (1 +
√
5)/2) (1,+∞)

Variable semi-proximal ADMM variable positive semidefinite matrices 1 (1,+∞)

Indefinite proximal ADMM [63] fixed indefinite matrices 1 (0.75, 1)

Proposed method variable indefinite matrices 1 (0.75, 1)

The remaining parts of the chapter are organized as follows. We first give notations and some

preliminaries that will be useful for subsequent analysis in Section 5.2. Then we present sufficient

conditions on the proximal matrices {Tk} for the global convergence. In Section 5.3, we discuss

the choices of proximal matrix Tk that guarantees the global convergence. We also show how to

determine the value of τ . We conduct experiments on several real-world datasets and synthetic

datasets for Lasso problem to validate our proposed algorithm in Section 5.4. Some conclusions

and future works are given in Section 5.5.

5.2 Global convergence of the variable metric indefi-

nite proximal ADMM

In this section, we show the global convergence of the variable metric indefinite proximal ADMM

(5.1.3) (VMIP-ADMM) for problem (5.1.1). To this end, we first present optimality conditions of

problem (5.1.1) and some useful properties which will be frequently used in our analysis. Then we

give sufficient conditions on {Tk} under which VMIP-ADMM converges globally.

5.2.1 Optimality conditions for problem (5.1.1)

Let Ω = Rl × Rn × Rm. The KKT conditions of problem (5.1.1) are written as

ξ∗x −A⊤λ∗ = 0, (5.2.1a)

ξ∗y −B⊤λ∗ = 0, (5.2.1b)

Ax∗ +By∗ − b = 0, (5.2.1c)

ξ∗x ∈ ∂f(x∗), ξ∗y ∈ ∂g(y∗). (5.2.1d)

Let Ω∗ be a set of (x∗, y∗, λ∗) satisfying the KKT conditions (5.2.1).

Throughout this chapter, we make the following assumption.



74 Chapter 5 ADMM with Variable Metric Indefinite Proximal Terms

Assumption 5.2.1. The set Ω∗ of KKT points is non-empty.

The optimality conditions of subproblems (5.1.3a) and (5.1.3b) can be obtained respectively

that for all x ∈ Rl,

(x− xk+1)⊤
(
ξk+1
x −A⊤λk + βA⊤(Axk+1 +Byk − b) + S(xk+1 − xk)

)
≥ 0,

and for all ∀y ∈ Rn,

(y − yk+1)⊤
(
ξk+1
y −B⊤λk + βB⊤(Axk+1 +Byk+1 − b) + Tk(y

k+1 − yk)
)
≥ 0,

where ξk+1
x ∈ ∂f(xk+1) and ξk+1

y ∈ ∂g(yk+1).

Since λk+1 = λk − β(Axk+1 +Byk+1 − b), we have

−A⊤λk + βA⊤(Axk+1 − b) = −A⊤λk+1 − βA⊤Byk+1

and

−B⊤λk + βB⊤(Axk+1 +Byk+1 − b) = −B⊤λk+1.

Then the above optimality conditions of (5.1.3a) and (5.1.3b) can be written as, for all x ∈ Rl,

(x− xk+1)⊤
(
ξk+1
x −A⊤λk+1 + βA⊤B(yk − yk+1) + S(xk+1 − xk)

)
≥ 0, (5.2.2)

and for all ∀y ∈ Rn,

(y − yk+1)⊤
(
ξk+1
y −B⊤λk+1 + Tk(y

k+1 − yk)
)
≥ 0. (5.2.3)

5.2.2 Notations and conditions on {Tk}
We use the following notations throughout this chapter:

u =

(
x

y

)
, w =

 x

y

λ

 .

Since the subdifferential mappings of the closed proper convex functions f and g are maximal

monotone, there exist two positive semidefinite matrices Σf and Σg such that

(x− x̂)⊤(ξx − ξ̂x) ≥ ∥x− x̂∥2Σf
, ∀x, x̂ ∈ Rl, ξx ∈ ∂f(x), and ξ̂x ∈ ∂f(x̂), (5.2.4)

and

(y − ŷ)⊤(ξy − ξ̂y) ≥ ∥y − ŷ∥2Σg
, ∀y, ŷ ∈ Rn, ξy ∈ ∂g(y), and ξ̂y ∈ ∂g(ŷ). (5.2.5)

Let Σ ∈ R(l+n)×(l+n) denote

Σ =

(
Σf 0

0 Σg

)
.

We first give the conditions for S and the indefinite proximal sequence {Tk} to guarantee the

global convergence.
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Condition 5.2.1. The matrix S in (5.1.3a) satisfies

(a) S + 1
2Σf ≽ 0;

(b) S +Σf + βA⊤A ≻ 0.

Moreover, for sequence {Tk} generated in (5.1.3), there exists a non-negative sequence {γk} and

positive semidefinite sequences {T k
+} and {T−} such that

(c) Tk = T k
+ − T− for all k;

(d) Tk +Σg + βB⊤B ≻ 0 for all k;

(e) 1
1+γk

T k
+ ≼ T k+1

+ ≼ (1 + γk)T
k
+ for all k,

∞∑
k=0

γk < ∞;

(f) Tk+1 +Σg + βB⊤B ≼ (1 + γk)(Tk +Σg + βB⊤B) for all k;

(g) ∃ c ∈ (0, 0.5), Tk +
3
2Σg − γk−1

2 T k
+ − 2T− + (34 − 1

2c)βB
⊤B ≽ 0 for all k.

Conditions (a) and (b) indicate that the proximal matrix S is allowed to be slight indefinite but

no less than −1
2Σf . Condition (c) decomposes the indefinite matrix Tk to two positive semidefinite

parts. For any fixed T , it can be written as T = T+ − T−. When T is positive semidefinite, we

can set T+ = T and T− = 0. If T is indefinite, for instance, a possible choice is T+ = 0, T− = −T .

For the indefinite sequence {Tk}, it could be written as Tk = T k
+ − T k

− generally. The variable

positive semidefinite sequence {T k
−} may relax the Condition 5.2.1 (g), which is under our future

consideration. Note that we require the second part T− be fixed. An example will be given in

next section. This condition will play an important role in the main analysis. Condition (d) allows

Tk to be indefinite. Conditions (e) and (f) are the boundness for positive semi-definite part T k
+

and indefinite Tk, respectively. Condition (g) is a requirement for global convergence and also an

important condition for us to discuss the range of the indefiniteness.

For simplicity, we further define the following matrices. For all k,

Pk =

(
S 0

0 Tk

)
, Dk =

 S 0 0

0 Tk 0

0 0 1
β I

 ,

and

Gk =

 S +Σf 0 0

0 Tk +Σg + βB⊤B 0

0 0 1
β I

 , (5.2.6)

where S, Tk and β are given in (5.1.3).
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Moreover, we also define the following matrices

Γk = T k
+ + T− for all k, (5.2.7a)

Λk = −γk−1

2
T k
+ − 2T− +Σg for all k, (5.2.7b)

∆k = Tk +
3

2
Σg −

γk−1

2
T k
+ − 2T− + (

3

4
− 1

2
c)βB⊤B for all k, (5.2.7c)

where {γk} is a sequence satisfying Condition 5.2.1. Note that Γk ≽ 0 for all k.

5.2.3 Technical lemmas for convergence analysis of the VMIP-

ADMM

In order to show that the sequence generated by VMIP-ADMM converges to a solution of (5.1.1)

globally, we first give some properties for the sequence {wk} = {(xk, yk, λk)} generated by (5.1.3).

Lemma 5.2.1. Let {wk} be generated by (5.1.3). Then, for given w∗ = (x∗, y∗, λ∗) ∈ Ω∗, we have

(wk+1 − w∗)⊤Dk(w
k+1 − wk) + ∥uk+1 − u∗∥2Σ

≤ β(Axk+1 −Ax∗)⊤(Byk+1 −Byk). (5.2.8)

Proof. By taking x = x∗ and y = y∗ in the optimality conditions (5.2.2) and (5.2.3),

respectively, we have

(xk+1 − x∗)⊤(ξk+1
x −A⊤λk+1 + βA⊤B(yk − yk+1) + S(xk+1 − xk)) ≤ 0,

and

(yk+1 − y∗)⊤(ξk+1
y −B⊤λk+1 + Tk(y

k+1 − yk)) ≤ 0,

where ξk+1
x ∈ ∂f(xk+1) and ξk+1

y ∈ ∂g(yk+1).

The inequalities are further rearranged as

(xk+1 − x∗)⊤S(xk+1 − xk) + (xk+1 − x∗)⊤(ξk+1
x −A⊤λk+1)

≤ β(Axk+1 −Ax∗)⊤(Byk+1 −Byk) (5.2.9)

and

(yk+1 − y∗)⊤Tk(y
k+1 − yk) + (yk+1 − y∗)⊤(ξk+1

y −B⊤λk+1) ≤ 0. (5.2.10)

Moreover, from (5.2.4)-(5.2.5) with x = xk+1, y = yk+1, x̂ = x∗ and ŷ = y∗, we have

(xk+1 − x∗)⊤(ξk+1
x − ξ∗x) ≥ ∥xk+1 − x∗∥2Σf

, (5.2.11)

and

(yk+1 − y∗)⊤(ξk+1
y − ξ∗y) ≥ ∥yk+1 − y∗∥2Σg

, (5.2.12)

where ξ∗x ∈ ∂f(x∗) and ξ∗y ∈ ∂g(y∗) satisfy the KKT conditions (5.2.1a) and (5.2.1b), respectively.
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It then follows from (5.2.1a) and (5.2.11) that

(xk+1 − x∗)⊤(ξk+1
x −A⊤λk+1)

= (xk+1 − x∗)⊤(ξk+1
x − ξ∗x) + (xk+1 − x∗)⊤(ξ∗x −A⊤λk+1)

≥ ∥xk+1 − x∗∥2Σf
+ (Axk+1 −Ax∗)⊤(λ∗ − λk+1).

Combining this inequality and (5.2.9), we have

(xk+1 − x∗)⊤S(xk+1 − xk) + (Axk+1 −Ax∗)⊤(λ∗ − λk+1) + ∥xk+1 − x∗∥2Σf

≤ β(Axk+1 −Ax∗)⊤(Byk+1 −Byk). (5.2.13)

In a similar way, we have from (5.2.1b), (5.2.10) and (5.2.12) that

(yk+1 − y∗)⊤Tk(y
k+1 − yk) + (Byk+1 −By∗)⊤(λ∗ − λk+1) + ∥yk+1 − y∗∥2Σg

≤ 0. (5.2.14)

Rearranging (5.1.3c), we have Axk+1 + Byk+1 − b = 1
β

(
λk − λk+1

)
. It then follows from (5.2.1c)

that

Axk+1 +Byk+1 −Ax∗ −By∗ =
1

β
(λk − λk+1).

Adding (5.2.13) and (5.2.14), and recalling the definition of Dk and Σ, it holds that

(wk+1 − w∗)⊤Dk(w
k+1 − wk) + ∥uk+1 − u∗∥2Σ

= (xk+1 − x∗)⊤S(xk+1 − xk) + (yk+1 − y∗)⊤Tk(y
k+1 − yk)

+
1

β
(λk+1 − λk)⊤(λk+1 − λ∗) + ∥uk+1 − u∗∥2Σ

= (xk+1 − x∗)⊤S(xk+1 − xk) + (yk+1 − y∗)⊤Tk(y
k+1 − yk)

+ (Axk+1 +Byk+1 −Ax∗ −By∗)⊤(λ∗ − λk+1) + ∥uk+1 − u∗∥2Σ
≤ β(Axk+1 −Ax∗)⊤(Byk+1 −Byk),

which completes the proof.

The inequality (5.2.8) in Lemma 5.2.1 is further rearranged as follows.

Lemma 5.2.2. Let {wk} be generated by (5.1.3). Then, for given w∗ = (x∗, y∗, λ∗) ∈ Ω∗, we have

2(wk+1 − w∗)⊤Dk(w
k+1 − wk)

≤ 2(Byk+1 −Byk)⊤(λk − λk+1)− 2β(Byk+1 −By∗)⊤(Byk+1 −Byk)

− 2∥uk+1 − u∗∥2Σ. (5.2.15)

Proof. Noting that Ax∗ +By∗ − b = 0, the twice of the right hand of (5.2.8) is written as

2β(Axk+1 −Ax∗)⊤(Byk+1 −Byk)

= 2β(Axk+1 +By∗ − b+Byk+1 −Byk+1)⊤(Byk+1 −Byk)
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= 2β(Axk+1+Byk+1−b)⊤(Byk+1−Byk)− 2β(Byk+1−By∗)⊤(Byk+1−Byk)

= 2(Byk+1 −Byk)⊤(λk − λk+1)− 2β(Byk+1 −By∗)⊤(Byk+1 −Byk),

where the last equality follows from (5.1.3c). Then the assertion is directly obtained from (5.2.8).

Next we give a simple but important lemma.

Lemma 5.2.3. For vectors a, b ∈ Rn, and symmetric positive semidefinite matrices M1,M2 ∈
Rn×n, we have that

a⊤M1b− a⊤M2b ≤
1

2
a⊤(M1 +M2)a+

1

2
b⊤(M1 +M2)b. (5.2.16)

Proof. For a positive semidefinite matrix M1, we have

0 ≤ 1

2
∥a− b∥2M1

=
1

2
a⊤M1a+

1

2
b⊤M1b− a⊤M1b,

which implies

a⊤M1b ≤
1

2
a⊤M1a+

1

2
b⊤M1b. (5.2.17)

In a similar way for M2, we have

−a⊤M2b ≤
1

2
a⊤M2a+

1

2
b⊤M2b. (5.2.18)

The assertion immediately follows by adding (5.2.17) and (5.2.18).

In order to bound (wk+1 − w∗)⊤Dk(w
k+1 − wk) further, we now give two technical lemmas to

estimate upper-bounds for the crossing term (Byk+1 −Byk)⊤(λk − λk+1) in (5.2.15).

Lemma 5.2.4. Let {wk} be generated by the scheme (5.1.3). Suppose that the proximal sequence

{Tk} satisfies Condition 5.2.1. Then it holds that

(Byk+1 −Byk)⊤(λk − λk+1)

≤ 1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

− ∥yk+1 − yk∥2Λk
, (5.2.19)

where Γk and Λk are defined in (5.2.7).

Proof. From the optimality condition (5.2.3) for yk+1, we can easily derive the optimality

condition for yk as

(y − yk)⊤(ξky −B⊤λk + Tk−1(y
k − yk−1)) ≥ 0, ∀y ∈ Rn. (5.2.20)

Choosing y = yk in (5.2.3), we have

0 ≤ (yk − yk+1)⊤(ξk+1
y −B⊤λk+1 + Tk(y

k+1 − yk))
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= (yk+1 − yk)⊤(−ξk+1
y +B⊤λk+1 − Tk(y

k+1 − yk)). (5.2.21)

Moreover, letting y = yk+1 in (5.2.20), we have

0 ≤ (yk+1 − yk)⊤(ξky −B⊤λk + Tk−1(y
k − yk−1)). (5.2.22)

Summing inequalities (5.2.21) and (5.2.22), we obtain that

(Byk+1 −Byk)⊤(λk − λk+1)

≤ −∥yk+1 − yk∥2Tk
+ (yk+1 − yk)⊤Tk−1(y

k − yk−1)− ∥yk+1 − yk∥2Σg
. (5.2.23)

Recall that Tk−1 = T k−1
+ − T− from (c) in Condition 5.2.1 and T k−1

+ , T− ≽ 0. Then we have

(yk+1 − yk)⊤Tk−1(y
k − yk−1)

= (yk+1 − yk)⊤T k−1
+ (yk − yk−1)− (yk+1 − yk)⊤T−(y

k − yk−1)

≤ 1

2
∥yk+1 − yk∥2

Tk−1
+ +T−

+
1

2
∥yk−1 − yk∥2

Tk−1
+ +T−

, (5.2.24)

where the inequality follows from (5.2.16) with a = (yk+1 − yk), b = (yk − yk−1), M1 = T k−1
+ and

M2 = T−.

