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The standard (g, K)-modules of Sp(2,R) I

The case of principal series

Takayuki ODA, (Graduate School of Math.-Sci., the University of Tokyo)
A FE (REKRFEERS)

Introduction

We investigate explicitly structure of the (g, K)-modules of the standard repre-
sentations of Sp(2,R) obtained by parabolic induction.

The group Sp(2, R) has 3 non-trivial standard parabolic subgroups: the min-
imal parabolic subgroup Py, the maximal parabolic subgroup Py associated
with the long root, and the maximal parabolic subgroup Ps associated with the

_short root. In this paper we discuss the case of the parabolic induction with
respect to the minimal parabolic subgroup Prin.

0 The standard (g, K)-modules SL(2,R)

We start with a short review of the most classical case, i.e., the case of the group
SL(2,R).

0.1 The principal series

We write

Go = SL(2,R), Ko = SO(2),
Ag = {ap = diag(r,r1)|r € R0}, Mo = {diag(e,e)|e € {£1}}

For a character o in My = {oo(= id),01} of My and a linear form v, €
Hompg (a9, C) (a9 = Lie(Ag)), the Hilbert space of the principal series repre-
senation is defined as

Hip oy = {f : G = C|f(nomoaoz) = 0(me)el0 P08l f(g),
ng € Ng,mg € My, ap € Ag,z € Gy, and f|K € L?(Kyp)}.

We have the irreducible decomposition of the Kq-module L?(Kp):
L*(Ko) = ®mezCxm
where
Xm : ko =19 € Ko - €™ € C.
Then we have the natural identification:

H ~ GABm€2Z(3Xm if ¢ = ay;
(vo,o) éme2z+1CXm if o =0j.
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Recall that

sy
N’

WXm = V—1m)m for w = (_01 0
and the commutation relations
[w,z4] = +2v/ "1z, for x4 = (:éz i:;) .
And also use the Iwasawa decomposition:

T4 = +2¢/-1 (8 é) + His Fv-1uw.

Then we have the following.

Proposition 0.1 (0) 2. xm € Cxmi2 and T_Xm € Cxm—2-
(1) T4Xm = (Vo + Po + M)Xm+2 3
(ii) Z—xm = (o + po — M)Xm—2.

0.1.1 Embedding of the discrete series and quotients as discrete se-
ries

Proposition 0.2 (i) If ¥y + 1 = k, there is an injective homomorphism Df c
T(k—1) Of (g0, Ko) modues. Moreover the quotient (g0, Ko)-modules 7(x_1)/ (D;c"EB
Dy) is of dimension k — 1. Note that we have sgn(o) = (—1)*.

(ii) If vp = —(k — 1), then

Ty Xk—2 =0and z_x_(k-2) =0.
Moreover the k — 1 dimensional space Fj_» generated by
{Xmim=—-(k-2)ym=—(k—-2)+2,--- ,m=k—2}

is the space of the symmetric tensor represenation of degree k — 2 of Go.
Moreover the quotient m_(;_1)/Fi—2 is isomorphic to D;i’ ® D;. We have
sgn(o) = (—1)k.

The proof of Propositions (0.1) and (0.2) are found in any introductory book
on the theory of representations of SL(2, R), or general theory of representations
of real reductive groups (see for example, Wallach [2], §5.6).

In this paper, we are going to show the analogue of Proposition (0.1) for
Sp(2,R) (¢f. Theorems 5.2 A and 5.2 B).

1 The structure of Sp(2,R)

1.1 Basic objects
We use the case n = 2, but start from general n. Our whole group is

G = Sp(n; R) = {g € MZn(R)lthng = Jhn, det(g) = 1}:
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(0 1,
where J, = (—ln 0

fix a maximal compact group K by

) . This is a split simple group of rank n of type C,,. We

K:=GnO@n)={g= (_“‘b ﬁ) |A+V=1B € U(n)}

once for all, which is also defined by using the Cartan involution 8 : g € G —
Jotg71lJ, as

K=0G°={geGl¢® =g}

. Any maximal compact subgroup of G is conjugate to this standard one. The
associated Lie algebras are given by

g={X € Mo, R)|*X J,, + JoX = 0,tr(X) = 0}

and

E={X = (_“; i) |A+ V=1B € u(n)}.

Writing p = g~% = {X € g/!X? = —X} we have a Cartan decompotion

g=%t+p.

1.2 Iwasawa decompostion

Notation We denote by e;; the matrix unit in M,,(C) with entry 1 at (¢, j)-th
component and 0 at other entries. Also by E;; the matrix unit in M,,(C).
For z =tz € M,(C) we set

px(z) = (:J:\/:P——l_a: i{;—lz) :

The homomorphism of groups « : U(n) — K is the inverse of

(_"}3 ﬁ) € K A+V=1B e U(n).

The induced homomorphisms of their Lie algebras and of their complexifica-
tions are denoted by the same symbol «.

Lemma 1.1 Put Ege‘. = g n,is Ee;+e,~ = Ei+n,j +Ej+n,,‘ and Ee.--—e_.,- - Ei,j -
E; ;. Then we have

p+(ei) = 2/ —1Ea,, + H; 1 £ k(ey;)

€ij T €jiy _ tele) )
p:l:(_]_i—g—) - (Ee.'—ej + \/‘-'_]-Ee.'+ej) {—K/(ij) if (-) .

Proof We can show this by direct computation.



1.3 New Notation for n =2
When n = 2 we use the following notation.
New Notation We write
Xi,ii = ei(eii) (Z = 1,2),

and

ez + 621)

Xi,12>1= ei( 5

Then Iwasawa decomposition tells that
X4 = £2V=1Ey, + H; iya % £(eii),
and
Xi12=F¢ oy + ‘/_—lEe1+ez +k(e21), X_ 12 = FEei—ey — \/_—]-Eel-i-ez — k(ey2)-
Here

Eel——eg - E12 - E431 and Ee1+e3 = E14 + E23'

1.4 The action of K on p.

We denote the isomorphism between U(2) and K and the associated isomor-
phism between their Lie algebras or the complexified Lie algebras by

k:A+VoIBEUQ), or €u()c — (_AB i’) €K, or €tc.

Here A, B € M,(C). Via s, U(2) or u(2)c = gl(2, C) acts on p. through the
adjoint action of K on pi. For pi(z) (z = !z € M2(C)) this reads that

E(A+\/:TB)-éi(w) = (_f}; ﬁ)( 2 imeA B)—l

+/-1z -z -B A
= pi((A+/=IB)at(4 £ /~1B)).

Passing to the Lie algebra we have the following.

Lemma 1.2 For p, we have

ke11) X+ 11 =2X4 115 Klen) X412 = Xy 125 k(e11) Xy 22 =0.

k(e12) X411 =05 rw(e12) X112 = X4 115 k(e12) Xy 22 = 2X 4 12.
wlean) X1 =2X 1125 k(e21)Xy2 = X225 s(e21) X422 = 0.
k(ea2) X 11 = 0; klez) X412 = X125 Klen) Xy 22 = 2X4 20

And for p_ we have

kle1)X_11=—2X_11; kle)X-12=X_12; K(e1)X-22=0.
k(e2)X-11 = —2X_19; k(e2)X_ 12 =—X_29; n(e12)X-22=0.

k(e21)X-11 =0; K(ea)X_ 12 =—X_11; k(€)X 22 =—2X_1o.
5(322)X—,11 = 0; K,(ezz)X..,lz = X_,lg; K)(@gg)X_.,zz = —ZX_,22.

