
ORIGINAL RESEARCH
published: 30 April 2020

doi: 10.3389/fbuil.2020.00059

Frontiers in Built Environment | www.frontiersin.org 1 April 2020 | Volume 6 | Article 59

Edited by:

Nikos D. Lagaros,

National Technical University of

Athens, Greece

Reviewed by:

Seyed Mehdi Tavakkoli,

Shahrood University of

Technology, Iran

Vagelis Plevris,

OsloMet - Oslo Metropolitan

University, Norway

*Correspondence:

Kazuki Hayashi

hayashi.kazuki.55a@st.kyoto-u.ac.jp

Specialty section:

This article was submitted to

Computational Methods in Structural

Engineering,

a section of the journal

Frontiers in Built Environment

Received: 22 November 2019

Accepted: 09 April 2020

Published: 30 April 2020

Citation:

Hayashi K and Ohsaki M (2020)

Reinforcement Learning and Graph

Embedding for Binary Truss Topology

Optimization Under Stress and

Displacement Constraints.

Front. Built Environ. 6:59.

doi: 10.3389/fbuil.2020.00059

Reinforcement Learning and Graph
Embedding for Binary Truss Topology
Optimization Under Stress and
Displacement Constraints
Kazuki Hayashi* and Makoto Ohsaki

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

This paper addresses a combined method of reinforcement learning and graph

embedding for binary topology optimization of trusses to minimize total structural

volume under stress and displacement constraints. Although conventional deep learning

methods owe their success to a convolutional neural network that is capable of

capturing higher level latent information from pixels, the convolution is difficult to apply

to discrete structures due to their irregular connectivity. Instead, a method based on

graph embedding is proposed here to extract the features of bar members. This way,

all the members have a feature vector with the same size representing their neighbor

information such as connectivity and force flows from the loaded nodes to the supports.

The features are used to implement reinforcement learning where an action taker called

agent is trained to sequentially eliminate unnecessary members from Level-1 ground

structure, where all neighboring nodes are connected by members. The trained agent is

capable of finding sub-optimal solutions at a low computational cost, and it is reusable

to other trusses with different geometry, topology, and boundary conditions.

Keywords: topology optimization, binary-type approach, machine learning, reinforcement learning, graph

embedding, truss, stress and displacement constraints

1. INTRODUCTION

A number of methods based on a ground structure (GS) method (Dorn, 1964) have been proposed
for topology optimization of trusses. GSmethod obtains a sparse optimal topology of trusses from a
densely connected initial GS, where cross-sectional areas are chosen as continuous design variables.
The complexity of GS ranges from Level-1, where all neighboring nodes are connected, to full level,
where each node is connected to all the other nodes. Although full level GS is required in order to
obtain a global optimal solution for the given nodes and the loading and boundary conditions, the
combination of node pairs explodes to nn(nn − 1)/2 as the number of nodes nn increases. For this
reason, a truss with a limited number of members connecting to only adjacent nodes is frequently
used as an initial GS, andGS grids with Level-1 connectivity are used in this paper. A generalized GS
method with variable nodal locations can be used for also optimizing the geometry of a truss. The
authors proposed a force density method for simultaneous optimization of topology and geometry
of a truss (Ohsaki and Hayashi, 2017; Hayashi and Ohsaki, 2019).

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.00059&domain=pdf&date_stamp=2020-04-30
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hayashi.kazuki.55a@st.kyoto-u.ac.jp
https://doi.org/10.3389/fbuil.2020.00059
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00059/full
http://loop.frontiersin.org/people/854544/overview
http://loop.frontiersin.org/people/538162/overview

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

However, it becomes difficult to obtain the global optimum
even for the sparser initial GS stated above when stress
constraints of the members are added to the optimization
problem under multiple loading conditions, because the stress
constraint can be neglected for a member whose cross-sectional
area is reduced to zero during the optimization process (Kirsch,
1989; Ohsaki, 1995; Cheng and Guo, 1997; Achtziger and Stolpe,
2009). To overcome this discontinuity, branch-and-bound type
techniques are proposed. Sheu and Schmit (1972) formulated
a two-level optimization problem where existence of members
and nodes varies in the upper-level linear optimization problem
and they are fixed in the lower-level non-linear programming
(NLP) problem. Ringertz (1986) improved the above method
so as to consider displacement constraints in the lower-level
problem; however, only small-scale trusses with 10–29 members
are studied. Ohsaki and Katoh (2005) also adopted branch-and-
bound approach to optimize trusses with constraints on stresses,
nodal instability, and intersection of members; however, the
number of LP steps and computational cost increase drastically as
the size of problem is increased. Besides branch-and-bound type
techniques for trusses with integer design variables, metaheuristic
techniques such as genetic algorithms (Hajela and Lee, 1995) and
simulated annealing (Topping et al., 1996) have been presented.
A method heuristically adding nodes and members from a
relatively sparse GS is also proposed (Hagishita and Ohsaki,
2009).

In the past decades, machine learning has been extensively
studied in the field of structural engineering. Because the
technique is developed to approximate a highly nonlinear
function, the trained model is capable of predicting structural
properties and behavior obtained through complex structural
analysis, such as shear capacity of reinforced concrete beams
(Prayogo et al., 2019), concrete compressive strength (Chou
and Pham, 2013), and ground vibration induced by blasting
(Khandelwal, 2011). The trained model is also used to accelerate
iterative computation processes. Tamura et al. (2018) used
a support vector machine and a decision tree to classify
desirable and non-desirable brace placements of steel frames for
application to optimization, and Papadrakakis et al. (1998) used
a multilayer perceptron to predict the objective function value
during size and shape optimization. Note that the researches
stated above all belong to supervised learning that is a class
of machine learning in which labeled input-output pairs must
be provided.