We then have from (5.2.23) that

(Byk+1 −Byk)⊤(λk − λk+1)

≤ −∥yk+1 − yk∥2Tk
+ (yk+1 − yk)⊤Tk−1(y

k − yk−1)− ∥yk+1 − yk∥2Σg

≤ −∥yk+1 − yk∥2
Tk
+−T−

+
1

2
∥yk+1 − yk∥2

Tk−1
+ +T−

+
1

2
∥yk−1 − yk∥2

Tk−1
+ +T−

− ∥yk+1 − yk∥2Σg

≤ −∥yk+1− yk∥2
Tk
+−T−

+
1

2
∥yk+1− yk∥2

(1+γk−1)T
k
++T−

+
1

2
∥yk−1− yk∥2

Tk−1
+ +T−

− ∥yk+1 − yk∥2Σg

=
1

2
∥yk−1− yk∥2

Tk−1
+ +T−

− 1

2
∥yk+1− yk∥2

Tk
++T−

−∥yk+1− yk∥2− γk−1
2

Tk
+−2T−+Σg

=
1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

− ∥yk+1 − yk∥2Λk
,

where the second inequality follows from Tk = T k
+ − T− and (5.2.24), the third inequality follows

from Condition 5.2.1 (d), and the last equality is from the definitions (5.2.7a) and (5.2.7b). Then

it shows the assertion (5.2.19).

Besides Lemma 5.2.4, we can derive another estimation for the term (Byk+1−Byk)⊤(λk−λk+1),

which is the result in [63, Lemma 4.4].

Lemma 5.2.5. Let {wk} be generated by the scheme (5.1.3). Then, for any c ∈ (0, 0.5), it holds

that

(Byk+1 −Byk)⊤(λk − λk+1) ≤
(
1

4
+

1

2
c

)
β∥Byk+1 −Byk∥2

+ (1− c)
1

β
∥λk+1 − λk∥2. (5.2.25)
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Proof. See [63, Lemma 4.4].

Based on the above two lemmas for (Byk+1−Byk)⊤(λk−λk+1), we can further bound (wk+1−
w∗)⊤Dk(w

k+1 − wk) in (5.2.15) of Lemma 5.2.2.

Lemma 5.2.6. Let {wk} be generated by (5.1.3). Suppose that the proximal sequence {Tk} satisfies

Condition 5.2.1. Then, for given w∗ = (x∗, y∗, λ∗) ∈ Ω∗, we have

2(wk+1 − w∗)⊤Dk(w
k+1 − wk)

≤ 1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

− ∥yk+1 − yk∥2Λk

+

(
1

4
+

1

2
c

)
β∥Byk+1 −Byk∥2 + (1− c)

β
∥λk+1 − λk∥2

− 2β(Byk+1 −By∗)⊤(Byk+1 −Byk)− 2∥uk+1 − u∗∥2Σ. (5.2.26)

Proof. The term 2(Byk+1 − Byk)⊤(λk − λk+1) in inequality (5.2.15) can be bounded by

the above lemmas (5.2.19) and (5.2.25), and then the assertion is obtained.

5.2.4 Global Convergence of the VMIP-ADMM

In this subsection we show the global convergence based on the results in the previous subsection

and Condition 5.2.1. Firstly, we obtain the following contractive result, which will play a key role

in proving the convergence of (5.1.3).

Lemma 5.2.7. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, and let {wk} be generated by the scheme (5.1.3).

Suppose that the proximal sequence {Tk} satisfies Condition 5.2.1. Then we have

∥wk − w∗∥2Gk
+

1

2
∥yk−1 − yk∥2Γk−1

−
(
∥wk+1 − w∗∥2Gk

+
1

2
∥yk+1 − yk∥2Γk

)
≥ ∥xk+1 − xk∥2

S+ 1
2
Σf

+ ∥yk+1 − yk∥2∆k
+

c

β
∥λk+1 − λk∥2︸ ︷︷ ︸

Υk

, (5.2.27)

where Γk and ∆k are given in (5.2.7).

Proof. By the identity ∥a+ b∥2 = ∥a∥2 − ∥b∥2 + 2(a+ b)⊤b, we get

∥wk+1 − w∗∥2Dk
+ β∥Byk+1 −By∗∥2

= ∥wk − w∗∥2Dk
+ β∥Byk −By∗∥2 −

(
∥wk+1 − wk∥2Dk

+ β∥Byk+1 −Byk∥2
)

+ 2(wk+1 − w∗)⊤Dk(w
k+1 − wk) + 2β(Byk+1 −By∗)⊤(Byk+1 −Byk). (5.2.28)

Since the term 2(wk+1 − w∗)⊤Dk(w
k+1 − wk) in equality (5.2.28) can be bounded by (5.2.26) in

Lemma 5.2.6, we can rearrange (5.2.28) as



5.2 Global convergence of the variable metric indefinite proximal ADMM 81

∥wk+1 − w∗∥2Dk
+ β∥Byk+1 −By∗∥2

≤ ∥wk − w∗∥2Dk
+ β∥Byk −By∗∥2 − ∥wk+1 − wk∥2Dk

− β∥Byk+1 −Byk∥2

+
1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

− ∥yk+1 − yk∥2Λk

+

(
1

4
+

c

2

)
β∥Byk+1 −Byk∥2 + 1− c

β
∥λk+1 − λk∥2 − 2∥uk+1 − u∗∥2Σ

= ∥wk − w∗∥2Dk
+ β∥Byk −By∗∥2

− ∥uk+1 − uk∥2Pk
−
(
3

4
− 1

2
c

)
β∥Byk+1 −Byk∥2 − c

β
∥λk+1 − λk∥2

+
1

2
∥yk−1− yk∥2Γk−1

− 1

2
∥yk+1− yk∥2Γk

− ∥yk+1− yk∥2Λk
− 2∥uk+1− u∗∥2Σ, (5.2.29)

where the last equality follows from the definitions of Pk and Dk in (5.2.6). Rearranging (5.2.29)

further, we have

∥wk+1 − w∗∥2Dk
+ β∥Byk+1 −By∗∥2 + 1

2
∥yk+1 − yk∥2Γk

≤ ∥wk − w∗∥2Dk
+ β∥Byk −By∗∥2 + 1

2
∥yk−1 − yk∥2Γk−1

− 2∥uk+1 − u∗∥2Σ

−
(
∥uk+1 − uk∥2Pk

+
c

β
∥λk+1 − λk∥2 + ∥yk+1 − yk∥2

Λk+( 3
4
− 1

2
c)βB⊤B

)
,

that is,

∥wk − w∗∥2Dk
+ β∥Byk −By∗∥2 + 1

2
∥yk−1 − yk∥2Γk−1

+ ∥uk − u∗∥2Σ

−
(
∥wk+1− w∗∥2Dk

+ β∥Byk+1−By∗∥2+ 1

2
∥yk+1− yk∥2Γk

+ ∥uk+1− u∗∥2Σ
)

≥ ∥uk+1 − uk∥2Pk
+

c

β
∥λk+1 − λk∥2 + ∥yk+1 − yk∥2

Λk+( 3
4
− 1

2
c)βB⊤B

+ ∥uk − u∗∥2Σ − ∥uk+1 − u∗∥2Σ + 2∥uk+1 − u∗∥2Σ. (5.2.30)

From the definition of Gk in (5.2.6), inequality (5.2.30) can be written as

∥wk − w∗∥2Gk
+

1

2
∥yk−1 − yk∥2Γk−1

−
(
∥wk+1 − w∗∥2Gk

+
1

2
∥yk+1 − yk∥2Γk

)
≥ ∥uk+1 − uk∥2Pk

+
c

β
∥λk+1 − λk∥2 + ∥yk+1 − yk∥2

Λk+( 3
4
− 1

2
c)βB⊤B

+ ∥uk − u∗∥2Σ + ∥uk+1 − u∗∥2Σ
≥ ∥uk+1 − uk∥2Pk

+
c

β
∥λk+1 − λk∥2 + ∥yk+1 − yk∥2

Λk+( 3
4
− 1

2
c)βB⊤B

+
1

2
∥uk+1 − uk∥2Σ

= ∥xk+1 − xk∥2
S+

Σf
2

+ ∥yk+1 − yk∥2
Tk+Λk+( 3

4
− c

2
)βB⊤B+

Σg
2

+
c

β
∥λk+1 − λk∥2,

where the second inequality follows from the well-known inequality ∥a∥2M +∥b∥2M ≥ 1
2∥a−b∥2M with

M = Σ, a = uk − u∗ and b = uk+1 − u∗.
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From the definitions (5.2.7b) and (5.2.7c), we have that

∆k = Tk +
1

2
Σg + Λk + (

3

4
− 1

2
c)βB⊤B.

Thus the proof is completed.

Condition 5.2.1 (a) implies ∥xk+1−xk∥2
S+ 1

2
Σf

≥ 0 for all k. Moreover, Condition 5.2.1 (g) implies

∥yk+1 − yk∥2∆k
≥ 0 for all k. Therefore, Υk in (5.2.27) is always nonnegative, which indicates the

contraction of the sequence {wk}.

It follows from the definition of {Gk} and Condition 5.2.1 (a), (c) and (e) that 0 ≼ Gk+1 ≼
(1 + γk)Gk for all k. We define two constants Cs and Cp as follows:

Cs : =
∞∑
k=0

γk and Cp : =
∞∏
k=0

(1 + γk).

From the assumption
∑∞

0 γk < ∞ and γk ≥ 0, we have 0 ≤ Cs < ∞ and 1 ≤ Cp < ∞. Moreover,

we can easily get

0 ≼ Gk ≼ CpG0, ∀k ≥ 0,

which means that the sequences {Gk} is bounded.

Now we give the main convergent theorem of this subsection.

Theorem 5.2.1. Let w∗ = (x∗, y∗, λ∗) ∈ Ω∗, and let {wk} be a sequence generated by (5.1.3).

Suppose that {Tk} is a sequence satisfying Condition 5.2.1. Then the sequence {wk} converges to

a point w∗ ∈ Ω∗.

Proof. First we show that the sequence {wk} is bounded. Since 0 ≼ Gk+1 ≼ (1 + γk)Gk, we

have

∥wk+1 − w∗∥2Gk+1
≤ (1 + γk)∥wk+1 − w∗∥2Gk

. (5.2.31)

Combining the inequality (5.2.31) with (5.2.27) in Lemma 5.2.7, we have

∥wk+1 − w∗∥2Gk+1
+

1

2
∥yk+1 − yk∥2Γk

(5.2.31)

≤ (1 + γk)

(
∥wk+1 − w∗∥2Gk

+
1

2
∥yk+1 − yk∥2Γk

)
(5.2.27)

≤ (1 + γk)

(
∥wk − w∗∥2Gk

+
1

2
∥yk−1 − yk∥2Γk−1

)
− (1 + γk)Υk

≤ (1 + γk)

(
∥wk − w∗∥2Gk

+
1

2
∥yk−1 − yk∥2Γk−1

)
−Υk. (5.2.32)

It then follows that for all k,

∥wk+1 − w∗∥2Gk+1
+

1

2
∥yk+1 − yk∥2Γk

≤

(
k∏

i=0

(1 + γi)

)(
∥w0 − w∗∥2G0

+
1

2
∥y0 − y1∥2Γ0

)
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≤ Cp

(
∥w0 − w∗∥2G0

+
1

2
∥y0 − y1∥2Γ0

)
. (5.2.33)

Note that

∥wk+1 − w∗∥2Gk+1
= ∥xk+1 − x∗∥2S+Σf

+ ∥yk+1 − y∗∥2Tk+Σg+βB⊤B +
1

β
∥λk+1 − λ∗∥2, (5.2.34)

where (Tk + Σg + βB⊤B) is positive definite from Condition 5.2.1, and

Cp

(
∥w0 − w∗∥2G0

+ 1
2∥y

0 − y1∥2Γ0

)
is a constant. It then follows from (5.2.33) that {yk} and {λk}

are bounded. We now show that {xk} is also bounded.

From (5.2.32) and (5.2.33), we have

Υk = ∥xk+1 − xk∥2
S+ 1

2
Σf

+ ∥yk+1 − yk∥2∆k
+

c

β
∥λk+1 − λk∥2

≤ ∥wk − w∗∥2Gk
− ∥wk+1 − w∗∥2Gk+1

+
1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

+ γk

(
∥wk − w∗∥2Gk

+
1

2
∥yk−1 − yk∥2Γk−1

)
≤ ∥wk − w∗∥2Gk

− ∥wk+1 − w∗∥2Gk+1
+

1

2
∥yk−1 − yk∥2Γk−1

− 1

2
∥yk+1 − yk∥2Γk

+ Cp

(
∥w0 − w∗∥2G0

+
1

2
∥y0 − y1∥2Γ0

)
.

Summing up the inequalities, we obtain

∞∑
k=1

(
∥xk+1 − xk∥2

S+ 1
2
Σf

+ ∥yk+1 − yk∥2∆k
+

c

β
∥λk+1 − λk∥2

)

≤ ∥w0 − w∗∥2G0
+

1

2
∥y0 − y1∥2Γ0

+

( ∞∑
k=0

γk

)
Cp

(
∥w0 − w∗∥2G0

+
1

2
∥y0 − y1∥2Γ0

)
≤ (1 + CsCp)

(
∥w0 − w∗∥2G0

+
1

2
∥y0 − y1∥2Γ0

)
.

Since (1 + CsCp)
(
∥w0 − w∗∥2G0

+ 1
2∥y

0 − y1∥2Γ0

)
is a finite constant, we have

lim
k→∞

∥xk+1 − xk∥2
S+ 1

2
Σf

+ ∥yk+1 − yk∥2∆k
+

c

β
∥λk+1 − λk∥2 = 0,

which indicates that

lim
k→∞

∥λk+1 − λk∥ = lim
k→∞

β∥Axk+1 +Byk+1 − b∥ = 0. (5.2.35)

Note that Ax∗ +By∗ − b = 0, and

∥Axk+1 −Ax∗∥ = ∥Axk+1 +Byk+1 − b−B(yk+1 − y∗)∥

≤ ∥Axk+1 +Byk+1 − b∥+ ∥B(yk+1 − y∗)∥.
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It then follows from (5.2.35) that ∥A(xk+1 − x∗)∥ is bounded. Moreover, inequalities (5.2.33) and

(5.2.34) imply ∥xk+1 − x∗∥2S+Σf
is bounded. Therefore ∥xk+1 − x∗∥2

S+Σf+βA⊤A
is bounded since

∥xk+1 − x∗∥2S+Σf+βA⊤A = ∥xk+1 − x∗∥2S+Σf
+ β∥A(xk+1 − x∗)∥2.

From the positive definiteness of S +Σf + βA⊤A in Condition 5.2.1 (b), it shows that {xk} is also

bounded. Consequently, the sequence {wk} is bounded.

Next we should show that any cluster point of the sequence {wk} is an optimal solution of

(5.1.1) and the sequence {wk} has only one cluster point. This can be done in a way similar to

the proof of that in Chapter 3.

5.3 VMIP-ADMM with the BFGS update

As shown in Chapters 3 and 4, a special variable metric proximal term via the BFGS update can

get a solution faster on the iteration and CPU time than the proximal ADMM [40, 63] with a fixed

proximal matrix T . Moreover, in their experiments, a slightly indefinite variable also performs

well without the theoretical analysis. Note that this choice should have an assumption that the

y-subproblems (5.1.3b) should be unconstrained quadratic programming problems. Based on the

analysis above and the previous studies, we propose indefinite proximal terms {Tk} updated by the

BFGS update, and show that {Tk} satisfies Condition 5.2.1.

5.3.1 Construction of the indefinite proximal matrix Tk via the

BFGS update

Inspired by the semidefinite proximal ADMM with the BFGS update in Chapters 3 and 4, we

construct the indefinite matrix Tk by the BFGS update.