Proof By direct computation.



2 K-modules

2.1 The canonical basis for simple K -modules

Since K is a compact group, any irreducible continuous represenation (7, W)
of K is of finite dimesion, and unitary. We refer to such (r,W,) as a sim-
ple K-module. Since K is a connected Lie group, the category of continuous
finite dimensional representations of K is equivalent to the category of finite
dimensional representations of ¢ = Lie(K). Since the complexification fc of
t is isomorphic to gl(2, C), the set of isomorphism classes of simple £-modules
is parametrized by the set L = {(l1,12) € Z?, l1 > I} of dominant integral
weights of ¢c = gl(2, C).

Each irreducible represenation, or simple module 7(y,; m,q) of Ec = gl(2, C)
associated with the dominant weight (m;js,ms2) has a basis parametrized by
the Gelfand-Tsetlin patterns M = ("‘12 "‘22) (myz < myp < mag).

mi1

Proposition 2.1 There exists a basis {f(M)} mecz(mia,m22) I Timya,mas) SUCh
that

e11 f(M) =(m11 + mae) f(M);
eznf(M) =(m1z — ma1) f(M);
e1sf(M) =(m1z — m11) f(M41);
e21 f(M) =(my1 — ma2) f(M-1).

with respect to the simple roots e; A+, EitLi (i=1,2) in gl(2,C). Here M, =

(m11+1) M_; = (m*u:l) for M = (

Proof This is well-known and classical fa.ct

Definition 2.1 A simple K-module 7 equipped with a canonical basis is called a
marked simple module or a simlple K-module with marking.

Note that the choice of a canonical basis in a simple K-module is unique
up to scalar multiple by Schur’s Lemma. The same lemma implies that if there
is an isomorphism between K-simple modules with marking then it is unique
strictly (not up to scalar). In particular the only automorphism of a simple
K-module with marking is the identity map.

2.2 The K-modules Ady,.

Lemma 2.2 Up to scalar multiple there are identifications between natural
basis:
(i) For the isomorphism p4 = 7(3 ) of K-modules,

X = f<220)’ X2 = f(210), Xy = f(200)-

(ii) For the isomorphism p_ & 7o _3) of K-modules,

X_po= f(o 0— 2), X_g2= ‘f(o __I 2), X_u= f(o _; 2)-

Proof By direct computation.
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Remark The above lemma, tells that
(P4, { X411, X412, X+,22}) and (p—, {X 11, ~X_ 12, X~ 22})

are simple K-modules with marking. From now on we always take these marking
for p4..

2.3 The symmetric tensor representations of K

Given a positive integer d, we define a square matrix Sym®(S(k)) of degree d+1

associated with S(k) as follows.
For two independent variables U,V we define two linear forms by

U = suU + 821V and V= 812U + 822V,

or equivalently by
U,V =(U,V)-S(k).

Then by using homogeneous forms {(U’)*~*(V')*}o<i<d of degree d, we define
a (d+1) x (d+ 1) matrix Sym®(S(k)) by

((Ul)d: T, (Ul)d__i(vl)i, Tt (V’)d) = (Ud’ e aUd_iVia et 1Vd) ) Symd(S(k))
Here is a description of the (i, 7)-th entry (0 < 4, < d) of Sym?*(S(k)).

Lemma 2.3 By the symbols (a;,--- ,a4), (b1, - ,ba) we denote the sequences
of the elements in the set {1,2} with length d. For given j, we fix a sequence
(1,---,1,2,---,2) with 1 in the first d — j entries and 2 at the remaining j
entries. For given i, we denote by Sh(d — i,4) the set of all (d — i,4)-shuffles of
two sets {1,---,} of cardinality d — i and {2,-- ,} of cardinality ¢. Obviously
the cardinality of Sh(d — ,4) is (). Then the (i, §)-th entry of Sym?(S(k)) is

given by
Z 3a1,b1 e 3a4,bd-
(al 3 @2, aad)ESh(d—ixi)y(bl b 1bd)=(1 x(d——j),zxj)
Proof The proof is a high-school mathematics.

The d+ 1 entries of each row vector of Sym®(S(k)) make a canonical basis of
a simple subspace in L?(K) with highest weight (d, 0). In fact the intertwining
property

Sym®(x - k) = Sym®(z)Sym?(k) (z,k € K)

implies that the entries of the each row generates a simple submodule of type
(d,0) and the fact that this is proportional to the caninical basis is checked

directly.

Definition We define a d + 1 colum vectors {sgd) Yo<i<a of d + 1 elementary
functions by

tsymd(s(k)) — (S(()d),sgd), e, Sc(id))°



Notation (matrices of elementary functions) For even d, we set

d d) (d d
sfo,)z,_,_,d] = (6, ... s
and
a d) (d d
Sy = (617,887, 82,).
For odd d, we set
d d) _(d d
Sfo,)2,---,d-1] = (Sc(l ),Sg ), v ’Sc(i—)l)
and
d d d d
Sfl,)3,m,d] = (Sg ))Sg )s P asfi ))
For a colum vector *(ag, a1, -+ ,aq) of size d + 1, we define *-operator by
* a‘O a4
: —-Qq-1
= ad—2
a-d (“1)”'00

Also for the matrix gfi)_” ) we set

*gfi) 0] = (*§§d), e ,5‘(30‘,)).

Then we have a relation *Sf;,)---,o] = d(k)™- Sf:,).., A"

Lemma 2.4 (Maching with the canonical basis) Let < sﬁ") > be the simple
K-module generated by the functions in the entries of the vector sgd) for each
i (0 <14 < d. Then there is a (strictly) unique isomorphism of K-modules from
this to 7(4,0y which maps the (a+1)-th entry of sgd) to the canonical basis f (% °)
in 7(4,0)-

Proc()f ’%‘he proof is done by direct computation, utlizing Lemma (3.1) and the
Leibniz rule.

2.4 Irreducible decompostion of 730 ® 74,0

In later sections, we need irreducible decompostion of the tensor product p+ ®
T(1,,1,) 88 K-modules. Since py = 7(00),0- = T(0,—2) = T(2,0)[—2] and 7, 1,) =
T(1;—15,0)[l2], it suffices to consider only the irreducible decomposition of 73 gy ®

T (d,0)+
As we know, Clebsh-Gordan theorem tells that

T(2,0) ® T(d,0) = T(d,2) © T(d+1,1) © T(d+2,0)-
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Here the factor 7(49) Or T(441,1) is dropped if d < 2 or d +1 < 1 respec-
tively. What we want to have is an explicit description of the injective K-
homomorphism, which is unique up to scalar multiple,

T(d,2) C T(2,0) ® T(d,0)> T(d+1,1) C T(2,0) ® T(a,0) and T(d42,2) C T(2,0) ® T(d,0)

in terms of the canonical basis

Lemma 2.5

(1) The image {f’ (d’az) }2<a<a of the canonical basis {f (d’a 2) }2<a<a With re-
spect to T(4,2) C T(2,0) ® T(d,0) is given by

1) =9(5) (05 -2 () s () + () 0 ()

(i) The image {f'(**Y *)}1<a<das1 Of the canonical basis {f(**;’ ) }1<a<ant
with respect to 7(411,1) C T(2,0) ® T(d,0) iS given by

FEet = 5 f3)e ()
o2 f(0 e f()
+ o= fG0 e f(R):

(iii) The image {f'(**? °)}1<a<d+1 Of the canonical basis {f ("2 9 }<a<dtr
with respect to T(a+2,0) C T(2,0) ® T(4,0) i8 given by

F1(#720 = )@ ()
+ FGO) @ (59
+ FGY) @ £(%,9)

for0<a<d+2

Proof One can confirm this by direct computation using Proposition (2.1).

