Propagation of microlocal solutions near a hyperbolic fixed point (Microlocal Analysis and Asymptotic Analysis)

Author(s)
Fujiie, Setsuro

Citation
数理解析研究所講究録 2004, 1397: 43-55

Issue Date
2004-10

URL
http://hdl.handle.net/2433/25990

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Propagation of microlocal solutions near a hyperbolic fixed point

Setsuro Fujiié
Joint work with Jean-François Bony, Thierry Ramond and Maher Zerzeri

1 Introduction

This is a partial report of the work in progress with Jean-François Bony, Thierry Ramond and Maher Zerzeri about the quantum monodromy operator associated to a homoclinic trajectory. A major part of the results here was already reported by one of the collaborators in [3].

The notion of monodromy operator was introduced by J. Sjöstrand and M. Zworski in [4] for a periodic trajectory. It consists in continuing microlocal solutions of the semiclassical Schrödinger equation

\[-h^2 \Delta u + V(x)u = Eu\]

along a Hamilton flow \(H_p \) on \(p^{-1}(E) \) of the corresponding classical mechanics:

\[H_p = \sum_{j=1}^{d} \left(\frac{\partial p}{\partial \xi_j} \frac{\partial}{\partial x_j} - \frac{\partial p}{\partial x_j} \frac{\partial}{\partial \xi_j} \right), \quad p(x, \xi) = \xi^2 + V(x).\]

Recall briefly the notion of microlocal solution according to [4]. If \(dp \neq 0 \) at a point \((x^0, \xi^0) \in p^{-1}(E) \), there exists a local canonical transformation \(\kappa \) defined in a neighborhood of \((x^0, \xi^0) \) with \(\kappa(x^0, \xi^0) = (0, 0) \), and a semiclassical microlocal Fourier integral operator \(U \) associated to \(\kappa \), such that \(p = \kappa^* \xi_1 \) and \(UP^{-1}U^{-1} = hD_{x_1} \). We can then define the space of microlocal solution at \((x^0, \xi^0) \) by

\[\ker_{(x^0, \xi^0)}(P) = U^{-1}(\ker(hD_{x_1})), \quad \ker(hD_{x_1}) = \{ u \in \mathcal{D}'(\mathbb{R}^d) : hD_{x_1} u = 0 \} \]
Since \(\ker(hD_{x}) \) is identified with \(\mathcal{D}'(\mathbb{R}^{d-1}) \), so is \(\ker_{(x^{0}, \xi^{0})}(P) \). If \((x^{1}, \xi^{1}) = \exp TH_{p}(x^{0}, \xi^{0}) \) is another point on this flow, we can naturally define the propagator of microlocal solutions from \(\ker_{(x^{0}, \xi^{0})}(P) \) to \(\ker_{(x^{1}, \xi^{1})}(P) \) as operator on \(\mathcal{D}'(\mathbb{R}^{d-1}) \).

Here we study the case where \(\exp tH_{p}(x^{0}, \xi^{0}) \) tends to a hyperbolic fixed point \((0, 0) \) as \(t \) tends to \(+\infty \). To such a point associate the stable and unstable Lagrangian manifolds \(\Lambda_- \) and \(\Lambda_+ \), on which Hamilton flows tend to \((0, 0) \) as \(t \) tends to \(+\infty \) and \(-\infty \) respectively. Moreover, any point close to \(\Lambda_+ \) comes from a point close to \(\Lambda_- \). We expect, therefore, that a microlocal solution at a point on \(\Lambda_+ \) is determined by that on \(\Lambda_- \).

The purpose of this report is to study this correspondence of microlocal solutions from \(\Lambda_- \) to \(\Lambda_+ \). After preparing the geometrical setting in section 2, we state a uniqueness theorem in section 3, which says that if a solution to (1) is microlocally exponentially small on \(\Lambda_- \), it is also microlocally exponentially small on \(\Lambda_+ \) for \(E \) away from a discrete subset \(\Gamma(h) \). In section 4, based on an idea in [2], we construct a solution with a given microlocal data at a point \((x^{0}, \xi^{0}) \) on \(\Lambda_- \), as superposition of time-dependent WKB solutions via Fourier transform with respect to \(E \), and formally calculate its microlocal output at the corresponding point \((x^{0}, \xi^{0}_+) \) on \(\Lambda_+ \). Section 5 is an appendix about the notion of *expandible symbol*, which is used repeatedly for the study of the large time behavior of both classical and quantum objects.

