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Abstract 12 

1. Increasing numbers of studies are analysing the shapes of objects using 13 

geometric morphometrics with tomographic data, which are often segmented 14 

and transformed to three-dimensional (3D) surface models before measurement. 15 

The present study aimed to evaluate the effects of different image 16 

segmentation methods on geometric morphometric data collection using 17 

computed tomography data collected from non-human primate skulls. 18 

2. Three segmentation methods based on a visually-selected threshold, a 19 

half-maximum height protocol and a gradient and watershed algorithm were 20 

compared. For each method, the efficiency of surface reconstruction, the 21 

accuracy of landmark placement and the level of variation in shape and size 22 

compared with various levels of biological variation were evaluated. 23 

3. The visual-based method inflated the surface in high-density anatomical 24 

regions, whereas the half-maximum height protocol resulted in large numbers 25 

of artificial holes and erosion. However, the gradient-based method mitigated 26 

these issues and generated the most efficient surface model. The segmentation 27 

method used had a much smaller effect on shape and size variation than 28 

interspecific and inter-individual differences. However, this effect was 29 

statistically significant and not negligible when compared with intra-individual 30 

(fluctuating asymmetric) variation. 31 

4. Although the gradient-based method is not widely used in geometric 32 

morphometric analyses, it may be one of promising options for reconstructing 33 

3D surfaces. When evaluating small variations, such as fluctuating asymmetry, 34 

care should be taken around combining 3D data that were obtained using 35 

different segmentation methods. 36 
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1. Introduction 40 

Geometric morphometrics is a statistical method that uses Cartesian 41 

landmark coordinates to analyse the shapes of objects (Adams, Rohlf, & Slice, 2004, 42 

2013; Slice, 2007; Mitteroecker & Gunz, 2009; Zelditch, Swiderski, & Sheets, 2012). 43 

This approach has the advantages of typically capturing a large number of shape 44 

variables and allowing changes in shape to be visualised (Mitteroecker & Gunz, 45 

2009), which generally enables greater flexibility in data acquisition, more 46 

sensitive detection of shape variation and easier visual interpretation of the results 47 

compared with traditional morphometrics (Rohlf & Marcus, 1993; Parsons, 48 

Robinson, & Hrbek, 2003; Bernal, 2007; Maderbacher et al., 2008; van der Niet, 49 

Zollikofer, León, Johnson, & Linder, 2010; Breno, Leirs, & Van Dongen, 2011). 50 

Geometric morphometric data are appropriate for many different types of studies 51 

that seek to explain patterns of shape variation and the covariation of shape with 52 

other variables, making them useful for answering a wide variety of ecological and 53 

evolutionary questions, e.g. modularity, allometry, evolutionary process, ecological, 54 

geographical and phylogenetic diversities (Table S1). Consequently, increasing 55 

numbers of studies are using geometric morphometrics (Lawing & Polly, 2010), 56 

particularly in the fields of evolutionary biology (1,382), zoology (833), anthropology 57 

(674), ecology (531), genetics & heredity (379) and the others (3,377) [the numbers 58 

in parentheses indicate the number of literatures (1990–2018) retrieved from Web 59 

of Science using the search term ‘geometric morphometric$’] (Fig. S1). 60 

Three-dimensional (3D) landmark coordinates for geometric morphometric 61 

analyses are often captured using 3D surface models (Mitteroecker & Gunz, 2009; 62 

van der Niet et al., 2010; Adams & Otárola-Castillo, 2013). These models make it 63 

easier to obtain semi-landmarks on surfaces and thus to capture topography that 64 

lacks anatomical landmarks (Gunz, Mitteroecker, & Bookstein, 2005; Gunz & 65 

Mitteroecker, 2013) compared with the direct digitisation of an object using a 66 

contact-based 3D digitizing device such as MicroScribe (Immersion Corp., San Jose, 67 

USA). Furthermore, when sharing data, it is often preferable to deposit the original 68 
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3D data, such as surface models, rather than digitised coordinate data because the 69 

latter carries the risk of inter-observer error (Shearer et al., 2017). 3D surface 70 

models can be obtained with a 3D scanner (Friess, 2012), generated by 71 

photogrammetry (Evin et al., 2016; Muñoz-Muñoz, Quinto-Sánchez, & 72 

González-José, 2016) or extracted from tomographic data (two-dimensional image 73 

stacks) using procedures such as computed tomography (CT), micro-CT, magnetic 74 

resonance imaging (MRI), and micro-MRI (Vannier, Conroy, Marsh, & Knapp, 75 

1985; Lorensen & Cline, 1987). However, 3D scanning and photogrammetry can 76 

capture only the surface of the object that is visible from the outside, while 77 

tomographic data can capture the entire body, including the internal structure 78 

(Conroy & Vannier, 1984), which is essential in some situations, such as where the 79 

shape of a precious fossil specimen in sediments or a rock matrix needs to be 80 

captured non-invasively. Thus, recent advances in information technology and 81 

enhancements in computer performance combined with the requirement for 82 

non-invasive measurements have led to 3D surface and tomographic data being 83 

increasingly recognised as important tools in biology (Cunningham, Rahman, 84 

Lautenschlager, Rayfield, & Donoghue, 2014; Baird & Taylor, 2017) (Fig. S1). 85 

When using tomographic data, the surface is usually reconstructed once 86 

the region of interest (ROI) has been segmented from the remainder of the image. 87 

Several segmentation methods are available, each of which has its own advantages 88 

and disadvantages. Manual segmentation is still commonly used but is both 89 

labour-intensive and time-consuming and may carry the risk of human error 90 

(Stammberger, Eckstein, Michaelis, Englmeier, & Reiser, 1999). Threshold-based 91 

segmentation techniques are probably the most widely used, whereby a threshold is 92 

often determined by visual judgement (Heuzé et al., 2010; Toro-Ibacache, 2013; 93 

