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Abstract

Shared autonomous electric vehicles, also known as autonomous mobility

on demand systems, are expected to become commercially available by the

next decade. In this work we propose a methodology for the optimization

of their charging with vehicle-to-grid in parallel with optimized routing and

relocation. The methodology presented is based on previous work expanded

to include charge optimization. The proposed model optimizes transport

service and charging at two different time scales by running two model-

predictive control optimization algorithms in parallel. Charging is optimized

over longer time scales to minimize both approximate waiting times and elec-

tricity costs. Routing and relocation are optimized at shorter time scales to

minimize waiting times, with the results of the long-time-scale optimization

as charging constraints. This approach allows efficient optimization of both

aspects of system operation. The problem is solved as a mixed-integer linear

program. A case study using transport and electricity price data for Tokyo

is used to test the model. Results show that the system can substantially
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reduce charging costs without significantly affecting waiting times, with cost

reduction dependent on electricity price variability. Vehicle-to-grid is shown

to be unsuitable for current electricity and battery prices, however offering

substantial savings with price profiles with higher variability.

Keywords: shared transportation, autonomous vehicles, electric vehicles,

charge scheduling, model predictive control

1. Introduction

New models of transportation are emerging. One-way car sharing ser-

vices, in which cars can be taken from wherever they are currently parked

and left at any other place within a designated area, are already popular in

large cities in Europe (Boyacı et al., 2015). Autonomous driving technology

could speed up the adoption of this transport mode, making it more con-

venient as vehicles can move autonomously to pick up passengers (Fagnant

and Kockelman, 2014). Autonomous driving can also lead to much more

efficient energy use, further driving adoption of this technology (Vahidi and

Sciarretta, 2018). The advent of shared autonomous transportation has

significant implications for the energy system, since it could allow a faster

electrification of the transport sector and enable a more efficient control of

the charging of vehicles and large scale demand response.

Shared autonomous electric vehicles (SAEVs) represent an important

opportunity for adding significant storage to the grid in a time when inter-

mittent renewable energy penetration is rising. If correctly managed, SAEVs

can offer grid-scale load shifting, peak shaving, and ancillary services. This

would enable a higher renewable energy penetration and a more resilient
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electric grid. The alternative of uncoordinated charging may compromise

grid stability and increase grid congestion and peak load.

It is therefore essential to optimize and coordinate SAEVs charging.

However, most of the literature on the charging of electric vehicles have

focused on private vehicles, typically assuming that vehicles are used once

or twice a day and charged at home at night (Mukherjee and Gupta, 2015;

Liu et al., 2015; Richardson, 2013). On the other hand, studies on shared

autonomous vehicles have mainly dealt with the transport aspects, without

considering charging optimization.

The difference in time scales for charging optimization and transport

scheduling pose significant challenges for optimization of the system as a

whole. While the rebalancing of vehicles is generally optimized with a horizon

of 15-30 minutes (Zhang et al., 2016; Spieser et al., 2014), electric vehicle

charging is typically optimized over several hours. The longer time frame for

charging optimization is due to several reasons. Firstly, charging is relatively

slow. Even with fast-charging it may take over one hour to fully charge a

battery (Yilmaz and Krein, 2013). Charging for a relatively long time once

a vehicle is connected is also more efficient, as it avoids the time wasted in

continuous connection and disconnection. The most important consideration

however is related to the challenges and opportunities that these vehicles offer

to the grid as mentioned before. In order to avoid grid congestion and provide

useful service to the grid, the charge scheduling algorithm needs to optimize

over the time frame of variability of electricity demand and intermittent

renewable energy sources such as wind and solar, which can be several hours.

In this work, charge optimization based on electricity price is integrated
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into model predictive control (MPC) of a shared autonomous electric vehicle

(SAEV) system based on the work in Zhang et al. (2016). The novel model

deals with the different time frames at which transport service and charging

have to be optimized with a MPC routine which is run in parallel at two

different time scales. Vehicle charging is optimized over longer time scales

to minimize electricity costs. Vehicle routing and rebalancing for transport

service is optimized at shorter time-scales to minimize waiting times for pas-

sengers, taking as constraints the results of the long-time-scale optimization.

This approach allows the efficient optimization of both aspects of SAEV

operation.

The work is organized as follows. In section 2 we present an overview

of the related work. In section 3 we introduce the proposed methodology,

including the transport model from literature, the charge optimization algo-

rithm, and the two-layer model predictive control. In section 4 we apply the

model to a case study in Tokyo and we discuss the results. This section also

presents the methodology used for the transport demand generation from the

survey and the electricity price scenarios reduction. In section 5 we present

our conclusions and future work.

1.1. Related work

The literature on the topic of charging of electric vehicles is vast. Work

has mainly dealt with the problem of optimal charging strategies, charging

station deployment, and charging behavior analysis. Recent examples of lit-

erature on optimal location of public charging station in urban environments

include He et al. (2015); Li et al. (2016); Dong et al. (2014); Chen et al. (2017).

Tu et al. (2016) focuses on the optimization of charging station positioning
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for electric taxis. The problem of optimal siting of wireless charging facilities

is also extensively studied with recent work including Riemann et al. (2015);

Birrell et al. (2015). The optimization of charging station deployment was

not considered in this work, and could be a focus of future research.

The problem of optimal charging strategies and the impact of electric

vehicles on the grid is the main focus of this work, and has also been studied

extensively in the literature, however mostly from the point of view of private

vehicles. Waraich et al. (2013) investigates the impact of electric vehicle

charging on the electricity grid with an agent-based approach, and find that

smart charging schemes can overcome the problems associated with charging

on the electricity distribution network. Marmaras et al. (2017) studies the

effect of driver behavior on the transport and electric power system. The

problem of individual charging behaviour and its impact on the power grid

is also examined in Daina et al. (2017), where the response of drivers to

electricity price signals is analyzed. This is in contrast to most previous

studies that consider transport patterns as exogenous factors. Hu et al.

