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Abstract—Shared autonomous electric vehicles (SAEVs), also
known as autonomous mobility on demand systems, are ex-
pected to soon be commercially available. This work proposes
a methodology for the optimization of SAEV charging taking
into account optimized vehicles routing and rebalancing. The
methodology presented is based on previous work expanded to
include charge scheduling optimization. Our model deals with
the different time frames at which transport service and charging
have to be optimized with a model-predictive control optimization
routine which is run in parallel at two different time scales.
Vehicle charging is optimized over longer time scales to minimize
waiting times for passengers and electricity costs. Routing and
rebalancing is optimized at shorter time-scales to minimize
waiting times for passengers, taking as charging constraints the
results of the long-time-scale optimization. This approach allows
the efficient optimization of both aspects of SAEV operation.
The problem is solved as a mixed-integer linear program. A case
study using real transport data for Tokyo is used to test the
model, showing that the system can substantially cut charging
costs while keeping passenger wait times low.

Index Terms—shared transportation, autonomous vehicles,
electric vehicles, demand response, charge scheduling

I. INTRODUCTION

Internet and smartphones are opening the way for new
shared models of transportation. One-way car sharing services,
in which cars can be taken at wherever they are currently
parked and left at any other place within an area, are already
popular in large cities in Europe [1]. Autonomous driving
technology could speed up the adoption of this transport mode,
making it more convenient [2].

This change of paradigm has important implications from
the point of view of energy use, since it could allow a
faster electrification of the transport sector and enable a more
efficient control of the charging of vehicles [3]. It is therefore
important to study the impact of this system on the electricity
grid. However, studies on shared autonomous vehicles have
mainly only dealt with the transport aspects, without con-
sidering charging optimization. Most of the literature on the
charging of electric vehicles have focused on private vehicles,
mostly assuming that vehicles are used once or twice a day
and charged at home at night [4], [5], [6].

In this work, a charge optimization based on electricity
price is integrated into a model predictive control (MPC) of
a shared autonomous electric vehicle (SAEV) system based
on the work by Zhang et al. [7]. The novel model deals
with the different time frames at which transport service and
charging have to be optimized with a MPC optimization which
is run in parallel at two different time scales. Vehicle charging
is optimized over longer time scales to minimize electricity
costs. Vehicle routing and rebalancing for transport service
is optimized at shorter time-scales to minimize waiting times
for passengers, taking as constraints the results of the long-
time-scale optimization. This approach allows the efficient
optimization of both aspects of SAEV operation.

II. METHODOLOGY

This work is based on the work by Zhang et al. [7] where
an MPC was developed to find optimal management strategies
for rebalancing of autonomous mobility-on-demand systems
(shared autonomous vehicles). The work also proposed a
version with charging constraints. However, the charging was
not optimized and the vehicles were assumed to charge at
maximum power as soon as they connect to charging stations.

A. Transport model from literature

The problem is formulated as a mixed integer linear pro-
gram (MILP). The problem formulation ensures that the sys-
tem always optimize the rebalancing of the vehicles within the
optimization horizon, however the computational complexity
of the solution is such that the optimization is feasible only for
relatively small systems (in the order of few tens of nodes).
This is an important limit in the practical implementation of
this MPC, but nevertheless its results can be useful to estimate
the performance of other systems in comparison.

In this work, the model is extended to include electricity
price-based charge scheduling to the global optimization.

The model evolves according to:

x(t+ 1) = Ax(t) +Bu(t) + c(t) (1)



where x(t) is the state of the system, u(t) is the set of
control variables and c(t) represents new passenger arrivals at
nodes. These variables are composed of rearranged variables
described as follows. The controls for the optimization are
encoded into binary variables. vkij(t) = 1 when vehicle k
is transporting passengers between i and j and wkij(t) is
similarly defined for rebalancing trips (empty trips). dij(t) and
cij(t) are, respectively, the number of passengers waiting and
arriving at node i with destination j at time t. dij(t) evolves
as:

dij(t+ 1) = dij(t) + cij(t)−
∑
k

vkij(t) (2)

Another variable is used to keep track of vehicles in move-
ment: Tipki (t) = 1 when vehicle k is at distance Ti from its
destination i at time t. This evolves as:

Tipki (t+ 1)

=

{
Ti+1pki (t) +

∑
j:tji−1=Ti

(vkij(t) + wkij(t)) Ti < Tmax,i∑
j:tji−1=Ti

(vkij(t) + wkij(t)) Ti = Tmax,i
(3)