Reinforcement learning (RL) is also an area of machine
learning that aims to train an action taker called agent to
take actions so as to maximize the cumulative rewards (Sutton
and Barto, 1998). It differs from supervised learning because
input-output pairs are not necessarily provided as learning
material; instead, it requires a reward function that evaluates
the output state. The trained agent overwhelmed human experts
in playing Go (Silver et al., 2017) and some classic arcade
games (Mnih et al., 2015); however, few applications have been
studied in the field of structural engineering. Nakamura and
Suzuki (2018) proposed an RL-based approach for selection
between initial and tangential stiffness methods in the non-linear
structural analysis; however, it dealt with a small solution space

in which available actions are only two. Among a variety of
machine learning methods, deep learning has recently attracted
engineers because it showed remarkable results for complex
tasks such as image recognition (Krizhevsky et al., 2012; He
et al., 2015) and image generation (Goodfellow et al., 2014).
Compared with conventional optimization methods that require
high computational cost for iterative structural analyses, once the
training process is finished, deep learning method is capable of
yielding feasible solutions without any time-consuming iterative
analysis process. Deep learning method showed considerable
performance to predict sub-optimal material distribution for
finite element models (Yu et al., 2018) and to select edge set
that minimizes the total structural volume of a compression-
only thrust network (Liew et al., 2019), which require high
computational cost if conventional iterative schemes are used.
However, the achievement above is strongly dependent on
convolutional neural network (Lecun et al., 1998) that employs a
mathematical operation called convolution specially designed for
extracting the feature values from raster images formed by pixels
in a rectangular array. For application of convolution to discrete
structures, it is necessary to convert the structural model into a
raster image in the same way as Yu et al. (2018) and Liew et al.
(2019). For this reason, themethod of convolution used for image
processing cannot handle connectivity of discrete structures.
Although Lee et al. (2018) utilized a multi-layer perceptron, a
class of neural networks that does not employ convolutional
layers, for predicting nodal displacements and member stresses
of 10-bar trusses, the trainedmodel cannot be applied to different
trusses without modifying the structure of neural network and
thus is not versatile.

Apart from convolutional neural networks, a number of
graph embedding methods have been proposed to perform
convolution on graphs instead of images (Cai et al., 2017),
and they have shown a significant performance for multi-label
network classification for social networking service (Perozzi et al.,
2014) and prediction of chemical properties of organic molecules
(Faber et al., 2017; Gilmer et al., 2017). Combination of RL
and graph embedding may have a great potential. Dai et al.
(2017) extracted node features using graph embedding, and
the features are used to implement Q-learning (Watkins and
Dayan, 1992) for typical NP-hard problems such as minimum
vertex cover, maximum cut, and traveling salesman problems.
Training was conducted for graphs with 50–100 nodes and
the trained model shows good performance comparable to a
benchmark mathematical programming solver for larger graphs
with 1,000–1,200 nodes. However, this method identifies the
nodes to be chosen, and it cannot be directly applied to truss
topology optimization problem in which the edges for applying
an operation are to be identified.

In this paper, we propose a combined method of graph
embedding and RL for binary topology optimization of planar
trusses for volume minimization under stress and displacement
constraints. Note that the proposed method belongs to a binary
type approach where the cross-sectional area of each member
either keeps its initial value, or obtains a very small value. A
variety of load and support conditions are provided for an
initial GS, and removal of unnecessary members and updating

Frontiers in Built Environment | www.frontiersin.org 2 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

of trainable parameters are implemented simultaneously and
sequentially. The trained agent is not only capable of obtaining
sub-optimal solutions at low computational cost, but also
reusable to other trusses with different geometry, topology, and
boundary conditions.

The remainder of this paper is organized as follows. The
topology optimization problem focused in this study is first
formulated in section 2. Next, the optimization problem is
converted into an RL task, and then extracting member features
and a Q-learning-based method using them are explained in
section 3. Performance of the proposed method is demonstrated
through numerical examples in section 4.

2. TOPOLOGY OPTIMIZATION OF
TRUSSES

2.1. Stiffness Method to Obtain Stress and
Displacement
Displacements of nodes and axial stresses of members are
computed for nL static loading conditions using a standard
stiffness method. Consider a planar truss with a total number
of degree of freedom nd, the number of members nm, and the
constant elastic modulus E. Let Ai and Li denote the cross-
sectional area and the length of member i. If only axial stiffness
is considered for member stiffness, the member stiffness matrix
with respect to the local coordinates of member i is a matrix
Ki ∈ R

4×4 where (1, 1) and (3, 3) elements are EAi/Li and (1, 3)
and (3, 1) elements are−EAi/Li. Member stiffness matrices of all
the members are transformed into the global coordinate system
to be assembled to the global stiffness matrix K ∈ R

nd×nd . Using
K, nodal displacements are obtained by solving the following
stiffness equation:

Kuj = pj (1)

where uj ∈ R
nd and pj ∈ R

nd are the nodal displacement and the
nodal load vectors corresponding to the load case j ∈ {1, · · · , nL}.
Let σi,j denote the axial stress of member i for the load case j,
which is expressed as

σi,j =
Edi,j

Li
(2)

where di,j is the elongation of member i for load case j, which is
simply calculated after obtaining the nodal displacements.

2.2. Optimization Problem
Let A = {A1, · · · ,Anm} denote the vector of cross-sectional
areas. This research aims to obtain the optimal topology of a
truss that minimizes the total structural volume V(A) under
stress constraints. However, some solutions to this problem are
trivial; for example, if all the members connecting to supporting
nodes are eliminated, the structure cannot resist against external
loads at all while the stress constraints for existing members
are satisfied. For this reason, displacement constraints are
further added to avoid apparently infeasible trusses that deform

excessively. By assigning the upper-bound stress σ̄ and the upper-
bound displacement ū, the optimization problem is formulated
as follows:

minimize V(A) (3a)

subject to max
i∈�m , j∈{1,··· ,nL}

(

|σi,j(A)|

σ̄

)

≤ 1 (3b)

max
i∈�d , j∈{1,··· ,nL}

(

|ui,j(A)|

ū

)

≤ 1 (3c)

Ai ∈ {Ā× 10−6, Ā} (i = 1, · · · , nm) (3d)

where �m and �d are the sets of indices of existing members
and DOFs of existing nodes including loaded nodes, and ui,j is
the ith displacement component for load case j. Hereafter, the
ratio |σi,j|/σ̄ is called stress safety ratio, which indicates a safe
state if it is small. The cross-sectional areas are chosen from Ā for
existingmembers and a small value Ā×10−6 instead of 0 for non-
existing members to prevent singularity of the stiffness matrix K
in Equation (1).

3. TRAINING FOR REMOVAL OF MEMBERS

3.1. Re-formulation as Reinforcement
Learning Task
The RL task needs to be formulated as a Marcov decision process
(Bellman, 1957): a discrete time stochastic process where state
transition and reward function are solely dependent on the
current state and the chosen action, and are independent of the
previous states and actions. AMarcov decision process comprises
four elements S,A, P,R, where S and A are the state and action
spaces, and P and R are the transition probability function and
the reward function to observe the next state s′ and reward r by
taking an action a at the current state s, respectively. Some states
are set as terminal states, and tasks reaching them are terminated.