2 Symplectic geometry

Let \(p(x, \xi) = \xi^2 + V(x) \) be the Hamiltonian associated to the semiclassical Schrödinger operator \(-h^2\Delta + V(x)\) in \(\mathbb{R}^d \). Here, we use the following notations:

\[
 x = (x_1, \ldots, x_d), \quad \xi = (\xi_1, \ldots, \xi_d), \quad \xi^2 = \sum_{j=1}^{d} \xi_j^2, \quad \Delta = \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2}
\]

Suppose that the potential \(V(x) \) is real and analytic in a neighborhood of \(x = 0 \), and that \(x = 0 \) is a non-degenerate minimum of \(V(x) \), so that \((x, \xi) = (0, 0) \) is a saddle point of the Hamiltonian \(p(x, \xi) \). After a change of variables, we can assume that \(p(x, \xi) \) is of the form

\[
 p(x, \xi) = \xi^2 - \sum_{j=1}^{d} \frac{\lambda_j^2}{4} x_j^2 + O(|x|^3), \quad (x \to 0),
\]
where \(\{\lambda_j\}_{j=1}^{d}\) are positive numbers which we assume \(0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_d\). Let \(H_p\) be the Hamilton vector field associated to \(p\). In the \((x, \xi)\) coordinates, the linearized vector field \(F_p\) of \(H_p\) at \((0, 0)\) is simply

\[
F_p = d_{(0, 0)}H_p = \begin{pmatrix} 0 & I \\ L^2 & 0 \end{pmatrix},
\]

where \(L\) is the \(d \times d\) matrix defined as \(L = \text{diag}(\lambda_1, \ldots, \lambda_d)\). The eigenvalues of \(F_p\) are the \(\lambda_j\)'s and the \(-\lambda_j\)'s.

Associated to the hyperbolic fixed point, we have thus a natural decomposition of \(T_{(0,0)}^*\mathbb{R}^d = \mathbb{R}^d\) in a direct sum of two linear subspaces \(\Lambda_+^0\) and \(\Lambda_-^0\), of dimension \(d\), associated respectively to the positive and negative eigenvalues of \(F_p\). These spaces \(\Lambda_\pm^0\) are given by

\[
\Lambda_\pm^0 = \{ (x, \xi); \xi_j = \pm \frac{\lambda_j}{2} x_j, j = 1, \ldots, d \}.
\]

The stable/unstable manifold theorem gives us the existence of two Lagrangian manifolds \(\Lambda_+\) and \(\Lambda_-\), defined in a vicinity \(\Omega\) of \((0,0)\), which are stable under the \(H_p\) flow and whose tangent space at \((0,0)\) are precisely \(\Lambda_+^0\) and \(\Lambda_-^0\). In particular, we see that these manifolds can be written as

\[
\Lambda_\pm = \{ (x, \xi); \xi = \nabla \phi_\pm(x) \},
\]

for some smooth functions \(\phi_+\) and \(\phi_-\), which can be chosen so that

\[
\phi_\pm(x) = \pm \sum_{j=1}^{d} \frac{\lambda_j}{4} x_j^2 + o(x^2).
\]

We shall say that \(\Lambda_+\) is the outgoing Lagrangian manifold and \(\Lambda_-\) the incoming Lagrangian manifold associated to the hyperbolic fixed point. Indeed \(\Lambda_+\) (resp. \(\Lambda_-\)) can be characterized as the set of points \((x, \xi) \in \Omega\) such that \(\exp tH_p(x, \xi) \to (0,0)\) as \(t \to -\infty\) (resp. as \(t \to +\infty\)): Take a point \(x^0 \in \mathbb{R}^d\) near \(0\). Then there exist unique \(\xi_+^0 \in \mathbb{R}^d\) and \(\xi_-^0 \in \mathbb{R}^d\) such that \((x^0, \xi_\pm^0) \in \Lambda_\pm\). Let \(\gamma_\pm(t) = \exp tH_p(x^0, \xi_\pm^0)\) be the Hamilton flow emanating from \((x^0, \xi_\pm^0)\). Then, we know from Proposition 10 in Appendix that \(\gamma_\pm(t)\) are expandible, i.e.

\[
\gamma_\pm(t) \sim \sum_{k=1}^{\infty} e^{\pm \mu_k t} \gamma_{\pm, k}(t), \quad t \to \mp \infty,
\]

where \(\{\lambda_j\}_{j=1}^{d}\) are positive numbers which we assume \(0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_d\). Let \(H_p\) be the Hamilton vector field associated to \(p\). In the \((x, \xi)\) coordinates, the linearized vector field \(F_p\) of \(H_p\) at \((0, 0)\) is simply

\[
F_p = d_{(0,0)}H_p = \begin{pmatrix} 0 & I \\ L^2 & 0 \end{pmatrix},
\]

where \(L\) is the \(d \times d\) matrix defined as \(L = \text{diag}(\lambda_1, \ldots, \lambda_d)\). The eigenvalues of \(F_p\) are the \(\lambda_j\)'s and the \(-\lambda_j\)'s.