We first explain the pure BFGS update for the following unconstrained quadratic optimization:

min
1

2
x⊤Mx,

where M ∈ Rn×n is a positive definite matrix. Let s ∈ Rn and l = Ms. Note that s⊤l > 0 when

s ̸= 0. The BFGS update generates a sequence of approximate matrices {Bk} of M , and its inverse

Hk = B−1
k . For a given matrix Bk, the BFGS update generates BBFGS

k+1 and HBFGS
k+1 with s and l as

follows:

BBFGS
k+1 = Bk +

ll⊤

l⊤s
−

Bkss
⊤B⊤

k

s⊤Bks
, (5.3.1)

HBFGS
k+1 =

(
I − sl⊤

s⊤l

)
Hk

(
I − ls⊤

s⊤l

)
+

ss⊤

s⊤l
. (5.3.2)

Note that BBFGS
k+1 and HBFGS

k+1 are positive definite whenever Bk,Hk ≻ 0 since s⊤l > 0. Note also

that HBFGS
k+1 l = s = M−1l.
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We now explain how to construct Tk via the BFGS update. Throughout this section we suppose

that g in the objective function (5.1.1) is a convex quadratic function. Then y-subproblems (5.1.3b)

are unconstrained quadratic programming problems, and the Hessian matrix of the augmented

Lagrangian function (5.1.2) is a constant matrix given as

M : = ∇2
yyLβ(x, y, λ) = M̄ + βB⊤B,

where M̄ : = ∇2
yyg(y). Note that M is always positive semidefinite since M̄ ≽ 0.

We consider a perturbed matrix M δ : = M + δI ≻ 0 with a sufficiently small δ > 0, and

construct an approximate matrix Bk of M δ via the BFGS update (5.3.1). Let sk = xk+1 − xk,

where {xk} is a sequence generated by (5.1.3). We propose that {Bk} is generated as

Bk+1 = Bk + ck

(
l̃k l̃

⊤
k

l̃⊤k sk
−

Bksks
⊤
k B

⊤
k

s⊤k Bksk

)
, (5.3.3)

where l̃k = Msk + δsk = M δsk, and {ck} is a sequence such that ck ∈ [0, 1], and
∞∑
k=0

ck < ∞. We

can rewrite the update formula (5.3.3) as

Bk+1 = Bk + ck(B
BFGS
k+1 −Bk),

where BBFGS
k+1 is updated by the pure BFGS update (5.3.1) with respect to M δ at every iteration.

Note that Bk+1 = BBFGS
k+1 when ck = 1.

We then propose the following construction of Tk via the BFGS update.

Construction of Tk via the BFGS update

1 Let δ ∈ (0,∞), τ ∈ (3
4
, 1) and B0 ≽ τM ;

2 Let ck be a sequence such that ck ∈ [0, 1] and
∞∑
k=0

ck < ∞;

3 If sk ̸= 0, then set l̃k = M δsk and update Bk+1 via

Bk+1 = Bk + ck

(
l̃k l̃

⊤
k

l̃⊤k sk
− Bksks

⊤
k B

⊤
k

s⊤k Bksk

)
;

4 Otherwise

Bk+1 = Bk;

5 Construct Tk+1 as

Tk+1 = Bk+1 −M.

As shown in Chapter 3, δ = 0 also works well in the experiment results. However, the positive

requirement is necessary for the convergence analysis.
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5.3.2 Discussion on the Condition 5.2.1 for the indefinite matrix

Tk

We now consider matrices {T k
+} and T− such that Tk = T k

+ − T−, T k
+ ≽ 0, T− ≽ 0 in Condition

5.2.1 (c). Let

T k
+ = Bk − τM and T− = (1− τ)M, with τ ∈ [0, 1).

Note that Tk = T k
+−T− = Bk−M and T− ≽ 0. Thus we only show that T k

+ is positive semidefinite.

To this end, we give an extension result related to Theorem 3.2.1 in Chapter 3.

Lemma 5.3.1. Let M ∈ Rn×n be a positive definite matrix. Let s ∈ Rn such that s ̸= 0, and let

l = Ms. If a given matrix Hk ∈ Rn×n satisfies Hk ≼ τ1M
−1 with τ1 ≥ 1, then HBFGS

k+1 which is

generated by the BFGS update (5.3.2) with respect to M also satisfies HBFGS
k+1 ≼ τ1M

−1.

Proof. Let v be an arbitrary nonzero vector in Rn, and Ψ = {z ∈ Rn | s⊤z = 0}. As shown
in 3.2.1, there exist c ∈ R and z ∈ Ψ such that v = cl+ z. Together with HBFGS

k+1 l = s = M−1l and

s⊤z = 0, we can obtain that for any τ1 ≥ 1,

v⊤HBFGS
k+1 v = (cl + z)⊤HBFGS

k+1 (cl + z)

= c2l⊤s+ 2cs⊤z + z⊤HBFGS
k+1 z

= c2l⊤M−1l + z⊤HBFGS
k+1 z

= c2l⊤M−1l+z⊤Hkz−2z⊤
(
sl⊤

s⊤l
Hk

)
z+z⊤

(
sl⊤

s⊤l
Hk

ls⊤

s⊤l

)
z+

z⊤ss⊤z

s⊤l

= c2l⊤M−1l + z⊤Hkz

≤ c2l⊤τ1M
−1l + z⊤τ1M

−1z

= (cl + z)⊤τ1M
−1(cl + z)− 2τ1cl

⊤M−1z

= v⊤τ1M
−1v,

where the forth equality follows from (5.3.2), and the inequality follows from the positive definiteness

of M−1 and the assumption that Hk ≼ τ1M
−1. Since v is arbitrary, we have HBFGS

k+1 ≼ τ1M
−1.

Lemma 5.3.1 implies that BBFGS
k+1 ≽ τM δ when Bk ≽ τM δ with τ = 1

τ1
≤ 1, and hence

Bk+1 = (1− ck)Bk + ckB
BFGS
k+1 ≽ τM δ.

That is, if B0 ≽ τM δ and τ ≤ 1, we have Bk ≽ τM δ for all k, and hence T k
+ ≽ 0 for all k. When

τ = 1, it is reduced to the variable metric semi-proximal ADMM in Chapter 3.

For instance, we can choose the initial matrix B0 as

B0 = ξI, with ξ = τλmax(M
δ), τ ∈ (0, 1).

It is easy to see that B0 ≽ τM δ.
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Next we show that the Tk, T
k
+ and T− satisfy Condition 5.2.1 (d)-(g). We suppose that B0 ≽

τM δ and τ ∈ (34 , 1).

First we show Condition 5.2.1 (e). Note that s⊤k Bksk ≥ τs⊤k M
δsk ≥ τδ∥sk∥2, l̃⊤k sk = s⊤k Msk +

δ∥sk∥2 ≥ δ∥sk∥2, and M is a constant matrix. Therefore, we can suppose that ∥BBFGS
k+1 − Bk∥

is bounded above by some constant Q > 0, that is, −QI ≼ BBFGS
k+1 − Bk ≼ QI. Moreover,

T k
+ = Bk − τM ≽ τM δ − τM ≽ τδI. Then we can obtain that

T k+1
+ = Bk+1 − τM

= Bk + ck(B
BFGS
k+1 −Bk)− τM

= T k
+ + ck(B

BFGS
k+1 −Bk)

≼ T k
+ +

ckQ

τδ
τδI

≼ T k
+ +

ckQ

τδ
T k
+

= (1 +
ckQ

τδ
)T k

+.

On the other hand, we have

T k
+ = T k+1

+ − ck(B
BFGS
k+1 −Bk)

≼ T k+1
+ +

ckQ

τδ
τδI

≼ T k+1
+ +

ckQ

τδ
T k+1
+

= (1 +
ckQ

τδ
)T k+1

+ .

Let γk = Q
τδ ck. Then we have

1

1 + γk
T k
+ ≼ T k+1

+ ≼ (1 + γk)T
k
+ for all k. (5.3.4)

Note that M̄ = ∇2
yyg(y) = Σg. Then

Tk +Σg + βB⊤B = Bk −M +Σg + βB⊤B = Bk ≻ 0,

which shows that Condition (d) holds.

Next we show Condition (f). Since (5.3.4) implies that

Bk+1 − τM = T k+1
+ ≼ (1 + γk)T

k
+ = (1 + γk)(Bk − τM),

and M is positive semidefinite, then we have

Bk+1 ≼ (1 + γk)Bk − γkτM ≼ (1 + γk)Bk.

Obviously,

Tk+1 +Σg + βB⊤B = Bk+1 ≼ (1 + γk)Bk = (1 + γk)(Tk +Σg + βB⊤B).
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Finally, we show Condition (g). From the definition of M , we have

Tk +
3

2
Σg −

γk−1

2
T k
+ − 2T− + (

3

4
− 1

2
c)βB⊤B

= Bk −M +
3

2
M̄ − γk−1

2
(Bk − τM)− 2(1− τ)M + (

3

4
− 1

2
c)βB⊤B

=
(
1− γk−1

2

)
Bk +

3

2
M̄ −M +

γk−1

2
τM − 2(1− τ)M + (

3

4
− 1

2
c)βB⊤B

≽
(
1− γk−1

2

)
τM +

3

2
M̄ −M +

γk−1

2
τM − 2(1− τ)M + (

3

4
− 1

2
c)βB⊤B

= (3τ − 3)(M̄ + βB⊤B) +
3

2
M̄ + (

3

4
− 1

2
c)βB⊤B

= (3τ − 3

2
)M̄ + (3τ − 9

4
− 1

2
c)βB⊤B,

where the matrix inequality follows from Bk ≽ τM δ = τM + τδI ≽ τM . Note that there exist k̄

such that γk ≤ 1 for all k ≥ k̄. Without loss of generality, we assume k̄ = 0 and thus
(
1− γk−1

2

)
≥ 0

for all k.

Let c = 2(τ − 3
4). It is easy to see that c ∈ (0, 12). Moreover, 3τ − 3

2 > 0 and 3τ − 9
4 − 1

2c =

2τ − 3
2 > 0.

As a conclusion of the above discussion, the indefinite proximal term Tk generated via the BFGS

update can satisfy Condition 5.2.1. Obviously, the VMIP-ADMM can cover the general indefinite

proximal ADMM as the following remark.

Remark 5.3.1. When {Tk} be a constant sequence for all k, that is, Tk = T , then we can write

T = T+ − T−, where T+, T− ≽ 0. It is easy to check that the boundness conditions (e) and (f)

immediately hold when γk ≡ 0. Let T+ = τ(rI − βB⊤B) ≻ 0 and T− = (1 − τ)βB⊤B ≽ 0, we

choose

T = T+ − T− = τrI − βB⊤B, with r > β∥BTB∥.

Condition (d) holds. For τ ∈ (0.75, 1), taking c = 2(τ − 3
4), then Condition (g) turns to be

T +
3

2
Σg − 2T− + (

3

4
− 1

2
c)βB⊤B

≻ τβB⊤B − βB⊤B − 2(1− τ)βB⊤B + (
3

4
− 1

2
c)βB⊤B

= (3τ − 9

4
− 1

2
c)βB⊤B

≻ 0.

It is reduced to the indefinite proximal ADMM in [63].

5.4 Numerical results

In this section, we evaluate our VMIP-ADMM using several datasets. Effectiveness, efficiency

and convergence properties of the proposed algorithm are compared with some existing methods.
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All experiments are conducted on 64-bit Windows with Intel(R) Core(TM) i7-8680U CPU. We

implement all the algorithms by Matlab R2018b.

5.4.1 Experiment setup

We consider the Lasso problem:

min
x∈Rn

1

2
∥Ax− b∥22 + ρ∥x∥1, (5.4.1)

where A ∈ Rm×n is a given data matrix; x ∈ Rn is a vector of feature coefficients to be estimated;

b ∈ Rm is an observation vector and ρ ∈ R is a positive regularization parameter; m is the number

of data points, and n is the number of features. The Lasso model provides a sparse estimation of

x when there are more features than data points (i.e., n > m).

By introducing an auxiliary variable y ∈ Rm, we reformulate problem (5.4.1) as

min
x∈Rn, y∈Rn

1

2
∥y∥22 + ρ∥x∥1 s.t. Ax− b = y. (5.4.2)

Data

In this experiment, two simple real-world datasets are firstly used for performance evaluations:

Boston house prices1 and California housing2. Besides, we also test the proposed algorithm with

several synthetic data.

1. Boston house prices is a small standard dataset, which is useful to quickly illustrate the

behaviors of the various algorithms. It includes 506 instances and 13 attributes. It was

firstly created by Harrison, D. and Rubinfeld, D.L. [58].

2. California housing dataset is a larger dataset consisting of 20,640 samples and 8 features.

This dataset was derived from the 1990 U.S. census [95].

3. We randomly generate A and b with several larger sizes.

Settings

Now we specify the settings for the synthetic data. Firstly, we random generate the sizes m and n.

Let x0 ∈ Rn be a random vector normally distributed with sparsity 0.1; a matrix A is drawn from

standard normal N (0, 1) distribution. Then the vector b is generated by b = Ax0 + ϱ, where ϱ is a

noise under N (0, 10−3) distribution, and the regularization parameter is set to be ρ = 0.1∥A⊤b∥∞
[73].

We always choose S = 0 in (5.1.3b). We set the initial points as x0 = y0 = 0 and λ0 = 0. The

maximum iterations are set to be 20000 in all experiments. We adopt the same stopping criterion

1UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
2This dataset was obtained from the StatLib repository. http://lib.stat.cmu.edu/datasets/
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as in [13] for all the numerical experiments, that is, the primal and dual residuals rk and σk should

satisfy

∥rk∥2 ≤ ϵprik and ∥σk∥2 ≤ ϵdualk , (5.4.3)

and ϵpri > 0 and ϵdual > 0 are chosen using an absolute tolerance ϵabs > 0 and relative tolerance

ϵrel > 0 from the suggestion in [13].The stopping criterions are shown in experiments tables.

Comparison Methods

As we known that the classical ADMM always can get a solution with tens of iterations by choosing

a suitable parameter β, but sometimes it is time-consuming for large scale problems. We chose the

classical ADMM as the baseline. Since this chapter focuses on the proximal ADMM, we compare

it with several state-of-the-art proximal ADMMs. All the parameters are chosen as above. The

comparison methods are described as follows.

1.ADMM: the classical ADMM [46, 49] applied for problem (5.4.2). The computation of the

inverse matrix follows the Cholesky factorization shown in Chapter 3.

2.SPADM: the semi-proximal ADMM [40] with a semidefinite proximal matrix T where τ = 1.01.

The computation of the maximum eigenvalues follows that in Chapter 3.

3.IPADM: the indefinite proximal ADMM [77, 63] with an indefinite proximal matrix T that

τ = 0.8.

4.IADMB: the indefinite proximal ADMM with the BFGS update for problem (5.4.2) with an

indefinite proximal matrix sequence {Tk}. The τ is chosen as τ = 0.8.

5.PADML: the semi-proximal ADMM with Limited memory BFGS (LBFGS) update in Chapter

3 with a semidefinite proximal matrix sequence {Tk} where τ = 1.01. The memory can be

set to a positive value in range [3,∞). We chose the memory to be 5 for the smaller real

datasets and 10 for the larger synthetic data.

6.IADML: the indefinite proximal ADMM with the LBFGS update with τ = 0.8.

5.4.2 Experimental results

In this subsection, experimental results of the proposed VMIP-ADMM algorithm are presented

against comparison methods. All the results are averaged over 10 trials to reduce the computer

errors.