In the following, we re-formulate the truss topology
optimization problem utilizing RL tasks. For this purpose, it is
desirable for a state to include numerical data of a truss as many
as possible. Here, a state is represented as a set of numerical
data at nodes v = {v1, . . . , vnn} and that of members w =

{w1, . . . ,wnm}, as described in Tables 1, 2 based on the loading
and support conditions, geometry of the truss, and the stress
safety ratios. In Table 1, the load intensity is defined as the
magnitude of the external load applied at the node, which is
decomposed into x and y directions; the magnitude in z direction
is omitted because only planar trusses are focused in this study. In
Table 1, the orientation of member is expressed by trigonometric
quantities cosα and sinα instead of angle α so as to avoid
discontinuity at α = 0 = 2π . Note that connectivity of nodes
is not considered here as it can be expressed by graph embedding
described later.

Action is defined as elimination of a member from existing
ones. Note again that the members regarded as removed virtually
have a very small cross-sectional area as seen in Equation
(3D) to avoid instability in computing nodal displacements.

Frontiers in Built Environment | www.frontiersin.org 3 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

TABLE 1 | Description of node state data vk for nodes.

Index Description

1 1 if pin-supported, else 0

2 Load intensity [kN] at the node in x direction (load case 1)

3 Load intensity [kN] at the node in y direction (load case 1)

.

.

.
.
.
.

2nL Load intensity [kN] at the node in x direction (load case nL)

2nL + 1 Load intensity [kN] at the node in y direction (load case nL)

TABLE 2 | Description of member state data wi for members.

Index Description

1 cosα }

α: the angle of the member with respect to positive x direction
2 sinα

3 Member length [m]

4 1 if remained, 0 if removed

5 Stress safety ratio (load case 1)

.

.

.
.
.
.

nL + 4 Stress safety ratio (load case nL)

The description of transition probability function P is omitted
because any state-action pair deterministically leads to a unique
next state. Reward is evaluated after each removal of a member.
When the truss violates stress or displacement constraints,
reward of −1 is provided and removal process is terminated.
Otherwise, the reward computed by the following equation
is provided:

r = Le

(

1− max
i∈�m, j∈{1,··· ,nL}

|σi,j|

σ̄

)

(4)

where Le is the length of the eliminated member. Equation (4) is
derived considering the total structural volume to be minimized
and the stress safety ratio to be constrained; accordingly, the
reward is large when the eliminated member is long and the
maximum stress safety ratio of the resulting topology is small.

The action taker is called agent in the field of RL. Agent
simultaneously updates its policy π while taking an action and
observing the next state and reward at each step. This way,
the agent learns from experience, which is a unique property of
RL. The policy is determined based on the expected cumulative
reward; in particular, summation of the expected reward taking
an action a at state s and following the policy π hereafter is called
action value Qπ (s, a). One of the simplest policies is a greedy
policy that determines an action expected to obtain themaximum
expected cumulative reward, computed as:

π(s) = argmax
a∈�m

Q(s, a) (5)

where a = i selecting the indice i from the set �m means the
action to remove member i. However, deterministic policies such

as the greedy policy are inefficient in exploring better solutions,
and an ǫ-greedy policy, as follows, is preferred as a policy utilized
during training:

π(s) =

argmax
a∈�m

Q(s, a)
(

if random [0, 1] > ǫ
)

random a from �m

(

else
)

(6)

The difference of the ǫ-greedy policy from the standard greedy
policy is that it chooses an action randomly with low probability ǫ

and this randomness improves exploration. However, a problem
arises due to curse of dimensionality (Bellman, 1961); it is
impossible to compute and preserve action values for all the
possible state-action pairs when the state and action spaces are
too large. In this paper, there are a variety of properties for state
representation of the truss, and the state space is too large even
for small-scale trusses. For such a case, a function approximation
is often used because the action values can be expressed by
a relatively small number of parameters. In the next section,
truss structures are regarded as graphs and the action values to
eliminate a member are estimated by graph embedding.

3.2. Action Value Estimated by Graph
Embedding
Truss structures can be modeled as graphs. In this section,
features of each member are represented as a vector by
aggregating numerical data about neighbor nodes and members.
Let nf denote the size of the feature vector of a member, which is
to be determined through careful adjustment with trial-and-error
for better performance, because too small size leads to inaccuracy
in expressing the features, and too large size requires redundant
computation time in training and application of the agent after
training. Using the parameters θ1 ∈ R

nf×(nL+4), θ2 ∈ R
nf×nf ,

θ3 ∈ R
nf×(2nL+1), θ4 ∈ R

nf×nf , θ5 ∈ R
nf×nf , and θ6 ∈ R

nf×nf that
are to be trained, the feature vector of eachmemberµi ∈ R

nf (i =
1, · · · , nm) is updated as follows:

µ
(0)
i = 0 (7a)

µ
(t+1)
i = ReLU

(

h1 + h2 + h
(t)
3 + h

(t)
4

)

(7b)

h1 = θ1wi (7c)

h2 = θ2

2
∑

j=1

ReLU
(

θ3vi,j
)

(7d)

h
(t)
3 = θ4µ

(t)
i (7e)

h
(t)
4 = θ5

2
∑

j=1

ReLU

θ6
∑

k∈8i,j

µ
(t)
k

 (7f)

Frontiers in Built Environment | www.frontiersin.org 4 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 1 | The concept of Equation (7). It aggregates numerical data of

neighbor nodes and members.

where t is the step number of updating the features, vi,j is the
nodal features of jth (j ∈ {1, 2}) end of member i, and 8i,j is the
set of indices ofmembers connecting to jth end ofmember i. Note
that 8i,j does not include the index of member i itself. ReLU is a
rectifier linear unit function: one of activation functions, which is
defined as:

ReLU(b) =

{

b
(

if b > 0
)

0
(

else
) (8)

An activation function needs to be nonlinear in order to
approximate a nonlinear function and differentiable in order to
apply a gradient based optimization algorithm. ReLU is widely
used as an activation function for neural networks although it is
not differentiable at 0, because the computational cost to compute
its gradient is very small and the gradient does not vanish even
when input is a large positive value. To simplify the expression,
the ReLU function is applied in Equation (7) to a vector to output
a vector of the same size.