The binary variable uki (t) is used to record waiting vehicles
at nodes. uki (t) = 1 when vehicle k is waiting at node i at
time t. The variable evolves as:

uki (t+ 1) = uki (t) +
0 pki (t)−

∑
k

(vkij(t) + wkij(t)) (4)

Vehicles can either be waiting or be moving:∑
i

uki (t) +
∑
i,Ti

Tipki (t) (5)

Also, vehicles can only do one action at each time step:∑
i

(
uki (t) +

∑
j

vkij(t) +
∑
j

wkij(t)
)
≤ 1 (6)

and vehicles cannot transport more passengers than there are
waiting at stations:∑

k

vkij(t) ≤ dij(t) + cij(t) (7)

Another constraint is associated with vehicles’ charge state.
The state of charge (SOC) of vehicles is encoded into a real
variable qk(t) with 0 ≤ qmin ≤ qk(t) ≤ qmax ≤ 1. Vehicles
need to have enough charge to be assigned a trip:

qk(t) ≥ vkij(t)αdtij + qmin (8)

qk(t) ≥ wkij(t)αdtij + qmin (9)

αd is the energy consumption per time step, and tij is the
number of time steps for the trip from i to j.

The cost functions to minimize are related to the waiting
time for passengers and the rebalancing costs:

Jx(x(t)) =
∑
i,j

dij(t) (10)

Ju(u(t)) =
∑
k

∑
i,j

tijw
k
ij(t) (11)

For a more detailed explanation of the model, refer to [7].In
the original work, the charging was not controlled by the
optimization, but was an automatic feature of vehicles idle
in a node. When a vehicle was not moving, the vehicle is
assumed to be charging at a fixed charging rate until full state
of charge or a movement is requested.

B. Charge scheduling

In this work the charging was added to the control vector,
thus becoming part of the optimization. The state of charge
qk(t) therefore evolves as:

qk(t+ 1) = qk(t) + ek(t) (12)

where ek(t) is the energy charged in time step t.
The constraints for the charging rates are:

0 ≤ ek(t) ≤ αc
∑
i

uki (13)

where αc is the maximum charging rate.
To take into account the charging rate in the optimization,

a further cost function is added. This is stated as:

Jm(u(t)) =
∑
k∈V

ek(t)m(t) (14)

where m(t) is the price of electricity, which is considered
not affected by the system (price taker). Cost function Jm is
added as a further objective to the cost functions relative to
the waiting time for passengers Jx and the redistribution trips
for vehicles Ju.

Another cost function is added to put a premium on higher
state of charge at the end of the optimization period:

Js = −
∑
k∈V

qk(t+ thor − 1) (15)

with thor the optimization horizon. The overall objective is
therefore (the variables for each function have been omitted
for compactness and clarity):

minimize
u(t),..,u(t+thor−1)

∑
t

(
Jx + ρ1Ju + ρ2Jm

)
+ ρ3Js (16)

ρ1, ρ2, and ρ3 in (16) are the relative weights assigned to each
secondary objective.

C. Model predictive control

In model predictive control (or receding horizon control),
at each time step the optimization is performed over a time
horizon and only the first control action is executed. This
ensures that at each time step the control takes into account all
the information available up to the future prediction horizon
when taking the present action.



D. Two-layer optimization

The time scales of transport planning and energy storage
planning are very different. While transport rebalancing is
generally optimized with an horizon of 15 minutes to half an
hour [7], [8], electric vehicles charging is generally optimized
over at least several hours. This is due to several considera-
tions. First of all, charging is relatively slow, and even in the
case of fast-charging it may take over an hour to fully charge
an electric vehicle battery. Moreover, it is more efficient to
be able to charge for a relatively long time once a vehicle
is connected, since continuous connection and disconnection
may waste time.

τ

t t+β t+thor-1

charging constraints

t+2β

Upper layer (long-term optimization)

Main layer (short-term optimization)

τ+τhor-1

Fig. 1: Scehamatic diagram of the two-layers MPC optimiza-
tion model

The most important consideration however is related to the
opportunities that these vehicles offer to the grid. In order
to provide a service to the grid and avoid grid congestion,
the charge scheduling algorithm needs to be able to optimize
over the time frame of variability of electricity demand and
intermittent renewable energy sources such as wind and solar,
which can be several hours.