Notations in tables: (CPU time is recorded in seconds)

• Iter.: the iteration steps for each algorithm;

• T-LU: the CPU time for the Cholesky factorization and the calculation of AA⊤ or A⊤A;

• T-ME: the CPU time of computing for the maximum eigenvalue;

• T-A: the CPU time for the algorithm proceed without T-LU or T-ME;
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Real Data

Firstly, we show the performances of our proposed algorithm and other existing methods in Table

5.2 of the real datasets. Figure 5.1 shows the curves of the objective function values with respect to

iterations. Since the sizes of these two datasets are small, the computations of the inverse matrix

and maximum eigenvalues could be ignored. Except for the classical ADMM, the best iteration of

all is colored with red, and the shortest time is colored with blue. Overall, the proposed IADMB

outperforms most proximal ADMMs except the classical ADMM on the iterations for both Boston

and California datasets. The iterations of IADMB and IADML are close to those of classical

ADMM. The CPU time of IPADM is shorter than that of IADMB for the Boston dataset, while

the California dataset is the opposite.

Table 5.2: Results for real datasets

Datasets Tolerance β
ADMM SPADM IPADM IADMB IADML

Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s)

Boston- ϵrel = 10−2 100 22.0 0.0010 70.0 0.0015 48.0 0.0013 26.0 0.0015 25.0 0.0018

house ϵabs = 10−3 300 9.0 0.0010 37.0 0.0013 32.0 0.0012 20.0 0.0015 21.0 0.0016

m = 506 500 11.0 0.0010 29.0 0.0012 26.0 0.0011 20.0 0.0012 19.0 0.0014

n = 13 ϵabs = 10−3 300 16.0 0.0010 69.0 0.0014 60.0 0.0013 29.0 0.0014 34.0 0.0017

ϵabs = 10−4 500 18.0 0.0011 75.0 0.0015 65.0 0.0014 28.0 0.0015 30.0 0.0016

700 25.0 0.0010 86.0 0.0017 75.0 0.0015 36.0 0.0017 36.0 0.0017

California- ϵrel = 10−2 1000 36.0 0.0014 89.0 0.0069 77.0 0.0064 38.0 0.0022 38.0 0.0054

housing ϵabs = 10−3 1500 24.0 0.0012 73.0 0.0057 64.0 0.0056 26.0 0.0022 27.0 0.0050

m = 20640 1700 21.0 0.0013 67.0 0.0056 59.0 0.0049 24.0 0.0018 24.0 0.0041

n = 8 ϵabs = 10−3 5000 23.0 0.0013 55.0 0.0046 49.0 0.0044 28.0 0.0020 28.0 0.0048

ϵabs = 10−4 5300 22.0 0.0014 53.0 0.0045 47.0 0.0043 27.0 0.0023 27.0 0.0042

5500 22.0 0.0012 52.0 0.0041 47.0 0.0042 26.0 0.0018 26.0 0.0036

Synthetic Data

In this subsection, the performances of all the methods for synthetic datasets are explored. We

randomly generate four different sizes of the data matrix A. For the larger size matrix, the IADMB

spends tens or hundreds times longer than the IADM update every step, and thus we replace it

by PADML. The computational results for the four datasets are shown in Table 5.3. Also, Figure

5.2 shows the objective function values with respect to iterations with β = 500, 500, 1000, 1000,

respectably.

Firstly, focusing on the iteration steps, PADML and IADML use nearly the same iterations as

the classical one and almost half of those of general proximal ADMMs for ordinary β. They always

outperform the SPADM and IPADM, and the IADML performs better than PADML slightly. The

best iteration is colored with red except the classical ADMM.
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(c) California, tol1, β = 1500
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(d) California, tol2, β = 5300

Figure 5.1: Evolution of the objective function values with respect to iterations on real

datasets
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Secondly, paying attention to the CPU time, we see that the averages CPU time of all the

algorithms processing are almost the same. The shortest time T-A is colored with blue except the

classical ADMM. The CPU time comparison on T-A is given in the left figure of Figure 5.3. The

‘1-500’ in the label means the result of the first randomly generated matrix with β = 500, and the

others mean the same as this. As the matrix size increases, the CPU time T-LU which is for the

classical ADMM is quite longer than T-ME that for all the proximal ADMMs. The total time also

makes a huge difference, which can be seen from the right figure in Figure 5.3.

Table 5.3: Results for Synthetic datasets (ϵrel = 10−2, ϵabs = 10−3)

Data T-LU/ME β
ADMM SPADM IPADM PADML IADML

Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s) Iter. T-A(s)

m = 2664 T-LU = 10.315s 300 30.7 0.5069 75.2 0.5898 66.9 0.5286 36.3 0.2987 34.1 0.2784

n = 2778 T-ME = 1.980s 500 17.9 0.3010 49.9 0.4102 42.5 0.3555 26.5 0.2260 24.5 0.2034

800 11.5 0.1888 36.0 0.2854 31.7 0.2539 20.1 0.1695 18.3 0.1507

1000 10.3 0.1716 31.6 0.2537 27.3 0.2232 18.4 0.1578 17.1 0.1437

m = 3580 T-LU = 28.516s 300 44.9 1.4417 111.5 1.9481 95.9 1.6807 50.2 0.9149 47.8 0.8656

n = 4620 T-ME = 5.378s 500 27.9 0.9129 73.1 1.2882 62.1 1.0911 36.0 0.6608 33.7 0.6198

800 17.9 0.5888 53.2 0.9468 42.5 0.7578 27.9 0.5178 25.4 0.4786

1000 14.3 0.4787 41.1 0.7307 35.1 0.6266 24.6 0.4576 22.9 0.4221

m = 7498 T-LU = 118.826s 500 46.8 1.7680 86.9 4.0866 67.2 3.1514 47.2 2.2569 47.0 2.2453

n = 5633 T-ME = 16.141s 1000 24.3 0.9105 51.0 2.3636 45.0 2.0981 27.6 1.3902 26.1 1.2590

1500 16.1 0.6303 40.9 1.9333 36.0 1.6943 20.7 0.9949 19.5 0.9493

2000 12.1 0.4829 28.9 1.3641 25.9 1.2279 18.8 0.9107 17.0 0.8338

m = 4774 T-LU = 158.214s 500 48.0 4.7976 134.3 8.7370 116.7 7.6785 61.6 4.1815 59.7 3.9039

n = 10368 T-ME = 24.249s 1000 23.4 2.3597 80.7 5.3301 70.8 5.7369 41.6 3.6014 38.1 2.6846

1500 17.4 1.4561 55.7 3.0283 49.0 2.6745 31.4 1.7645 29.1 1.6197

2000 13.7 1.1631 47.0 2.6077 41.2 2.2898 29.1 1.6362 26.3 1.4693

5.5 Conclusions

In this chapter, we proposed a variable metric indefinite proximal ADMM whose indefinite proximal

term can be chosen differently at every iterative step. We proved the global convergence of the

proposed method under some requirements by applying an analysis technique which split the

proximal matrix Tk to two parts. Moreover, for a special problem whose y-subproblems are

unconstrained quadratic programming problem, we proposed to construct the indefinite term Tk via

the BFGS update. We showed that such construction can satisfy the general convergent conditions.

We apply our algorithm for a Lasso problem on two real Boston house prices and California housing

datasets, along with four synthetic datasets. Experimental results demonstrate the effectiveness of

the proposed indefinite proximal ADMM with BFGS or LBFGS update.
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(c) m = 7498, n = 5633, β = 1000
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(d) m = 4774, n = 10368, β = 1000

Figure 5.2: Evolution of the objective function values with respect to iterations on synthetic

datasets
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Figure 5.3: Comparison on the CPU time

How to choose an adjusted proximal term is important to design a more efficient algorithm.

The BFGS update provides better performance for some special problems whose y-subproblem is

quadratic problem. It is worth developing some efficient proximal term for a general nonlinear

subproblem.





Chapter 6

An indefinite-proximal-based strictly

contractive Peaceman-Rachford

splitting method

6.1 Introduction

In this Chapter, we consider the convex minimization problem with linear constraints and a

separable objective function

min θ1(x) + θ2(y), s.t. Ax+By = b, x ∈ X , y ∈ Y, (6.1.1)

where θ1 : Rn1 → R and θ2 : Rn2 → R are continuous closed convex (could be nonsmooth)

functions; A ∈ Rm×n1 and B ∈ Rm×n2 are given matrices; b ∈ Rm is a given vector; X and Y
are nonempty closed convex subsets of Rn1 and Rn2 , respectively. Throughout, the solution set

of (6.1.1) is assumed to be nonempty; and X and Y are assumed to be simple in the sense that

it is easy to compute the projections under the Euclidean norm onto them (e.g., positive orthant,

spheroidal or box areas).

As discussed in Introduction 1.2.4, the Peaceman-Rachford operator splitting method (PRSM)

(1.2.12) was proposed, and two different step sizes α and γ adding to (1.2.12b) and (1.2.12d) was

also proposed [54, 62]. The convergence results, including global convergence and the worst-case

O(1/t) convergence rate in the ergodic and nonergodic sense, have been established in [54].

Considering that in many cases the subproblem in the ADMM and PRSM schemes might be

difficult to solve and that in some applications θ1 or θ2 is a convex quadratic function, we gave the

semi-proximal ADMM scheme (1.2.7) in the previous Chapters. The semidefinite requirements of

the proximal terms have also been relaxed to be indefiniteness [63, 77]. The numerical results in

[77] showed that the (majorized) ADMM with an indefinite proximal term always performs better

than that with semidefinite proximal terms. He et al. [63] obtained a linearized ADMM with an

optimal indefinite proximal term. In their method, S = 0 and T is chosen by

T = τrIn2 − βB⊤B with r > β∥B⊤B∥, τ ∈ (0.75, 1). (6.1.2)
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Note that they require that the dual stepsize γ = 1 in (1.2.7). The small value τ ∈ (0.75, 1) can

ensure that the proximal term has less weight for the y-subproblem (1.2.7b), and thus allows for a

larger step.

It is natural to extend the proximal ADMM to the proximal Peaceman-Rachford splitting

method. For convenience, we first introduce the whole update scheme of the indefinite-proximal-

based strictly contractive Peaceman-Rachford splitting method (iPSPR):

xk+1 = argmin
x∈X

Lβ(x, y
k, λk) +

1

2
∥x− xk∥2S , (6.1.3a)

λk+ 1
2 = λk − αβ(Axk+1 +Byk − b), (6.1.3b)

yk+1 = argmin
y∈Y

Lβ(x
k+1, y, λk+ 1

2 ) +
1

2
∥y − yk∥2T , (6.1.3c)

λk+1 = λk+ 1
2 − γβ(Axk+1 +Byk+1 − b), (6.1.3d)

where S and T are symmetric and possibly indefinite. Gao et al. [47] considered the generalized

ADMM with indefinite proximal term, which corresponds to (6.1.3) with S = 0 and γ = 1. The

proximal term T takes a similar formulation as (6.1.2) but with τ ∈ [ α
2−α+4

α2−2α+5
, 1). Jiang et al.

[72] considered the same generalized ADMM as in [47], but they give an optimal bound of τ as

τ ∈ (3+α
4 , 1). For other related works one can refer to [78, 103].

In this chapter, we focus on (6.1.3) with indefinite S and T . Our main contributions are

two-fold. Firstly, motivated by the nice analysis techniques in [61] and [114], we prove the global

convergence of iPSPR under some assumptions on S and T , see (6.3.32) and (6.3.33), in which the

stepsizes α and γ are in the range

(α, γ) ∈ D :=

{
(α, γ) : 0 ≤ α < 1, 0 ≤ γ <

1− α+
√

(1 + α)2 + 4(1− α2)

2
, α+ γ > 0

}
. (6.1.4)

With some additional mild requirements, see (6.4.6), we prove that the iPSPR is o(1/t) sublinearly

convergent in the nonergodic sense. Secondly, our proposed requirements on the proximal T can

cover some existing results, such as the special linearized choice (6.1.2) in [63, 72]. More importantly,

our proposed requirements on the proximal T employ both the Hessian information of the objective

function and the information of βB⊤B for the first time. Note that He et al. [63] only uses the

information of βB⊤B, while Li et al. [77] only considers the Hessian information of the objective

function.

The rest of this chapter is organized as follows. In section 6.2, we give the optimality condition

of (6.1.1) by using the variational inequality and also list some assertions which will be used in

later analysis. In section 6.3, we first give the contraction analysis of iPSPR (6.1.3), and then

establish the global convergence. We will discuss how to choose T in the end of section 6.3. The

detailed formulae will be given for the different ranges of the parameters α and γ. We discuss

the nonergodic sublinear convergence rate in section 6.4. In section 6.5, we test the l1 regularized

least square problem to show the efficiency of the proposed iPSPR (6.1.3). Finally, we make some

conclusions in section 6.6.
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6.2 Preliminaries

In this section, we give the optimality condition of (6.1.1) and some notations or relations which

will be frequently used in our analysis. Denote Ω = X × Y × Rm. Let S be the feasible set of

(6.1.1), namely, S = {(x, y) : Ax + By = b, x ∈ X , y ∈ Y} and denote D = S × Rm. Throughout

this chapter, we make the following assumption.

Assumption 6.2.1. Let Ω∗ ⊂ D be the set whose elements are the optimal solutions of (6.1.1) and

the associating dual solutions of (6.1.1). Throughout the chapter, we assume that Ω∗ is non-empty.

6.2.1 Optimality condition of (6.1.1)

Owing to the convexity of θ1(·) and θ2(·), there exist two positive semidefinite matrices Σ1 and Σ2

such that for all x, x′ ∈ Rn1 and ξx ∈ ∂θ1(x), ξ
′
x ∈ ∂θ1(x

′),

⟨x− x′, ξx − ξ′x⟩ ≥ ∥x− x′∥2Σ1
, (6.2.1)

and for all y, y′ ∈ Rn2 , ξy ∈ ∂θ2(y), ξ
′
y ∈ ∂θ2(y

′),

⟨y − y′, ξy − ξ′y⟩ ≥ ∥y − y′∥2Σ2
. (6.2.2)

Denote u =

(
x

y

)
, v =

(
y

λ

)
and w =

x

y

λ

. For given w, and some specific subgradients

ξx ∈ ∂θ1(x) and ξy ∈ ∂θ2(x), we define F (w, ξx, ξy) =

 ξx −A⊤λ

ξy −B⊤λ

Ax+By − b

 . Due to the convexity

of θ1(·) and θ2(·), it is easy to show that the operator F (·) is monotonic. Specifically, for any

w,w′ ∈ D, we have

⟨w − w′, F (w, ξx, ξy)− F (w′, ξ′x, ξ
′
y)⟩ =

〈(
x− x′

y − y′

)
,

(
ξx − ξ′x
ξy − ξ′y

)〉
≥ ∥u− u′∥2Σ, (6.2.3)

where Σ =

(
Σ1 0

0 Σ2

)
and the inequality is due to (6.2.1) and (6.2.2).

Following Theorem 3.1.24 in [90], we say that w∗ ∈ Ω∗ if and only if there exists ξ∗x ∈ ∂θ1(x
∗)

and ξ∗y ∈ ∂θ2(y
∗) such that ⟨x− x∗, ξ∗x⟩+ ⟨y − y∗, ξ∗y⟩ ≥ 0, which is further equivalent to

〈
w − w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
≥ 0, ∀w ∈ D, (6.2.4)

since
〈
w − w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
= ⟨x− x∗, ξ∗x⟩+ ⟨y − y∗, ξ∗y⟩ ≥ 0, ∀w ∈ D.
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6.2.2 Some notations

We use the symbol 0 to denote a zero matrix, whose size can be always easily identified form the

context. We use ∥ · ∥ to denote the 2-norm of a vector. We denote ∥z∥2G = z⊤Gz for z ∈ Rn

and G ∈ Rn×n. For a real symmetric matrix Z, we mark Z ≽ 0 (resp. Z ≻ 0) if Z is positive

semidefinite (resp. positive definite). For any given symmetric matrix T , we decompose it as

T = T+ − T− with T+ ≽ 0 and T− ≽ 0.