Noback & Harvati, 2015; Ito & Nishimura, 2016) or using the half-maximum 94 

height (HMH) protocol (Coleman & Colbert, 2007). While the visual-based method 95 

is probably the easiest to apply, its accuracy is unclear. By contrast, the HMH 96 

protocol calculates the threshold value as the mean of the maximum and minimum 97 
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grey values along a row of pixels that spans the boundary transition (Spoor, 98 

Zonneveld, & Macho, 1993), which provides accurate measurements (Coleman & 99 

Colbert, 2007). However, this approach often cannot efficiently segment the entire 100 

ROI if it exhibits a heterogeneous grey-value distribution (Rathnayaka, Sahama, 101 

Schuetz, & Schmutz, 2011), in which case multiple local thresholds can be 102 

calculated for a single ROI (Kubo, Kono, Saso, Mizushima, & Suwa, 2008), but this 103 

is a bit time-consuming. These issues seem to be solved by performing 104 

segmentation based on the grey-value gradient (edge detection) (Scherf & Tilgner, 105 

2009; Rathnayaka et al., 2011). However, this requires some programming skills, 106 

as commonly used graphical user interface software often does not implement 107 

functions that can efficiently perform this. Since different segmentation methods 108 

may provide different results, care should be taken when using the reconstructed 109 

surfaces to obtain measurements. 110 

As with traditional morphometrics, the validity of geometric 111 

morphometrics suffers from the effects of measurement error (Arnqvist, 112 

Mårtensson, & Hungaricae, 1998). Researchers sometimes evaluate the 113 

repeatability of measurements before undertaking the main analyses (Klingenberg 114 

& McIntyre, 1998; Willmore, Klingenberg, & Hallgrimsson, 2005; White & Searle, 115 

2008; Viscosi & Cardini, 2011). Furthermore, systematic surveys have been 116 

conducted to examine intra-observer, inter-observer and inter-device (MicroScribe 117 

digitiser, 3D scanner, photogrammetry and/or CT) measurement errors and 118 

device-induced random errors (von Cramon-Taubadel, Frazier, & Lahr, 2007; 119 

Fruciano et al., 2017; Robinson & Terhune, 2017; Shearer et al., 2017; Marcy, 120 

Fruciano, Phillips, Mardon, & Weisbecker, 2018). These studies have demonstrated 121 

that although the inter-device error is much smaller than the inter-observer error 122 

(Shearer et al., 2017), it is still significant (Fruciano et al., 2017; Robinson & 123 

Terhune, 2017), with particularly large differences being observed between 124 

MicroScribe and the other devices (Robinson & Terhune, 2017) and low-cost 3D 125 

scanners tending to produce larger amounts of random error than high-resolution 126 
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micro-CT systems (Marcy et al., 2018). Thus, it is generally agreed that care should 127 

be taken when combining data collected by different devices, particularly when 128 

evaluating small amounts of biological variation, such as intra-individual and 129 

intraspecific variations. 130 

While great effort has been made to evaluate the effects of measurement 131 

error on the collection of geometric morphometric data, little remains known about 132 

the effects of different segmentation methods. A small number of papers have 133 

reported on the effects of segmentation methods using a subset of samples prior to 134 

the main analyses. One significant study is that of Toro-Ibacache (2013), which 135 

showed that variation between the HMH- and visual-based segmentation methods 136 

was much smaller than intraspecific variation in human skulls. By contrast, Gunz 137 

et al (2012) reported that different threshold levels considerably affected surface 138 

measurements of the bony labyrinth, while Ranthnayaka et al (2011) detected 139 

significant differences in the thickness of the reconstructed long bone surface 140 

between HMH-based and grey-value gradient-based (Canny-edge detection) 141 

methods, although this was not specifically in relation to geometric morphometric 142 

data collection. However, while it is clear that the threshold choice will have a 143 

larger effect on the measurements when lower resolution images are used (i.e. 144 

where there is a larger voxel size relative to the object size) (Hassan, Souza, Jacobs, 145 

de Azambuja Berti, & van der Stelt, 2010; Gunz et al., 2012), it is not yet fully 146 

understood how and to what extent different segmentation methods affect 147 

measurements at a specific resolution. Therefore, to further expand our knowledge 148 

in this area, the effects of various segmentation methods on geometric 149 

morphometric data collection need to be systematically evaluated, alongside a 150 

comparison with various levels of biological variation. 151 

The aim of the present study was to evaluate the effects of three 152 

segmentation methods (visual-, HMH- and grey-value gradient-based methods) on 153 

geometric morphometric data collection from non-human primate skulls and to 154 

compare inter-method variation in the shape data with interspecific, 155 
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inter-individual and intra-individual variations, as well as intra-observer error. 156 

The gradient-based method was conducted by implementing the code of the 157 

user-friendly cross-language programming interface SimpleITK (Lowekamp, Chen, 158 

Ibáñez, & Blezek, 2013; Yaniv, Lowekamp, Johnson, & Beare, 2018) in the 159 

open-source software Python programming language (Python Software Foundation, 160 

https://www.python.org/) for easy sharing, testing and further improvements. 161 

2. Materials and Methods 162 

2.1. Samples 163 

The dried crania of 19 adult males belonging to six species of the genus 164 

Macaca were obtained from the Primate Research Institute of Kyoto University 165 

(Inuyama, Japan) (Table 1). The specimens were scanned using the Asteion 166 

Premium 4 helical CT scanner (Toshiba Medical Systems, Otawara, Japan) with a 167 

slice thickness of 0.5 mm and serial CT images were reconstructed from the 168 

original volumetric data using a pixel size ranging from 0.232 mm2 to 0.348 mm2 169 

and an interslice interval of 0.2 mm. 170 

2.2. Image segmentation 171 

The images were processed using SimpleITK in Python unless otherwise 172 

stated. The CT images were first resampled using linear interpolation to make 173 

them cubic with a voxel size of 0.15 mm3. The resampled images were then 174 

denoised while preserving the edges using a curvature flow filter with a time step 175 

of 0.01 and five iterations. 176 

The resampled and denoised images were segmented using three 177 

alternative methods (Fig. 1). The segmentation was not manually edited for any of 178 

the methods. 179 

The first method involved visually judging a global threshold for 180 

segmentation (Fig. 1c). Using the Amira 6 software (FEI Visualisation Sciences 181 