In order to optimize both transport and charging, a two-
layers optimization was developed. A higher ‘coarse’ MPC
layer optimizes for charging over longer time frames taking
into consideration the approximate necessities of transport
service. The main layer optimizes transport service over short
time frames, taking as constraints the optimal charging sched-
ule found by the higher layer. Both layers are based on the
model presented in the previous sections. However, charging
schedule in the main lower layer becomes a constraint, deter-
mined by the long-term coarse optimization layer.

The two layers are related by a step length ratio β that
determines the relative length of a time step between the two
layers. At the beginning of the simulation, the higher coarse
layer determines the optimal charging schedule by optimizing
over its own time frame. The results are passed down to the
main layer as constraints on charging during each step. After
β time steps in the main layer, the higher layer optimizes
again over its own time frame, passing down the next charging
constraints to the main layer for the next β time steps.

E. Constraint assignment

In this section, the upper layer simulation variables are
denoted with Greek letters, so that d, p, u, q, t, e are
respectively δ, π, µ, φ, τ , ε. We also define T ki as the distance
from node i of vehicle k if moving, and T ki = 0 if the vehicle
is waiting at node i. At the start of a upper layer simulation at

(main) time t′, we assign the main layer situation to the upper
layer:

δij(τ) = dij(t
′) (17)

dTk
i /βeπki (τ) = 1 if T ki > 0 (18)

µki (τ) = uki (t
′) (19)

φk(τ) = qk(t′) (20)

The charging controls resulting from the upper layer opti-
mization are assigned back to the main layer as constraints
on charging and on movement. For vehicles moving, the
constraints are valid only after the arrival.

ek(t) =

{
εk(τ ′)/β t > t′ + T ki
0 t ≤ t′ + T ki

(21)

uki (t) =

{
1 t > t′ + T ki
0 t ≤ t′ + T ki

(22)

where τ ′ in (21) such that (τ − 1)β < t′ − t ≤ τβ.

III. RESULTS

The problem was solved as a mixed integer linear opti-
mization with the built-in MATLAB function intlinprog. To
evaluate the performance of the model, several simulations
were conducted using data from a transport survey in Tokyo.

A. Transport survey data

The Tokyo Person Trip Survey 2008 [9] is a survey of
around 2 million trips in the Tokyo metropolitan area. The
2008 survey is the latest available survey released for Tokyo.
Although somewhat old, the demographics and infrastructure
of Tokyo has remained stable and it is expected that this
implies a relatively stable demand pattern when compared to
2008. The survey associates the origins and destinations of
trips to zones, corresponding to specific addresses in Tokyo.
These geographical zones were used in the model as the
reference nodes. The geographic coordinates of the zones
were found from the addresses reported in the survey using
the Google Maps Geocoding API [10]. A central 10x10km
area of Tokyo was chosen for the simulations, approximately
equivalent to the 6 most central special wards of the city.
This area was divided into 10 regions by grouping nodes with
k-means clustering. The cluster’s centroid for each area was
considered as a discretized model of the origin/destination of
trips in each area (Fig. 2). For this study, only trips by car
or taxi were considered, representing about 20% of the total
trips in the survey. These are the trips with characteristics
more likely to be similar to trips done with the SAEV system.
Each trip in the survey also has a starting time and a weight.
The weight is used to indicate the relative significance of that
specific trip and to normalize the survey results over the total
demographics of Tokyo. Each selected trip k is then defined
with four values [rwk, rtk, rok, rdk] to indicate respectively
associated weight, hour of departure (0-23), origin node, and



Fig. 2: Map of nodes and clusters with centroids in central
Tokyo. From [9].

destination node. The probability pi,j(t) of a trip from i to j
at time step t was found as:

pi,j(t) =

∑
k′ rwk′∑
k rwk

, (23)

k : rtk = t′, k′ : rtk′ = t′, rok′ = i, rdk′ = j

where t′ = b((t · `− 1) mod 1440)/60c is the hour of the
day corresponding to time step t, with ` the length of the time
step in minutes. The relative number of trips departing at hour
h from the survey is:

f(h) =

∑
k′ rwk′∑
k rwk

, k′ : rtk′ = h (24)

At each time step t (at hour of the day h), the rate of arrivals
is then:

λ(t) = TPD · f(t′) · `/60 (25)

where TPD is the rate of trips per day. A Poisson process with
the rate in (25) was used to generate the number of stochastic
arrivals at each time step, with origin and destination nodes
selected according to (23).