Associated to the hyperbolic fixed point, we have thus a natural decomposition of \(T_{(0,0)}^*\mathbb{R}^d = \mathbb{R}^d\) in a direct sum of two linear subspaces \(\Lambda_+^0\) and \(\Lambda_-^0\), of dimension \(d\), associated respectively to the positive and negative eigenvalues of \(F_p\). These spaces \(\Lambda_\pm^0\) are given by

\[
\Lambda_\pm^0 = \{ (x, \xi); \xi_j = \pm \frac{\lambda_j}{2} x_j, j = 1, \ldots, d \}.
\]

The stable/unstable manifold theorem gives us the existence of two Lagrangian manifolds \(\Lambda_+\) and \(\Lambda_-\), defined in a vicinity \(\Omega\) of \((0,0)\), which are stable under the \(H_p\) flow and whose tangent space at \((0,0)\) are precisely \(\Lambda_+^0\) and \(\Lambda_-^0\). In particular, we see that these manifolds can be written as

\[
\Lambda_\pm = \{ (x, \xi); \xi = \nabla \phi_\pm(x) \},
\]

for some smooth functions \(\phi_+\) and \(\phi_-\), which can be chosen so that

\[
\phi_\pm(x) = \pm \sum_{j=1}^{d} \frac{\lambda_j}{4} x_j^2 + o(x^2).
\]

We shall say that \(\Lambda_+\) is the outgoing Lagrangian manifold and \(\Lambda_-\) the incoming Lagrangian manifold associated to the hyperbolic fixed point. Indeed \(\Lambda_+\) (resp. \(\Lambda_-\)) can be characterized as the set of points \((x, \xi) \in \Omega\) such that \(\exp tH_p(x, \xi) \to (0,0)\) as \(t \to -\infty\) (resp. as \(t \to +\infty\)): Take a point \(x^0 \in \mathbb{R}^d\) near \(0\). Then there exist unique \(\xi_+^0 \in \mathbb{R}^d\) and \(\xi_-^0 \in \mathbb{R}^d\) such that \((x^0, \xi_\pm^0) \in \Lambda_\pm\). Let \(\gamma_\pm(t) = \exp tH_p(x^0, \xi_\pm^0)\) be the Hamilton flow emanating from \((x^0, \xi_\pm^0)\). Then, we know from Proposition 10 in Appendix that \(\gamma_\pm(t)\) are expandible, i.e.

\[
\gamma_\pm(t) \sim \sum_{k=1}^{\infty} e^{\pm \mu_k t} \gamma_{\pm, k}(t), \quad t \to \mp \infty,
\]
where $\gamma_{\pm}(t)$ are vectors whose elements are polynomials in t ($\gamma_{\pm,1}$ is constant) and $0 < \mu_1 < \mu_2 < \cdots$ are the various non-vanishing linear combinations over \mathbb{N} of the λ_j's. In particular, $\mu_1 = \lambda_1$. If we assume

(A1) $\lambda_1 < \lambda_2$,

then there exists a constant $\gamma_1 = \gamma_1(x^0)$ such that

$$
\gamma_{\pm}(t) = \gamma_1 e^{\pm \lambda_1 t} x^t(1,0,\ldots,0,\pm \lambda_1/2,0,\ldots,0) + O(e^{\pm \mu_2 t}), \quad (t \to \mp \infty). \quad (8)
$$

We see that $\gamma_{\pm}(t)$ is tangential to the (x_1, ξ_1)-plane if $c \neq 0$.

3 Uniqueness

We begin this section by introducing the notion of microsupport of solutions.