The operation in Equation (7) is illustrated in Figure 1. The
numerical data of two nodes and members connecting to them is
aggregated into the feature vector of a member through a single
operation. The aggregated numerical data include member state
data in Equation (7C), connecting nodes’ state data in Equation
(7D), embedded feature of the member itself in Equation (7E),
and embedded features of neighboring members in Equation

(7F). Accordingly, {µ
(t)
1 , · · · ,µ

(t)
nm} is the set of feature vectors

incorporating connectivity of the truss after µ
(t)
i for all the

members is computed from Equation (7); however, this should

be iterated more than once because the values of µ
(t)
i for

neighbor members interact with each other. In accordance with
the previous research of Dai et al. (2017), the number of iteration
T is set to be 4. It should be noted that the embedded feature
vectorµ

(T)
i has the same size nf regardless of connectivity. Owing

to this property, all the members can be evaluated based on the
same measure hereafter.

Using µ̂ = {µ
(T)
1 , · · · ,µ

(T)
nm }, the action value to eliminate

member i in the current state is approximated using trainable
parameters θ7 ∈ R

2nf , θ8 ∈ R
nf×nf , and θ9 ∈ R

nf×nf as follows:

Q(µ̂, i) = θ⊤7

(

ReLU

[

θ8

nm
∑

i=1

µ
(T)
i ; θ9µ

(T)
i

])

(9)

where [·; ·] is a concatenation operator of two vectors in the
column direction. Since µ̂ is also computed using {θ1, · · · , θ6},
the action value Q(µ̂, i) is dependent on 2 = {θ1, · · · , θ9}. The
training method for tuning the parameters 2 is described below.

3.3. Q-Learning Using the Embedded
Features
The parameters 2 are tuned using a method based on 1-step
Q-learning method, which is a frequently used RL method.
When a function approximator is not utilized, the action value
is updated using state s, chosen action a, observed next state s′

and reward r as:

Q(s, a) = Q(s, a)+ α

(

r(s′)+ γ max
a

Q(s′, a)− Q(s, a)
)

(10)

where α > 0 is a learning rate that has an effect on convergence
of the training. γ ∈ [0, 1] is a discount factor; i.e., the action value
becomes closer to expected cumulative reward as γ is larger, and
conversely, the action value becomes closer to expected instant
reward as γ is smaller. In other words, γ should be closer to 1
if future and instant rewards are equivalently important, and 0
if only instant reward is important. In Equation (10), the action
value is updated so as tominimize the difference between the sum
of observed reward and estimated action value at the next state
r(s′)+ γ maxa Q(s

′, a) and estimated action value at the previous
stateQ(s, a). Following this scheme, the parameters are trained by
solving the following optimization problem (Mnih et al., 2015):

minimize F(2) =

(

r(s′)+ γ max
ã

Q(s′, ã; 2̃)− Q(s, a;2)

)2

(11)
In Equation (11), the training can be stabilized by using

parameters 2̃ at the previous state for estimation of the action

value at the next state s′ (Mnih et al., 2015). In the same manner
as neural networks, a back-propagation method (Rumelhart

et al., 1986), which is a gradient based method to minimize the
loss function, can be used for solving Equation (11). RMSprop
(Tieleman and Hinton, 2012) is adopted as the optimization
method in this study.

3.4. Training Workflow
The whole training workflow is described in Figure 2. The inputs

are the initial GS, the bounds for stress and displacement, and

the graph embedding class that contains trainable parameters 2

initialized by the vectors with the sizes defined by nL and nf.

Although stress and displacement bounds have the same value

σ̄ and ū, respectively, for each member and DOF in this study,
it should be noted that each member could have a different
stress bound and each DOF could have a different displacement
bound for each load case, which provides a versatility to the
proposed method.

An episode is defined as a sequence of member removal
process from the initial GS to the terminal state violating
constraints. Load and support conditions are randomly provided
according to a rule so that the agent can be trained to have

Frontiers in Built Environment | www.frontiersin.org 5 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 2 | Training workflow utilizing RL and graph embedding.

good performance for various boundary conditions. To reduce
the required capacity of a storage device, 1,000 sets of observed
transitions (s, a, s′, r) are stored at the maximum. When the
number of transition steps reaches 1,000, the latest transition
overrides the oldest one. In the optimization with RMSprop,
32 datasets out of the stored transitions are randomly chosen
to create a minibatch and the set of trainable parameters 2 is
updated based on the mean squared error of the loss function
of each dataset computed by the right-hand side of Equation
(11). In this study, γ = 0.99 is adopted, because cumulative
reward indicating the amount of reduction of structural volume
as a result of the action is much more important than the instant
reward. The number of training episodes is set as 5,000.

Once in 10-episode training, the performance of 2 is tested
for prescribed loading and boundary conditions. The cumulative
reward until terminal state is recorded using the greedy policy
without randomness (i.e., ǫ-greedy policy with ǫ = 0) during
the test. If the cumulative reward is larger than the previous best
score, 2 at that step is saved. 2 saved after the 5,000-episode
training is regarded as the best parameters.

4. NUMERICAL EXAMPLES

The agent is trained and its performance is tested for a simple
planar truss in section 4.1. The performance is also tested for

other different trusses in sections 4.2–4.4 without re-training
the results in section 4.1. We use a PC with a CPU of Intel(R)
Core(TM) i9-7900X @ 3.30GHz. The program is implemented
within Python 3.7 environment.

The upper-bound stress σ̄ is 200 N/mm2 for both tension and
compression for all examples. The upper-bound displacement ū
for each boundary condition is computed by multiplying 100
to the maximum absolute value of displacement among the all
DOFs of the initial GS with the same loading and boundary
conditions; hence, ū varies depending on the structure and the
loading and boundary conditions. The initial cross-sectional area
is 1,000 mm2, and the elastic modulus is 2.0×105 N/mm2 for all
members of all examples. The number of loading conditions is
fixed as nload = 2, and accordingly, the sizes of inputs from nodes
and members are 5 and 6, respectively. The size of embedded
member feature nf is 100.