(2016) present a review of smart charging literature for electric vehicle fleet

operators. They find that centralized control has the best performance in

the control of EV fleets and in the optimization of charging profiles in a

smart grid. In this context, linear programming-based techniques are mostly

used and offers the best performance. They also find it is essential to have

a forecast of electricity price and EVs driving pattern. Mwasilu et al. (2014)

review the vast literature on the interaction of electric vehicles with renewable

energy sources.

While there is abundant literature on the topic of private electric vehicle
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charging, work dealing with the design of charging strategies and algorithms

for shared electric vehicles is more limited. Freund et al. (2012) develop a

control and optimization system for the charging of shared electric vehicles in

a smart microgrid in order to maximize the use of renewable energy sources.

Boyacı et al. (2015) introduce a model of an electric vehicle car sharing

system with reservation. They consider charging stations serving requests in

the vicinity. The optimization algorithm is also used to determine the optimal

fleet size by maximizing the net revenues for the car sharing operator and the

benefit for users, and taking into account the necessary car relocation among

charging stations. Several authors explore the feasibility of taxi services

using electric vehicles. Bischoff and Maciejewski (2014) simulate a fleet of

electric non-autonomous taxis with MATSim, however without considering

the implications for the grid. Wang and Cheu (2013) also investigate the

operation of a electric taxi fleet with trip reservations, studying the case of

Singapore. In these studies, dynamic electricity price-based smart charging

is not considered.

The literature on the operation of shared autonomous electric vehicles

is mostly focused on the transportation aspects of the problem, and in

particular on the minimization of waiting times for passengers through the

optimization of vehicle redistribution. In most cases the charging problem

is not considered, presumably assuming non-electric vehicles (Fagnant and

Kockelman, 2014; Hörl, 2016; Liu et al., 2017; Spieser et al., 2014; Levin

et al., 2017; Pavone et al., 2012; Volkov et al., 2012; Acquaviva et al., 2014).

Fagnant and Kockelman (2014) developed an agent-based model of shared

autonomous vehicles using simplified transport assumptions. They used areas
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with homogeneous trip generation rates and a grid road network. They

conclude that the system can provide adequate service with a fleet size of

about a tenth of the equivalent number of private vehicles, with service

quality dependent on user density. Spieser et al. (2014) used a more realistic

transport model to study the minimum fleet sizing problem and estimate the

economic impact of a fleet of shared autonomous vehicles replacing all other

private transport modes in Singapore, based on real transport data. They

find that the personal mobility needs of the entire population of Singapore

can be met with a fleet size equal to a third of the total number of passenger

vehicles currently in operation. Hörl (2016) predict the modal share of

shared autonomous vehicles by developing an extension of MATSim. On

a simplified road network, the results showed that the system could become

the dominant transport mode, potentially disrupting public transport. Liu

et al. (2018) propose a method to estimate the induced demand for shared

autonomous transportation in a multimodal transporation system including

public transport, based on the system’s level of service. The framework also

optimize the mobility on demand system characteristics taking into account

policy decisions.

When electric charging of shared autonomous vehicles is considered, this

is generally secondary to the transport optimization, and vehicles are as-

sumed to charge as fast as possible independently of the grid conditions. Most

studies agree that SAEVs can significantly reduce green-house gas (GHG)

emissions and increase electrification in the transport sector (Greenblatt and

Saxena, 2015; Weiss et al., 2017). Greenblatt and Saxena (2015) estimate

that SAEVs could reduce GHG emissions by 87%-94% compared to current
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private vehicles in the United States. Even when accounting for a substantial

increase in distance traveled due to higher convenience, SAEVs are still found

to reduce emissions compared to the baseline scenario, mostly thanks to

the fact that vehicle sizes can be optimized for each trip characteristics. A

summary of selected works on SAEV that consider vehicle charging is given

in Table 1, with more details below.

Chen et al. (2016) studied the operation of a SAEV system with a model

based on Fagnant and Kockelman (2014). The agent-based transport model

methodology is similar, but the investigation is expanded by including charg-

ing of the electric vehicles serving 10% of trip demand in a medium-sized

metropolitan area. The analysis includes a charging station generation phase

to find the number and position of charging stations needed to serve passen-

gers within a certain waiting time. The model was run in different scenarios to

investigate the sensitivity to several parameters. The study considers short-

and long-range type of vehicles, with slow and fast charging. It was found

that although double the number of vehicles are needed for the case with

short-range and slow charging vehicles, this is the most profitable scenario.

For the case study in Austin, Texas, the results indicate that each SAEV

can replace between 5 and 9 private vehicles, depending on range and speed

of charge. The model does not consider ‘smart’ charging and found that

simultaneous charging of the fleet at peak times may be problematic for

the electric grid. Farhan and Chen (2018) further expanded the model to

incorporate ridesharing, showing that by allowing two passengers in the same

vehicle, fleet size can be decreased to half and charging stations can also be

significantly reduced. Allowing more than two passengers in a vehicle is
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Opt.

rel.

Det. Comments Realistic

road net.

C.S. Charging

stations

Formulation

Bauer et al. (2018) yes yes Analysis of impact of dynamic

electricity prices wihtout change

in charging behavior. Detailed

cost analysis, emissions impact

yes, with

traffic

conditions

no optimized

position

with

heuristics,

sensitivity

of number

of charging

stations

agent-

based

Biondi et al. (2016) no no Stochastic optimization of

charging station deployment

considering parking availability,

quantification of electric demand

(non-autonomous free floating car

sharing system)

no, based

on cells

no yes,

optimized

positioning

and size

set cover

problem

Chen et al. (2018) - yes Studied the effect of different

pricing at charging stations.