Group, Bordeaux, France), a global threshold was manually selected for each 182 

specimen to obtain an optimum value where no scanning artefacts could be seen 183 
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and as many bony regions as possible were visible (e.g. Noback & Harvati, 2015). 184 

This process was repeated twice for each specimen and the mean value was then 185 

calculated and used in the following analyses [note: no specimen exhibited an error 186 

of >10 Hounsfield units (HU)]. 187 

In the second method, a global threshold was calculated based on the 188 

HMH protocol (Coleman & Colbert, 2007) (Fig. 1d). For each specimen, the HMH 189 

was calculated from randomly drawn lines in randomly selected coronal slices 190 

using the ‘SCIKIT-IMAGE’ package (van der Walt et al., 2014) in PYTHON. The global 191 

threshold was then calculated as the mean HMH value of multiple lines. To target 192 

only those lines that passed through the bone-to-air transition, any lines for which 193 

the minimum HU was outside the range of −2,000 to −950 and the maximum HU 194 

was outside the range of −800 to 3,000 were removed from the calculation. While 195 

this approach does not necessarily guarantee that lines pass through bone-to-air 196 

transition and may have underestimated the threshold compared with manually 197 

drawing the lines, it is expected to be more stable where a larger number of lines 198 

are used. To evaluate the repeatability of this method, this process was repeated 10 199 

times for each specimen using 10, 100, 1,000 and 10,000 lines and the intraclass 200 

correlation coefficient (ICC) was calculated using the ‘ICC’ package (Wolak, 201 

Fairbairn, & Paulsen, 2012) in R software (R Developmental Core Team, 2019). In 202 

the following analyses, the median value of 10 replicates with 10,000 lines was 203 

taken as the global threshold for segmentation. 204 

In the third method, segmentation was performed based on the image 205 

gradient with watershed (GWS) algorithm (Withey & Koles, 2008; Aly, Bin Deris, & 206 

Zaki, 2011) (Fig. 1e). Sobel filter was first applied to each image as this is 207 

considered an efficient gradient detector (Senthilkumaran & Rajesh, 2009). The 208 

gradient magnitude was then calculated, which functions as the topographic 209 

surface in the watershed algorithm. Seeds for the watershed algorithm were 210 

selected based on threshold-based segmentation. Seeds for bone were obtained by 211 

selecting the bony region that was within an HU range of −500 to 10,000 and was 212 
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connected to a region with an HU > 0 and by eroding the selected region so that it 213 

did not exceed the bone–air boundary. Seeds for air were obtained by selecting the 214 

region that was within an HU range of −10,000 to −1,000. The watershed algorithm 215 

was then used to segment the bony regions based on the gradient magnitude and 216 

seeds. These fully automated procedures were carried out for all specimens using 217 

the same parameters. 218 

The accuracy of each segmentation method was evaluated by comparing 219 

the results with a local HMH value as a reference. This evaluation was conducted 220 

in two anatomical regions: the anterior zygomatic arch, which is usually hard and 221 

has a high density and a high-HU value, and the posterior maxilla, which is often 222 

thin and has a low density and a low-HU value. In each region, the segmentation 223 

boundaries were detected on a line passing through the bone–air transition in a 224 

coronal slice using the ‘scikit-image’ package in Python. The locations of the 225 

segmentation boundaries of the three alternative models (the visual-, HMH- and 226 

GWS-based models) were then compared with that of the reference model (local 227 

HMH) along this line (Fig. 1b). 228 

2.3. 3D surface reconstruction and landmark-based analyses 229 

The segmented images were subjected to 3D surface reconstruction using 230 

the ‘generate surface’ module of Amira 6 with the options compactify and 231 

unconstrained smoothing (smoothing extent of five). The generated surfaces were 232 

saved in the ‘ply’ format. 233 

The ply-format data were first duplicated and linkable anonymised so that 234 

an observer could take two measurements in a random order without knowing the 235 

segmentation method or specimen ID. In total, 40 3D landmarks were obtained 236 

from the duplicated and anonymised surface models by a single observer (TI) using 237 

the Stratovan Checkpoint software (Stratovan Cor., Sacramento, CA, USA) (Table 238 

S2; Fig. S2). If the observer made a different judgement about whether a landmark 239 

was missing or not for the two replicates (which occurred in four instances), both 240 

were treated as missing. The effect of segmentation method on the placement of 241 
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landmarks was examined by calculating the distances between homologous 242 

landmarks among the three segmentation models using the average values for the 243 

replicates.  244 

Missing landmarks were estimated by mapping the weighted averages 245 

from the complete dataset onto the specimen with missing values using the 246 

‘MORPHO’ package (Schlager, 2017) in R. This was undertaken separately for the 247 

three models. A generalised Procrustes analysis (GPA) was then performed to 248 

register the landmark configurations using the ‘GEOMORPH’ package (Adams & 249 

Otárola-Castillo, 2013) in R. The resulting GPA-registered shape data were 250 

subjected to principal component analysis to visualise shape variations, and a 251 