To make the analysis more elegantly, we use rk = Axk + Byk − b for short. Similarly, for any

w ∈ Ω, we denote r(w) = Ax+ By − b. Obviously, there holds that r(w) = 0 for any w ∈ D. For

ease of the analysis, we define

H =
1

α+ γ

(
(α+ γ − αγ)βB⊤B −αB⊤

−αB 1
β Im

)
(6.2.5)

and

Ĥ :=

(
T +Σ2 0

0 0

)
+H =

(
T +Σ2 +

α+γ−αγ
α+γ βB⊤B − α

α+γB
⊤

− α
α+γB

1
(α+γ)β Im

)
. (6.2.6)

Denote P =

(
S 0

0 T

)
and define

G :=

(
P 0

0 0

)
+

(
0 0

0 H

)
=

S 0 0

0 T + α+γ−αγ
α+γ βB⊤B − α

α+γB
⊤

0 − α
α+γB

1
(α+γ)β Im

 (6.2.7)

and

Ĝ :=

(
Σ 0

0 0

)
+G =

S +Σ1 0 0

0 T +Σ2 +
α+γ−αγ

α+γ βB⊤B − α
α+γB

⊤

0 − α
α+γB

1
(α+γ)β Im

 =

(
S +Σ1 0

0 Ĥ

)
. (6.2.8)

It follows from (6.2.7) and (6.2.8) that for any w,w′ ∈ Ω

∥w − w′∥2G = ∥u− u′∥2P + ∥v − v′∥2H (6.2.9)

and

∥w − w′∥2
Ĝ
= ∥u− u′∥2Σ + ∥w − w′∥2G = ∥x− x′∥2S+Σ1

+ ∥v − v′∥2
Ĥ
. (6.2.10)

With the update schemes (6.1.3b) and (6.1.3d), it is easy to have

λk = λk+1 + (α+ γ)βrk+1 + αβB(yk − yk+1). (6.2.11)

With (6.2.5) and (6.2.11), we thus have

∥vk − vk+1∥2H = (1− α)β∥B(yk − yk+1)∥2 + (α+ γ)β∥rk+1∥2. (6.2.12)

Finally, it is easy to have the following proposition.

Proposition 6.2.1. If 0 ≤ α ≤ 1 and γ > 0, then H ≽ 0. If T + Σ2 + (1 − α)βB⊤B ≻ 0, then

Ĥ ≻ 0. If T +Σ2 + (1− α)βB⊤B ≻ 0 and S +Σ1 ≽ 0, then Ĝ ≽ 0.
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6.3 Convergence of iPSPR

In this section, we first show that a sequence related to {wk} generated by iPSPR (6.1.3) is strictly

contractive in section 6.3.1 and then establish the global convergence of the method in section 6.3.2,

and discuss the choices of the proximal terms in section 6.3.3. Note that the contraction property

is also helpful to establish the convergence rate in the nonergodic sense.

6.3.1 Contraction analysis

To establish the strictly contractive property of the sequence {Φk
α,γ(w

∗)} (see (6.3.21) for the

definition), we first give a rough estimation of ∥wk−w∗∥2
Ĝ
−∥wk+1−w∗∥2

Ĝ
based on the optimality

conditions of (6.1.3a) and (6.1.3c).

Lemma 6.3.1. Let the sequence {wk} be generated by iPSPR (6.1.3). If we choose (α, γ) ∈ D,
then there holds that

∥wk − w∗∥2
Ĝ
− ∥wk+1 − w∗∥2

Ĝ
≥ ∥xk − xk+1∥2

S+ 1
2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+ (1− α)β∥B(yk − yk+1)∥2

+ (2− α− γ)β∥rk+1∥2 + 2(1− α)β
〈
rk+1, B(yk − yk+1)

〉
(6.3.1)

and

∥wk − w∗∥2
Ĝ
− ∥wk+1 − w∗∥2

Ĝ

≥ ∥xk − xk+1∥2
S+ 1

2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+
α2(1− γ) + γ2(1− α)

(α+ γ)2
β∥B(yk − yk+1)∥2

+
2− α− γ

(α+ γ)2β

∥∥∥λk − λk+1
∥∥∥2 + 2(γ − α)

(α+ γ)2

〈
B(yk − yk+1), λk − λk+1

〉
. (6.3.2)

Proof. The proof of (6.3.1) consists of three steps.

I). We give a rough lower bound estimation of the term ∥wk −w∥2
Ĝ
− ∥wk+1 −w∥2

Ĝ
. Following

from the first equality of (6.2.10), we have

∥wk − w∥2
Ĝ
− ∥wk+1 − w∥2

Ĝ
= ∥wk − w∥2G − ∥wk+1 − w∥2G + ∥uk − u∥2Σ − ∥uk+1 − u∥2Σ. (6.3.3)

The Cauchy-Schwartz inequality tells ∥uk − u∥2Σ + ∥uk+1 − u∥2Σ ≥ 1
2∥u

k − uk+1∥2Σ. Thus, we have

∥uk − u∥2Σ − ∥uk+1 − u∥2Σ ≥ 1

2
∥uk − uk+1∥2Σ − 2∥uk+1 − u∥2Σ. (6.3.4)

Using the identity ∥a∥2G − ∥b∥2G = ∥a− b∥2G + 2b⊤G(a− b) with a = w −wk and b = w −wk+1, we

have

∥wk − w∥2G − ∥wk+1 − w∥2G = ∥wk − wk+1∥2G + 2(w − wk+1)⊤G(wk+1 − wk). (6.3.5)

Substituting (6.3.4) and (6.3.5) into (6.3.3), and using (6.2.9) and (6.2.12), we have that for any

w ∈ Ω,

∥wk − w∥2
Ĝ
− ∥wk+1 − w∥2

Ĝ
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≥ ∥xk − xk+1∥2
S+ 1

2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+ (1− α)β∥B(yk − yk+1)∥2 + (α+ γ)β∥rk+1∥2

+2(w − wk+1)⊤G(wk+1 − wk)− 2∥uk+1 − u∥2Σ. (6.3.6)

II). We focus on the estimation of (w − wk+1)⊤G(wk+1 − wk). From the optimality conditions

of (6.1.3a) and (6.1.3c), we know that there exist ξk+1
x ∈ ∂θ1(x

k+1) and ξk+1
y ∈ ∂θ2(y

k+1) such that〈
x− xk+1, S(xk+1 − xk) + ξk+1

x −A⊤λk + βA⊤(Axk+1 +Byk − b)
〉
≥ 0, ∀x ∈ X

and 〈
y − yk+1, T (yk+1 − yk) + ξk+1

y −B⊤λk+ 1
2 + βB⊤rk+1

〉
≥ 0, ∀y ∈ Y. (6.3.7)

Substituting (6.2.11) into (6.3.7) and noting that rk+1 = Axk+1 +Byk+1 − b, we have〈
x− xk+1, S(xk+1 − xk) + ξk+1

x −A⊤λk+1 + (1− α− γ)βA⊤rk+1 + (1− α)βA⊤B(yk − yk+1)
〉
≥ 0,

∀x ∈ X .

(6.3.8)

Substituting λk+ 1
2 = λk+1 + γβrk+1 into (6.3.7), we have〈

y − yk+1, T (yk+1 − yk) + ξk+1
y −B⊤λk+1 + (1− γ)βB⊤rk+1

〉
≥ 0, ∀y ∈ Y. (6.3.9)

Rewrite (6.2.11) to be

rk+1 − α

α+ γ
B(yk+1 − yk) +

1

(α+ γ)β
(λk+1 − λk) = 0. (6.3.10)

Combing (6.3.8), (6.3.9) and (6.3.10) in a suitable way, and recalling the definitions of w and F (·),
for any w ∈ Ω there holds that

〈
w − wk+1,

S(xk+1 − xk)

T (yk+1 − yk)

0

+

 0

αβB⊤rk+1 + (1− α)βB⊤B(yk+1 − yk)

− α
α+γB(yk+1 − yk) + 1

(α+γ)β (λ
k+1 − λk)

〉

≥

〈
wk+1 − w,

A⊤

B⊤

0

[(1− α− γ)βrk+1 + (1− α)βB(yk − yk+1)
]〉

+
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
. (6.3.11)

With the assertion (6.3.10), we have αβB⊤rk+1+(1−α)βB⊤B(yk+1−yk) = α+γ−αγ
α+γ βB⊤B(yk+1−

yk) − α
α+γB

⊤(λk+1 − λk). Using the definition (6.2.5) of H, the definition (6.2.7) of G and the

definition of rk+1 and r(w), we can rewrite (6.3.11) as

(w − wk+1)⊤G(wk+1 − wk) ≥
〈
rk+1 − r(w), (1− α− γ)βrk+1 + (1− α)βB(yk − yk+1)

〉
+
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
. (6.3.12)
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Noting that r(w) = 0 for any w ∈ D, we have from (6.3.12) that for any w ∈ D

(w − wk+1)⊤G(wk+1 − wk) ≥ (1− α− γ)β∥rk+1∥2 + (1− α)β
〈
rk+1, B(yk − yk+1)

〉
+
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
. (6.3.13)

III). Plugging (6.3.13) into (6.3.6), we have for any w ∈ D

∥wk − w∥2
Ĝ
− ∥wk+1 − w∥2

Ĝ

≥ ∥xk − xk+1∥2
S+ 1

2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+ (1− α)β∥B(yk − yk+1)∥2

+ (2− α− γ)β∥rk+1∥2 + 2(1− α)β
〈
rk+1, B(yk − yk+1)

〉
+∆(wk+1, w), (6.3.14)

where ∆(wk+1, w) := 2
〈
wk+1 − w,F (wk+1, ξk+1

x , ξk+1
y )

〉
− 2∥uk+1 − u∥2Σ. Taking w = wk+1 and

w′ = w∗ in (6.2.3), we have from (6.2.3) that〈
wk+1 − w∗, F (wk+1, ξk+1

x , ξk+1
y )

〉
≥
〈
wk+1 − w∗, F (w∗, ξ∗x, ξ

∗
y)
〉
+ ∥uk+1 − u∗∥2Σ ≥ ∥uk+1 − u∗∥2Σ,

where ξ∗x ∈ ∂θ1(x
∗), ξ∗y ∈ ∂θ2(y

∗) and the second inequality is due to the optimality condition

(6.2.4) of w∗. This further means that ∆(wk+1, w∗) ≥ 0. Setting w = w∗ in (6.3.14), we have

(6.3.1).

The proof of (6.3.2) follows directly from (6.3.1) and rk+1 = α
α+γB(yk+1−yk)− 1

(α+γ)β (λ
k+1−λk)

which comes from (6.3.10). The proof is completed.

We now need to give a careful estimation of the intersection term
〈
rk+1, B(yk − yk+1)

〉
, which

is useful to establish the strictly contractive property of {Φk
α,γ(w

∗)} when (α, γ) ∈ D1 ∪ D2 (see

(6.3.20) for the definition).

Lemma 6.3.2. Let the sequence {wk} be generated by iPSPR (6.1.3). If α ≥ 0 and γ > 0, then

there holds that〈
rk+1, B(yk − yk+1)

〉
≥ 1− γ

1 + α

〈
rk, B(yk − yk+1)

〉
− α

1 + α
∥B(yk − yk+1)∥2+ 1

1 + α
· 1
β
∥yk − yk+1∥2−2T−+Σ2

+
1

2(1 + α)
· 1
β

(
∥yk − yk+1∥2T++T− − ∥yk−1 − yk∥2T++T−

)
. (6.3.15)

Proof. From the optimality conditions of (6.1.3c) with k := k−1, we know that there exists

ξky ∈ ∂θ2(y
k) such that〈
y − yk, T (yk − yk−1) + ξky −B⊤λk + (1− γ)βB⊤rk

〉
≥ 0, ∀y ∈ Y. (6.3.16)

Choosing y to be yk and yk+1 in (6.3.9) and (6.3.16) and then rearranging the obtained inequalities

suitably, respectively, we have that〈
B(yk − yk+1),−λk+1 + (1− γ)βrk+1

〉
≥ ∥yk − yk+1∥2T −

〈
yk − yk+1, ξk+1

y

〉
(6.3.17)
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and〈
B(yk − yk+1), λk − (1− γ)βrk

〉
≥ −

〈
yk − yk+1, T (yk−1 − yk)

〉
+
〈
yk − yk+1, ξky

〉
. (6.3.18)

Summing (6.3.17) and (6.3.18) over the both sides yields〈
B(yk − yk+1), λk − λk+1

〉
+ (1− γ)β

〈
B(yk − yk+1), rk+1

〉
− (1− γ)β

〈
B(yk − yk+1), rk

〉
≥ ∥yk − yk+1∥2T −

〈
yk − yk+1, T (yk−1 − yk)

〉
+
〈
yk − yk+1, ξky − ξk+1

y

〉
. (6.3.19)

Recalling that T = T+ − T−, we know from the Cauchy-Schwarz inequality that

−
〈
yk − yk+1, T (yk−1 − yk)

〉
= −

〈
yk − yk+1, T+(y

k−1 − yk)
〉
+
〈
yk − yk+1, T−(y

k−1 − yk)
〉

≥ − 1

2
∥yk − yk+1∥2T++T− − 1

2
∥yk−1 − yk∥2T++T− ,

which with (6.2.2) implies that

RHS of (6.3.19) ≥ 1

2

(
∥yk − yk+1∥2T++T− − ∥yk−1 − yk∥2T++T−

)
+ ∥yk − yk+1∥2−2T−+Σ2

.

This with relations (6.2.11) and (6.3.19) implies that (6.3.15). The proof is completed.

We now decompose the domain D (see (6.1.4) for its definition) as D = D1 ∪D2 ∪D3 ∪D4 with

D1 =

{
(α, γ) : 0 ≤ α < 1 < γ <

1− α+
√

(1 + α)2 + 4(1− α2)

2

}
,

D2 = {(α, γ) : 0 ≤ α < 1, γ = 1}, D3 = {(α, γ) : 0 ≤ α < 1, 0 ≤ γ < 1, α+ γ > 0, α ̸= γ},
(6.3.20)

and

D4 = {(α, γ) : 0 < α = γ < 1}.

For a given w ∈ D, we define Φk
α,γ(w) as

Φk
α,γ(w) := ∥wk − w∥2

Ĝ
+ ρα,γ1 ∥yk−1 − yk∥2T++T− + ρα,γ2 β∥rk∥2, (6.3.21)

where the constants

ρα,γ1 =


1−α
1+α (α, γ) ∈ D1,

1−α
2(1+α) (α, γ) ∈ D2,

0 (α, γ) ∈ D3 ∪ D4,

ρα,γ2 =


(γ−1)2

(1−cα,γ)(1+α) (α, γ) ∈ D1,

0 (α, γ) ∈ D2 ∪ D3 ∪ D4,
(6.3.22)

in which the constant cα,γ is defined as

cα,γ ∈


(
0, 1−α2+α−(α−1)γ−γ2

(2−α−γ)(1+α)

)
(α, γ) ∈ D1,

(0, 1) (α, γ) ∈ D2 ∪ D3.

We are now ready to have the following theorem.
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Theorem 6.3.1. Given w∗ ∈ Ω∗, let the sequence {wk} be generated by iPSPR (6.1.3). If we

choose (α, γ) ∈ D, then there holds that

Φk
α,γ(w

∗)− Φk+1
α,γ (w∗) ≥ ∥xk − xk+1∥2

S+ 1
2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2+κα,γ

1 (−2T−+Σ2)+κα,γ
2 βB⊤B

+
κα,γ3

β
∥λk − λk+1∥2 + κα,γ4 ∥rk+1∥2, (6.3.23)

where the constants

κα,γ1 =


2(1−α)
1+α (α, γ) ∈ D1,

1−α
1+α (α, γ) ∈ D2,

0 (α, γ) ∈ D3 ∪ D4,

κα,γ2 =



cα,γ(1−α)2

1+α (α, γ) ∈ D1,

cα,γ(1−α)(3−α)
4(1+α) (α, γ) ∈ D2,

cα,γ(1−α)(1−γ)
(2−γ−α) (α, γ) ∈ D3,

1−α
2 (α, γ) ∈ D4,

(6.3.24)

and

κα,γ3 =


0 (α, γ) ∈ D1 ∪ D2,

(1−cα,γ)(1−α)(1−γ)(2−α−γ)
(γ−α)2+(1−cα,γ)(1−α)(1−γ)(α+γ)2

(α, γ) ∈ D3,

1−α
2α2 (α, γ) ∈ D4,

(6.3.25)

and

κα,γ4 =


2− α− γ − (γ−1)2

(1−cα,γ)(1+α) (α, γ) ∈ D1,

(1−cα,γ)(1−α)(3−α)
(1+α)+(1−cα,γ)(3−α) (α, γ) ∈ D2,

0 (α, γ) ∈ D3 ∪ D4.