4.1. 4×4-Grid Truss
The agent is trained using a 72-member truss with 4×4 grids. The
initial GS is illustrated in Figure 3. Each grid is a square whose
side length is 1 m. The intersection of bracing members is not
connected. The boundary conditions are given at the beginning
of each episode. Two pin-supports are randomly chosen; one
from nodes 1 and 2 and the other from nodes 4 and 5. Right
tip nodes are candidates to apply loading, and a horizontal or

Frontiers in Built Environment | www.frontiersin.org 6 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 3 | Example 1: 4× 4-grid truss (V = 0.0853 [m3]).

FIGURE 4 | History of cumulative reward of each test measured every 10

episodes.

a vertical load with the fixed magnitude of 1.0 kN is applied at
a randomly chosen node. Note that it is possible that the two
load cases are identical, or applied to different nodes but in the
same direction. Consequently, the training concerns a total of
2 × 2 × 20 × 20 = 1, 600 combinations of support and loading
conditions, and these combinations are almost equally simulated
as long as the number of training episodes are sufficient.

During the test, nodes 1 and 5 are pin-supported, and loads
are applied at node 23 in positive x and negative y direction
separately as different loading conditions, which is denoted as
loading condition L1. Figure 4 plots the history of cumulative
rewards in the test simulation recorded at every 10 episodes.
The score rapidly improves in the first 1,000 episodes and the
scoremostly keeps above 35.0 after 2,000 episodes. It is confirmed
from this history that the agent successfully improves its policy to
eliminate unnecessary members as the training proceeds. It took
about 3.9 h for training through about 235,000 linear structural
analyses. The maximum test score of 43.5 is obtained at the

2,100th episode, and the parameter 2 at this episode is dealt as
the best parameters and used hereafter.

The removal sequence of members when the maximum
score is recorded is illustrated in Figure 5. Note that the nodes
highlighted in blue are pin-supported, those in yellow are loaded.
Trivial members close to pin-supports or placed upper-right
or bottom-right that do not bear stress are first removed, and
important members along the load path are removed afterwards.
This is an evidence that the agent is capable of detecting the
load path among members, and we estimate that this capability
is mainly due to graph embedding because it extracts member
features considering truss connectivity.

The final truss of removal process of members presented in
Figure 5 is a terminal state, where displacement constraint is
violated at the nodes highlighted in red. Therefore, the topology
just before the terminal state shall be a sub-optimal topology,
which is a truss with 12 members as shown in Figure 5B. Since
removal of any remaining member will cause violation of the
displacement constraint, there is no unnecessary member in the
sub-optimal topology. It forms a very simple truss composed
of six pairs of members connecting linearly. Note that the
connection between the members in each pair is an unstable
node, and must be fixed to generate a single long member.

To investigate performance of the agent for another loading
condition, the structure with the loads as shown in Figure 6A,
denoted as loading condition L2, is also optimized using the
same agent. Nodes 1 and 5 are pin-supported and nodes 22
and 24 are subjected to 1 kN load in positive x direction
separately as two load cases. The removal sequence of members
is illustrated in Figure 6B. Similarly to loading condition L1
in Figure 5, several symmetric topologies are observed during
the removal process, and the sub-optimal topology is a well-
converged solution that does not contain unnecessary members.
From these results, the agent is confirmed to behave well for a
different loading condition.

Furthermore, the robustness of the proposed method is
also investigated by implementing 2,000-episode training using
different random seeds for 20 times. The statistical data with
respect to themaximum test score for each training are as follows;
the average is 43.38, the standard deviation is 0.16, and the
coefficient of variation is only 3.80 × 10−3. Moreover, all the
trained RL agents with the best parameters led to the same 12-
member sub-optimal solution as Figure 5B for loading condition
L1. These results imply that the proposed method is robust
against randomness of boundary conditions and actions during
the training.

4.2. Investigation of Generalization
Performance 1: 3×2-Grid Truss
The agent trained in Example 1 is reused for a smaller 3×2-grid
truss without re-training. Figure 7 shows the initial GS. The edge
length of each grid is 1 m also for this Example 2. Topology is
optimized for two boundary conditions.

In the first boundary condition B1, as shown in Figure 8A,
left tip nodes 1 and 3 are pin-supported and bottom-
right nodes 7 and 10 are subjected to downward unit

Frontiers in Built Environment | www.frontiersin.org 7 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 5 | Best scored removal process of members for loading condition L1 of Example 1; (A) initial GS, (B) removal sequence to the terminal state.

load of 1 kN separately as different loading cases. As
shown in Figure 8B, the agent utilizes an reasonable policy
to eliminate obviously unnecessary members connecting to
supports at first, non-load-bearing members around the
supports next, and members in the load path at last. From

this result, it is confirmed that the agent is capable of
eliminating unnecessary members properly for a different-
scale truss. The topology two steps before the terminal
state contains successive V-shaped braces and is stable and
statically determinate. The one just before the terminal state

Frontiers in Built Environment | www.frontiersin.org 8 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 6 | Loading condition L2 of Example 1; (A) initial GS, (B) removal sequence of members.

is a sub-optimal truss; however, instability exists at the
loaded node.

In the second boundary condition B2, the bottom center
nodes 4 and 7 are pin-supported and upper tip nodes
3 and 12 are subjected to outward unit loads along x
axis as shown in Figure 9A. Similarly to the boundary
condition B1, the agent eliminates members that do not bear
forces as shown in Figure 9B. At the 18th step, a tower-
like symmetric topology is created with extending members
from upper tips to loaded nodes. After the 18th step,
the topology became asymmetric despite the symmetry of
problem definition; however, the asymmetric solutions should be
accepted, because Guo et al. (2013) explained that solving the
quasi-convex symmetric optimization problem may yield highly
asymmetric solution.

4.3. Investigation of Generalization
Performance 2: 6×6-Grid Truss
As Example 3, the agent is applied to a larger-scale truss,
as shown in Figure 10, without re-training. The GS consists
of 6 × 6 grids and the number of members is more than
twice of the 4 × 4-grid truss. The truss is optimized for two
loading conditions.

The left two corners 1 and 7 are pin-supported and
rightward and downward unit loads are separately applied
at the bottom-right corner 43, as shown in Figure 11A

in the loading condition L1. Topologies at steps 37,
60, 84, 100, 144, and 145 in the removal sequence are
illustrated in Figure 11B. Although the agent is applied
to a larger-scale truss, a sparse optimal solution is
successfully obtained.

FIGURE 7 | Example 2: 3× 2-grid truss (V = 0.0340 [m3]).