Procrustes analysis of variance (ANOVA) was performed to evaluate the effect of 252 

segmentation method compared with individual, species, asymmetry and random 253 

effects using the MORPHOJ software (Klingenberg, 2011). 254 

3. Results 255 

3.1. 3D surface reconstruction 256 

The visual-based model was much more efficient in reconstructing the 257 

bony regions than the HMH-based model but resulted in slightly larger and more 258 

numerous artificial holes (i.e. holes that were generated in the surface models but 259 

were not actually present) than the GWS-based model (Fig. 2). The visual-based 260 

model agreed relatively well with the reference model at the posterior maxilla, 261 

where the bony density was low (Fig. 3). However, the results were often up to 2 262 

pixels thicker than for the reference model in the high-density anterior zygomatic 263 

arch. 264 

The HMH-based model resulted in many artificial holes, particularly at 265 

the posterior maxilla, occipital and sphenoid bones (Fig. 2). This model showed 266 

good agreement with the reference model in the anterior zygomatic arch region but 267 

was often thinner than the reference model or did not lead to segmentation at the 268 

posterior maxilla (Fig. 3). The use of 10 random lines was found to be insufficient to 269 
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efficiently replicate the results for segmenting skulls, likely due to the 270 

heterogeneous distribution of HU values (Table 2; Fig. S3). Consequently, when 271 

lines are randomly drawn, at least 100 or ideally thousands of lines should be used 272 

to select a global threshold. 273 

The GWS-based model resulted in fewer artificial holes than both the 274 

visual- and HMH-based models, although the presence of artificial holes could not 275 

be completely ruled out (Fig. 2). This model also consistently showed good 276 

agreement with the reference model at both the anterior zygomatic arch and the 277 

posterior maxilla (Fig. 3). 278 

3.2. Landmarks and geometric morphometrics 279 

There were one or two missing landmarks (RHI and/or HOR) in three 280 

specimens for the visual-based model, 1–6 missing landmarks (RHI, PIF, PNS, 281 

HOR, ZMI and/or PGP) in 17 specimens for the HMH-based model and one or two 282 

missing landmarks (RHI and/or PIF) in two specimens for the GWS-based model. It 283 

should be noted that HOR was missing in most (17 out of 19) specimens for the 284 

HMH-based model. 285 

The levels of inter-method and intra-observer error were evaluated for 286 

each landmark. The inter-method error between the GWS- and visual-based models 287 

was generally almost equal to or smaller than that between the GWS- and 288 

HMH-based models and between the HMH- and visual-based models (Table S3; Fig. 289 

4). Furthermore, the inter-method error between the GWS- and visual-based 290 

models was not significantly larger than the intra-observer error (Table S3). By 291 

contrast, the inter-method error between the HMH-based model and each of the 292 

other two models exceeded the intra-observer error for some landmarks, including 293 

PIF and MM1. The level of intra-observer error was not significantly different 294 

among the three methods for any landmark except RHI (ANOVA, P = 0.0349) and 295 

HOR (P = 0.0499) (Fig. S4). 296 

Shape variations were assessed in the context of geometric morphometrics. 297 

The first four principal components (PCs) accounted for 73.1% of the total shape 298 
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variance. The scatterplot of PC1 (37.7%) and PC2 (20.7%) reflected the level of 299 

interspecific variation well (Fig. 5a), while that of PC3 (8.1%) and PC4 (6.7%) 300 

explained inter-individual (intraspecific) variation (Fig. 5b). In both plots, the 301 

inter-method and intra-observer errors appeared to be much smaller than the 302 

interspecific and inter-individual variations. This was supported by the Procrustes 303 

ANOVA, which showed that species and individual explained much more of the 304 

variance than the method and residuals (Table 3), with the intra-individual 305 

variance (fluctuating asymmetry) being nearly four-fold larger than the 306 

inter-method variance. However, although the effect of method was small, it was 307 

significant for both size and shape. 308 

4. Discussion 309 

4.1. 3D surface reconstruction 310 

Visually judging a global threshold is probably the easiest and potentially 311 

most commonly used method for image segmentation during 3D reconstruction 312 

(Heuzé et al., 2010; Toro-Ibacache, 2013; Noback & Harvati, 2015; Ito & Nishimura, 313 

2016). With this method, users generally select a global threshold where no 314 

scanning artefacts can be seen and bony regions are as visible as possible (e.g. 315 

Noback & Harvati, 2015). Artificial holes usually become more of a problem than 316 

artefacts when observing scans of dry bones. Therefore, by its very nature, the 317 

visual-based method is predicted to provide a lower threshold and therefore a more 318 

inflated surface than is actually present on average. Supporting this, the present 319 

study demonstrated that although the visual-based method accurately segmented 320 

the low-density posterior maxilla, it inflated the surface of the high-density anterior 321 

zygomatic arch. However, this inflation was only by 1–2 pixels, indicating that, if 322 

using a high-resolution image, the visual-based method will give an accurate 3D 323 

reconstruction to a certain extent. 324 

The HMH-based method is also widely used in geometric morphometrics 325 

due to its accuracy (Gröning, Fagan, & O’Higgins, 2011, 2012; Coquerelle et al., 326 
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2013; Senck & Coquerelle, 2015; Stoessel, Gunz, David, & Spoor, 2016; Rivera & 327 

Mirazón Lahr, 2017; Bauer, Benazzi, Darlas, & Harvati, 2018; Evteev, Anikin, & 328 

Satanin, 2018). In the original paper describing this approach, the means of 10 329 

HMH values along various randomly selected slices were used to obtain the global 330 

threshold (Coleman & Colbert, 2007). Many studies have used this method or some 331 

modified version of it, such as using a histogram of the grey values of a respective 332 

volume rather than crossing lines to calculate the HMH (Senck, Bookstein, Benazzi, 333 

Kastner, & Weber, 2015). However, although HMH is probably one of the most 334 

accurate and best approaches for reconstructing a 3D surface when the object is 335 

simple and has homogeneous grey-value distributions, it is often not suitable for a 336 

complex object with heterogeneous grey-value distributions, such as a skull, 337 

depending on the resolution of the image. Supporting this, the present study 338 

demonstrated that the HMH-based model could not efficiently reconstruct the 3D 339 

surface in the low-density posterior maxilla as it produced many artificial holes and 340 

erosion. To address this, users must manually edit the segmentation or set multiple 341 

local thresholds across an object, which is not only labour-intensive and 342 

time-consuming but may also introduce human error or arbitrariness. Another 343 

potential problem with the HMH protocol is the arbitrariness of selecting the lines 344 

or regions that are used to calculate the HMH, which affects its repeatability. This 345 

study suggested that at least 100 and ideally thousands of randomly drawn lines 346 

should be used when selecting a global threshold for skulls. Otherwise, lines should 347 

be drawn on pre-defined regions like as Evteev, Anikin, & Satanin (2018) instead of 348 

random selection. Thus, it might be difficult to apply this method to a complex 349 

object such as a skull unless to some extent high-resolution images are available. 350 