Also considers load on electric

distribution networks

simplified,

based on

graph

no yes MIQCP



Chen et al. (2016) yes no Trips generated stochastically no no yes,

optimized

with

heuristics

agent-

based

Farhan and Chen (2018) yes no based on Chen et al. (2016),

expanded with ridesharing

no yes yes agent-

based

Iacobucci et al. (2018) no no Trips generated stochastically,

partial advance knowledge.

Considered connection time,

minimum charging time.

Operating reserve potential

estimation

no, based

on nodes

yes

(heuris-

tics)

yes, found

position

with

heuristics

nearest

neighbor

assignment

Kang et al. (2016) no no Framework integrating 4

sub-problems: fleet size and

assignment schedule; number

and locations of charging stations;

vehicle powertrain requirements;

and service fees

no no yes,

optimized

positioning

nearest

neighbor

assignment

Loeb et al. (2018) no no Tour-based transport model,

dynamic transport model with

MATSim integration, sensitivity

analysis

yes no yes,

optimized

agent-

based
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Pourazarm et al. (2016) yes yes Theoretical optimization of

vehicle routing with charging

constraints. Developed subopti-

mal solution that is however more

manageable and obtains almost

same results. Case of different

pricing at charging stations.

possible,

with

congestion

no yes, at

specific

nodes

MINLP

global op-

timization

Yi and Shirk (2018) - no Personal usage scenario (not

shared vehicles). Stochastic

energy consumption model

not

explicitly

yes,

price

based

yes, at

specific

locations

dynamic

program-

ming

Zhang et al. (2016) yes both

cases

Global optimization of vehicle

redistribution and charging allows

for flexibility of constraints

no, based

on nodes

no at each

node

MILP

global op-

timization

Table 1: Summary of the selected literature on SAEV modeling with focus on methodology. Only works dealing

explicitly with charging during simulation time were considered. Opt. rel. = optimal relocation; Det. = deterministic

model; C.S. = charge scheduling; MILP = Mixed-integer linear programming; MINLP = Mixed-integer non-linear

programming; MIQCP = Mixed-integer quadratically-constrained programming
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shown to have rapidly diminishing returns, with marginal decrease in fleet

size and a significant increase in waiting times.

Pourazarm et al. (2016) developed a theoretical optimization of vehicle

routing with charging constraints. The problem is solved as a mixed integer

nonlinear program (MINLP). The work also presents a faster problem with a

sub-optimal solution that is however more computationally manageable and

obtains almost the same results. The model allows for a variable electricity

pricing at charging stations, however time-vaying pricing is not considered.

Chen et al. (2018) developed a framework for the optimal routing and

charging of electric vehicles in a fleet context. The problem is formulated as

a pick-up and delivery problem in a graph and is solved as a mixed-integer

quadratically constrained program. The work also includes a discussion of

the possible impacts of the system on the electricity distribution network.

As in Pourazarm et al. (2016), charging optimization also considers differ-

ent electricity pricing at stations but no time-varying electricity pricing is

considered.

Iacobucci et al. (2018) developed a simulation model for SAEV in Tokyo

with a heuristics-based charge scheduling and evaluate the potential for the

system to decrease charging costs and provide operating reserves to the

electric grid. They evaluate the system with a case study in Tokyo. The

results show that SAEVs can effectively satisfy trip requests with a fleet of

about 58 vehicles per thousand trips per day (1.4 vehicles per trip per hour)

even when considering a very large area of 1600 km2. They are also found

to be about 10 times cheaper than traditional taxis. The proposed heuristics

charge scheduling is effective at lowering prices, although with a very variable

12



generated price profile.

Bauer et al. (2018) developed an agent-based model for the simulation of

SAEV. The model proceeds through the day assigning trips to the nearest

vehicle. If vehicles are not available within a threshold waiting time, a ”new”

vehicle is added to the necessary vehicles to satisfy demand. An iterative

process was used to optimize the positioning of charging stations by starting

with chargers everywhere and eliminating at each iteration the least used

chargers. The model was tested in Manhattan with transport data from taxi

trips. They find the optimal battery size and number of charging stations to

minimize costs through sensitivity analysis. They conclude that vehicles with

50-90 miles range and 66 chargers per square mile (25 per square km) with

a 11 kW connection can provide service with a cost of $0.29-$0.61 per mile

($0.18-$0.38 per km), about 10 times lower than normal taxis and lower than

if the service was provided by any non-electric vehicle. They also calculate

that SAEVs would reduce GHG emissions by 73% compared to current taxis

with the current power grid thanks to higher vehicle efficiency.

Loeb et al. (2018) expand on previous work to develop a realistic frame-

work for the simulation of SAEVs, especially for charging requirements.

Sensitivity analysis was conducted to understand the influence of SAEV

technology decisions on fleet operation. The authors investigates a case study

in Austin, Texas. They found that the number of charging stations needed is

highly dependent on vehicle range, but not on fleet size or charge times. Wait

times are highly dependent on fleet size, or number of vehicles per passenger.

Decreasing charge time has a rapid diminishing effect on wait times. Smart

charging and the impact on the power grid were not considered.
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Zhang et al. (2016) present a model predictive control approach for the

optimization of an autonomous car-sharing system with optimal rebalancing

and consideration of vehicle charging constraints. The problem is solved as a

mixed integer linear program (MILP). The algorithm is shown to outperform

all the previous control strategies considered. The proposed optimization

assumes uncontrolled charging of vehicles.

The literature on SAEVs almost completely avoids the problem of charge

scheduling taking into account the electric power grid. As these systems

are deployed at scale, however, the problem of optimal charging becomes

apparent, as the increased load and charging peaks on the grid would be

problematic if not managed (Waraich et al., 2013). Moreover, electric vehicles

offer the opportunity for large scale demand response that can help increase

the penetration of intermittent renewable energy in the grid (Dallinger and

Wietschel, 2012).

1.2. Contributions

The objective of this research is to develop a framework for the optimiza-

tion of vehicle fleet charging for shared autonomous electric vehicles taking

into account real-time dynamic electricity price. While this problem has

been considered extensively for private vehicles, it has been overlooked in

the literature on SAEVs.