In the loading condition L2, the left two corners are again
pin-supported, and the outward unit load is separately applied at
nodes 4 and 46, as shown in Figure 12A. One of the loads applied
at node 4 is an irregular case where pin-supports and the loaded
node aligns on the same straight line. Even in this irregular case,
the agent successfully obtained the sparse optimal solution, as
shown in Figure 12. Moreover, during the removal process, there
is almost no isolated member apart from load-bearing ones and
existing members efficiently transmit forces to the supports.

4.4. Comparison of Efficiency and
Accuracy With Genetic Algorithm
The above examples using the proposed method are further
investigated in view of efficiency and accuracy through

Frontiers in Built Environment | www.frontiersin.org 9 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 8 | Boundary condition B1 of Example 2; (A) initial GS, (B) removal sequence of members.

FIGURE 9 | Boundary condition B2 of Example 2; (A) initial GS, (B) removal sequence of members.

comparison with genetic algorithm (GA). GA is one of
the most prevalent metaheuristic approach for binary
optimization problems, which is inspired by the process of
natural selection (Mitchell, 1998). In GA, a set of solutions
are repeatedly modified using the operations such as selection,
where superior solutions at current generation are selected

for new generation, crossover, where the selected solutions
are combined to breed child solutions sharing the same
characteristics as the parents, and mutation, where the
selected solutions randomly change their values with low
probability. A simple GA algorithm used in this section is
explained in Algorithm 1. This algorithm is terminated if

Frontiers in Built Environment | www.frontiersin.org 10 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 10 | Example 3: 6× 6-grid truss (V = 0.1858 [m3]).

the best cost function value fb is not updated for ns = 10
consecutive generations.

Because the optimization problem (Equation 3) contains
constraint functions, the cost function F used in GA is defined
using the penalty term as:

F(A) = V(A)+ β1C1(A)+ β2C2(A) (12a)

C1(A) = max

{(

max
i∈�m , j∈{1,··· ,nL}

(

|σi,j(A)|

σ̄

)

− 1

)

, 0

}

(12b)

C2(A) = max

{(

max
i∈�d , j∈{1,··· ,nL}

(

|ui,j(A)|

ū

)

− 1

)

, 0

}

(12c)

where β1 and β2 are penalty coefficients for stress and
displacement constraints; both are set to be 1000 in this study.
If stress and displacement constraints are satisfied, penalty terms
become zero and the cost function becomes equivalent to the
total structural volume V(A). The same material property and
constraints as the examples of RL are applied to the following
problems. GA algorithm is run for 10 times with different initial
solutions that are generated randomly, and only the best result
that yields a solution with the least total structural volume is
provided in the GA column in Table 3.

The benchmark solutions for the 3 × 2-grid truss provided
in Table 3 are global optimal solutions; this global optimality
is verified through enumeration which took 44.1 h for each
boundary condition. The other solutions are assumed to be global
optima which have not been verified through enumeration due to
extremely high computational cost.

In utilizing the trained agent in Example 1, nload! different
removal sequences can be obtained for different order of the same

Algorithm 1: Genetic algorithm used in this study

input: np(= 200): number of solutions, nm: number of
variables, ns(= 10): stopping criterion for change of
fb, X = {x1, · · · , xnp}: initial solutions, F(x): cost
function, re(= 0.2): elite rate, rm(= 0.1): mutation
probability

output: xb: best feasible solution
1 I←− 0
2 ne ←− round(renp)
3 fb ←−∞
4 while I ≤ ns do
5 I← I + 1
6 for i ← 1 to np do
7 fi ←− F(xi)

8 for i ← 1 to np do
9 if fi < fb and xi satisfy constraints then

10 xb ←− xi
11 fb ←− fi
12 I← 0

13 Xe ←− ne elite solutions from X

14 X←− Xe

15 for i ← ne + 1 to np do
16 if a sample from uniform distribution [0, 1] > rm

then

17 xj1 , xj2 ←− two randomly chosen solutions from
Xe

18 k←− randomly chosen integer from
{1, · · · , nm − 1}

19 xi ←− {xj1 ,1, · · · , xj1 ,k, xj2 ,k+1, · · · , xj2 ,nm}

20 else

21 xi ←− randomly chosen solution from Xe

22 k←− randomly chosen integer from {1, · · · , nm}

23 if xi,k = Ā then

24 xi,k ←− Ā× 10−6

25 else

26 xi,k ←− Ā

27 append xi into X

28 return xb

set of load cases in node state data vk; for example, exchanging
the values at indices 2 and 4 and those at indices 3 and 5
in vk maintains the original loading condition but may lead
to different action to be taken during each member removal
process, because the neural network outputs different Q values
due to the exchange. Although nload! = 2 different removal
sequences can be obtained in this way, only the better result with
less total structural volume is provided in the RL+GE column
in Table 3. Note that the total CPU time t[s] for obtaining
this removal sequence of members includes initialization of the
truss structure, import of the trained RL agent, and computing
the removal sequence.

Frontiers in Built Environment | www.frontiersin.org 11 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

FIGURE 11 | Loading condition L1 of Example 3; (A) initial GS, (B) removal sequence of members.

FIGURE 12 | Loading condition L2 of Example 3; (A) initial GS, (B) removal sequence of members.

According to Table 3, the proposed RL+GE method is much
more efficient than GA; the CPU time exponentially increases
as the number of variable increases in GA; on the other hand,
the CPU time increases almost linearly in RL+GE. The proposed
method is also comparable to GA with np = 200 in terms of
proximity to the global optimum; RL+GE generally reached the
feasible solutions with less total structural volume compared with

the solutions obtained by GA. In addition, the accuracy of the
trained agent is less dependent on the size of the problem; the
trained agent reached presumable global optimum for 10 × 10-
grid truss with L1 loading condition, although the agent was
caught at the local optimum for 8 × 8-grid truss with the
same loading condition, and even for 3 × 2-grid truss with
B1 boundary condition.

Frontiers in Built Environment | www.frontiersin.org 12 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

TABLE 3 | Comparison between proposed method (RL+GE) and GA in view of total structural volume V [m3] and CPU time for one optimization t[s] using benchmark

solutions.