The use of a gradient-based method appears to mitigate these issues 351 

mentioned above. Rathnayaka et al (2011) demonstrated that the Cany filter-based 352 

method generated 3D models of long bones with a significantly higher accuracy 353 

than a visual-based method, and Scherf and Tilgner (2009) showed that the Ray 354 

casting algorithm had a higher efficiency and accuracy for the 3D reconstruction of 355 
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the trabecular bone than the HMH protocol. Similarly, the present study 356 

demonstrated that the watershed algorithm induced less artificial holes, erosion 357 

and inflation than both the visual- and HMH-based models in the 3D reconstruction 358 

of the cranium. While Rathnayaka et al (2011), Scherf and Tilgner (2009) and the 359 

present study all used approaches that were based on image gradients (edges) in 360 

the first step of the algorithm, they used different methods of ROI designation once 361 

the gradient had been calculated – Rathnayaka et al (2011) extracted ROI outlines 362 

by removing the branches of edges, filling gaps and implementing 3 × 3 363 

neighborhood pixel operations, while Scherf and Tilgner (2009) cast rays along the 364 

surface-normals, resulting in the area outside the ROI becoming bright and the 365 

region inside the ROI becoming dark. While the application of these methods 366 

requires some script writing, this brings the added benefit of flexibility and 367 

automaticy, and both MATLAB (Mathworks, MA, USA) and Python, which were 368 

used in Rathnayaka et al (2011) and the present study, respectively, are 369 

user-friendly languages. Thus, the gradient-based method may represent one of 370 

promising options for the 3D surface reconstruction of skulls, athough it is not yet 371 

widely used in the field of geometric morphometrics (but see Le Cabec, Kupczik, 372 

Gunz, Braga, & Hublin, 2012; Le Cabec, Gunz, Kupczik, Braga, & Hublin, 2013; 373 

Navarro & Maga, 2016; Hublin et al., 2017; Pan et al., 2017). 374 

Segmenting images with lower contrast and/or more noise (e.g. when 375 

differentiating between soft tissues or extracting fossils from surrounding 376 

sediments/rocks) is more challenging. However, the application of automated 377 

operations, such as gradient (edge) detection, morphological operations and 378 

watershed algorithms, will probably eliminate or at least reduce the labor 379 

associated with manual processing. Other than these, there are also many kinds of 380 

segmentation methods (Pham, Xu, & Prince, 2000), some of which can potentially 381 

efficiently handle low contrast and noisy images; for example, when segmenting the 382 

same region across many individuals wihin a population, the atlas-based algorithm, 383 

which is based on volume registration, is likely useful (Cabezas, Oliver, Lladó, 384 
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Freixenet, & Cuadra, 2011). Segmentation methods should be considered 385 

depending on the image properties, the number of specimens and the required 386 

accuracy for downstream analyses. 387 

4.2. Landmarks and geometric morphometrics 388 

Insufficient segmentation induces artificial holes and erosion and thus 389 

increases the number of missing landmarks. The present study showed that the 390 

HMH-based method could not efficiently reconstruct low-density regions, such as 391 

those around HOR, so a global threshold based on this method is not necessarily 392 

recommended for the 3D reconstruction of skulls unless high-resolution images are 393 

available. 394 

Analysis of the amount of inter-method error for each of the 40 landmarks 395 

showed that the positioning of the landmarks was most similar between the GWS- 396 

and visual-based methods, suggesting that the HMH-based method leads to 397 

erroneous positioning. In particular, the positions of PIF and MM1 were very 398 

different between the HMH-based model and the other two models, and these 399 

differences significantly exceeded the intra-observer error. In addition, the 400 

inter-method error between the HMH- and GWS-based methods also significantly 401 

exceeded the intra-observer error for PRS and RHI. This indicates that landmarks 402 

that are located on the tip (e.g. PIF, PRS, RHI) or in low-density regions (e.g. MM1) 403 

are more susceptible to improper thresholding. 404 

Significant differences in the level of intra-observer error among methods 405 

were only observed for RHI and HOR. It is notable that the intra-observer error for 406 

RHI was high with the GWS-based method, although the reason for this remains 407 

unclear. Since the sample size of HOR was small for the HMH-based method, the 408 

result for this landmark should be interpreted with caution. For most other 409 

landmarks, the method that was used did not affect the likelihood of random error 410 

occurring, which suggests that repeatability is good assuming only one 411 

segmentation method is used. 412 

Shape was assessed at various levels of biological variation. The image 413 
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segmentation method that was used had a much smaller effect on the variation in 414 

shape than the species or individual, supporting the findings of a previous 415 

evaluation of human skull variations (Toro-Ibacache, 2013). However, method still 416 

had a significant effect. Furthermore, the effect of method cannot be considered 417 

negligible when compared with the level of intra-individual variation (fluctuating 418 

asymmetry). Therefore, when evaluating small biological variations, such as 419 

fluctuating asymmetry, care should be taken if combining multiple sources of 3D 420 

data that were obtained using different segmentation methods. 421 

There is growing recognition of the importance of open data and data 422 

sharing in terms of the verifiability of results, the reproducibility of studies and the 423 

reuse of data (Rowe & Frank, 2011; Wicherts & Bakker, 2012; Davies et al., 2017; 424 

Lowndes et al., 2017; Culina et al., 2018). Data sharing is particularly important for 425 

morphological studies, as it not only saves financial and labour resources but also 426 

helps protect specimens from damage by reducing the amount of repeated handling 427 

and measurement by different researchers (Davies et al., 2017). However, it is also 428 

true that data sharing has been considered to require some cautions, because 429 

measurement error is inevitable (Fruciano et al., 2017; Robinson & Terhune, 2017; 430 