3 Constituents in L*(K)

In later sections, the representation spaces of standard representations of G is
naturally identified with a subsapce of L?. Therefore we have to analyse L?(K),
which is a K x K bimodule by

f(z) — f(ki'zks) (f € L*)K), (k1,k2) € K x K).

Let K be the unitary dual of K, i.e., the set of unitary equivalence classes of
finite dimensional irreducible continuous representations of K. Then the Peter-
Weyl theorem tells that there is a decomposition of K x K-bimodules

L*(K) = @TEKT* R 7.

Here 7* R is the outer tensor product of 7 and its contragradient representation
7*. We construct each factor 7* ® 7 explicitly in this subsection. .



80

Let (I1,13) be the dominant weight which is the highest weight of each .
Then we may rewrite ’

LK) = &1, .12)eL+ 1y 15) B (11 1)

Thus we have to know each factor ’r(";l l) ® 71, 1)
Note here that the representation 7(; ) is the tautological represenation

K — U(2) C GL(2,C), 71,1) is its determinant represenation. ~Moreover each
Ty da) = T(ig,ls) ® T(ly—15,0) 15 the tensor product of 'r(‘%lf) and the symmteric

tensor representation Sym{1—%) of the standard representation.
Let us start with small constituents:

7(71,12) = (11 ,l2) ((11112) = (170)1 (0) "1): (2a0), (Oa —2)

. Let

T = (_AB ﬁ) €K - S(z) = (:;g; Zzgg) = A+VIB e U(2)

be the tautological representation. Then 4 entries {s;;(x)} constitute a basis of
the space T(O,—-l) X T(I,O)'

Lemma 3.1 Let & :— be the differential of £ : U(2) = K. Then the right
regular action of M3(C) = u(2)c = gl(2,C) on {si;}1<i,j<2 is given as follows:

k(e11)si1 = 8i1, k(ewr)siz =0 (i =1,2);
K(ex)sii =0, K(ex)sip =82  (i=1,2);
k(e12)si1 =0, &(eiz)siz=sa  (i=1,2);
r(e21)8:1 = Si2, k(ez1)si2 =0 (1=1,2).

The contragradient representation 7, —;)) of the tautological representation
7(1,0) 18 the complex conjugation of 7(1 o).

Lemma 3.2 (The dual of the tautological representation) For {3;;} we have
the following:

k(e11)3in = —8i1, £K(e11)di2a =0 (i=1,2);
k(e22)8i1 =0, k(e22)8i2 = —8ia (i =1,2);
k(e12)8i1 = —8i2, k(e12)812 =0 (t=1,2);
k(e21)sn =0, Kk(e21)8i2a = =31 (i=1,2).

Proofs The above two Lemmata are proved by direct comptation
Now let us discuss the case of general (I1,0s):

T(*l]_,lz) T(zl)lﬁ) in LZ(K)'

Notation Let < s,(d) A™ > be the subspace of functions in L?(K) generated
by the (d + 1) entries of the vector s§“>Am = A""sgd) of elementary functions
on K.

Proposition 3.3 (i) For each i (0 < 7 < d) the space < sgll_l"‘)A’2 > is a simple
K-module with dominant weight (l;,l3) € L. Moreover the vector sgll—l’)A”



is a vector of canonical basis in this space.
(ii) The sum

li—la
Z < sgd)Al2 >

=0

is a direct sum generating the 7, ;,)-isotypic component Ty 1) B Tt 1) 10 the
right K-modules L?(K).

(iii) The value at the identity e € K of the vector sgll_l"’) A" is the (i + 1)-th
unit vector *(0,---,0,1,0,---,0).

Proof The statements (i) and (ii) are classical facts. The claim (iii) follows from
the fact that Sym(e) is the identity matrix of size d + 1 and A(e) = 1.

Definition The marking on < s> Al > in L2(K) specified by (i) of the
above lemma is called the marking by elementary functions.

4 The principal series represenations and their
K-types
4.1 Definition of the principal series representations

In the begining we have to recall the standard minimal parabolic subgroup Ppin
in G = Sp(2,R). Since G is a split group, this is also a Borel subgroup with
split Cartan subgroup T'(A) with identity component

A= Amin = {diag(alaaba;l:a;”a‘i € R>}'
The unipotent radical of Ppy, is given by Npin = exp(tmin) with

Nnin = @aE{Zel ,2e2,e1 —e2,e1+e2} Ba-

Here for the simple roots {e; —e2,2E>} in the positive root system {2e;,2e,, e; —
ez, €1 + ez}, we put

Gei—e; = R(E12 — F34) and g2, = RE3,.

To specifty a quasi-character e” : A — C* of A, we have to choose its logarithm
v € Homg(a,C) = a *¢. Here a = Lie(A). For

log a = diag(log a;,log as, —logay, — log az) = diag(t1,ta, —t1, —t2)

with ¢; = loga; € R (i = 1,2), we define the coordinates (1,v2) € C? of v by
v(loga) = 1ty + rety. Then the half sum p of the postive roots

1
p= '2'{261 + 262 + (61 -_ 62) + (61 -+ 62)} = 261 + €5

has the coordinates (2,1).
We also have to prepare another data, i.e., a character o of

a1

M = ZA(K) = T(A) N K = {diag(e1,62,€1,€2)| € gip2 = {£1} (i = 1,2)} = (Z/(2))e2-
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The outer tensor product of the quasi-character e*** of A and o € M defines a
1-dimensional representation of the product AM and which is in turn extended
t0 Ppin via the natural surjection Prin = AM = Ppin/Nmin.

With these data (o, v) given above, the parabolic induction

—— G +
T(Pryinsow) = Indp_. (e"77)

is a Hilbert represenation of G by the right quasiregular action on the Hilbert
space

H,:= { f:G - C,locally integrable
|  f(nmaz) = o(m)e’(a)f(z), =€ G,n€ Npin,m € M,
Ji |7 (R)[Pdk < oo}

with inner product

(f1, f2) = /K f1(k) f2(k)dk.
Here dk is the Haar measure of K.

4.2 Canonical basis in the suspace H, x of K-finite vectors

Retricting each function f in H, to the subgroup K, we have an element in
L*(K). Thus H, is identified with a subspace of L?(K).

Proposition 4.1 (i) By the restriction map to K, the Hilbert space Hp_,, o,
is identified with a closed subspace of L?(K):

Ly oK) :={ f:K—=CinL*K) |
f(mz) = o(m)f(z) for a.e. m e M,z € K}.