Problem Grids nm RL+GE GA Benchmark

3× 2 (B1) 29
{ t = 0.7 t = 1.6

V = 0.0107
V = 0.0175 V = 0.0107

3× 2 (B2) 29
{ t = 0.8 t = 1.5

V = 0.0088
V = 0.0088 V = 0.0088

4× 4 72
{ t = 1.0 t = 3.7

V = 0.0097
V = 0.0097 V = 0.0097

6× 6 (L1) 156
{ t = 2.0 t = 12.2

V = 0.0145
V = 0.0145 V = 0.0145

8× 8 272
{ t = 3.3 t = 54.8

V = 0.0193
V = 0.0466 V = 0.0284

10× 10 420
{ t = 7.6 t = 140.3

V = 0.0241
V = 0.0241 V = 0.0658

4× 4 72
{ t = 1.0 t = 3.7

V = 0.0097
V = 0.0097 V = 0.0097

6× 6 (L2) 156
{ t = 1.9 t = 11.9

V = 0.0145
V = 0.0205 V = 0.0145

8× 8 272
{ t = 3.5 t = 41.8

V = 0.0193
V = 0.0273 V = 0.0473

10× 10 420
{ t = 7.0 t = 137.7

V = 0.0241
V = 0.0530 V = 0.0380

5. CONCLUSION

In this paper, a machine-learning basedmethod combining graph
embedding and Q-learning is proposed for binary truss topology
optimization to minimize total structural volume under stress
and displacement constraints. Although the use of CNN-based
convolution method is difficult to apply to trusses as they cannot

be handled as pixel-wise data, the convolution is successfully

implemented for trusses by introducing graph embedding, which
has been extended in this paper from the standard node-
based formulation to a member(edge)-based formulation. This
way, features of each member considering connectivity can
be extracted. Using the features, the method to estimate the
action value with respect to removal of the member is further
formulated. The trainable parameters are optimized by a back-
propagation method to minimize the loss function computed by
estimated action value and observed reward.

It is verified from the numerical examples that the trained
agent acquired a policy to reduce total structural volume while
satisfying the stress and displacement constraints. Although
it takes a long time for the training, the trained agent
requires very low computational cost compared with GA at the
application stage. Furthermore, the trained agent is applicable
to a truss with different topology, geometry and loading and

boundary conditions after it is trained for a specific truss with
various loading and boundary conditions. This applicability
was demonstrated through both smaller-scale and larger-scale
trusses and sparse sub-optimal topologies were obtained for
both cases. It is notable that the agent was able to optimize
the structure with the unforeseen boundary conditions which
the agent has never experienced during the training. It implies
that the agent possesses generalized performance for a complex
structural optimization task. However, in order to create a
more reliable agent, it is necessary to implement the training
with various topology, geometry, and loading and boundary
conditions. Another approachmay be to incorporate a rule-based
method to create a hybrid optimization agent.

It is also advantageous that the agent is easily replicated
and available in other computers by importing the trained
parameters. The proposed method for training agent is expected
to become a supporting tool to instantly feedback the sub-optimal
topology and enhance our design exploration.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

Frontiers in Built Environment | www.frontiersin.org 13 April 2020 | Volume 6 | Article 59

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

AUTHOR CONTRIBUTIONS

KH designed the study, implemented the program, and wrote
the initial draft of the manuscript. MO contributed to problem
formulation and interpretation of data, and assisted in the
preparation of the manuscript. KH and MO approved the final
version of the manuscript, and agree to be accountable for all
aspects of the work in ensuring that questions related to the

accuracy or integrity of any part of the work are appropriately
investigated and resolved.

FUNDING

This work was kindly supported by Grant-in-Aid for
JSPS Research Fellow No.JP18J21456 and JSPS KAKENHI
No. JP18K18898.

REFERENCES

Achtziger, W., and Stolpe, M. (2009). Global optimization of truss

topology with discrete bar areas-part ii: implementation and numerical

results. Comput. Optim. Appl. 44, 315–341. doi: 10.1007/s10589-00

7-9152-7

Bellman, R. (1957). A Markovian decision process. Indiana Univ. Math. J. 6,

679–684. doi: 10.1512/iumj.1957.6.56038

Bellman, R. (1961). Adaptive Control Processes. (Princeton, NJ: Princeton

University Press). doi: 10.1515/9781400874668

Cai, H., Zheng, V. W., and Chang, K. C. (2017). A comprehensive survey

of graph embedding: problems, techniques and applications. IEEE

Trans. Knowl. Data Eng. 30, 1616–1637. doi: 10.1109/TKDE.2018.28

07452

Cheng, G., and Guo, X. (1997). ε-relaxed approach in structural

topology optimization. Struct. Optim. 13, 258–266. doi: 10.1007/BF011

97454

Chou, J.-S., and Pham, A.-D. (2013). Enhanced artificial intelligence for ensemble

approach to predicting high performance concrete compressive strength.

Construct. Build. Mater. 49, 554–563. doi: 10.1016/j.conbuildmat.2013.

08.078

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L. (2017). “Learning

combinatorial optimization algorithms over graphs,” in Proceedings of the 31st

International Conference on Neural Information Processing Systems, NIPS’17,

(Long Beach, CA), 6351–6361.

Dorn, W. S. (1964). Automatic design of optimal structures. J. Mecan. 3, 25–52.

Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E.,

et al. (2017). Machine learning prediction errors better than DFT accuracy.

arXiv:1702.05532.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017). Neural

message passing for quantum chemistry. arXiv:1704.01212.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

et al. (2014). Generative adversarial networks. arXiv:1406.2661.

Guo, X., Du, Z., Cheng, G., and Ni, C. (2013). Symmetry properties in structural

optimization: Some extensions. Struct. Multidiscip. Optim. 47, 783–794.

doi: 10.1007/s00158-012-0877-2

Hagishita, T., and Ohsaki, M. (2009). Topology optimization of trusses by

growing ground structure method. Struct. Multidiscip. Optim. 37, 377–393.

doi: 10.1007/s00158-008-0237-4

Hajela, P., and Lee, E. (1995). Genetic algorithms in truss topological

optimization. Int. J. Solids Struct. 32, 3341–3357. doi: 10.1016/0020-7683(94)

00306-H

Hayashi, K., and Ohsaki, M. (2019). FDMopt: force density method for

optimal geometry and topology of trusses. Adv. Eng. Softw. 133, 12–19.

doi: 10.1016/j.advengsoft.2019.04.002

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Deep residual learning for

image recognition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.