Shearer et al., 2017; this study). Researchers willing to use shared 3D surface 431 

models which were reconstructed from tomographic data should consider the 432 

properties of original tomographic images, segmentation methods, and their 433 

potential impact on inference. The findings of the present study will form the basis 434 

for such consideration. Ideally, original image stacks (with sufficient header 435 

information) rather than (or in addition to) 3D models or landmarks are encouraged 436 

to be shared (see also Davies et al., 2017).  437 

4.3. Limitations and future directions 438 

The present study had several limitations and leaves some challenges for 439 

future studies. The effects of different segmentation methods on geometric 440 

morphometric data collection were evaluated using images obtained from a single 441 

helical CT scanner with similar parameter settings. However, the efficiency of 3D 442 
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surface reconstruction is greatly affected by the resolution and quality of the 443 

images (Hassan et al., 2010), so higher resolution images are likely to generate a 444 

better reconstruction regardless of which segmentation method is used 445 

(Palacio-Mancheno, Larriera, Doty, Cardoso, & Fritton, 2014), while extremely low 446 

resolution images (e.g. medical CT images of the mammalian bony labyrinth) will 447 

be more susceptible to threshold selection (Gunz et al., 2012). At such an extremely 448 

low resolution, the difference between the HMH- and visual-based methods may 449 

not be negligible even at the inter-individual level, and it is also unclear how the 450 

gradient-based method would perform. Image filtering will also affect the 451 

segmentation, with too little smoothing likely retaining noise and thus causing 452 

artefacts and too much smoothing readily producing artificial holes. Therefore, 453 

these points should be kept in mind when applying the findings of the present 454 

study to different kinds of images. GWS-based method that was implemented in 455 

this study could not fully remove the artificial holes. This may have been partly due 456 

to the seeds not being correctly or sufficiently assigned or the gradient not being 457 

efficiently detected in low-intensity regions. It is expected that future research will 458 

further improve the segmentation method and evaluate the validity of combining 459 

images of various resolutions, which are processed with various filters. 460 
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 748 
 749 

Figure legends 750 

Figure 1. Schematic diagram of the three segmentation methods that were 751 

compared. (a) Distribution of the Hounsfield unit (HU) values in two bone 752 

regions with high and low values, respectively. (b) Segmentation based on local 753 

half-maximum height (HMH) (reference model). (c) Segmentation based on the 754 

visual-based method. That the high-HU region is erroneously inflated 755 

compared with the reference model, when the low-HU region is correctly 756 

segmented. (d) Segmentation based on the HMH-based method. If a global 757 

threshold is calculated to be higher than the local HMH of low-HU region, the 758 

low-HU region could not be segmented or is erroneously eroded. (e) 759 

Segmentation based on the image gradient with watershed (GWS)-based 760 

method. With this approach, watersheds are searched for based on the 761 

gradient magnitude by placing seeds within the catchment based on different 762 

thresholds. Although some regions lacked seeds, this is often less of an issue 763 
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because there are usually seeds within the same catchment. The boundary of 764 

segmentation is often close to local HMH in both the high- and low-HU regions. 765 

Figure 2. (a–c) Three-dimensional surface reconstructions obtained using the 766 

visual-based method (grey) (a), the half-maximum height (HMH)-based method 767 

(orange) (b) and the image gradient with watershed (GWS)-based method (sky 768 

blue) (c). (d, e) Superimposition of the visual- and GWS-based models (d) and 769 

the GWS- and HMH-based models (e). (f) Pictures of the original cranium 770 

showing the left-lateral (upper) and occlusal (bottom) views. The specimen is 771 

PRICT-1257 (PRISK-5866). 772 

Figure 3. The segmentation of the visual-based method (grey), the half-maximum 773 

height (HMH)-based method (orange) and the image gradient with watershed 774 

(GWS)-based methods (sky blue) in comparison to a reference model (a local 775 

HMH). Positive values indicate that the model was too thick, while negative 776 

values indicate too thin, compared to the reference (local HMH). Zero indicates 777 

that it is identical to the reference model. 778 

Figure 4. Inter-method error: g_v, between the image gradient with watershed 779 

(GWS)-based method and the visual-based method; g_h, between the GWS- 780 

and the half-maximum height (HMH)-based methods; h_v, between the HMH- 781 

and the visual-based methods. Herein, the mean values of replicates are used. 782 

Horizontal dashed lines denote the median of intra-observer errors. Outliers 783 

are not shown. For bilateral landmarks, the left- and right-side data are pooled. 784 

Asterisk indicates whether inter-method error is significantly larger/smaller 785 

than intra-observer error (*, P = 0.05; **, P = 0.01). 786 

Figure 5. The scatterplots of PC scores: (a) PC1 vs. PC2, (b) PC3 vs. PC4. Colour 787 

denotes segmentation methods; symbol denotes species. The data of same 788 

individual are circled by 95% confidence ellipse. 789 
  790 
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Tables 791 
Table 1. Samples used in this study. 
PRICT Noa PRISK IDb Species 

322 528 M. cyclopis 
323 1358 M. cyclopis 
342 3046 M. fascicularis 
357 4477 M. fascicularis 
989 8644 M. fuscata 

1001 8658 M. fuscata 
1005 9332 M. fuscata 
1007 9340 M. fuscata 
1010 9361 M. fuscata 
1239 6162 M. fuscata 
1243 6470 M. fuscata 
1245 6474 M. fuscata 
1257 5866 M. fuscata 

325 218 M. mulatta 
326 223 M. mulatta 
900 1849 M. nemestrina 
903 2299 M. nemestrina 
387 3052 M. radiata 
920 9532 M. radiata 

a Digital Morphology Museum, KUPRI 
(dmm3.pri.kyoto-u.ac.jp/dmm/WebGallery/) 
b Skeletal collection, KUPRI  
(pri.kyoto-u.ac.jp/databases/matedb/) 
 792 
  793 
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Table 2. The repeatability of HMH calculation. 
Number of lines ICC Lower CI Upper CI 

10 0.075  -0.001  0.234  
100 0.692  0.541  0.837  

1,000 0.946  0.906  0.975  
10,000 0.995  0.991  0.998  

ICC: intraclass correlation coefficient. 
CI (confidence interval limit) was estimated with the alpha level of 0.05. 