(6.3.26)

Proof. We consider four cases.

I). (α, γ) ∈ D1. By combining (6.3.15) and (6.3.1), we derive(
∥wk − w∗∥2

Ĝ
+

1− α

1 + α
∥yk−1 − yk∥2T++T−

)
−
(
∥wk+1 − w∗∥2

Ĝ
+

1− α

1 + α
∥yk − yk+1∥2T++T−

)
≥ ∥xk − xk+1∥2

S+ 1
2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+
2(1− α)

1 + α
∥yk − yk+1∥2−2T−+Σ2

+
(1− α)2

1 + α
β∥B(yk − yk+1)∥2 + (2− α− γ)β∥rk+1∥2−2(γ − 1)

1− α

1 + α
β
〈
rk, B(yk − yk+1)

〉
.

(6.3.27)

Note that in this case 0 < cα,γ < 1−α2+α−(α−1)γ−γ2

(2−α−γ)(1+α) < 1, with the Cauchy-Schwarz inequality, we

have

−2
〈
rk, B(yk − yk+1)

〉
≥ − γ − 1

(1− α)(1− cα,γ)
· ∥rk∥2 − (1− α)(1− cα,γ)

γ − 1
· ∥B(yk − yk+1)∥2.

Plugging the above inequality into (6.3.27), we obtain (6.3.23) in this case.

II). (α, γ) ∈ D2. For this case, (6.3.15) reduces to〈
rk+1, B(yk − yk+1)

〉
≥ − α

1 + α
∥B(yk − yk+1)∥2+ 1

(1 + α)β
∥yk − yk+1∥2−2T−+Σ2



106 Chapter 6 An indefinite-proximal-based strictly contractive PRSM

+
1

2(1 + α)β

(
∥yk − yk+1∥2T++T− − ∥yk−1 − yk∥2T++T−

)
. (6.3.28)

On the other hand, by the Cauchy-Schwartz inequality, we have〈
rk+1, B(yk − yk+1)

〉
≥ −δ∥B(yk − yk+1)∥2 − 1

4δ
∥rk+1∥2, (6.3.29)

where δ = (1+α)+(1−cα,γ)(3−α)
4(1+α) . Combing (6.3.28) and (6.3.29), and using (6.3.1), we have(

∥wk − w∗∥2
Ĝ
+

1− α

2(1 + α)
∥yk−1 − yk∥2T++T−

)
−
(
∥wk+1 − w∗∥2

Ĝ
+

1− α

2(1 + α)
∥yk − yk+1∥2T++T−

)
≥ ∥xk − xk+1∥2

S+ 1
2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+
1− α

1 + α
∥yk − yk+1∥2−2T−+Σ2

+
cα,γ(1− α)(3− α)

4(1 + α)
β∥B(yk − yk+1)∥2 + (1− cα,γ)(1− α)(3− α)

(1 + α) + (1− cα,γ)(3− α)
∥rk+1∥2. (6.3.30)

This means (6.3.23) holds in this case.

III). (α, γ) ∈ D3. Noting that cα,γ ∈ (0, 1) and letting c̃ = (γ−α)2

(γ−α)2+(1−cα,γ)(1−α)(1−γ)(α+γ)2
, we

have from the Cauchy-Schwarz inequality that

2(γ − α)
〈
B(yk − yk+1), λk − λk+1

〉
≥ − (α− γ)2β

c̃(2− γ − α)
∥B(yk − yk+1)∥2 − c̃(2− γ − α)

β
∥λk − λk+1∥2,

which with (6.3.2) and the equality [α2(1−γ)+γ2(1−α)](2−α−γ) = (γ−α)2+(1−α)(1−γ)(α+γ)2

implies that (6.3.23) holds in this case.

IV). (α, γ) ∈ D4. Note that α = γ in this case. It is easy to see from (6.3.2) that

∥wk − w∗∥2
Ĝ
− ∥wk+1 − w∗∥2

Ĝ

≥ ∥xk − xk+1∥2
S+ 1

2
Σ1

+ ∥yk − yk+1∥2
T+ 1

2
Σ2

+
1− α

2
β∥B(yk − yk+1)∥2 + 1− α

2α2β

∥∥∥λk − λk+1
∥∥∥2 ,

(6.3.31)

which means that (6.3.23) holds in this case.

The proof is completed.

6.3.2 Global convergence

Theorem 6.3.2. Let the sequence {wk} be generated by iPSPR (6.1.3). If the stepsizes (α, γ) ∈ D
and the proximal terms S, T are chosen such that

S +
1

2
Σ1 ≽ 0, S +

1

2
Σ1 + βA⊤A ≻ 0 (6.3.32)

and

T +Σ2 + (1− α)βB⊤B ≻ 0, T +
1

2
Σ2 + κα,γ1 (−2T− +Σ2) + κα,γ2 βB⊤B ≻ 0, (6.3.33)

then {wk} converges to an optimal solution of (6.1.1).
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Proof. The first conditions in (6.3.32) and (6.3.33) guarantee Ĝ ≽ 0 and Ĥ ≻ 0, see

Proposition 6.2.1. We divide the proof into three steps.

I) We show that the sequences {wk} is bounded.

It is straightforward to see from (6.3.23), (6.3.32) and (6.3.33) that Φk
α,γ(w

∗) is monotone

decreasing. This with T+, T− ≽ 0 and the definition (6.3.21) means that ∥wk − w∗∥2
Ĝ

is bounded.

With the second equality of (6.2.10), we have ∥wk − w∗∥2
Ĝ
= ∥xk − x∗∥2S+Σ1

+ ∥vk − v∗∥2
Ĥ
, which

means that ∥xk − x∗∥S+Σ1 and ∥vk − v∗∥Ĥ are all bounded. Besides, with the positiveness of Ĥ,

we know that the sequences {λk} and {yk} are bounded. Following from (6.3.23), (6.3.32) and

(6.3.33), we also have

lim
k→∞

κα,γ3

β
∥λk − λk+1∥2 + κα,γ4 ∥rk+1∥2 = 0. (6.3.34)

Noting that κα,γ3 + κα,γ4 > 0, with (6.2.11) and (6.3.34) and the boundness of yk, we can see that

{rk} is bounded. With the definition of rk, we know that ∥Axk − Ax∗∥ = ∥rk − B(yk − y∗)∥ ≤
∥rk∥+∥B(yk−y∗)∥, which with the boundness of rk and yk implies that ∥xk−x∗∥βA⊤A is bounded.

Recalling that S + 1
2Σ1 + βA⊤A ≻ 0 and ∥xk − x∗∥S+Σ1 is bounded, it is safe to say that {xk} is

also bounded.

II) We argue that any cluster point of the sequence {wk} is an optimal solution of (6.1.1).

Let {wki} be a subsequence of the sequence {wk} and lim
ki→∞

wki = w∞. Following from (6.3.23),

(6.3.32) and (6.3.33), we have

lim
k→∞

∥xk − xk+1∥S+ 1
2
Σ1

= lim
k→∞

∥yk − yk+1∥T+ 1
2
Σ2+κα,γ

1 (−2T−+Σ2)+κα,γ
2 βB⊤B = 0. (6.3.35)

With the second condition on T in (6.3.33), we know from the second equality in (6.3.35) that

lim
k→∞

∥yk − yk+1∥ = 0. (6.3.36)

Again using κα,γ3 + κα,γ4 > 0, with (6.2.11) and (6.3.34), it is easy to see that

lim
k→∞

∥rk∥ = lim
k→∞

∥λk − λk+1∥ = 0. (6.3.37)

On the other hand, with the definition of rk, we have A(xk − xk+1) = rk − rk+1 − B(yk − yk+1).

Therefore, we know from (6.3.36) and (6.3.37) that lim
k→∞

∥A(xk − xk+1)∥ = 0, which with the first

equality in (6.3.35) implies lim
k→∞

∥xk − xk+1∥S+ 1
2
Σ1+βATA = 0. This with the second condition on

S in (6.3.32) implies

lim
k→∞

∥xk − xk+1∥ = 0. (6.3.38)

Since the graphs of ∂θ1(·) and ∂θ2(·) are both closed, taking the limit with respect ki → ∞ on both

sides of (6.3.11) and by using (6.3.36), (6.3.37) and (6.3.38), we know that there exists ξ∞x and ξ∞y
such that

(w − w∞)⊤F (w∞, ξ∞x , ξ∞y ) ≥ 0, ∀w ∈ D,

which means that w∞ is an optimal solution of (6.1.1).
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III) We finally prove that the sequence {wk} has only one cluster point. We first replace w∗

with w∞ in the analysis of Steps I) and II). It follows from lim
ki→∞

wki = w∞ and (6.3.36), (6.3.37)

that lim
ki→∞

Φki
α,γ(w

∞) = 0. Owing to the decreasing monotonicity of the sequence Φk
α,γ(w

∞), we can

see that

lim
k→∞

Φk
α,γ(w

∞) = 0.

This together with T+, T− ≽ 0 and ∥wk −w∞∥2
Ĝ
= ∥xk −x∞∥2S+Σ1

+ ∥vk − v∞∥2
Ĥ

and Ĥ ≻ 0 shows

that

lim
k→∞

∥xk − x∞∥S+Σ1 = lim
k→∞

∥yk − y∞∥ = lim
k→∞

∥λk − λ∞∥. (6.3.39)

With (6.2.12), we further have limk→∞ ∥rk∥ = 0. Using again the inequality ∥Axk − Ax∞∥ =

∥rk −B(yk − y∞)∥ ≤ ∥rk∥+ ∥B(yk − y∞)∥, which with (6.3.39) and (6.3.37) implies

lim
k→∞

∥A(xk − x∞)∥ = 0. (6.3.40)

Combing (6.3.39) and (6.3.40), and using that S + 1
2Σ1 + βA⊤A ≻ 0, we immediately have

lim
k→∞

wk = w∞.

The proof is completed.

Remark 6.3.1. If the condition (6.3.32) is replaced by S ≽ 0, we can have from lim
k→∞

∥xk −

xk+1∥S+ 1
2
Σ1

= 0 that lim
k→∞

S(xk − xk+1) = 0. Using the similar analysis to the above proof, we can

show that {vk} converges to some v∗ =

(
y∗

λ∗

)
, where w∗ =

(
x∗

v∗

)
is an optimal solution of problem

(6.1.1).

6.3.3 Choices of proximal terms

When the proximal terms S and T satisfy conditions (6.3.32) and (6.3.33), it is easy to see that

the objective functions of subproblems (6.1.3a) and (6.1.3c) are strongly convex, which make the

corresponding problems much easier to solve. Note that by allowing S or T indefinite, we can

always take a larger step on updating the variable x or y. Besides, we next show that for some

special cases, with particularly chosen proximal term T , the subproblem (6.1.3c) is easy to solve

or even takes a closed form solution. Note that the discussion for the proximal term S is omitted

since it is similar.

We consider to choose T as

T = rI −
(
Σ2 + βB⊤B

)
with r = λmax

(
1

2
Σ2 + τβB⊤B

)
, (6.3.41)

where τ ∈ (0, 1]. We decompose T = T+ − T− with T+ = rI − (12Σ2 + τβB⊤B) and T− =
1
2Σ2 + (1− τ)βB⊤B. Note that T+, T− ≽ 0. By some direct calculations, we have

T +Σ2 + (1− α)βB⊤B = rI − αβB⊤B (6.3.42)
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and

T+
1

2
Σ2+κα,γ1 (−2T−+Σ2)+κα,γ2 βB⊤B = rI−

(
1

2
Σ2 + (1 + 2κα,γ1 (1− τ)− κα,γ2 )βB⊤B

)
. (6.3.43)

For given (α, γ) ∈ D and a fixed cα,γ , by (6.3.42) and (6.3.43), we know that if we choose τ > α

and τ > 1− κα,γ
2

1+2κα,γ
1

, then (6.3.33) must hold. Note that the number 1− κα,γ
2

1+2κα,γ
1

is decreasing with

respect to cα,γ which is defined over an open interval. Hence, we can argue that if

1 ≥ τ > max

{
α, inf

cα,γ

{
1− κα,γ2

1 + 2κα,γ1

}}
,

namely,

1 ≥ τ > τα,γ :=



1− (1− α)2 1−α2−(γ−1)(α+γ)
(2−α−γ)(1+α)(5−3α) (α, γ) ∈ D1,

3+α
4 (α, γ) ∈ D2,

1−αγ
2−α−γ (α, γ) ∈ D3,

1+α
2 (α, γ) ∈ D4,

(6.3.44)

then (6.3.33) must hold.

Consider the case when θ2(y) = 1
2y

⊤My + h(y), where M is symmetric positive semidefinite

and the nonsmooth convex function h(y) is simple in the sense that miny∈Y h(y)+ 1
2∥y−d∥2 is easy

to compute. Here d ∈ Rn2 is a given vector. In this case, we have Σ2 = M and the subproblem

(6.1.3b) with T chosen according to (6.3.41) and (6.3.44) takes the following form

yk+1 = argmin
y∈Y

h(y) +
1

2
∥y − dk∥2

with dk = Tyk +B⊤
(
λk+ 1

2 − β(Axk+1 − b)
)
.

To end this subsection, some comments are listed in order. Firstly, if α = 0, γ = 1 and Σ2 = 0,

(6.3.44) becomes 0.75 < τ ≤ 1, which recovers the optimal bound of τ for the linearized ADMM in

[63]; if α ∈ (0, 1), γ = 1 and Σ2 = 0, (6.3.44) becomes (3 + α)/4 < τ ≤ 1, which partially recovers

the optimal bound of τ for the linearized version of the generalized ADMM in [72]. Note that in [72],

they allowed α ∈ (−1, 1). Secondly, if (α, γ) ∈ D2 ∪ D3, it is easy to see that 1−αγ
2−α−γ ≥ 2+α+γ

4 and

the equality holds if and only if α = γ, namely, (α, γ) ∈ D4. Thirdly, when the subproblem (6.1.3c)

does not take a closed form solution, as done in [40, 77, 118], we can consider the majorized version

of iPSPR. The techniques for constructing the indefinite proximal T in [22, 77] can be explored to

construct T . We leave this for future investigation.

6.4 Sublinear convergence of iPSPR

The rate of convergence of an algorithm can help us have a deeper understanding of the algorithm.

In this section, motivated by [29, 77], we establish the o(1/t) sublinear rate of convergence of iPSPR

in the nonergodic sense.

We first give a new optimality condition of (6.1.1) as follows.
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Lemma 6.4.1. Let the sequence {wk} be generated by iPSPR (6.1.3). We choose (α, γ) ∈ D and

the proximal terms S, T are chosen such that (6.3.32) and (6.3.33) hold. Then wk+1 ∈ Ω∗, namely,

wk+1 is one optimal solution of (6.1.1), if

∥wk − wk+1∥
Ĝ
= 0.

Proof. The proof is similar to the second part of the proof of Theorem 6.3.2, we omit the

details here.

Following from (6.2.6), (6.2.10) and (6.2.12), we have

∥wk − wk+1∥2
Ĝ
= ∥xk − xk+1∥2S+Σ1

+ ∥yk − yk+1∥2T+Σ2+(1−α)βBTB + (α+ γ)β∥rk+1∥2.