The problem of vehicle charge scheduling in smart grids with SAEVs is

fundamentally different from the case of private vehicles. This is mainly

due to different vehicle availability dynamics, which are due to the different

times of connection to charging stations. Private vehicles would tend to be

connected during the night, but are likely to be disconnected during the
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day as passengers stay at their destination. On the contrary, SAEVs can be

connected at any time when they are not transporting passengers. Moreover,

their connection can be controlled and planned. Another important differ-

ence is that aggregated charging dynamics are free from the constraints of

individual vehicle charging, as passengers can use another vehicle on their

return trip, for example. SAEVs charge scheduling also present the added

complexity of the trade-off between charging cost minimization and wait

times minimization, especially in the case of highly variable electricity price.

The aim of this work is to provide a multi-objective optimization algo-

rithm for the simultaneous optimal redistribution and charging of SAEVs,

taking into account both transport wait time minimization and charging

cost minimization with dynamic time-varying electricity pricing. This work

also consider realistic optimization horizons to account for limited advanced

knowledge and two-layer optimization at different time scale to capture the

different time scales inherent to vehicle redistribution and charge optimiza-

tion. To the best of our knowledge, this is the first work to consider optimal

relocation and charging with time-varying electricity price for SAEVs.

A. State variables

di,j(t) waiting passengers at node i with destination j

uki (t) vehicle k waiting at i

Tpki (t) moving vehicles

qk(t) state of charge

B. Control variables

vki,j(t) vehicle k transporting passengers between i and j
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wki,j(t) vehicle k rebalancing empty between i and j

ek(t) energy charged

gk(t) energy discharged with V2G

C. Exogenous simulation variables

ci,j(t) passenger arrivals at node i with destination j

f(h) relative number of trips departing at hour h

m(t) price of electricity

pi,j(t) probability of a trip from i to j at time step t

rwx, rtx, rox, rdx weight, hour of departure, origin node, and destination node

of trip x from survey.

λ(t) rate of trips arrival at time t

D. Parameters and constants

Jx, Ju, Jm, Js cost of moving, rebalancing, charging, and final SOC

qmin, qmax minimum and maximum SOC

thor optimization horizon

αc, αv2g, αd charge, V2G discharge, and consumption rate

β temporal ratio between the 2 layers

ρ1, ρ2, ρ3 weights of rebalancing, charging and final SOC secondary

objectives

η V2G efficiency

E. Acronyms

MPC Model predictive control

SAEV Shared autonomous electric vehicle

SOC State of charge

V2G Vehicle to grid
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Table 2: Nomenclature

2. Methodology

The present work is based on the article by Zhang et al. Zhang et al.

(2016) where an MPC was developed to find optimal management strate-

gies for rebalancing of autonomous mobility-on-demand systems (shared au-

tonomous vehicles). Although the work also proposed a version with charging

constraints, the charging was not optimized and the vehicles would charge

at maximum power as soon as they connect to charging stations. The

rebalancing problem is formulated as a MILP. The problem formulation

ensures that the system always optimizes the rebalancing of the vehicles

within the optimization horizon. However, the computational complexity of

the MILP optimization limits the feasibility to relatively small systems (in

the order of a few tens of nodes). Nevertheless, the results of this model can

be useful to estimate the performance in comparison to other systems. In

this work, Zhang’s model is extended to include electricity price-based charge

scheduling and vehicle-to-grid discharge in the global optimization.

2.1. Transport model from literature

In this section we briefly report the original model from Zhang et al.

(2016) for clarity. In the equations all the variables are considered normalized

for simplicity. For example, charging power variables are power divided by

battery capacity, and electricity price is price per fraction of battery capacity.

This is to avoid including several multipliers (battery capacity, time step
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duration, etc.) and leave the equations clean. This does not affect the results

as long as the parameters are normalized first.

The general formulation of the model evolution is:

x(t+ 1) = Ax(t) +By(t) + c(t) (1)

where x(t) is the state of the system at time t, y(t) is the set of control

variables and c(t) represents new passenger arrivals at nodes.

x(t) =


d(t)

p(t)

u(t)

q(t)

 (2) y(t) =


v(t)

w(t)

e(t)

g(t)

 (3)

These variables are described as follows.

The controls for the optimization are encoded into binary variables. vkij(t) =

1 when vehicle k is transporting passengers between i and j and wkij(t)

is the equivalent for rebalancing trips (empty trips). dij(t) and cij(t) are,

respectively, the number of passengers waiting and arriving at node i with

destination j at time t. dij(t) evolves as:

dij(t+ 1) = dij(t) + cij(t)−
∑
k

vkij(t) (4)

Another binary variable is used to keep track of vehicles in movement:

Tipki (t) = 1 when vehicle k is at distance Ti from its destination i at time

t. This allows the tracking of vehicles as they move to their destinations.

When vehicle k departs from node j with destination node i at time step t,

tji−1pki (t + 1) is set to one. In the following time step, tji−2pki (t + 1) is set

to one, and so on, until 0pki (t + 1) is set to one to indicate the vehicle has
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arrived to destination. The variable therefore evolves as:

Tipki (t+ 1)

=


Ti+1pki (t) +

∑
j:tji−1=Ti(v

k
ij(t) + wkij(t)) Ti < Tmax,i∑

j:tji−1=Ti(v
k
ij(t) + wkij(t)) Ti = Tmax,i

(5)

where Tmax,i is the maximum distance in time steps between node i and

the other nodes. The binary variable uki (t) represents waiting vehicles at

nodes. uki (t) = 1 when vehicle k is waiting at node i at time t. The variable

evolves as:

uki (t+ 1) = uki (t) +0 pki (t)−
∑
k

(vkij(t) + wkij(t)) (6)

Vehicles can either be waiting or moving:

∑
i

uki (t) +
∑
i,Ti

Tipki (t) = 1 (7)

Also, vehicles can only do one action at each time step:

∑
i

(
uki (t) +

∑
j

vkij(t) +
∑
j

wkij(t)
)
≤ 1 (8)

and vehicles cannot transport more passengers than are waiting at sta-

tions:

∑
k

vkij(t) ≤ dij(t) + cij(t) (9)

Another constraint is associated with vehicles’ charge state. The state of

charge (SOC) of vehicles is encoded into a real variable qk(t) ∈ {0, 1} and
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qmin ≤ qk(t) ≤ qmax. Vehicles need to have enough charge to be assigned a

trip:

qk(t) ≥ vkij(t)αdtij + qmin (10)

qk(t) ≥ wkij(t)αdtij + qmin (11)

αd is the energy consumption per time step, and tij is the number of time

steps for the trip from i to j.