(ii) Moreover as a unitary representation of K, it has an irreducible decompo-
sition :

Loy (K) 2 8, {(T*IM)[g] BT}

Here (7*|M)[o] is the [o]-isotypic component in (7"|M), which is considered as
a trivial K-module here.

Proof The first claim is well-known fact. The second follows from the irreducible
decomposition of L?(K) and the definition of L?M,a) (K).



5 The shifts of K-types and contiguous relations

This section is the main result of this paper. We explain our problem concep-
tullay in the first subsection. After that in the follwoing sections, we compute
the necessary data explicitly.

5.1 General setting

The K-finite part H, g of the representation space H, of the principal series
7 is also a E-module. Because of the Cartan decomposition g = £ @ p, in order
to describe the action of g = Lie(G) or gc = g ®r C it suffices to investigate
the action of p or pc = p4 @ p-. Here p; and p_ are the holomorphic part and
antiholomorpic part of pg, respectively.

Given a non-zero K-homomorphism i : 7 = 7, ,1,) C Hr x from a simple
K-module 7 to Hy . Then the subspace p;Im(:) in Hy g is the image of the
canonical surjection

p+ ®c 7 — p+Im(d),

which is a K-homomorphism with p, endowed with the adjoint action Ad of
K. Since (Ad,py) & 7(3,0), the Clebsh-Gordan theorem implies that there are
three injective K-homomorphisms

ia:Ta CPpr®c7 (a=1,2,3)

TL = T 42,00) T2 = T 41,02+1) T3 = T(1,12+2)
for general (I1,l2). Then the composition:
Ta C P47 == p4lm(é) = Hr i

gives an element j, € Homg (74, Hy) determined by i € Homg (7, H.). Hence
we have 3 C-linear maps

I, : Homg (7, Hy) = Homg (7a, Hx).

We we replace 7’s by simple K-modules 7’s endwowed with markings of canon-
ical basis {f ((‘1 k‘”))} in the above setting (we may say this is a kind of rigidi-
fication), then Homg (7, H,) etc have induced canonical basis derived from the
distiguished set of canonical basis by the entries of the vectors sgl‘—l"’)A’2 (0<
i < ly —[l3) in the 7-isotopic component H,([7]).

Thus we have settle two problems:
Problem 5.A Describe 7,’s in terms of canonical basis.
Problem 5.B Determine the matrix representations of the linear homomor-
phisms

[, : Homg(r, Hr) = Homg (7,4, Hr).

with respect to the induced basis.

The first problem is setteld in the next subsection of Dirac-Schmid operator,
and the second problem is setted after that. As a result, we have infinite number
of ’contiguous relation’, a kind inifite system of differential-difference relations
among vectors in H.([7])’s and Hy([7a]).

93




94

5.2 The canonical blocks of elementary functions

We define certain a matrix of elementary functions correpondinng to each 7, .-
isotypic component in our P, principal series.

Definition 5.1 The follwoing matrices are called the canonical block of elementary
functions for 7, 1,)-isotypic component:
When 7p,.,.c i even, we consider the matrices

sga”...,.ﬂAlz if ((~1)4, (=1)2) = (e1, €2);
s Al (1), (~1)%) = (~&1, —€2).

When 7p,.,.c is odd, we consider the matrices

Sig,) fd“llAlz if ((—1)11’ (-1)12) = (51,&‘2);
S[fv) 1d]A12 if ((_1)11: (_1)12) = ("51, —62).

The above definition amounts to fix basis in the image of the evaluation map
of the 7y, 1,)-isotypic compnent:

T(‘l,lZ) ®c HomK(T(ll,lz)J Hﬂ') — H1r,

compatible with the tensor product decomposition.

5.3 The chirality operators or Dirac-Schmidt operators

We settle Problem 5.A in this subsection.

5.3.1 Construction of the operators
Firstly we have to introduce a notation to denote various diagonal matrices in

the blocks of some matrices.

Notation 5.C Let the letteres a,b,a;,as be integral variables. Given two
integers co,c; such that ¢o < ¢, and let f{a) be a (polynomial or rational)
function in a in the variable a. Then by

diagcogaSQ (f(a))’

we denote the diagonal matrix of size ¢c; — ¢p + 1 with the number f(a) at the
((a—co)+1, (a—co)+1)-th entry. This notation is used not only to denote a single
(square) matrix, but also to denote some blocks of a (non-square) matrices.

Definition 5.2 (i)+ : We define a matrix Cy;_s) of size (d — 1) x (d + 1) with
entries consisting of elements in p; by

Cri-a) = Lo® X422 —-2L1 @ Xy 10+ La® X 1y
with three constant matrices of size (d — 1) x (d + 1)

Lo := (Eg-1,0(4-1)x150(d~1)x1)»
Ly := (0a—1)x1, Ba—1,0a-1)x1),
L2 := (0(g—1)x1,0(d-1)x1, Ea-1)-




(ii)+: Secondly we define a matrix C,.(q) of size (d+1) x (d+1) with entries
consisting of elements in py by

1 1 1
C+i(0) = _EMO ® Xi 2 — 'd‘Ml & X+,12 + EM2 ® Xt

with 3 matrices My, M1, Ms of size (d+ 1) x (d + 1):

01.4 0 }
M, := < ,
0 [dalglgagd(a) 04,1
M, :=diagoc,<q(d - 2a),

M — Od’] diangSd(d +1- a)
2 0 O]_,d .

Remark We have a relation

(Mo + M1 + My) =0.
1

(iii)+: Thirdly we define 3 (d + 1) x (d + 1) diagonal matrices

Ng*? = diagy<,<q((a+1)(a + 2)),
Nped = diagy<,<q((d+1—a)(a+1))

and
Nped = diag,c,<4((d+1—a)(d+2 - a)).

Then we put

c B 1
HED T @+ 1)(d+2)

0 0 Nyed
No=| 0 |, Ny={|Nred], andNo=| 0 |.
NZed 0 0

Remark We have a relation

{(No® X420 +2N;1 @ Xy 120+ No® Xy 11}

with

1
(d+1)(d+2)

-{(No + 2N, + No} - )
1 1
Replacing the elements X 11, X4 12 and X 22 by the elements X_22,X_12

and X_ ;; in p, we define three matrices with entries in p_ by

Coym2y =Lo®X_11+2L1®X 12+ La®X_ 2
Cf;(o) L= “%Mo X _ 11+ %,-M1 QR X_12+ %Mz ® X_ 22
C..;(_*.z) = W%H—ZT{NO ® X._,]_l - 2N1 ® X_,12 + N2 ® X_,22}.
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5.3.2 Another description of the operators

The above definition of the matrix operators C,;(.) is a bit difficult to grasp. We
give here another row-wise desrition to undertand these matrices and for the
later use in the proofs.

Observation
(i) For each a (1 < a < d — 1), the a-the row of the (d + 1) x (d — 1) matrix
C+;(_~2) is given by

0,---,0, X122, ~2X 12, X411,0,- -, 0).
N e’ W
a—1 (d—l)—a.