B. Charge scheduling performance

Simulations were run with a random electricity price profile
sampled from a gamma distribution with shape parameter 2
and scale parameter 10, giving an average electricity price
of 20 JPY. The random profile was chosen to simulate a
grid with very high penetration of non-dispatchable renewable
energy, as the current electricity market in Japan has low
penetration of intermittent renewable energy and its profile
has low variability. The price is assumed to change in 20
minutes intervals (72 different prices in a day). The speed
of vehicles was chosen at 20 km/h, the reported average
road speed in central Tokyo at peak time [11]. The system
studied was composed of the 10 nodes identified by the
cluster’s centroids, 20 vehicles, and an average trip rate of
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Fig. 4: State of charge (SOC) of vehicles for the 2-layer model

300 trips per day. The main layer has a 2 minute time step,
and 20 time steps horizon (40 minutes). The time step length
was chosen as a compromise between time resolution and
acceptable computational times. The long time horizon is
necessary because of the large area served by the vehicles and
the time it takes to rebalance, as traveling between the two
farthest nodes takes about 45 minutes. The ratio between the
two layers is chosen as β = 10, so that the higher layer has a
time step of 20 minutes. The time horizon for the higher layer
is set at 8, giving an optimization time frame of 2 hours and
40 minutes. This was chosen as a compromise between better
optimization and computational time. Longer horizons may
be suitable for electricity price profiles with slower changes
or longer periodicity, however requiring longer computational
times. Vehicles battery size was chosen at 30 kWh and the
state of charge was limited between 0.2 and 0.9.

We compare our proposed model with the unscheduled
charging model presented in [7], where vehicles charge at
maximum power as soon as they are idle. The unscheduled
model was created by only running the main optimization,
with the objective function in (14) modified to:



unscheduled 1-layer 2-layers
mean wait time (seconds) 38 30 22
peak wait time (minutes) 6 13 10
total electricity cost (yen) 10,718 5,679 1,790

TABLE I: Summary of results for the 3 models

Jm(u(t)) =
∑
k∈V

ek(t) (26)

and setting ρ2 = 10−6 and ρ3 = 0. The very low
secondary objective weight effectively ensures that vehicles
charge whenever they are waiting at nodes while not affecting
the transport optimization model. Results presented are for
simulation with the same price profile and transport demand.

In Fig. 3, aggregated charging power and electricity price
profile during the day is presented for the proposed model. Ve-
hicles tend to charge during periods of lowest electricity prices.
It should be noted that in case of short term optimization,
vehicles would not ‘see’ the optimal electricity price, tending
to charge at sub-optimal local minima. For short time horizons,
vehicles would effectively see only one constant price, making
optimization impossible. Fig. 4 shows the evolution of the
vehicles’ state of charge (SOC) during simulation time.

The 10-minutes moving average waiting times for new
arrivals for the two models is shown in Fig. 5. The results
of the simulations are summarized in table I. The proposed
two-layer scheduled model cut electricity costs by over 80%
compared to the unscheduled algorithm, and by almost 70%
compared to the 1-layer optimization, while keeping waiting
times low. Compared to the unscheduled model, the 10-
minutes moving average peak waiting time increases from
6 minutes to 10 minutes, while the average waiting time
decreases from 38 seconds to 22 seconds, thanks to the
longer optimization horizon. In both cases, including charge
optimization increases maximum waiting times as a trade-
off between optimal charging and optimal transport service
is introduced.

The median computation time for a time step on a quad-
core 3 GHz Intel Core i5 processor with 32GB of RAM was
4.2 seconds for the upper layer and 3.1 seconds for the main
layer. The average overall was 3.8 seconds per time step.

IV. CONCLUSIONS AND FURTHER WORK

An extension of the model presented in [7] was developed to
include vehicle charging optimization with price information
from the grid with two-layer parallel optimization at different
time scales. The results show that the proposed method can
reduce the costs of the system by over 80% without signifi-
cantly impacting waiting times. While peak wait times increase
by 66%, mean wait times decreases thanks to the longer
optimization horizon. We think that as the penetration of
electrified transportation increases, charge scheduling will play
an increasingly important role in avoiding grid congestion.
These results show that it is possible to optimize both without
negative effect on transport service.
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Fig. 5: 10 minutes moving average waiting times

Several further aspects could be investigated in future work.
The model could be extended to allow for selection of which
nodes are charging stations. Moreover, an extension could
include the optimization of energy delivery back to the grid
with vehicle-to-grid (V2G) technology. Other ancillary ser-
vices such as operating reserve could also be provided by the
system, and their potential could be investigated by including
them in the global optimization.
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