The cost functions to minimize are related to the waiting time for pas-

sengers and the rebalancing costs:

Jx(x(t)) =
∑
i,j

dij(t) (12)

Ju(y(t)) =
∑
k

∑
i,j

tijw
k
ij(t) (13)

For a more detailed description of the model, refer to Zhang et al. (2016).

As noted previously, in the original work the charging of vehicles was not

a control variable, and vehicles would charge at a fixed rate when not moving

until reaching a full state of charge or a movement was requested.

2.2. Charge scheduling

In this section and the next we report our extension to the model.

The decision on the charging of vehicles was added to the control vector,

thus becoming part of the optimization. The state of charge (SOC) of vehicles

qk(t) evolves as:

qk(t+ 1) = qk(t) + ek(t)− gk(t) (14)
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where ek(t) and gk(t) are, respectively, the energy charged and discharged

to the grid in time step t, both non-negative.

The constraints for the charging rates are:

ek(t) ≤ αc
∑
i

uki (15)

gk(t) ≤ αv2g
∑
i

uki (16)

where αc and αv2g are the maximum charging and V2G discharging rates,

respectively. In this work we assume that vehicles can charge at any node as

soon as they arrive. Moreover, we assume there are no congestion constraints

at charging stations. Further constraints could be added to the model in the

future.

To take into account the charging rate in the optimization, a further cost

function is added. This is stated as:

Jm(y(t)) =
∑
k∈V

(
(ek(t)− ηgk(t))m(t) + ωgk(t)

)
(17)

where m(t) is the price of electricity, η is the V2G efficiency, and ω is

the extra cost of cycling the battery incurred when supplying power to the

grid. The system is considered a price taker, therefore the electricity price

is not affected by charging. It should be noted that since η < 1 and ω > 0,

the optimization would never charge and discharge at the same time. Cost

function Jm is added as a further objective to the cost functions relative to

the waiting time for passengers Jx and the redistribution trips for vehicles

Ju.
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Another cost function is added to put a premium on higher state of charge

at the end of the optimization period:

Js = −
∑
k∈V

qk(t+ thor − 1) (18)

This is to avoid vehicles reaching a minimum SOC at the end of the

optimization horizon, and to account for future transport demand that is

necessarily not represented in the optimization. Without this cost function,

the optimization would tend to completely discharge vehicles at the end of

the optimization period (horizon). The overall objective is therefore (the

variables for each function have been omitted for compactness and clarity):

minimize
y(t),..,y(t+thor−1)

∑
t

(
Jx + ρ1Ju + ρ2Jm

)
+ ρ3Js (19)

ρ1, ρ2, and ρ3 in (19) are the relative weights assigned to each secondary

objective.

2.3. Two-layer optimization

As mentioned in the introduction, vehicles rebalancing and charging op-

timization require very different optimization time frames. Rebalancing is

generally optimized within an horizon of half an hour or less, while it would

be preferable to have a longer horizon for charging optimization in order to

take into account the availability of intermittent renewable energy sources

and variability of electricity demand.

In order to optimize both transport and charging, a two-layers model

predictive control optimization was implemented. In model predictive control

(or receding horizon control), at each time step the optimization is performed
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Figure 1: Schematic diagram of the two-layers MPC optimization model

over a time horizon and only the first control action is executed. This ensures

that at each time step the control uses all the information available up to

the future prediction horizon when taking the present action.

In this 2-layer MPC, a higher ‘coarse’ MPC layer optimizes for charging

over longer time frames taking into account the requirements of transport

service. The main layer optimizes transport service over short time frames,

taking as constraints the optimal charging controls found by the higher layer.

Both layers are based on the model presented in the previous sections.

The two layers are related by a step length ratio β that determines the

relative length of a time step between the two layers. At the beginning of the

simulation, the higher coarse layer determines the optimal charging schedule

by optimizing over its own time frame. The results are passed down to the

main layer as constraints on charging during each step. After β time steps

in the main layer, the higher layer optimizes again over its own time frame,

passing down the next charging constraints to the main layer for the next β

time steps.
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2.4. Upper layer and constraint assignment

In this section, the integration of the two layers is discussed. The upper

layer simulation variables are denoted with Greek letters, so that d, p, u, q,

t, e, c are respectively δ, π, µ, φ, τ , ε, κ. We also define T ki as the distance

from node i of vehicle k if moving, and T ki = 0 if the vehicle is waiting at

node i. The upper layer’s objective function has secondary weights that are

related to the main one by division by a factor β, to reflect the fact that a

waiting passenger waits β times longer in the upper simulation for each time

step, as the time step is longer. The arrivals at nodes is defined as:

κij(τ) =

τβ∑
t=(τ−1)β+1

cij(t) (20)

At the start of an upper layer simulation at (main) time t′, we assign the

main layer situation to the upper layer:

δij(τ) = dij(t
′) (21)

[Tk
i /β]πki (τ) = 1 if T ki > 0 (22)

µki (τ) = uki (t
′) (23)

φk(τ) = qk(t′) (24)

The charging controls resulting from the upper layer optimization are

assigned back to the main layer as constraints on charging and on movement.