Hence, Lemma 6.4.1 provides a practical stopping condition for iPSPR (6.1.3), which is shown as

max{∥xk − xk+1∥2S+Σ1
, ∥yk − yk+1∥2T+Σ2+(1−α)βBTB, β∥r

k+1∥2} ≤ tol, (6.4.1)

where tol is some tolerance.

Theorem 6.4.1. Let the sequence {wk} be generated by iPSPR (6.1.3) with (α, γ) ∈ D. Suppose

that the proximal terms S, T are chosen such that (6.3.32), (6.3.33) and

S +
1

2
Σ1 ≽

1

2
cΣ1 (6.4.2)

hold, where c is a positive constant. We have that

min
1≤i≤t

∥wi − wi+1∥2
Ĝ
= o(1/t). (6.4.3)

Proof. With conditions (6.4.2) on S, we know that S +Σ1 ≼ (1 + c−1)(S + 1
2Σ1). With the

condition (6.3.33) on T , we know that there exists a positive constant c1 such that

Ĥ ≼ c1

(
T + 1

2Σ2 + κα,γ1 (−2T− +Σ2) + κα,γ2 βB⊤B 0

0
κ̄α,γ
3
β I

)
,

which with (6.2.8) implies that

Ĝ ≤ max{1 + c−1, c1}

S + 1
2Σ1 0 0

0 T + 1
2Σ2 + κα,γ1 (−2T− +Σ2) + κα,γ2 βB⊤B 0

0 0
κ̄α,γ
3
β I

 .

This with (6.3.23) implies that

Φk
α,γ(w

∗)− Φk+1
α,γ (w∗) ≥ 1

max{c, c1}
∥wk − wk+1∥2

Ĝ
. (6.4.4)

Summing (6.4.4) over k = 1, . . . ,+∞ leads to

1

c
·
+∞∑
k=1

∥wk+1 − wk∥2
Ĝ
≤ Φ1

α,γ(w
∗). (6.4.5)
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Using Lemma 3 in [77], we have (6.4.3).

Now we show that if (α, γ) ∈ D2 ∪ D3 ∪ D4 and some additional requirement is made on T ,

we can have a stronger result than (6.4.3). We first show that the sequence {∥wk − wk+1∥2
Ĝ
} is

non-increasing.

Lemma 6.4.2. Let the sequence {wk} be generated by iPSPR (6.1.3). If (α, γ) ∈ D2 ∪D3 ∪D4 and

the proximal terms S, T are chosen such that (6.3.32), (6.3.33) and

T +
1

2
Σ2 +

(1− α)(1− γ)

2− α− γ
βB⊤B ≽ 0 (6.4.6)

hold then there holds that

∥wk − wk+1∥2
Ĝ
≥ ∥wk+1 − wk+2∥2

Ĝ
. (6.4.7)

Proof. Note that (6.3.12) also holds with k := k + 1, then we have

(w − wk+2)⊤G(wk+2 − wk+1) ≥
〈
rk+2 − r(w), (1− α− γ)βrk+2 + (1− α)βB(yk+1 − yk+2)

〉
+
〈
wk+2 − w,F (wk+2, ξk+2

x , ξk+2
y )

〉
, (6.4.8)

where ξk+2
x ∈ ∂θ1(x

k+2) and ξk+2
y ∈ ∂θ2(y

k+2).

By choosing w to be wk+2 and wk+1, respectively, in (6.3.12) and (6.4.8), we have

(wk+2 − wk+1)⊤G(wk+1 − wk) ≥
〈
rk+1 − rk+2, (1− α− γ)βrk+1 + (1− α)βB(yk − yk+1)

〉
+
〈
wk+1 − wk+2, F (wk+1, ξk+1

x , ξk+1
y )

〉
. (6.4.9)

and

(wk+1 − wk+2)⊤G(wk+2 − wk+1) ≥
〈
rk+2 − rk+1, (1− α− γ)βrk+2 + (1− α)βB(yk+1 − yk+2)

〉
+
〈
wk+2 − wk+1, F (wk+2, ξk+2

x , ξk+2
y )

〉
. (6.4.10)

Adding (6.4.9) and (6.4.10) and noting from (6.2.3) that〈
wk+2 − wk+1, F (wk+2, ξk+2

x , ξk+2
y )− F (wk+1, ξk+1

x , ξk+1
y )

〉
≥ ∥uk+2 − uk+1∥2Σ, we obtain that

(wk+2 − wk+1)⊤G
[
(wk+1 − wk)− (wk+2 − wk+1)

]
≥ (1− α− γ)β∥rk+1 − rk+2∥2 + (1− α)β

〈
B
[
(yk − yk+1)− (yk+1 − yk+2)

]
, rk+1 − rk+2

〉
+ ∥uk+2 − uk+1∥2Σ. (6.4.11)

Following the deriving process of (6.2.9) and (6.2.12), we have that

∥(wk − wk+1)− (wk+1 − wk+2)∥2G

= ∥(uk − uk+1)− (uk+1 − uk+2)∥2P + (1− α)β
∥∥∥B[(yk − yk+1)− (yk+1 − yk+2)]

∥∥∥2
+ (α+ γ)β∥rk+1 − rk+2∥2. (6.4.12)
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Thus we conclude that

∥wk − wk+1∥2
Ĝ
− ∥wk+1 − wk+2∥2

Ĝ

= (∥wk − wk+1∥2G + ∥uk − uk+1∥2Σ)− (∥wk+1 − wk+2∥2G + ∥uk+1 − uk+2∥2Σ)

= 2(wk+2 − wk+1)⊤G
[
(wk+1 − wk)− (wk+2 − wk+1)

]
+ ∥(wk+1 − wk)− (wk+2 − wk+1)∥2G

+ ∥uk − uk+1∥2Σ − ∥uk+1 − uk+2∥2Σ

≥ (2− α− γ)β∥rk+1 − rk+2∥2 + 2(1− α)β
〈
B
[
(yk − yk+1)− (yk+1 − yk+2)

]
, rk+1 − rk+2

〉
+ (1− α)β

∥∥∥B[(yk − yk+1)− (yk+1 − yk+2)]
∥∥∥2 + ∥(uk − uk+1)− (uk+1 − uk+2)∥2P

+ ∥uk − uk+1∥2Σ + ∥uk+1 − uk+2∥2Σ

≥ (1− α)(1− γ)

2− α− γ
β
∥∥∥B[(yk − yk+1)− (yk+1 − yk+2)]

∥∥∥2 + ∥(uk − uk+1)− (uk+1 − uk+2)∥2P

+
1

2
∥(uk − uk+1)− (uk+1 − uk+2)∥2Σ

= ∥(xk − xk+1)− (xk+1 − xk+2)∥2
S+ 1

2
Σ1

+ ∥(yk − yk+1)− (yk+1 − yk+2)∥2
T+ 1

2
Σ2+

(1−α)(1−γ)
2−α−γ

βB⊤B

≥ 0. (6.4.13)

where the first inequality is due to (6.4.11) and (6.4.12), the second inequality follows from the

Cauchy-Schwarz inequality and the last inequality is due to P =

(
S 0

0 T

)
, S + 1

2Σ1 ≽ 0 and

(6.4.6). The proof is completed.

Theorem 6.4.2. Let the sequence {wk} be generated by iPSPR (6.1.3) with (α, γ) ∈ D2 ∪D3 ∪D4.

Suppose that the proximal term S is chosen according to (6.3.32) and (6.4.2) and the proximal term

T is chosen according to (6.3.33) and (6.4.6). We have

∥wt − wt+1∥2
Ĝ
= o(1/t). (6.4.14)

Proof. If follows from Theorem 6.4.1 that min1≤i≤t ∥wi − wi+1∥2
Ĝ

= o(1/t), which with

(6.4.7) implies (6.4.14). The proof is completed.

6.5 Numerical results

In this section, we demonstrate the potential efficiency of our method iPSPR (6.1.3) by solving the

following l1 regularized least square problem

min
1

2
∥Qy − c∥2 + ρ∥y∥1, s.t. By ≤ b, (6.5.1)

where y ∈ Rn, c ∈ Rp, Q ∈ Rp×n and B ∈ Rm×n. Problem (6.5.1) is an constrained extension of

the ordinary unconstrained l1 regularized least square problem and it was considered in [77]. By
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introducing an auxiliary variable x ∈ Rm, we rewrite (6.5.1) as

min
1

2
∥Qy − c∥2 + ρ∥y∥1, s.t. x+By = b, x ≥ 0, (6.5.2)

which is a special instance of (6.1.1).

For our method iPSPR (6.1.3), we set S = 0 and choose T according to (6.3.41), namely,

T = rI − (Q⊤Q+ βB⊤B) with r = λmax

(
1

2
Q⊤Q+ τβB⊤B

)
(6.5.3)

with τ = 1.001τα,γ , where τα,γ is defined in (6.3.44). Our method iPSPR (6.1.3) for solving (6.5.2)

is then given as

xk+1 = P+

[
b−Byk + λk/β

]
,

λk+ 1
2 = λk − αβ(xk+1 +Byk − b),

yk+1 = Sρ/r

[
yk +

1

r

(
B⊤

(
λk+ 1

2 − β(xk+1 +Byk − b)
)
+Q⊤(c−Qyk)

)]
,

λk+1 = λk+ 1
2 − γβ(xk+1 +Byk+1 − b),

(6.5.4)

where the projection operator P+(z) = max(z, 0) and the shrinkage operator Sν(z) := sgn(z) ⊙
max{|z| − ν, 0}. Note that for problem (6.5.2), the majorized indefinite proximal ADMM in [77]

coincides with our iPSPR (6.5.4) with α = 0 and (α, γ) ∈ D1 since the smooth part of the objective

function is quadratic with respect to y. If the proximal parameter r = 1.001λmax(Q
⊤Q+ βB⊤B),

iPSPR becomes the semidefinite proximal-based strictly contractive Peaceman-Rachford splitting

method (sPSPR). To make a fair comparison, as done in (85) of [77], we stop iPSPR or sPSPR

when the KKT residual is less than 10−6.

All the experiments are preformed in Ubuntu 16.04 LTS a Dell workstation with a 3.5 GHz

Intel Xeon E3-1240 v5 processor with access to 32 GB of RAM. All the methods are implemented

in MATLAB (R2016b). Given m and n, as done in [77], we set p = 0.1n, ρ = 5
√
n and generate

the data as

B = sprandn(m, n, 0.2); yy = randn(n, 1); b = B * yy + max(randn(m,1), 0);

Q = sprandn(p, n, 0.1); c = Q * yy.

In our tests, we set m = 2000 and n = 1000, 2000, 4000, 8000. For each m and n, we use the

above scheme to generate 50 groups of instances and will always report the average performance

for methods iPSPR and sPSPR. For each instance, we fix the sum α + γ to be {1.9, 1.8, 1.618, 1}
and always choose the special cases with α = γ, α = 0 or γ = 1. In total, we have nine groups of

choices of α and γ. In our tests, the penalty parameter β is fixed during the iterations. Generally,

choosing the best penalty parameter β is not easy and it might be problem dependent [61]. We

spent some efforts to choose the penalty parameter β from a large number of candidates. For each

given m,n and α, γ, we report the performance of iPSPR or sPSPR with four choices of β. Note

that in our tests, the second choice is the best in the candidates for α+γ = 1.9 and almost the best
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Table 6.1: The results for m = 2000, n = 1000 over 50 runs. The CPU time is in seconds.

β = 0.50 β = 1.50 β = 3.00 β = 5.00

(α, γ) method iter r t(s) iter r t(s) iter r t(s) iter r t(s)

(0.950, 0.950) iPSPR 8769.0 5.23e2 4.9 4750.1 1.56e3 2.7 5876.0 3.11e3 3.3 8576.2 5.18e3 4.8

(0.950, 0.950) sPSPR 8877.3 5.47e2 5.0 4815.4 1.60e3 2.7 6000.3 3.19e3 3.4 8810.7 5.31e3 5.0

(0.900, 1.000) iPSPR 8769.8 5.23e2 5.0 4752.9 1.56e3 2.7 5878.7 3.11e3 3.4 8579.8 5.18e3 4.9

(0.900, 1.000) sPSPR 8878.4 5.47e2 5.0 4817.9 1.60e3 2.8 6001.5 3.19e3 3.4 8811.9 5.31e3 5.0

(0.900, 0.900) iPSPR 9090.5 5.10e2 5.1 4884.2 1.52e3 2.8 5815.1 3.03e3 3.3 8375.5 5.04e3 4.7

(0.900, 0.900) sPSPR 9252.9 5.47e2 5.2 4982.8 1.60e3 2.8 6075.2 3.19e3 3.4 8880.5 5.31e3 5.0

(0.800, 1.000) iPSPR 9094.7 5.10e2 5.2 4887.6 1.52e3 2.8 5823.3 3.03e3 3.3 8405.3 5.04e3 4.8

(0.800, 1.000) sPSPR 9256.5 5.47e2 5.2 4985.6 1.60e3 2.8 6079.5 3.19e3 3.5 8894.2 5.31e3 5.0

(0.809, 0.809) iPSPR 9706.1 4.86e2 5.5 5250.0 1.44e3 3.0 5667.2 2.88e3 3.2 8094.9 4.80e3 4.6

(0.809, 0.809) sPSPR 10058.7 5.47e2 5.7 5388.7 1.60e3 3.1 6240.7 3.19e3 3.6 8960.9 5.31e3 5.1

(0.618, 1.000) iPSPR 9722.5 4.86e2 5.5 5245.5 1.44e3 3.0 5694.4 2.88e3 3.2 8124.6 4.80e3 4.6

(0.618, 1.000) sPSPR 10074.1 5.47e2 5.7 5392.1 1.60e3 3.1 6261.2 3.19e3 3.6 9007.0 5.31e3 5.1

(0.000, 1.618) iPSPR 10216.2 5.37e2 5.8 5511.2 1.60e3 3.1 6602.8 3.19e3 3.8 9583.0 5.31e3 5.4

(0.000, 1.618) sPSPR 10264.2 5.47e2 5.8 5517.4 1.60e3 3.1 6605.5 3.19e3 3.8 9583.1 5.31e3 5.4

(0.000, 1.000) iPSPR 13521.7 4.05e2 7.6 7761.5 1.20e3 4.4 5967.7 2.39e3 3.4 7667.3 3.98e3 4.3

(0.000, 1.000) sPSPR 14513.1 5.47e2 8.2 8041.4 1.60e3 4.6 7311.9 3.19e3 4.2 9930.7 5.31e3 5.6

(0.500, 0.500) iPSPR 13308.9 4.05e2 7.5 7724.5 1.20e3 4.4 5728.7 2.39e3 3.3 7265.2 3.98e3 4.1

(0.500, 0.500) sPSPR 14336.6 5.47e2 8.1 7964.6 1.60e3 4.5 7097.4 3.19e3 4.0 9540.8 5.31e3 5.4

Table 6.2: The results for m = 2000, n = 2000 over 50 runs. The CPU time is in seconds.