 794 
 795 
Table 3. Procrustes ANOVA for centroid size and shape. 
Effect     SS     MS df F P 

Centroid size 
Extra 1 (species) 50445 10088.98 5 21.7 <.0001 
Individual 6048 465.23 13 531.3 <.0001 
Error 1 (method) 33 0.88 38 9.9 <.0001 
Residual 5 0.09 57   

Shape 
Extra 1 (species) 0.34898692 0.0011442  305 4.9 <.0001 
Individual 0.18569714 0.0002342  793 17.9 <.0001 
Side (DA) 0.00501611 0.0000965  52 7.4 <.0001 
Ind * Side (FA) 0.01222904 0.0000131  936 4.1 <.0001 
Error 1 (method) 0.01375109 0.0000032  4294 2.1 <.0001 
Residual 0.00993181 0.0000015  6441     
DA: directional asymmetry, FA: fluctuating asymmetry. 
 796 
  797 
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Figures 798 
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Fig. 4 805 
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Fig. 5 807 
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Table S1. Ecological and evolutionary insights from geometric morphometric data. 

Typical questions Example references 

Integration and modularity, response (direction) to 

selection 

(Mitteroecker & Bookstein, 2008; Klingenberg, Debat, & Roff, 2010; 

Martínez-Abadías et al., 2012; Klingenberg & Marugán-Lobón, 2013) 

developmental (in)stability, canalization (Klingenberg & McIntyre, 1998; Debat, Alibert, David, Paradis, & Auffray, 

2000; Santos, Iriarte, & Céspedes, 2005) 

Ontogenetic and allometric trajectories and their 

relation to evolution 

(de León & Zollikofer, 2001; Mitteroecker, Gunz, & Bookstein, 2005; 

Mitteroecker & Bookstein, 2009) 

Evolutionary process (e.g., genetic drift vs. natural 

selection), tempo and mode in evolution 

(Perez & Monteiro, 2009; Chira et al., 2018; Ponce de León et al., 2018; 

Weaver & Gunz, 2018) 

Ecological, geographical, chronological and 

phylogenetic diversity 

(Adams & Rohlf, 2000; Claude, Pritchard, Tong, Paradis, & Auffray, 2004; 

Cardini, Jansson, & Elton, 2007; Drake & Klingenberg, 2010; Esquerré & 

Keogh, 2016) 

Phylogenetic inference, phylogenetic signal, 

taxonomic classification 

(Cardini & Elton, 2008; González-José, Escapa, Neves, Cúneo, & Pucciarelli, 

2008; Catalano, Goloboff, & Giannini, 2010; Catalano, Ercoli, & Prevosti, 

2014; Klingenberg & Gidaszewski, 2010; Goloboff & Catalano, 2011; Détroit 

et al., 2019)  

Genotype–phenotype mapping (Liu et al., 2012; Pallares, Harr, Turner, & Tautz, 2014; Mitteroecker, 

Cheverud, & Pavlicev, 2016; Gunz et al., 2019) 
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No Abbreviatio Definition Reference
1 PRS Prosthion: antero-inferior point on projection of premaxilla between central Cardini et al. (2007)
2 NSP Nasospinale: inferior-most midline point of piriform aperture. Cardini et al. (2007)
3 RHI Rhinion: most anterior midline point on nasals. Cardini et al. (2007)
4 NAS Nasion: midline point on fronto-nasal suture. Cardini et al. (2007)
5 PIF Posterior-most point of incisive foramen. Cardini et al. (2007)
6 PNS Tip of posterior nasal spine. Cardini et al. (2007)
7 HOR Hormion: midpoint of the posterosuperior border of the vomer. Cobb and O'Higgins (2007)
8 BAS Basion: anterior most point of foramen magnum. Frost et al. (2003)
9 OPS Opisthion: posterior most point of foramen magnum. Frost et al. (2003)

10 INI Inion: most posterior point of cranium, when viewed in the Frankfurt
horizontal, be it on sagittal/nuchal crest or not.

Frost et al. (2003)

11 26 LIA Posterior-most point of lateral incisor alveolus. Cardini et al. (2007)
12 27 MM1 Mesial M1: contact points between P4 and M1, projected labially onto alveolar Cardini et al. (2007)
13 28 DM3 Distal M3: posterior midpoint onto alveolar margin of M3. Cardini et al. (2007)
14 29 NPM Meeting point of nasal and pre-maxilla on margin of piriform aperture. Cardini et al. (2007)
15 30 DCR Dacryon: most superior point of the lacrimomaxillary suture (intersection with

frontal bone).
Cobb and O'Higgins (2007)

16 31 ZMS Zygo-max superior: antero-superior point of zygomaticomaxillary suture taken
at orbit rim.

Cardini et al. (2007)

17 32 ZMI Zygo-max inferior: antero-inferior point of zygomaticomaxillary suture. Cardini et al. (2007)
18 33 FRO Frontomalare orbitale: where frontozygomatic suture crosses inner orbital rim. Cardini et al. (2007)
19 34 FRT Frontomalare temporale: where frontozygomatic suture crosses lateral edge of Cardini et al. (2007)
20 35 ZTS Zygo-temp superior: superior point of zygomatico-temporal suture on lateral

face of zygomatic arch.
Frost et al. (2003)

21 36 ZTI Zygo-temp inferior: inferior point of zygomatico-temporal suture on lateral face
of zygomatic arch.

Frost et al. (2003)

22 37 ZAP Meeting point of zygomatic arch and alisphenoid on superior margin of
pterygomaxillary fissure.

Cardini et al. (2007)

23 38 PMA Most posterior point of maxillary alveolus on the maxilla-palatine. Ito et al. (2014)
24 39 PGP Most inferior point on the postglenoid process. Lockwood et al. (2004)
25 40 POR Porion: top of auditory meatus. Frost et al. (2003)

Table S2. Landmarks used in this study.