For $u \in L^2(\mathbb{R}^n)$, the Bargman transform (or global FBI transform) is defined by

$$
Tu(x, \xi; h) = c_d(h) \int_{\mathbb{R}^d} e^{i(x-y)\cdot \xi/h - (x-y)^2/2h} u(y; h) dy.
$$

$Tu(x, \xi; h)$ belongs to $L^2(\mathbb{R}^{2d}_{x,\xi})$ and $c_d(h)$ is taken so that T be an isometry from $L^2(\mathbb{R}^d)$ to $L^2(\mathbb{R}^{2d})$. It is seen that by this transform, the function u is localized in x by a Gaussian up to $O(\sqrt{h})$ when h is small. Moreover, it is localized also in ξ up to $O(\sqrt{h})$. Indeed we have an identity

$$
Tu(x, \xi; h) = e^{ix\cdot \xi/h} \hat{T}u(\xi, -x; h),
$$

where $\hat{T}u(x, \xi; h)$ is the semiclassical Fourier transform

$$
\hat{T}u(\xi) = (2\pi h)^{-d/2} \int_{\mathbb{R}^d} e^{-ix\cdot \xi/h} u(x) dx. \quad (9)
$$

A (h-dependent) function $u \in L^2$ is said to be zero at a point (x^0, ξ^0) in the phase space iff there exists a neighborhood U of (x^0, ξ^0) and a positive number ϵ such that

$$
Tu(x, \xi; h) = O(e^{-\epsilon/h})
$$
as $h \to 0$ uniformly in U. The complement of such points is called microsupport of u and denoted by $MS(u)$. Microsupport is a closed set. Two functions u and v are identified near (x^0, ξ^0) if $(x^0, \xi^0) \notin MS(u - v)$.

Microsupport has the following properties: Let u be a solution of $Pu = E(h)u$ in a domain $\Omega \subset \mathbb{R}^n$, where $E(h) = O(h)$, and assume that $||u||_{L^2(\Omega)} \leq 1$.
• The microsupport of \(u \) is included in the energy surface \(p^{-1}(0) \).

• The microsupport of \(u \) propagates along a simple Hamilton flow in \(p^{-1}(0) \).

• The microsupport of a WKB solution \(u = e^{i\psi(x)/h}b(x,h) \), \(b(x,h) = O(h^{-N}) \) for some \(N \in \mathbb{R} \) as \(h \) tends to 0, is included in the Lagrangian submanifold \(\{(x,\xi);\xi = \partial_x \psi(x)\} \).

Now we come back to our problem near the hyperbolic fixed point. Let \(\Gamma(h) \) be the discrete subset of \(\mathbb{C} \) defined by
\[
\Gamma(h) = \{E_{\alpha} = -ih \sum_{j=1}^{d} \lambda_j (\alpha_j + \frac{1}{2}); \alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d\}.
\]

Notice that for \(E = E_{\alpha} \), the functions
\[
u_{\alpha} = \Pi_{j=1}^{d} H_{\alpha_j} \left(e^{-\pi i/4} \frac{\sqrt{\lambda_j}}{\sqrt{2h}} x_j \right) \exp \left(i \sum_{j=1}^{m} \frac{\lambda_j}{4h} x_j^2 \right),
\]
where \(H_n \) is the Hermite polynomial, satisfy the equation
\[-h^2 \Delta u_{\alpha} - \sum_{j=1}^{m} \frac{\lambda_j}{4} x_j^2 u_{\alpha} = E_{\alpha} u_{\alpha}.
\]

These functions are of WKB form and, by the above third property, the microsupport of \(u_{\alpha} \) is \(\Lambda_{+}^0 \).

Let us assume

(A2) \(|E(h)| \leq Ch \) in \(\mathbb{C} \) with \(C > 0 \), and there exists \(\delta > 0 \) such that \(d(E(h),\Gamma(h)) > \delta h \) for all small \(h \).

The following theorem says that the solution of (1) is uniquely determined microlocally in a neighborhood of \((0,0) \), modulo microlocally small functions, by its data on \(\Lambda_{-}\backslash (0,0) \) if \(E(h) \) is away from the exceptional set \(\Gamma(h) \).

Theorem 1 Assume (A2). If an \(h \)-dependent function \(u \in L^2(\mathbb{R}^d) \) with \(\|u\|_{L^2} \leq 1 \) satisfies
\[
MS((P - E(h))u) = \emptyset, \quad MS(u) \cap \{\Lambda_{-} \backslash (0,0)\} = \emptyset,
\]
in a neighborhood of \((0,0) \), then \((0,0) \notin MS(u) \).
4 Integral representation of the solution

In order to study the correspondence of microlocal solutions from Λ_- to Λ_+, we fix a point (x^0, ξ_-^0) on Λ_- sufficiently close to the origin and consider solutions of \((1)\) whose microsupport on Λ_- is included in a neighborhood of $\exp tH_p(x^0, \xi_-^0)$ (recall that the microsupport is invariant by the Hamilton flow). Then, under the assumption (A2), the solution u is uniquely determined in a full neighborhood of the origin, in particular on Λ_+, if a microlocal data u_0 is given at (x^0, ξ_0^0). We study in this section the map \mathcal{I}_δ which associates u_0 to the microlocal solution u at (x^0, ξ_+^0), which we call here propagator (it is called singular part of the monodromy operator in [3]).