2016.90

Khandelwal, M. (2011). Blast-induced ground vibration prediction using

support vector machine. Eng. Comput. 27, 193–200. doi: 10.1007/s00366-01

0-0190-x

Kirsch, U. (1989). Optimal topologies of truss structures. Comput.

Methods Appl. Mech. Eng. 72, 15–28. doi: 10.1016/0045-7825(89)

90119-9

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems - Vol. 1,

NIPS’12 (Tahoe, CA: Curran Associates Inc.), 1097–1105.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, 2278–2324.

doi: 10.1109/5.726791

Lee, S., Ha, J., Zokhirova, M., Moon, H., and Lee, J. (2018). Background

information of deep learning for structural engineering. Arch. Comput.

Methods Eng. 25, 121–129. doi: 10.1007/s11831-017-9237-0

Liew, A., Avelino, R., Moosavi, V., Van Mele, T., and Block, P. (2019). Optimising

the load path of compression-only thrust networks through independent sets.

Struct. Multidiscip. Optim. 60, 231–244. doi: 10.1007/s00158-019-02214-w

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Nakamura, S., and Suzuki, T. (2018). “High-speed calculation in structural

analysis by reinforcement learning,” in the 32nd Annual Conference of the

Japanese Society for Artificial Intelligence, JSAI2018:3K1OS18a01 (in Japanese),

(Kagoshima).

Ohsaki, M. (1995). Genetic algorithm for topology optimization of trusses.

Comput. Struct. 57, 219–225. doi: 10.1016/0045-7949(94)00617-C

Ohsaki, M., and Hayashi, K. (2017). Force density method for simultaneous

optimization of geometry and topology of trusses. Struct. Multidiscip. Optim.

56, 1157–1168. doi: 10.1007/s00158-017-1710-8

Ohsaki, M., and Katoh, N. (2005). Topology optimization of trusses with stress

and local constraints on nodal stability and member intersection. Struct.

Multidiscip. Optim. 29, 190–197. doi: 10.1007/s00158-004-0480-2

Papadrakakis, M., Lagaros, N. D., and Tsompanakis, Y. (1998). Structural

optimization using evolution strategies and neural networks. Comput. Methods

Appl. Mech. Eng. 156, 309–333. doi: 10.1016/S0045-7825(97)00215-6

Perozzi, B., Al-Rfou’, R., and Skiena, S. (2014). Deepwalk: online learning of social

representations. ArXiv:1403.6652. doi: 10.1145/2623330.2623732

Prayogo, D., Cheng, M.-Y., Wu, Y.-W., and Tran, D.-H. (2019). Combining

machine learning models via adaptive ensemble weighting for prediction

of shear capacity of reinforced-concrete deep beams. Eng. Comput.

doi: 10.1007/s00366-019-00753-w. [Epub ahead of print].

Ringertz, U. T. (1986). A branch and bound algorithm for topology optimization

of truss structures. Eng. Optim. 10, 111–124. doi: 10.1080/03052158608902532

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Sheu, C. Y., and Schmit, L. A. Jr. (1972). Minimum weight design of elastic

redundant trusses under multiple static loading conditions. AIAA J. 10,

155–162. doi: 10.2514/3.50078

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of go without human knowledge. Nature 550,

354–359. doi: 10.1038/nature24270

Sutton, R. S., and Barto, A. G. (1998). Introduction to Reinforcement Learning.

Cambridge, MA: MIT Press. doi: 10.1109/TNN.1998.712192

Tamura, T., Ohsaki, M., and Takagi, J. (2018). Machine learning for combinatorial

optimization of brace placement of steel frames. Jpn. Architect. Rev. 1, 419–430.

doi: 10.1002/2475-8876.12059

Frontiers in Built Environment | www.frontiersin.org 14 April 2020 | Volume 6 | Article 59

https://doi.org/10.1007/s10589-007-9152-7
https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1515/9781400874668
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1007/BF01197454
https://doi.org/10.1016/j.conbuildmat.2013.08.078
https://doi.org/10.1007/s00158-012-0877-2
https://doi.org/10.1007/s00158-008-0237-4
https://doi.org/10.1016/0020-7683(94)00306-H
https://doi.org/10.1016/j.advengsoft.2019.04.002
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s00366-010-0190-x
https://doi.org/10.1016/0045-7825(89)90119-9
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/s11831-017-9237-0
https://doi.org/10.1007/s00158-019-02214-w
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/0045-7949(94)00617-C
https://doi.org/10.1007/s00158-017-1710-8
https://doi.org/10.1007/s00158-004-0480-2
https://doi.org/10.1016/S0045-7825(97)00215-6
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/s00366-019-00753-w
https://doi.org/10.1080/03052158608902532
https://doi.org/10.1038/323533a0
https://doi.org/10.2514/3.50078
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1002/2475-8876.12059
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Hayashi and Ohsaki Reinforcement Learning for Topology Optimization

Tieleman, T., and Hinton, G. (2012). Lecture 6.5–RmsProp: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural Netw. Mach

Learn. 4, 26–31. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf (accessed April 23, 2020).

Topping, B., Khan, A., and Leite, J. (1996). Topological design of

truss structures using simulated annealing. Struct. Eng. Rev. 8,

301–304.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Mach. Learn. 8, 279–292.

doi: 10.1007/BF00992698

Yu, Y., Hur, T., and Jung, J. (2018). Deep learning for topology optimization design.

Arxiv:1801.05463.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hayashi and Ohsaki. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Built Environment | www.frontiersin.org 15 April 2020 | Volume 6 | Article 59

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1007/BF00992698
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Reinforcement Learning and Graph Embedding for Binary Truss Topology Optimization Under Stress and Displacement Constraints
	1. Introduction
	2. Topology Optimization of Trusses
	2.1. Stiffness Method to Obtain Stress and Displacement
	2.2. Optimization Problem

	3. Training for Removal of Members
	3.1. Re-formulation as Reinforcement Learning Task
	3.2. Action Value Estimated by Graph Embedding
	3.3. Q-Learning Using the Embedded Features
	3.4. Training Workflow

	4. Numerical Examples
	4.1. 44-Grid Truss
	4.2. Investigation of Generalization Performance 1: 32-Grid Truss
	4.3. Investigation of Generalization Performance 2: 66-Grid Truss
	4.4. Comparison of Efficiency and Accuracy With Genetic Algorithm

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