For vehicles moving, the constraints are assigned only after arrival.
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ek(t) =

ε
k(τ ′)/β t > t′ + T ki

0 t ≤ t′ + T ki

(25)

uki (t) =

1 t > t′ + T ki

0 t ≤ t′ + T ki

(26)

where τ ′ in (25) such that (τ − 1)β < t′ − t ≤ τβ.

2.5. Limitations of the model

The model is based on a global optimization problem, and is therefore

inevitably limited in scale. The computational complexity of the problem

grows more than linearly with the size of the simulation (number of vehicles,

number of nodes, time resolution etc.) becoming infeasible for more than

a few tens of vehicles or for long optimization horizons. Compared to the

original model, the addition of charge scheduling further limits the feasible

scale since it adds further complexity and increases the number of variables.

This is not a limitation of the SAEV system in itself, but rather of the global

optimization approach. In this work, the two layer approach allows to have

a longer optimization horizon with a trade-off with time resolution in the

upper layer, while preserving a high resolution main layer with a shorter

optimization horizon. For larger systems, such as practical implementations

with thousands of vehicles, a faster and more scalable heuristics-based opti-

mization model is needed. However, this model can be used as benchmark

for future more practical heuristics-based models.
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3. Numerical simulations

The model was implemented in MATLAB and solved as a mixed integer

linear optimization with the built-in MATLAB function intlinprog. To eval-

uate the performance of the model, several simulations were conducted using

historical data from a transport survey in Tokyo.

3.1. Transport data

The Tokyo Person Trip Survey 2008 (Ministry of Land, Infrastructure,

Transport and Tourism, Japan (MLIT), 2008) is a survey comprising around

2 million trips in the Tokyo metropolitan area. The 2008 survey is the

latest available survey released for Tokyo. Although the survey is 10 years

old, the demographics and infrastructure of Tokyo has remained stable and

it is expected that this implies a relatively stable demand pattern when

compared to 2008. Infrastructure and ridership of all major railways are

mostly unchanged between 2008 and 2015, and in the same period, the

length of roads in Tokyo city changed by less than 1% (Tokyo Metropolitan

Government, 2016).

Only trips by car or taxi with origin and destination in a central 5x5

km area of Tokyo were considered. These were considered the trips with

characteristics more likely to be similar to trips done with the SAEV system.

This area was divided into 10 regions by grouping nodes with k-means

clustering (Fig. 2). The cluster’s centroid for each area was considered as

a discretized model of the origin/destination of trips in each area.A Poisson

process was used to generate the stochastic arrivals at each time step, with

frequency for each origin and destination nodes pair selected according to
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the survey. More information about the survey extraction methodology can

be found in Iacobucci et al. (2018).

Figure 2: Map of the central 5x5 km area of Tokyo used in the simulations.

Smaller circles represent origin/destination nodes in the survey, while larger circles

represent the cluster centroids.

3.2. Electricity prices and scenario reduction

In order to investigate the influence of different electricity price profiles on

the results, real electricity market price profiles were used in the simulations.

Due to the computational time required for each simulation, studying an

entire year of electricity prices would be extremely time consuming. A

scenario reduction approach was therefore used to reduce the number of

required simulations while assessing the behavior of the model in all the

possible situations.
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Figure 3: Day-ahead price profiles for the Tokyo region in the JEPX wholesale

electricity market selected with scenario reduction.

In this work, a scenario is defined as the electricity price profile during

a single day. In the scenario reduction approach a subset of all possible

scenario (daily price profiles) is selected to represent the entire spectrum of

possible scenarios, i.e., all the historical daily electricity profiles. Only the

most representative scenarios are kept, and similar scenarios are discarded.

The probability of the selected scenarios is updated with the sum of the

probability of all the discarded scenarios most similar to the ones kept. To

assess the similarity of different price profiles, the Kantorovich distance was

used, which is the most common measure of distance between probability

distribution used in stochastic programming (Conejo et al., 2010). All the

price profiles were normalized to calculate the distance.
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Figure 4: Generated scenarios from a gamma distribution to test the model with

high variability prices.

The forward selection algorithm described in Conejo et al. (2010) was used

to select the scenarios. The day-ahead wholesale electricity market prices

for the Tokyo region on the Japanese Electric Power Exchange (JEPX) in

financial year 2016 (April 2016 to March 2017) were used (JEPX, 2017). 10

scenarios were selected (Fig. 3). Each scenario was associated with a weight

(probability) proportional to the number of days with a profile closest to the

selected one (Table 3).

The Tokyo region has relatively low penetration of renewable electricity,

and the wholesale market is still relatively small as the electricity market is

still in the process of being completely liberalized. In order to test the model

with price profiles with higher variability, 10 more scenarios were generated
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from a gamma distribution with shape parameter 2 and scale parameter 10,

giving an average price of 20 yen/kWh (Fig. 4).

1 2 3 4 5 6 7 8 9 10

JEPX 0.6795 0.0110 0.0356 0.1205 0.0192 0.0082 0.0356 0.0055 0.0466 0.0384

Gamma (random) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 3: Weight (probability) of each scenario
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Figure 5: Costs and moving average (MA) peak waiting times sensitivity to: (a)

secondary weight ρ2 (b) charge power

3.3. Secondary weights determination

Deciding the value of secondary weights is an important problem for

multi-objective optimization models. The first weight in (19), ρ1, is the

easiest to set, as there is an optimal rebalancing that can always be achieved.
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If set low enough (0.01 in this work), the rebalancing will be optimized

without influencing the main objective. Further decrease of rebalancing cost

is in theory impossible under this optimized rebalancing cost, equivalent to

the Earth Mover’s distance Spieser et al. (2014). Determination of ρ2 and

ρ3 is less straightforward. These two secondary objectives represent the cost

of energy, not the ‘waiting cost’ like the main objective. Therefore, setting

these objectives depend on the relative importance of minimizing monetary

costs over minimizing the waiting times for passengers. This trade-off needs

to be decided by policy or by user preference.