(ii) The a-th row (1 < a < d+1) of the (d+1) x (d+ 1) matrix Cy(g) is given
by
-1 d—2a+2 d—a+1
(0’_._,0’_0’ X+22’— 2 X+12, ¢ X+11101"'10-
e e’ d d d
a—2 (d—a)

Here the segment 0, --- ,0 with the negative length means that it erases
N e

-1
the fist subsquent entry or the last proceeding entry of the middle segment

of the length three of the row vector given above.

(iii) The a-th row (1 < a < d+3) of the (d+1) x (d+ 1) matrix C () is given

by
a—2)(a—1 d+3—a)(a—1
O, 0 (i Ko, 2t X,
a—3
d+2—a)(d43—
iﬁ"ﬁ%ﬁlxﬂl,o,... ,0).
(d+1—a)
Here the segment 0,---,0 with the negative length —m means that it
——

—m :
erases the fist m subsquent entries or the last m proceeding entries of the
middle segment of the length three of the row vector given above to get a
row vector of length (d + 1).

(i) For each a (1‘5 a < d — 1), the a-the row of the (d + 1) x (d — 1) matrix
C_,(—2) is given by

0,---,0,X_11,2X_12,X_22,0,---,0).
a~-1 (d—1)—a

(ii) The a-th row (1 < a < d+1) of the (d+1) x (d+ 1) matrix C_,(g) is given
by

a—1 d—2a+2 d—a+1
(OJ" : 507_"_"—X—-11: _——_X—-12, ——X—-22:0"' N 10)
—_— - d d d Nt

a~2 ' (d—a)
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Here the segment 0,--- ,0 with the negative length means that it erases
N e’

-1
the fist subsquent entry or the last proceeding entry of the middle segment

of the length three of the row vector given above.

(iii) The a-th row (1 < a < d+3) of the (d +1) X (d+ 1) matrix C_;(0) is given °

by
{a—2)% ~1) (d+3—a)(a—1)
(Oa"' a07 (d+1 3+2 X 11, —2 d+1ad(iz) X_12,
a—3
d+2—a)(d+3—a
(d+l§§d+2) X_92, 0) Tt 70)

(d+1—a)

Here the segment 0,---,0 with the negative length —m means that it
N e’

erases the fist m subs&uent entries or the last m proceeding entries of the
middle segment of the length three of the row vector given above to get a

row vector of length (d + 1).

5.4 Preparation for contiguous relations

Now we can introduce the constant matrices which represent the homomor-
phisms T', of Problem (5.B).

The case of even principal series
Lemma 5.1.A (even principal series, p.-side)
(i) (even,+): We have an equation with some constant matrix T4 ;(—2);00(d,m)

of size £ x (§+1)
Cri—2) (Sl A"} ={S{ 7 A"} Tiy—2y00(d, m).
Similarly we have an equation
C+;(—2){S§f,)--- ,d—1] Al2} = {Sff:.z,)d_a]Alz'q—z} : I-‘+;(—2);11(da m)

with some constant matrix T'y,(_g),11 of size (§ —1) X §.
(i) (even,+): For some constant matrix [',(),01(d,m) and +i0310(d m) of
sizes $x)4 +1) and (£ + 1) x § respectively, we have

C+;(0){ng,)...,d]Alz} = {Sﬁ,... ,d—l]A12+1}F+;(0);01(d’ m), if (-1)* = sgn(o),
and
Cr{SE.. 4y} = {80 gAY oyold,m),  if (1) # sgn(o)-

(iii) (even,+): For some constant matrix I';;(42);00(d; m) of size (% +2) x (% +1),
we have

Crit+2) S%(;l,) ,J]Alz} = {ngft?,)d+z]Aln}F+;(+2);00(d’ m).
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vofs1ze 2(d——l)x 5(d+1)

Moreover for some constant matrix I'y;(19).11 (d,m) of size (£ + 1) x §, we have
d d
C+;(+2) Sfl,) At2} —_— {S( +2)d+1]A }F+ (4+2);11 (d m)

(even case, p_-side)

(d even, p_)
(i) (even,-): With some contant matrix I'_;_3y.00(d, m) of size 2d x %(d +2),
we have

Co {8 4ARY = {7, , AL} .T_ (4 (d,m).
and with some contant matrix I'_,(_s),11(d, ™) of size 3(d — 2) x 1d, we have
2{S(d) A%} = {S(d 24 A"} T cayu(d,m).

(ii) (even,-): For some constant matrix I'_;(g),00(d,m) and I'_q),01(d, m) of
sizes 3d X 3(d +2) and (d + 2) x 3d respectively, we have

CJ{ng,)...,d]Al"'} = {81, a-1)A" T T op00(dsm),  if (=1)¢ = sgn(o(es)),
and
C{SE. 4y} = {8{5). 4A" I @n(dm), if (-1) # sgn(o(e))
(iii) (even,-): For some constant matrix I'_,(12);00(d, m) of size 3 (d+4) x 3 (d+2),
we have
Cia ng,)..., A} = {S(&T?,)d.m AT ya)00(ds ™).
and for some constant matrix I'_,(42),11(d,m) of size 1(d + 2) x 1d we have

- d
C+2 Sfo,)- Alz} {S(d-*-Z)d-4~2]Al:2 }F—;(+2);11(d’ m).

Remark If the size of the matrix consider above is impossible, say, if d = then
% — 1 = -1, the correponding matrices do not exist and the equation also do
not exist.

We have similar formulation for the case of odd principal series.

the case of odd principal series
Lemma 5.1.B (odd principal series, p..-side)
(i) (odd,+): We have an equation with some constant matrix I';;_2).01(d, m)

Cort—n (Sl 4 A} = {8072, AR} T, oy0(d,m).
Similarly we have an equation

C+:(—2){S[(f,)... gAY = {S[(]i—.-.?,)d—ﬂ A%} Ty Cay0(d, m).

with some constant matrix I'4.(_2),10 of size $(d +1) x 1(d + 1).
(ii),(odd,+): For some constant matrix I'y,(o),01 (d, m) and T+(®i0(d, m) of size
$(d+1) x £(d + 1) respectively, we have

Cy (0){S i 1]A } =150, A" " om(dm), if (-1)? = sgn(o),



and

d .
Cor 8. gA"Y = {85 4 yA* i 0p0(d,m),  if (=1) # sgn(o).

(iii),(odd,+): For some constant matrix 'y 2);01 (d, ™) of size %(d +3) x §+ 1),
we have

d 2 2
Cri(+2) S[(o,)...,d_l]Al }= {ngﬁ?,)d+1]Al I i+2)500 (d,m).

Moreover for some constant matrix I'y;(12);10(d, m) of size %(d +3) x %(d +1),
we have

Cara) S\ 481} = {S{17, AT (hayno(d, m).

(the case of odd principal series, i.e., d even, p_-side)
(i) (odd,-): With some contant matrix I'_(_2),01(d, m) of size }(d—1) x 3(d+1),
we have

c:2 {ng,) ,d_1]Alz} = {Sg;.z,)d_g]Alz—z} : F-—;(-—2) (d’ m)

and with some contant matrix I'_;_z),10(d,m) of size L(d-1) x 1d+1), we
have

6:2{S§f,)--- ,d]Alz} = {Sff:-z,)d—zlAlhz} ’ I‘—:(—2);10(d’ m).