Mean Median SD P * Mean Median SD P * Mean Median SD P * Mean Median SD
PRS 0.32 0.30 0.18 0.15 + 0.36 0.32 0.14 0.01 + 0.25 0.23 0.09 0.78 - 0.26 0.21 0.15
NSP 0.47 0.49 0.28 0.80 + 0.55 0.45 0.36 0.28 + 0.32 0.29 0.18 0.05 - 0.45 0.35 0.34
RHI 0.37 0.29 0.21 0.11 + 0.41 0.34 0.18 0.02 + 0.28 0.26 0.12 0.80 + 0.27 0.27 0.15
NAS 0.65 0.51 0.58 0.24 - 0.63 0.44 0.50 0.16 - 0.55 0.50 0.36 0.02 - 0.83 0.69 0.60
PIF 0.75 0.81 0.35 6.E-04 + 0.68 0.69 0.25 1.E-04 + 0.38 0.33 0.25 0.48 + 0.33 0.30 0.23
PNS 0.58 0.47 0.32 0.08 + 0.55 0.47 0.20 0.04 + 0.40 0.37 0.23 0.97 - 0.40 0.30 0.31
HOR 0.87 0.87 0.86 0.74 + 0.67 0.67 0.28 0.80 + 0.96 0.59 0.89 0.12 + 0.60 0.52 0.41
BAS 0.23 0.21 0.14 0.37 - 0.31 0.30 0.12 0.31 + 0.28 0.26 0.07 0.84 + 0.27 0.22 0.17
OPS 0.28 0.25 0.16 0.17 - 0.33 0.31 0.13 0.79 - 0.37 0.38 0.17 0.54 + 0.34 0.31 0.22
INI 0.50 0.46 0.25 0.51 - 0.48 0.41 0.33 0.42 - 0.51 0.55 0.26 0.59 - 0.55 0.44 0.41
LIA 0.70 0.67 0.44 0.45 + 0.85 0.59 1.12 0.25 + 0.59 0.38 1.16 1.00 + 0.59 0.40 1.37
MM1 0.50 0.43 0.26 3.E-03 + 0.52 0.50 0.25 5.E-04 + 0.31 0.30 0.13 0.12 - 0.36 0.34 0.17
DM3 0.42 0.39 0.27 0.75 - 0.49 0.43 0.24 0.28 + 0.41 0.38 0.22 0.54 - 0.44 0.40 0.26
NPM 0.46 0.39 0.28 0.71 + 0.52 0.51 0.23 0.06 + 0.41 0.35 0.26 0.61 - 0.43 0.34 0.32
DCR 0.59 0.49 0.37 0.06 - 0.57 0.50 0.30 0.01 - 0.52 0.40 0.32 2.E-03 - 0.72 0.70 0.35
ZMS 0.83 0.67 0.46 0.96 - 0.76 0.56 0.46 0.47 - 0.76 0.69 0.50 0.44 - 0.83 0.71 0.54
ZMI 0.67 0.63 0.35 0.17 - 0.71 0.64 0.31 0.37 - 0.66 0.64 0.32 0.15 - 0.76 0.69 0.46
FRO 0.57 0.48 0.38 0.26 - 0.50 0.40 0.35 0.03 - 0.66 0.56 0.42 0.86 + 0.65 0.58 0.43
FRT 0.60 0.48 0.43 0.71 - 0.60 0.54 0.34 0.62 - 0.52 0.45 0.26 0.06 - 0.63 0.51 0.49
ZTS 0.94 0.75 0.62 0.82 - 0.77 0.68 0.45 0.06 - 0.71 0.61 0.49 0.02 - 0.96 0.79 0.69
ZTI 0.87 0.62 0.62 0.18 - 0.67 0.61 0.44 1.E-03 - 0.77 0.62 0.51 0.02 - 1.06 0.88 0.89
ZAP 0.56 0.47 0.26 0.21 - 0.52 0.36 0.33 0.10 - 0.55 0.49 0.31 0.20 - 0.63 0.58 0.38
PMA 0.47 0.46 0.20 0.66 + 0.43 0.42 0.20 0.68 - 0.37 0.34 0.18 0.04 - 0.45 0.41 0.29
PGP 0.38 0.39 0.16 0.05 - 0.39 0.38 0.14 0.08 - 0.35 0.33 0.12 1.E-03 - 0.46 0.38 0.27
POR 0.68 0.64 0.33 0.81 + 0.67 0.58 0.30 0.99 - 0.52 0.46 0.23 0.01 - 0.67 0.59 0.43
* Plus/minus indicates that the mean of inter-method error is larger/smaller than the mean of intra-observer error.

Intra-observer
Table S3. Inter-method and intra-observer errors for each landmark (mm) .	

visual–HMH HMH–GWS GWS–visual
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Figure S1. Literature published between 1990 and 2018 that is related to geometric 

morphometrics. Publications were retrieved from Web of Science using the 

search term ‘geometric morphometric$’. The proportion of papers in each 

research field is shown on the left based on the tags provided in Web of Science, 

while the number of publications per year is shown on the right. The purple 

bar denotes the number of publications retrieved when ‘computed tomography’ 

was added to the search term. Note that the Web of Science topic search only 

scans the title, abstract, author keywords and keywords plus. By contrast, 

Google Scholar detected approximately 12,900 publications over the same 

period (or 1,640 when ‘computed tomography’ was added). 
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Figure S2. Landmarks used in this study. (a) frontal, (b) left-lateral, and (c) 

occlusal views of cranium. See also Table S2. 
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Figure S3. The repeatability of the half-maximum height (HMH)-based methods 

relying on the 10, 100, 1,000, and 10,000 randomly drawn lines. Horizontal 

axis indicates samples: from the left, PRICT-325, 1257, 357, 322, 900, 1243, 

920, 342, 989, 1001, 326, 1010, 1007, 387, 1005, 1245, 903, 323 and 1239. 
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Figure S4. Intra-observer error: vis, the visual-based model; hmh, the half-

maximum height (HMH)-based method; gws, the image gradient with 

watershed (GWS)-based model. For bilateral landmarks, the left- and 

right-side data are pooled. Outliers are not shown.  
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