A sensitivity analysis was conducted to understand the influence of this

parameter on the cost and wait times. The results are shown in Figure 5a.

Each value of ρ2 was tested with 10 different price profiles, with a scaled down

simulation with only 10 vehicles. Total system costs increase and waiting

time decrease with decreasing ρ2. However, a plateau is reached for both

values, as there is a charge schedule that ensures minimum waiting time

while minimizing as much as possible the charging costs. This is reached

for ρ2 ' 0.1 in the simulations of Figure 5a. In this work, ρ2 was set to

0.001 to ensure the simulations are within the plateau region, as minimizing

wait times is considered a priority over marginally lower charging costs. The

objective for final SOC was set as ρ3 = ρ2mmedian where mmedian is the median

price of electricity. This is equivalent to compensating lower SOC by buying

electricity at the median price up to 100% SOC.

3.4. Sensitivity analysis

A sensitivity analysis was performed on the full model to investigate the

influence of some key parameters on the results. Each parameter was tested
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Figure 6: Sensitivity of 10-minutes moving average peak wait times and total

costs for different parameters: (a) fleet size; (b) battery capacity; (c) number of

nodes; (d) main layer optimization horizon.
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Figure 7: Peak wait times and total costs (a-b) for the random price profiles

generated from a Gamma distribution; (c-d) for the simulation with real prices on

the Japan Power exchange in 2017. The 4 cases represent the unscheduled model,

the 1-layer model, the 2-layer model, and the 2-layer with V2G, respectively.33
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Figure 8: Aggregated charging power and electricity price for case 1 (unsched-

uled). The price profile is taken from a Gamma distribution.

on 5 different price profiles with the 2-layer model without V2G. The effect

of two different charge power connections is reported in Fig. 5b. Faster

connections decrease peak wait times, but has no appreciable effects on

charging costs. This suggests that the total cost in these cases is not limited

by charging speed, but by the need to have available and charged vehicles at

specific times. It was also found that a lower charging speed would not allow

the system to be stable, as vehicles would not be able to charge fast enough

to satisfy all passenger requests without increasing the fleet size. Larger

fleet sizes decrease peak wait times, as expected, up to a certain threshold.

This is found to be about 30 vehicles for the amount of passenger requests

considered (Fig. 6a). The effect is similar with increasing battery capacity
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Figure 9: Aggregated charging power and electricity price for case 2 (1-layer

scheduling). There is almost no difference between case 1 and 2, as the charge

scheduling optimization horizon is too short to be effective.

(Fig. 6c). With a capacity of more than 50 kWh there are no significant

changes in peak wait times. It should be noted that total cost only refers

to charging costs, and capital costs are not considered in this work. Larger

fleets or larger battery capacities are inevitably linked to higher capital costs

which would increase system cost significantly.

The number of nodes increases the complexity and realism of the simula-

tion, thus increasing the variability across scenarios and the simulation time.

However, median costs and median peak wait times are similar between 10

and 15 nodes (Fig. 6b). Longer optimization horizons in the main layer

translate into lower peak waiting times, although the change is minimal after
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about 24 minutes (Fig. 6d). With horizons of less than about 20 minutes,

the optimization fails as too many passenger requests accumulate due to

sub-optimal routing, and request rejection was not included in the model.
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Figure 10: Aggregated charging power and electricity price for case 3 (2-layer

scheduling)

3.5. Results

The simulations were run with 30 vehicles, and an average trip rate of

1500 trips per day. The speed of vehicles was set at 20 km/h, the reported

average road speed in central Tokyo (Yabe, 2015).

Time step for the main layer is 2 minutes, with a 15 time steps horizon

(30 minutes). The ratio between the two layers is β = 15, so that the higher

layer has a time step of 30 minutes. The time step horizon for the higher

36



-300

-200

-100

0

100

200

300

c
h
a
rg

e
 p

o
w

e
r 

[k
W

]

0 4 8 12 16 20 24

hour

0

20

40

60

80

100

p
ri
c
e
 [
J
P

Y
/k

W
h
]

price of electricity

charge power

Figure 11: Aggregated charging power and electricity price for case 4 (2-layer

scheduling with V2G)

layer is set at 10, giving an optimization time horizon for charging of 5 hours.

Vehicles battery size was set at 50 kWh and the state of charge was limited

between 0.2 and 0.9 to increase battery life. The maximum power connection

was set at 20 kW both for charging and V2G discharging. The initial SOC

at the beginning of each simulation was set at 0.7 for all vehicles. This was

chosen as a reasonable estimation of the average state of charge of vehicles

at midnight of an average day. As the amount of passenger requests between

midnight and about 6-7 am is generally very low, the SOC level at that time

does not practically influence results in terms of transport quality, as vehicles

have enough time to charge during the night if needed. The same SOC was

used to be able to better compare results across simulations.
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Figure 12: State of charge (SOC) of vehicles (a) for case 1 (unscheduled

charging); (b) for case 2 (1-layer scheduling). In case 2, the scheduling does not

have a significant effect due to the limited optimization horizon.

Different models were compared to evaluate the performance of the pro-

posed charge scheduling algorithm in terms of waiting times and charging

costs:

1. no charge scheduling

2. 1-layer charge scheduling

3. 2-layer charge scheduling

4. 2-layer charge scheduling with V2G

Different results may have different levels of SOC at the end of the

simulation. To be able to compare different results the difference between

the final SOC and the initial SOC was valued at the median price of the day.

The peak waiting times and the total costs for the simulations are pre-

sented in Figs. 7 for the case with random price profiles and with price profiles
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Figure 13: State of charge (SOC) of vehicles for case 3 (2-layer scheduling)

taken from JEPX. The model proposed with 2-layer optimization decreases

total charging costs significantly when compared to the unscheduled model

or the 1-layer model. The effect is much larger with the random price profile,

due to the much higher variability that gives the charge optimized model a

clearer advantage over the unscheduled model.