(i) (odd,-): For some constant matrix I'_,(g).01(d, ™) and I'_;(0);10(d, m) of size
1d+1) x L(d+1) and $(d+1) x 3(d + 1) respectively, we have

Co (St 4_yAB} = {Sf .. gA" T (dm), if (-1)* =sgn(o(e:)),
and
oS, 4Al} = {85, A" IT_0(d,m), if (-1) # sgn(o(s:)-

(iii) (odd,-): For some constant matrix I'_,(4.2),01(d, m) of size 5(d+3)x $(d+1),
we have

— d
Cra S 4y} = {S{5 g A" T s2y01 (d,m).

and for some constant matrix I'_(49);10(d,m) of size ld+3)x 3(d+1), we
have

Ciz S%f,)...,JJAh} = {Sﬁij_.??d.{.z]Alz T j(+2)10(dym).

5.5 Contiguous equations: Determination of intertwining
constants

Now we can decide the homomorphism I, of Problem 5.B. We have to com-
pute the matrices I'yi;(4)(d, m) of intertwining constants explicitly. These are
basically generalized di-diagonal matrices, which are expressed as a sum of two
blocks of square diagonal matrices; the sizes of two blocks are the same or dif-
ferent up to +1. Each diagonal square blocks of size ¢ — p + 1 is written in the
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forms: diag,<,<,(l(a)), where the diagonal entries I(a) are linear functions in
the variable integer a.
This is the main result of this paper.

The case of even principal series
Theorem 5.2.A The matrices of constants of the 12 equalities in Lemma

(5.1.A) are given as follows:
(p+-side)
(i) (even, +):
Ly i(~2)00(d,m) = [diagOSaS(d—-z)/z (v2 + p2 + m + 2a), O]
+ [0, diagy<q<(d-2)/2(1 + p1 + m — d + 2a)] .

Ty, (-2)11(dym) = [diagocac(a—ay2(v2 + P2 +m +2a +1),0]
+ [0, diagoc,c(a—gy2(1 + P+ m—d+2a+1)].

(ii) (even,+):

. 2a -1
T'i;0;01(d, m) =[diag; <o<aya(— ad {(v2 + p2) + m +2(a - 1)}), 0]

. d+1-—-2
+[0, dlag1ga5d/2(—'——d——a{(l/1 +p1) +m+2(a—-1)})]

di . . (dt2-2a + tm 42— 3
I‘+;(0);10(d,m)=[ ag1<a<d/2 (222 () + p1) 4+ m+ 20 })]

0

0
+ 1, o
[dmg15a5d/2—1(“2a‘{('/z +p2) +m+2a— 1})]

(iii) (even,+):

[ s d4-1-—-2a -
diagy<,<a/z( +1(d42_1§%ﬁ§) 22) (v, +p1 +m+d+ 2a))]

01x(d/2+1)

F‘H (+2);00 (d’ m) =

+ 01 % (a/2+1)
s 2a41 2
_dlagogagd/z(—ﬁ(—;l(dtl) %Z:é (vo + p2 + m + 2a))

FT d—2a)(d+1-—~2a
Tii2p(d,m) = diag,c,c sos D@y -t tm+d+2a+ 1))}

01x(d/2)

[ 01x(d4/2) ]

+ | ;. a o
Ldlagogagi;_?( %dif 3.,.;3 (va + p2 + m + 2a + 1))




(p_-side)
(i) (even,-): We have

T_,(—2y00(dym) = [diagycac(a—2)/2((1 + p1) — (m +d + 2a +2)),0]
+ [0, diago<o<(a—2)/2((v2 + p2) — (m + 20 + 2))] -

T_,(_)11(d,m) = [diagocac(d-a)/2((11 + p1) — (m +d +2a+ 3)),0]
+ [0, diagogag(d-4)/2(('/2 +p2) — (m +2a+ 3))] .

(ii) (even,-): We have

F—;(O);Ol (dv m) = [diagISan/2(2aT—1'{(Vl + pl) —m-— 20’})’ 0d/2i*x1]
+ [Od/Z:i:*XI:diangan/Z(d+ld_2a{(V2 + p2) —m — 2a})]]

diag, <, <o (2728 {1y + p) — (m + 20 — 1)})
I'_,(0);10(d, m) :[ iag) caca/2(“55 20 )

0
+ I:diaglsan/g _%{(Vl +p)—(m+2a+ 1)}):' '

(iii) (even,-):

diagy ¢, can(EF2EE29) (4, + py) — (d+m) +d — 20})]

I'_(+2).00(d,m) = Oux(d/2+1) 'I

L
" [ 01 x(d/2+1)> ]
a a+-2
dlago<a.<d/2( 2(_—%_“1; 3:2_) {(rn + p1) — (d+m) +2d — 2a})

dlago<a< d-3 (%{(V +pa) — (m+2a+1)})
01 x(d/2)

[ 01x(d/2)>
+ ding,,c o2 (%g‘g?{(ul +p1) — (m+2a+1)+d})

I_i(+2);11(d,m) =

101
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The case of odd principal series
Theorem 5.2.B The matrices of constants of the 12 equalities in Lemma (5.1.B)
are given as follows:

(p-side)
(i) (0dd.+):

Ty(—2)01(d,m) = [(diago<a<(a-3)/2(v2 + p2 + m + 2a), 0)]
+ [0,diagy< o< (4-3)/2(v1 + p1 + m —d + 2a)].

T4 (—2)10(d,m) = [diagocac(d-3)/2(v2 + p2 + m + 1+ 2a),0]
+ [0,diagococ(a—s)/2(1 + o1 + m —d +1+2a)] .

(ii) (odd,+):

. 2a+1
Tyi0)01 (d,m) = dlagOSag-‘g—l- (‘—T(Vz + p2 +m + 2a))

N [g, diagosGSd_;_s_(d—2;—;(u1 +p+m+ 2a))]

. d—2a
I‘+;(0);10(dv m) = dlagoSas.";_l( d (v +p1 + m+2a — 1))

0, 0
+ [diagls“sd_;_l(—%}(uz +p2+m+2a-1)), O]

(iii) (odd,+) :

. (d+1—2a)(d+2—2a) .
Tyyeap01(dym) = [d’agOSasf—s—l- ( T (1 +pr+m+d+ 2a))]

0
+ l:diag()sasg%_l_(%(uz +p2+m+ 2a))]

. d—2a)(d+1—2a
Ty (+2)n0(d,m) = [d‘agoysf—;—‘ (iwémri)("l tpitmtd+t2at 1))}

0
+ [diagogag%(%%%%%?(w +p2 + m+2a+ 1))]
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(odd, p_-side)
(i) (odd,-):

T_(_ay01(dym) = [(diagyc,c(a-3)2{(1 + p1) — (M +d+2a+2)}, 0)]
+[0, diagoca<(a_s)/a{(ve +p2) — (m+2a+2)}].