The symbol p is of principal type at $(x^0, \xi_-^0) \in \Lambda_-$ and the space of microlocal solutions $\ker_{(x^0, \xi_-^0)}(P)$ is identified with $\mathcal{D}'(\mathbb{R}^{d-1})$. If we assume

\[(A3) \quad \gamma_1(x^0) \neq 0,\]

where $\gamma_1(x^0)$ is defined in (8), a microlocal solution $u_0 \in \ker_{(x^0, \xi_-^0)}(P)$ can be considered as distribution on

\[H_0 = \{x \in \mathbb{R}^d; x_1 = x_1^0\},\]

since (the projection of) the Hamilton flows are tangential to the x_1 axis at the origin.

Let $u_0(x') \in \mathcal{D}'(\mathbb{R}^{d-1})$ be such that $\hat{u}_0(\eta)$, the semiclassical Fourier transform of u_0 (see (9)), is supported in a small neighborhood of ξ_0'.

Following an idea of Helffer and Sjöstrand [2], we write the solution u in the form

\[u(x, h) = \frac{1}{(2\pi h)^{d/2}} \int_{\mathbb{R}^{d-1}} \int_{0}^{+\infty} e^{i\phi(t,x,\eta)/h} a(t, x, \eta, h) \hat{u}_0(\eta) dt d\eta, \quad \text{(11)}\]

with

\[\left\{ \frac{h}{i} \frac{\partial}{\partial t} + P(x, hD) - E(h) \right\}(e^{i\phi/h} a) = O(h^\infty).\]

If a and the energy $E(h)$ have classical asymptotic expansions with respect to h:

\[a(t, x, \eta, h) \sim \sum_{l=0}^{\infty} a_l(t, x, \eta) h^l, \quad E(h) \sim \sum_{l=0}^{\infty} E_l h^{l+1},\]

}\]
It will be shown that, for x close to x^0, there exists a unique critical point $t = t(x, \eta)$. On the other hand, the Lagrangian manifold Λ^η_t tends to Λ_+ as $t \rightarrow +\infty$, which means that $\partial_t \phi$ tends to ϕ_+. Thus we will have microlocally

$$
\int_0^{+\infty} e^{i\phi(t,x,\eta)/h} a(t,x,\eta,h) dt \sim \begin{cases} e^{i\psi(x,\eta)} b(x,\eta,h) & \text{near } (x,\xi) = (x^0,\xi^0), \\ e^{i\theta(x,\eta)} c(x,\eta,h) & \text{near } (x,\xi) = (x^0,\xi^+_0), \end{cases}
$$

with $\psi(x,\eta) = \phi(t(x,\eta),x,\eta)$ and $\theta(x,\eta) = \phi_+(x) + \tilde{\psi}(\eta)$ for some $\tilde{\psi}$.

We require that u is equal to u_0 on H_0 microlocally near (x^0,ξ^0), which is satisfied if

$$\psi(x,\eta) = x' \cdot \eta, \quad b(x,\eta,h) = 1 \quad \text{on } H_0. \quad (15)$$

We will see in the following that it is possible to construct ϕ and a so that ψ and b satisfy the condition (15) and to calculate θ and c. Then we will write I_S as Fourier integral operator.

4.1 The phase function

Since γ_- is a simple characteristic for the operator p, by the usual Hamilton-Jacobi theory we have first the

Lemma 2 For all $\eta \in \mathbb{R}^{d-1}$ close enough to ξ^0, there is a unique function $\psi_\eta = \psi(x,\eta)$, defined in a neighborhood ω_0 of x_0 such that

$$
\begin{cases} p(x,\nabla \psi_\eta(x)) = 0 & \text{in } \omega_0, \\ \psi_\eta(x) = x' \cdot \eta & \text{on } H_0 \cap \omega_0. \end{cases}
$$
We denote by Λ_ψ^n the corresponding Lagrangian manifold
\[\Lambda_\psi^n = \{(x, \xi) \in T^*\mathbb{R}^d, \ x \in \omega_0, \ \xi = \nabla \psi(x)\}. \] (16)