For the case with historical price profiles in Tokyo, the effect is smaller.

As mentioned previously, this is due to the relatively low penetration of

renewable energy sources in the Tokyo grid and the nascent state of the Japan

wholesale electricity market, with both factors contributing to relatively

static price profiles. Moreover, when peaks exist, they generally correspond

to transport demand peaks (Fig. 3), rendering the model less effective since

transport is always a priority in the optimization. Table 4 reports the results
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Figure 14: State of charge (SOC) of vehicles for the case with V2G. The steep

drop in SOC around 4 am is correlated with a high electricity price and resulting

V2G discharge (compare with Fig. 11).

for the JEPX prices weighted with the probability of each scenario tested.

Costs decrease by about 10% with the proposed model.

While the model with V2G has a significant advantage over the one

without in the high variability random profiles (Fig. 7b), the results for

the two models are practically indistinguishable for the JEPX profiles (see

Fig. 7d and table 4). This is due to the relatively low price differentials

in the JEPX profiles, which are generally not enough to overcome the costs

of V2G in terms of battery degradation and opportunity cost. The higher

variation of price profiles also creates unexpected results, such as that in Fig.

7a. Although it is reasonable to assume that V2G would generally tend to
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Figure 15: Aggregated charging power and electricity price for case 3 (2-layer

scheduling) for one of the real price profiles in the Tokyo wholesale electricity

market in 2017.

lower costs at the expense of longer peak waiting times, in the case of very

high variability profiles the imperfect information of the model given by the

limited optimization horizon can give rise to lower waiting times. This is

due to stochastic variability of the results under varying conditions. This

effect is particularly evident for results such as peak wait time, which are

very sensitive to random variations (one outlier trip can change the result

for the whole simulation).

It should be noted that there is not much difference between the un-

scheduled model and the 1-layer model in terms of costs. This shows that

the 1-layer model is unable to effectively optimize charging due to the limited
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Figure 16: Aggregated charging power and electricity price for case 4 (2-layer

scheduling with V2G) for one of the real price profiles in the Tokyo wholesale

electricity market in 2017.

optimization horizon. This is evident from Figs. 8 and 9, showing aggregated

charging power for the 2 models. The results are almost indistinguishable.

The same can be seen for the SOC in Fig. 12. This is in contrast with

Figs. 10 and 11, where the charging optimization is evident as the aggregate

charging peaks are correlated with lows in the electricity price profile. The

state of charge of vehicles during the simulation is shown in Figs. 13 and 14.

Figs. 15 and 16 report aggregate charging levels for a JEPX price profile.

Results shown are for the most representative day of the 10 selected, repre-

senting a equivalent probability of 68%. It is evident that the price profile is

extremely flat, with a maximum price differential of about 2 yen/kWh. This
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Figure 17: 10 minutes moving average wait times: (a) case 1; (b) case 2; (c)

case 3; (d) case 4.
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1 2 3 4

JEPX price profiles

peak wait time (minutes) 14 18 21 31

10-min MA peak wait (min.) 3:37 3:23 4:02 4:12

total electricity cost (yen) 10493 10538 9393 9282

gamma-distributed price profiles

peak wait time (minutes) 14 18 25 21

10-min MA peak wait (min.) 3:37 3:32 4:27 4:23

total electricity cost (yen) 25868 25218 18542 14684

Table 4: Wait times and charging costs for the 4 models with the selected scenarios

for the Japan Electric Power Exchange in 2017 and with the randomly generated

electricity price profiles. MA is moving average.

limits the effectiveness of the charge scheduling algorithm, especially since its

priority is transport service. The 10-minutes moving average waiting times

for new arrivals for the 4 models is shown in Fig. 17 for the same price

profile. The results show new peaks in waiting times corresponding to a low

electricity price around noon, since some of the vehicles have been scheduled

to charge and avoid the afternoon price peak.

The median computation time for a time step of the 2-layer model on a

quad-core 3 GHz Intel Core i5 processor with 32GB of RAM was about 20

seconds for the upper layer and 1.5 seconds for the main layer. The average

overall was 29.4 seconds per time step (5 hours 53 minutes per simulation).
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4. Conclusions and future work

An extension of the model in Zhang et al. (2016) was developed to

incorporate electricity price information for optimizing vehicle charging. A

2-layer optimization was developed to optimize both charging and transport

service at different time scales. The proposed model was applied to a case

study in Tokyo, using transport survey data and historical electricity prices

from the wholesale electricity market. The results show that the optimization

can reduce the costs of charging for the system by 10% when using historical

price profiles from the Japan Electric Power Exchange. Much larger cost

savings could be obtained with price profiles with higher variability. With

prices sampled from a gamma distribution the savings compared to the

unscheduled model are 43% and 28% for the case with and without V2G,

respectively. The 2-layer model is shown to be superior to the 1-layer model,

with the latter being effectively same as the unscheduled model due to the

limited time horizon.

Waiting times are not excessively affected by the charging optimization,

with 10-minutes moving average wait times peak increasing for the model

with V2G by 16% and 21% for the real electricity prices and the generated

price profiles, respectively, compared to the unscheduled model.

This work shows the potential of SAEV to offer effective energy storage to

the grid and avoid grid congestion thanks to dynamic pricing. Several other

aspects are open to investigation in future work. An important extension of

the model could be the possibility of selection of which nodes are charging

stations and which charging stations are available at any given time, for

example due to grid constraints or vehicle congestion. In this work only
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wholesale electricity market participation was considered. However, other

ancillary services such as operating reserve and frequency regulation could

also be provided by the system. These are generally better remunerated and

suitable for batteries, thus they are likely more attractive for SAEVs. The

potential for the system to provide these services could be investigated by

including them in the global optimization.
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