T_.(_g).10(dym) = [diagoc,c(a—3)2{(1 + p1) = (M +d+2a+3)}, 0]
-+ [0, diagosas(d_3)/2{(112 + pz) — (m + 2a + 3)}] .
(ii) (odd, -) : We have

. 2a+1
' (001 (d,m) = dlagosasig_l(— d {(x +p1) — (m + 22 +2)}

. [g diagy,c a3 (4#'—1{812 +p2) — (m+ 2a; 2)}}

I'_0)y10(dym) = dlag0<a< d—1 ( {(Vz +p2) — (m+2a+1)})
[ 0, | 0]
T |diag, <o o1 (252 {(v1 + p1) — (m+22+3)}) O

(iii) (odd,-) :

. (d+1—2a){d+2—2a) e
I'_(+oy01(d,m) = [d‘agoys%—l( Fiyar V2t —m 2“))}

0

0
+ [diagOSan—E—l (%—%@(w +p1—m+d- 2a)):|

[ 4 d—2a)(d+1—2a
5 —m—2—1
I'iir2y0(d,m) = diago<ac sz (31) #D (v2+p2—m—2a ))]

0
+ diagogag%(%(”l +pr—m-+d—2a— 1))]
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Proof (of the contiguous relations) We have to determine the constant matrices
I'4;(x);xx Of the contiguous equations. For this purpose, it suffices to evaluate
the both sides of the equations in question at e € K.

We can compute the matrices I';.(—2)00(d,m) and I'y ;9 11(d, ™) in the
same time by the following merging procedure.

Merging: The matrices Sg,), . A7 and S[(f, )... ’ d_”Al” are derived from a single

matrix of elemnatry functions ng’ )1,”_ d—1.d] of size (d+1) x (d+1); the former is
collection of column vectos at odd row indices and the latter of column vectors
with even row indices, respectively. In the same way, we can consider that
the two matrices I'y,(_2) 00(d,m) and I'y;(_2),11(d, ) are derived from a single
”merged” matrix ['y.(_2)(d, m).

Therefore the real task of the proof is to compute the left sides

oS8P, 4}

which are equal to f‘+;(_2) (d,m). To compute each colum of this matrix, we
have to compute the colum vector

{CaysiP A™Ye)

for each i, utilizing Iwasawa decomposition of X4.; ;. Each row vector of C have

entries which are constant multiple of X.;; ;, and each entries of the vector sg")

is of the form ) po with a runs over the shuffles of certain type, and aech p,
a monimial in s;; associated with some shuffle a.
Firstly we prepare the computation of the values

{Bae; (e A™ }(€); { Eey e, (HaA™ }(€), {Hi(ua A™) } (€),
and {x(ei;)(baA™)}(e) (i=1,2).

Claim 1
() {Eze; (HaA™)}(€) = {Ee;te, (HaA™)}(e) = 0.
(i) {Hi(uaA™)}(e) = (vi + pi)(uaA™)(e) with

1; ifwlZ() +w21() =03
0, otherwise.

(BaA™)(e) = {

(iii)
m+ wii(a), if wiz(ta) + w21 (ua) =0,
0, otherwise.

k(ei) (HaA™)(€) = {

(iv)
la if w21(ﬂ'a) =1 a.nd wl2(ﬂ’a) = 0:
0, otherwise.

K{ean)(HaA™)(€) = {

1, if ’u)12(pa) =1and U)21([.La) = 0,
0, otherwise.

k(e12)(paA™)(e) = {




Here for each (i,5) € {(1,1), (1,2), (2,1), (2,2)}, we set
w;;(pa) = the number of the factor s;; in the monimial pq.

Proof of Claim 1 Direct compuation. [J
Claim 2 Here is the formula of the (a + 1)-th entry of the vector Amsgd):

- d—a i—b _a
Ambz (z _ b) (b) 8 )= (b 1b312 6332
=0

Proof of Claim 2 This follows almost immediately from the definition of the
shuffle product. O

After the above preparation, let us start the substantial computation. The
(a1 + 1)-th row vector of Cyi(~2) is
0,---,0,X 20. —2X 12, X; 11,0,---,0).
( +22 +12, X411 )
-3} d—ay

The value at e € K of the inner product of this row vector of operators and

the colum vector Amssd) of elementary functions is the sum

[X1,208 DA™ e) — 2{ X4 128D, 1 A} e) + { X118, 0 AT} e).

Claim 3 (i) We have the following:

{X1225D,Am}(e) = (2 +p2 +m+14)da,
(X189, A™He) = +p +mtd— i)tz
X128 AN e) = —2{d — (01 + 1)}y 111

Proof of Claim 3 By Iwasawa decompostion, Claim 1 (ii), (iii) and Claim 2,
the left side of the first formula reads

Z (d “1) ( )(Vz + pp +m+b) - {s{d7 (708 (a1=b) b A™1(e)

b=0 i
Since

CI R WS TOR

812 8ip0ay,b = Oay i

with Kronecker delta’s 4, ., this last formula gives the value (v +p3+m+i)d,, ;.
Similarly the left side of the second formula reads

a1+2
d— (a1 +1 +2
Y {mt+p+m+d—a-2-(i —b)}( _(‘11: )> (alb )ai,baaﬁz,b

2
=0
= +p+m+d—1i)diq 42
Finally the left side of the last formulae reads

—2k(e91) (8, A™)(e) 2 (A3) (9 Bi—b,10a, 41,0
=2{d — (a1 + 1) }0; (a;4)+-

105
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O
Thus

0,
carr1{8P}(e) = { 2 + p2 + m +1,

unless either ¢y =i ora; =1 — 2.
if a; = i.

I/1+p1+m—d+?:+2, ifa; =1 — 2.

This implies the following.
Claim 4 (i) '

{Cii-2siA™}(e) =

\

0
vi+pr+m—d+i+2
0
Ve + p2+m+i
0

The remaining cases are treated similarly. O
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6 Examples of contiguous relations and of thier
composites

Here are some examples of the contiguous relations at the peripheral K-types.

6.1 the case of even principal series:the p, -side

We assume that sgn(o) = (+1,+1) or = (—1,—1) for 0 € M. Then there is a
unique injective K-homomorphism 7(,m m) C TP,ins0,» When (—=1)™ = sgn(a).
The generator of 7(,, ) is given by A™. The multiplicity [T, T(m+2,m)] €quals
to 2. The T(mi2,m)-isotypic component 7([T(m2,m)]) is realized by the sub-
space generated by two normalized set of basis {s%; A™, s11512A™, s2,A™} and
{s2,A™, 591850A™, s2,A™}. Therefore, by Dirac-Schmid operator

pri2,0) V+ : W([T(m,m)]) — W([T(m+2,m)])
the normalized set of basis
{ Xy 11(A™), X412(A™), Xy 22(A™)}

is mapped to a linear combination of these two sets.

Formula 6.1 (horizontal to the right) We have

X4 1(A™) 3%1Am 55 A™
? + + m
(X+,12(A"‘) = | s118128™ 82154 | - (2 +5§ + m)

X422(A™) s AT sHA™

Formula 6.2 (vertical, up) We have

§2;A™ 83, A™
(X422, —2X412, Xyp11)- | 8115128™  s218228™
82, A™ 83, A™

=A™ (1 +pa+m, vi+p+m-—2)

Formula 6.3 (Composite of the above two operators) We have

(X411 X422 — X3 2 HA™) = (1 + m+ 1) (e + m + 1)A™HE,

6.2 the case of even principal series:the p_-side

The 7(yn,m—2)-isotypic component 7 ([7(m,m—z)]), i-., the image of the evaluation
map:

T(m,m-2) ® Homg (T(m,m—-2)a7r) -7
is realized by the subsapce generated by two normalized set of basis

=2 - =2 =2 = = =2
{SnAm, 311812Am, 812Am} and {821Am,321322Am,322Am}.