Lemma 3 The Lagrangian manifolds Λ_- and Λ_ψ^n intersect along an integral curve γ^n for H_p, and the intersection is clean. In particular, $\gamma^{0'} = \gamma_-$. Let $(x^0(\eta), \xi^0(\eta))$ be the intersection of γ^n and $H_0 \times \mathbb{R}^d$. The curve γ^n is parametrized as $\gamma^n(t) = \exp t H_p(x^0(\eta), \xi^0(\eta))$, and it has the asymptotic property like (8);
\[\gamma^n(t) \sim \gamma_1(\eta)e^{-\lambda_1 t} \times t(1,0,\ldots,0,-\lambda_1/2,0,\ldots,0) \ (t \to +\infty), \] (17)
with a non vanishing constant $\gamma_1(\eta)$ for η close to $\xi^{0'}$.

Let Γ_0^n be the level set of ψ, passing by $x^0(\eta)$:
\[\Gamma_0^n = \{(x, \xi) \in \Lambda_\psi^n, \ \psi_\eta(x) = \psi(x^0(\eta))\}. \] (18)

Lemma 4 For any η close enough to $\xi^{0'}$, one can find a Lagrangian manifold Λ_0^n such that

1. Λ_0^n intersects cleanly with Λ_ψ^n along Γ_0^n,
2. for any $t \geq 0$, the projection $\Pi : \Lambda_0^n = \exp t H_p(\Lambda_0^n) \to \mathbb{R}^d$ is a diffeomorphism in a neighborhood of $\gamma^n(t) \in \Lambda_\psi^n$.

The Lagrangian manifold $\Lambda_0^n = \exp t H_p(\Lambda_0^n)$ is then represented by a generating function $\phi(t, x, \eta)$:
\[\Lambda_0^n = \{(x, \xi); \ \xi = \nabla_x \phi(t, x, \eta)\}. \] (19)
and $\phi(t, x, \eta)$ satisfies the eikonal equation (12) for every η.

Now we fix η and define
\[\Gamma_t^n = \Lambda_0^n \cap \Lambda_\psi^n \ (= \exp(t H_p) \Gamma_0^n). \] (20)
If $(x, \xi) \in \Gamma_t^n$, then $\xi = \nabla_x \phi(t, x, \eta)$ and $p(x, \xi) = 0$ ($\Lambda_\psi^n \subset p^{-1}(0)$). Together with (12), we get that t is a critical point for the function $t \mapsto \phi(t, x, \eta)$ if and only if $x \in \Pi_x \Gamma_t^n$. More precisely, we have
Proposition 5 For each x close enough to γ^n, there is a unique time $t = t(x, \eta)$ such that $x \in \Pi_x \Gamma^n_t$. Moreover, it is the only critical point for the function $t \mapsto \phi(t, x, \eta)$ and it is non-degenerate, $\partial^2_t \phi(t(x), x, \eta) > 0$.

As a consequence, we obtain
\[\nabla_x \psi_n(x) = \nabla_x (\phi(t(x, \eta), x)), \tag{21} \]
so that $x \mapsto \psi_n(x)$ and $x \mapsto \phi(t(x), x)$ are equal up to constant. We choose ϕ so that
\[\phi(t(x, \eta), x, \eta) = \psi_n(x). \tag{22} \]

Finally we observe the asymptotic behavior of the phase function $\phi(t, x, \eta)$ when t tends to $+\infty$.

Proposition 6 The phase function $(t, x) \mapsto \phi(t, x, \eta)$ is expandible uniformly with respect to η:
\[\phi(t, x, \eta) - (\phi_+(x) + \tilde{\psi}(\eta)) \sim \sum_{j \geq 1} e^{-\mu_j t} \phi_j(t, x, \eta). \tag{23} \]
Here $\tilde{\psi}$ is a generating function of the $d-1$ dimensional Lagrangian submanifold $\Lambda_- \cap (H_0 \times \mathbb{R}_t^d)$, i.e.
\[\{(y', \eta) \in T^*\mathbb{R}^{d-1}; \eta = \nabla_y \phi_-(x_1^0, y')\} = \{(y', \eta) \in T^*\mathbb{R}^{d-1}; y' = \nabla_\eta \tilde{\psi}(\eta)\}, \]
and so
\[\tilde{\psi}(\eta) \sim -\sum_{j=2}^d \frac{1}{\lambda_j} \eta_j^2, \quad (\eta \to 0). \]
Moreover, the function ϕ_1 does not depend on t, and
\[\phi_1(x, \eta) = -2\lambda_1 \gamma_1(\eta) x_1 + O(x^2), \tag{24} \]
where $\gamma_1(\eta)$ is defined in (17).
4.2 Transport equations