β = 0.10 β = 0.30 β = 0.50 β = 1.00

(α, γ) method iter r t(s) iter r t(s) iter r t(s) iter r t(s)

(0.950, 0.950) iPSPR 2192.4 2.18e2 3.2 1012.0 4.43e2 1.5 1240.6 7.22e2 1.8 2328.8 1.43e3 3.4

(0.950, 0.950) sPSPR 2357.0 3.83e2 3.4 1121.2 5.22e2 1.7 1309.0 7.66e2 1.9 2417.4 1.48e3 3.5

(0.900, 1.000) iPSPR 2192.8 2.18e2 3.2 1012.2 4.43e2 1.5 1240.9 7.22e2 1.9 2329.3 1.43e3 3.4

(0.900, 1.000) sPSPR 2357.3 3.83e2 3.4 1121.4 5.22e2 1.7 1309.2 7.66e2 2.0 2417.9 1.48e3 3.5

(0.900, 0.900) iPSPR 2294.6 2.17e2 3.3 1028.0 4.32e2 1.5 1226.5 7.04e2 1.8 2274.1 1.39e3 3.3

(0.900, 0.900) sPSPR 2474.9 3.83e2 3.6 1146.1 5.22e2 1.7 1324.5 7.66e2 2.0 2423.7 1.48e3 3.5

(0.800, 1.000) iPSPR 2295.3 2.17e2 3.4 1028.4 4.32e2 1.6 1227.1 7.04e2 1.8 2276.1 1.39e3 3.3

(0.800, 1.000) sPSPR 2475.5 3.83e2 3.6 1146.8 5.22e2 1.7 1325.2 7.66e2 2.0 2425.9 1.48e3 3.5

(0.809, 0.809) iPSPR 2509.4 2.14e2 3.6 1074.5 4.13e2 1.6 1201.1 6.71e2 1.8 2170.0 1.33e3 3.2

(0.809, 0.809) sPSPR 2722.4 3.83e2 3.9 1201.1 5.22e2 1.8 1351.8 7.66e2 2.0 2437.7 1.48e3 3.5

(0.618, 1.000) iPSPR 2511.7 2.14e2 3.6 1075.4 4.13e2 1.6 1204.1 6.71e2 1.8 2177.7 1.33e3 3.2

(0.618, 1.000) sPSPR 2724.1 3.83e2 3.9 1202.5 5.22e2 1.8 1354.7 7.66e2 2.0 2445.8 1.48e3 3.6

(0.000, 1.618) iPSPR 2541.2 2.20e2 3.7 1138.7 4.53e2 1.7 1366.0 7.40e2 2.0 2547.4 1.47e3 3.7

(0.000, 1.618) sPSPR 2733.0 3.83e2 3.9 1228.7 5.22e2 1.8 1406.8 7.66e2 2.1 2571.5 1.48e3 3.7

(0.000, 1.000) iPSPR 3737.8 2.05e2 5.4 1551.7 3.50e2 2.3 1242.2 5.60e2 1.8 1910.1 1.10e3 2.8

(0.000, 1.000) sPSPR 4152.4 3.83e2 5.9 1649.0 5.22e2 2.4 1542.5 7.66e2 2.3 2559.0 1.48e3 3.7

(0.500, 0.500) iPSPR 3716.2 2.05e2 5.3 1546.0 3.50e2 2.3 1213.4 5.60e2 1.8 1831.6 1.10e3 2.7

(0.500, 0.500) sPSPR 4137.3 3.83e2 5.9 1637.5 5.22e2 2.4 1509.1 7.66e2 2.2 2481.4 1.48e3 3.6
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Table 6.3: The results for m = 2000, n = 4000 over 50 runs. The CPU time is in seconds.

β = 0.08 β = 0.15 β = 0.25 β = 0.50

(α, γ) method iter r t(s) iter r t(s) iter r t(s) iter r t(s)

(0.950, 0.950) iPSPR 905.6 3.71e2 3.0 672.0 4.24e2 2.3 831.3 5.65e2 2.8 1657.8 1.06e3 5.4

(0.950, 0.950) sPSPR 1207.2 7.03e2 4.0 1103.8 7.39e2 3.7 1233.3 8.09e2 4.1 1813.6 1.15e3 5.9

(0.900, 1.000) iPSPR 905.7 3.71e2 3.0 672.0 4.24e2 2.3 831.4 5.65e2 2.8 1657.9 1.06e3 5.4

(0.900, 1.000) sPSPR 1207.2 7.03e2 4.0 1103.9 7.39e2 3.7 1233.3 8.09e2 4.1 1813.7 1.15e3 5.9

(0.900, 0.900) iPSPR 943.5 3.70e2 3.2 681.6 4.21e2 2.3 812.2 5.54e2 2.8 1615.6 1.03e3 5.3

(0.900, 0.900) sPSPR 1234.3 7.03e2 4.1 1103.9 7.39e2 3.7 1231.0 8.09e2 4.1 1815.3 1.15e3 6.0

(0.800, 1.000) iPSPR 943.7 3.70e2 3.2 681.7 4.21e2 2.3 812.3 5.54e2 2.8 1616.2 1.03e3 5.3

(0.800, 1.000) sPSPR 1234.5 7.03e2 4.1 1104.4 7.39e2 3.7 1231.3 8.09e2 4.1 1816.0 1.15e3 6.0

(0.809, 0.809) iPSPR 1029.0 3.68e2 3.4 706.1 4.14e2 2.4 779.1 5.34e2 2.7 1537.7 9.86e2 5.1

(0.809, 0.809) sPSPR 1294.0 7.03e2 4.3 1108.9 7.39e2 3.7 1226.0 8.09e2 4.1 1817.5 1.15e3 6.0

(0.618, 1.000) iPSPR 1029.6 3.68e2 3.4 706.8 4.14e2 2.4 780.9 5.34e2 2.7 1540.7 9.86e2 5.1

(0.618, 1.000) sPSPR 1294.5 7.03e2 4.3 1109.9 7.39e2 3.7 1227.7 8.09e2 4.1 1820.4 1.15e3 6.0

(0.000, 1.618) iPSPR 1035.6 3.73e2 3.5 731.1 4.28e2 2.5 876.7 5.77e2 3.0 1764.3 1.09e3 5.8

(0.000, 1.618) sPSPR 1300.3 7.03e2 4.3 1125.7 7.39e2 3.7 1256.0 8.09e2 4.2 1876.5 1.15e3 6.2

(0.000, 1.000) iPSPR 1594.1 3.61e2 5.2 927.6 3.95e2 3.1 759.7 4.74e2 2.6 1300.8 8.25e2 4.3

(0.000, 1.000) sPSPR 1727.8 7.03e2 5.7 1232.1 7.39e2 4.1 1223.3 8.09e2 4.1 1847.1 1.15e3 6.1

(0.500, 0.500) iPSPR 1589.2 3.61e2 5.2 922.7 3.95e2 3.1 747.5 4.74e2 2.6 1264.4 8.25e2 4.2

(0.500, 0.500) sPSPR 1724.1 7.03e2 5.7 1224.8 7.39e2 4.1 1205.5 8.09e2 4.0 1810.6 1.15e3 6.0

Table 6.4: The results for m = 2000, n = 8000 over 50 runs. The CPU time is in seconds.

β = 0.04 β = 0.07 β = 0.15 β = 0.30

(α, γ) method iter r t(s) iter r t(s) iter r t(s) iter r t(s)

(0.950, 0.950) iPSPR 889.6 6.80e2 6.6 759.9 6.95e2 5.7 861.4 7.55e2 6.4 1236.9 1.05e3 9.1

(0.950, 0.950) sPSPR 1487.6 1.34e3 10.7 1556.1 1.36e3 11.2 1658.1 1.40e3 11.9 1819.2 1.52e3 13.1

(0.900, 1.000) iPSPR 889.7 6.80e2 6.6 760.0 6.95e2 5.7 861.5 7.55e2 6.4 1236.9 1.05e3 9.1

(0.900, 1.000) sPSPR 1487.6 1.34e3 10.7 1556.2 1.36e3 11.2 1658.1 1.40e3 11.9 1819.2 1.52e3 13.1

(0.900, 0.900) iPSPR 913.9 6.80e2 6.9 761.9 6.94e2 5.7 854.8 7.51e2 6.4 1210.7 1.03e3 8.9

(0.900, 0.900) sPSPR 1488.1 1.34e3 10.9 1550.8 1.36e3 11.2 1655.9 1.40e3 11.9 1819.2 1.52e3 13.1

(0.800, 1.000) iPSPR 913.9 6.80e2 6.9 762.0 6.94e2 5.8 854.9 7.51e2 6.4 1211.0 1.03e3 9.0

(0.800, 1.000) sPSPR 1488.3 1.34e3 10.9 1550.9 1.36e3 11.3 1656.0 1.40e3 12.0 1819.6 1.52e3 13.2

(0.809, 0.809) iPSPR 968.8 6.79e2 7.2 770.7 6.93e2 5.8 842.1 7.44e2 6.3 1164.0 9.89e2 8.7

(0.809, 0.809) sPSPR 1497.5 1.34e3 10.8 1539.4 1.36e3 11.2 1650.8 1.40e3 12.0 1819.0 1.52e3 13.2

(0.618, 1.000) iPSPR 969.2 6.79e2 7.4 771.2 6.93e2 5.8 842.9 7.44e2 6.3 1165.4 9.89e2 8.6

(0.618, 1.000) sPSPR 1497.7 1.34e3 10.2 1539.8 1.36e3 11.2 1651.7 1.40e3 12.0 1820.6 1.52e3 13.2

(0.000, 1.618) iPSPR 972.6 6.81e2 7.3 779.9 6.96e2 5.9 873.9 7.59e2 6.6 1289.3 1.07e3 9.5

(0.000, 1.618) sPSPR 1501.2 1.34e3 11.0 1546.2 1.36e3 11.2 1664.1 1.40e3 12.0 1845.1 1.52e3 13.4

(0.000, 1.000) iPSPR 1406.3 6.76e2 10.9 922.8 6.87e2 6.9 799.3 7.25e2 6.1 1030.0 8.76e2 7.7

(0.000, 1.000) sPSPR 1732.8 1.34e3 13.2 1500.3 1.36e3 11.0 1625.9 1.40e3 11.8 1825.7 1.52e3 13.3

(0.500, 0.500) iPSPR 1403.0 6.76e2 11.0 919.9 6.87e2 6.9 790.6 7.25e2 6.0 1014.0 8.76e2 7.6

(0.500, 0.500) sPSPR 1730.7 1.34e3 13.3 1496.1 1.36e3 10.9 1617.5 1.40e3 11.8 1809.7 1.52e3 13.1
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choice in the candidates for α+ γ ∈ {1.618, 1.8}; the third choice of β is the best in the candidates

for α+ γ = 1.

The numerical results are presented in Tables 6.1 - 6.4. In the tables, “iter” means the averaged

iteration numbers, “r” denotes the proximal parameter in (6.5.4), and “t” means the CPU time in

seconds. From the tables, we can make the following observations. Firstly, iPSPR always performs

better than sPSPR. In particular, for n = 4000, β = 0.15 and n = 8000, β = 0.07, iPSPR can bring

about a 40% to 50% reduction in the number of iterations and the CPU time over the sPSPR. For

n = 1000 and 2000, iPSPR with large sum α+γ performs only slightly better than sPSPR with the

same α and γ. This might be because βB⊤B takes a major part in computing r and the parameter

τ of iPSPR is near to 1 in this case. Secondly, iPSPR (resp. sPSPR) with α = γ performs slightly

better among the choices of α and γ with a fixed sum. Thirdly, a large α+γ sum (near to 2) always

performs better than a small sum for a relatively small β, while a small sum works better than a

large sum for a relatively large β. However, if we choose the best β (the corresponding results are

marked in bold in each table) for each α and γ, we can see that iPSPR (resp. sPSPR) a large α+γ

sum always performs better than iPSPR (resp. sPSPR) with a small sum.

6.6 Conclusions

In this chapter, we proposed a modification of the Peaceman-Rachford splitting method by

introducing two different parameters α and γ in updating the dual variable, and by introducing

indefinite proximal terms to the subproblems in updating the primal variables. We established

the relationship between the two parameters α and γ and proved the global convergence of the

algorithm under some requirements on the proximal matrices S and T . Moreover, we provided

a specific construction of the proximal matrix T and discussed the detailed performance for the

variant parameters α and γ, which can unify several existing results. We also analyzed the o(1/t)

sublinear rate convergence in the nonergodic sense. Finally, we reported some preliminary numerical

results, indicating the efficiency of the proposed algorithm.



Chapter 7

Conclusion

In this thesis, we have proposed two proximal type splitting methods for the structured convex

optimization problems with linear constraints. One is the alternating direction methods of

multipliers (ADMM), and the other is the Peaceman-Rachford splitting methods (PRSM).

The results obtained in this thesis are summarized as follows.

(a) In Chapter 3, we have proposed a proximal ADMM whose regularized matrix in the proximal

term is generated by the BFGS update (or limited memory BFGS) at every iteration. This

method turned out to be the variable metric semi-proximal ADMM (VMSP-ADMM). We

have shown that the update formula for the positive semidefinite proximal matrices follows

Tk = Bk−M , where M = ∇2
xxLβ(x, y, λ) and Bk is generated via the BFGS update. We have

proved that Bk ≽ M for global convergence, which also means Tk to be positive semidefinite.

These types of matrices use second-order information of the objective function, which can

speed up the convergence compared with the classical proximal ADMM on the numerical

view .

(b) In Chapter 4, for solving more general optimization problems, we have extended the proposed

proximal ADMM in Chapter 3 for two general convex problems and further extended the

proximal terms by the Broyden family update. For the generic variable metric semi-proximal

ADMM, we have also shown the global convergence under the standard assumptions on the

proximal matrices. In the numerical experiment, we have implemented the standard ADMM

and proximal ADMM and then observed good performance of the proposed method.

(c) In Chapter 5, we have considered a variable metric indefinite proximal ADMM (VMIP-

ADMM) which can allow a larger stepsize and can unify several existing ADMMs. We have

presented sufficient conditions on the indefinite proximal matrices for the global convergence.

Moreover, motivated by the previous two chapters, we have provided a construction of the

indefinite term via the BFGS update as Tk = Bk −M , where Bk is generated by the BFGS

update with respect to τM , τ < 1. We have also shown that this construction of the proximal

term satisfies the above conditions for the global convergence property when τ ∈ (0.75, 1).

Finally, we have examined the behavior of the proposed method by the numerical experiments
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on real-world datasets and synthetic datasets. The results all demonstrated that our proposed

variable metric indefinite proximal ADMM outperforms most of the comparison proximal

ADMMs.

(d) In Chapter 6, we have focused on another splitting method for minimizing a convex

optimization problem with a separable objective function and linear constraints, which is

called the Peaceman-Rachford splitting method (PRSM). We have extended the strictly

contractive Peaceman-Rachford splitting method by using two different relaxation factors.

Besides, motivated by the recent advances on the ADMM type method with indefinite

proximal terms, we have employed the indefinite proximal term in the strictly contractive

Peaceman-Rachford splitting method. We have shown that the proposed indefinite-proximal

strictly contractive Peaceman-Rachford splitting method is convergent and also proved the

o(1/t) convergence rate in the nonergodic sense. The numerical tests on the l1 regularized

least square problem have demonstrated the efficiency of the proposed method.

As we summarized above, we have made several contributions to the splitting methods for

the separable optimization problems. However, there are many problems that remain unknown.

Finally, we discuss some future research topics based on our current achievements.

Regarding the separability of the objective functions which ADMM can be used, the advantages

of ADMM are numerous: 1. it allows a linear scaling as the data is processed in parallel progress;

2. it does not need gradients steps; 3. it is resistant to poor conditioning. However, there are still

several challenges that should be overcome to spread the uses of ADMM.

(a) Considering that the main task in the splitting methods is to solve the x- or y-optimization

problem, solving them in an inexact manner may improve the efficiency of the algorithm.

The approximate version with practical accuracy criteria is one of our future research topics.

On the other hand, the parameters of the primal and dual problems are essential to the

efficiency of the algorithm, which should be variable along with the iteration. Allowing the

parameters varying with the process of the iterate may give us the freedom to choose them

in a self-adaptive manner. It is interesting to study such suitable updating rules.

(b) In this thesis, some variants of ADMM for the convex optimization problems have been

studied to improve the implantations. Considering the good performance of the ADMM in

many machine learning applications, efficient ADMM-based methods are desired. A typical

machine learning problem consists of a combination of linear and nonlinear constraints, which

make the optimization problem be nonconvex. The general analysis of convex functions is

not enough. For a nonconvex problem, classical ADMM could be used. Some additional

assumptions should be included to guarantee its global convergence. Developing an improved

and efficient ADMM with better global convergent conditions is a challenging topic.
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