We study the transport equations (13), (14), using the informations about the phase function $\phi(t, x, \eta)$ obtained in the previous subsection. We want to solve these equations under the condition

$$a(t(x, \eta), x, \eta, h)|_{H_0} = e^{-\pi i/4} \sqrt{\partial_t^2 \phi(t(x, \eta), x, \eta)},$$

(25)

so that the right hand side of (11), after the stationary phase method applied to the integration with respect to t at the critical point $t = t(x, \eta)$, reduces to u_0 on H_0. Notice that the initial condition (25) determines uniquely the solutions of (13), (14) on the hypersurface $\{(t, x); t = t(x, \eta)\}$, since this hypersurface is invariant under the flow of the vector field $\partial_t + 2\nabla_x \phi \cdot \nabla_\eta$.

As for the asymptotic behavior as $t \to +\infty$, we recall that ϕ is expandible and

$$\nabla_x \phi \cdot \nabla_x = \sum_{j=1}^d \left(\frac{\lambda_j}{2} x_j + O(x^2) \right) \frac{\partial}{\partial x_j}, \quad \Delta \phi = \sum_{j=1}^d \frac{\lambda_j}{2} + O(x) \quad (x \to 0).$$

Then again by Proposition 10 applied to $e^{St} a_j$, where

$$S = \frac{1}{2} \sum_{j=1}^d \lambda_j - iE_0,$$

we have the following asymptotic expansion.

Proposition 7 For each l, $a_l(t, x, \eta)$ is expandible and has an asymptotic expansion as $t \to \infty$

$$a_l(t, x, \eta) \sim e^{-St} \sum_{k=0}^\infty a_{l,k}(t, x, \eta) e^{-\mu_k t},$$

(26)

which is uniform with respect to η. Here μ_0 is defined to be 0, and $a_{0,0}$ is independent of t.

4.3 Asymptotics of the propagator

Let us fix η close to $\xi^{0'}$ and x close to γ. Then there are two t's which contribute in the semiclassical limit to the integration with respect to t of
the expression (11). One is \(t = t(x, \eta) \), which is the unique critical point, and the other is \(t = +\infty \). They correspond to the Lagrangian manifolds \(\Lambda_{t(x, \eta)}^\eta \) and \(\Lambda_+ \) respectively.

Since the contribution from \(t = t(x, \eta) \) reproduces the given data \(u_0(x') \) on \(H_0 \) after integration with respect to \(\eta \), we will obtain the propagator \(T_S \) in the form of Fourier integral operator after calculating the contribution from \(t = +\infty \).

Lemma 8 Suppose \(b \in \mathbb{R} \), \(\lambda > 0 \) and \(\rho > 0 \). Then as \(h \to 0 \), we have

\[
\int_0^\infty \exp\{ibe^{-\lambda t}/h - \rho t\} dt - \frac{1}{\lambda} \left(\frac{ih}{b} \right)^{\rho/\lambda} \Gamma\left(\frac{\rho}{\lambda} \right)
\sim \frac{e^{ib/h}}{\lambda} \sum_{n=0}^\infty \left(\frac{\rho}{\lambda} - \frac{1}{n+1} \right) n! \left(\frac{ih}{b} \right)^{n+1}
\]

Let us compute the contribution from \(t = \infty \) of the integral

\[
\int_0^\infty e^{i\phi/(t, x, \eta)/h} a(t, x, \eta, h) dt.
\]

If we substitute \(\phi_+(x) + \tilde{\psi}(\eta) + e^{-\lambda_1 t} \phi_1(x, \eta) \) to \(\phi(t, x, \eta) \) and \(a_{0,0}(x, \eta)e^{-St} \) to \(a(t, x, \eta, h) \) according to (23), (26), we get

\[
\int_0^\infty e^{i\phi/h} dt = e^{i(\phi_++\tilde{\psi})/h} a_{0,0} \int_0^\infty \exp\{i\phi_1 e^{-\lambda_1 t}/h - St\} dt
\]

Applying Lemma 8 with \(b = \phi_1 \), \(\lambda = \lambda_1 \) and \(\rho = S \), we get

\[
\int_0^\infty e^{i\phi/h} dt \sim e^{i(\phi_++\tilde{\psi})/h} a_{0,0}
\times \left\{ \frac{1}{\lambda_1} \Gamma\left(\frac{S}{\lambda_1} \right) \left(\frac{ih}{\phi_1} \right)^{S/\lambda_1} + \frac{e^{i\phi_1/h} ih}{\lambda_1 \phi_1} + O(h^2) \right\} (h \to 0).
\]

The leading term of the left hand side changes according to the real part of \(S/\lambda_1 \):

\[
\text{Re } S/\lambda_1 > 1 \iff \text{Im } E_0 > \left(\lambda_1 - \sum_{j=2}^d \lambda_j \right) / 2.
\]
Theorem 9 The propagator I_S can be written in the form

$$\frac{1}{\sqrt{2\pi h}} \int_{\mathbb{R}^{d-1}} e^{i\theta(x,\eta)} c(x,\eta,h) \hat{u}_0(\eta) d\eta,$$

microlocally near (x^0, ξ^0_+) with

$$\theta(x,\eta) = \phi_+(x) + \tilde{\psi}(\eta),$$

and if $\text{Im} \ E_0 < (\lambda_1 - \sum_{2}^{d} \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi h \lambda_1}} \left(\frac{S}{\lambda_1} \right)^{S/\lambda_1} \left(\frac{ih}{\phi_1(x)} \right) a_{0,0}(x,\eta),$$

if $\text{Im} \ E_0 > (\lambda_1 - \sum_{2}^{d} \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi h \lambda_1}} e^{i\phi_1(x)/h} \frac{ih}{\phi_1(x)} a_{0,0}(x,\eta),$$

and if $\text{Im} \ E_0 = (\lambda_1 - \sum_{2}^{d} \lambda_j)/2$

$$c(x,\eta,h) \sim \frac{1}{\sqrt{2\pi h \lambda_1}} \left(\Gamma \left(\frac{S}{\lambda_1} \right) \left(\frac{ih}{\phi_1(x)} \right)^{S/\lambda_1} + e^{i\phi_1(x)/h} \frac{ih}{\phi_1(x)} \right) a_{0,0}(x,\eta),$$

where $\tilde{\psi}(\eta)$ and $\phi_1(x)$ are given in Proposition 6 and $a_{0,0}$ is given in Proposition 7.

5 Appendix - Expandible symbols

Here we recall from [2] the notion of expandible symbol.

We denote by $(\mu_j)_{j \geq 0}$ the strictly growing sequence of linear combinations over \mathbb{N} of the λ_j's. We have for example $\mu_0 = 0$, $\mu_1 = \lambda_1$ and $\mu_2 = 2\lambda_1$ or $\mu_2 = \lambda_2$, whether $2\lambda_1 < \lambda_2$ or not.

First we introduce a convenient notation for error terms. We shall write, with $\mu \in \mathbb{R}^+$, $M \in \mathbb{N}$,

$$w(t,x) = \tilde{O}(e^{-\mu t|x|^M})$$

if, for every $\epsilon > 0$, we have

$$w(t,x) = O(e^{-(\mu-\epsilon)t|x|^M}).$$
Definition 1 ([2], Definition 3.1) Let ω be a neighborhood of 0 in \mathbb{R}^d. A smooth function $u : [0, +\infty) \times \omega \to \mathbb{R}$ is expandible if there exists a sequence (u_k) of smooth functions on $[0, +\infty) \times \omega$, which are polynomials in t, such that for any $n, N \in \mathbb{N}, \alpha \in \mathbb{N}^d$

$$\partial_t^n \partial_x^\alpha \left(u(t, x) - \sum_{j=0}^{N} u_k(t, x)e^{-\mu jt} \right) = \tilde{O}(e^{-\mu N + t})$$

(29)

If (29) holds, we write simply

$$u(t, x) \sim \sum_{k \geq 0} u_k(t, x)e^{-\mu kt}.$$

(30)

Proposition 10 ([2], Theorem 3.8) Let $A(t, x)$ be a real smooth expandible matrix with $A(0, 0) = \text{diag}(\lambda_1, \ldots, \lambda_d)$. Then, if $v(t, x)$ is expandible, the solution $u(t, x)$ to the problem

$$\begin{cases}
\partial_t u + A(t, x)x \cdot \partial_x u = v, & t \geq 0, x \in \omega, \\
u|_{t=0} = 0,
\end{cases}$$

(31)

is expandible.

References