108

Note here the relations:

=2 2 =2 2

S12 521 9 839 11 )

- —_ -— - - m _ m—
—811512 | A™ = | 891822 | A™ ) —821890 | A™ = [ s11812 | A

=2 2 =2 2

511 S22 831 S12

Formula 6.4 (vertical, down) We have
X__,22(Am) §12Am §§2Am
X_12(A™) | = (1 +p1 —m) [ —811812A™ | + (Vo + p2 — m) | —891592A™

Proof This is quite similar to the case of p_.

Formula 6.5 (horizontal to the left) We have

X_11(85A™) - 2X_ 15(811812A™) + X_ 22(33,A™) = (v + p3 — m)A™ 2,
X_,11 (5%2Am) - 2X_,12(§21§22A7é) ~+ X_.,22(§%1Am) = (1/1 +p1—m— 2)Am—2;

Formula 6.6 (Composite of the above two operators) We have

{X_ 11X 22 — X2 LHA™) = (w1 + p1 —m ~ 1) (vg + pp — m)A™ 2
=(ry —m+ 1) (v —m + 1)A™ 2,

6.3 the case of odd principal series:the p,-side
We investigate the shift operator:
pragy Vi m([Tmt1,my)) = 7 ([Tma2,man)])-
A set of normaized basis in 7([7(;n11,m)) I8 given by
either {s1:A™,812A™}, or {891 A™, 525A™}

depending on the product of the parity of o and m. Similarly for T([7(m+2,m+1)])>
we can take a set of normalized basis by

either {821Am+1,822Am+1}, or {811Am+1,812Am+1}.

Formula 6.7 (slant up) We have

o (X4 2(811A™) + X+,11(312A"‘)> _ 321Am+1)
3): (—X+,22 (811A™) + X 12(812A™) ) — (v2 + p2 +m) 8oa A1

.y —X+,12(321Am) +X+,11(822Am) _ _ 811Am+1
(“). (—X+,22(821Am) + X+,12(322Am) - (Vl Tpo+m 1) slem+1
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Formula 6.8 (Successive composition of the above operators) We have

. 811 A™ S1 Am+2
(1): {X411 X420 — X_?_,u} <31;Am) = +m+2)(ra+m+1) (slem‘*‘Z .

" ; 821 A™ s A2
(ZZ).’ {X+’11X+,22 - Xi,12} (SZ:A’”) = (Vl +m + 1)(1/2 +m + 2) (Sz;Am+2) .

Remark

(1 + pr + m)(v2 + p2 +m),

(h+m+2(a+m+1)=
)= +pr+m—1)(va+ps+m+2).

+m+Dve+m+2

6.4 the case of odd principal series:the p_-side
We investigate the shift operator:
pri-1,-1) - V4 : 1([Tmt1,m)]) = 7(7(m,m-1)])-
A set of normaized basis in 7m([T(m+1,m)) i8 given by
either {s11A™,812A™}, or {831A™,835A™}

depending on the product of the parity of o and m. Similarly for 7([T(sn,m—1)]),
we can take a set of normalized basis by

either {SQIAm—l,SzzAm—l}, or {SllAm_l,slem-l}.

Formula 6.9 (slant down) We have

-, X_12(811A™) + X_ 22(812A™) _ o 891 A™ 1
(1). (—X—,11(811Am) - X_,12(812Am) - ——(Vl tp m 2) 322Am—1

oy, X_,12(321Am)+X_,22(S22Am) _ _ _ 811Am_'1
() (—X_,11(821Am)—X_,12(822Am) =@z tp-m-1)|  Am

Formula 6.10 (Successive composition of the above operators) We have

. A™ 811 A™ 2
(i): {X-11X_ 22— X2 15} (:;A"‘) =—(rn —m+1)(va —m) (sEAm‘z) .

y VA"‘ 891 A™2
(#): {X_11X_ 22 — X2 15} (z;;Am) = —(V1 —m)(yz —m+1) (sziAm—.?) .

Remark. The formulae in this section for the odd principal series is already
obtained in Miyazaki-Oda [3] by using Harish-Chandra’s hypergeometric series.
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6.5 Casimir operators

The action of Casimir operators are described as the composites of the contigu-
ous relations, at least substancially.
The contiguous equation for 7(m m) —* T(m+2,m) is given by

X (A™) st A™ 53 A™
Xy12(A™) | = (1 +p1 +m) | 511812A™ | + (v2 + p2 + m) | 821522A™ | .
Xy22(A™) STA™ s3,4™
The cotinupus equations for T(;m.m) ¢ T(m+2,m) are given by
SglAm . .
(X—llsZX_12,X—22) $91822A™ | = {V2 + p2 — (’ITL + 2)}Am = {1/2 - (m + 1)}Am.
82,A™
S%IAm

(X—lla 2X_12,X_22) (3112512Am) = {111 +p1 - (m + 4)}Am = {Vl - (m + 2)}Am
839 A™

The composition of these equations is

Xin mo_ (2, 2 2 _ 2y Am
(X-11,2X_12,X_33) (X+12X+22) A™ = {vi +v) — (m+2)* — (m+1)“}A™.

Taking the *-conjugate equations of the above contiguous equations, we also
have

X_
(X411, —2X 412, X y22) ("X—lzi)l(——zz) A™ = {V12 + V22 - (m -~ 2)2 —(m - 1)2}Am.

The sum of the above two equation is the equation comming from the Casimir
operator.

6.6 Generation of the peripheral K-types
6.6.1 Down-shift operator, up-shift operator:det(C.)
We have
(X_1 X2 — X2 10)A™ = (1 + pr —m — 1) (g + p2 — m)A™ 2

(X411 X420 — X_?,’m)Am = +p—+m—1)(ra +p2 + m)Am+2

(X411 X420 — X3 1)A™ 2 = (11 + pr + m = 3) (12 + p2 + m — 2)A™.
Consequently we have

det(Cy) - det(C_)A™ = (1 +m —1)(vz +m — 1)(1; + 1 — m)(vp + 1 —m)A™
= {1} - (m - 1)*}{ij - (m - 1)’ }A™.

- We have
m—2 _ 1 m,
A T (mtl-m)(ra+1-—m) det(C-)A™;
and
A2 = 1 det(C,)A™.

T i+ 14+ m)(e+ 14+ m)
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6.6.2 Generation of the part d=10; — [, =2

We define two vectors of elements in p4 by

X+ X1
X—i(-l) = (X+,12) , AW = (X-,lz) :
X+,22 X-—,22

We have to define also *X by

X_22
W= [ 1X_ 4, .
X—,ll

Then we have contiguous equations:

XOA™ = (g + pr + m)A™SE? + (v + py + M)A™sS.
*XWA™? = (uy + py—m — DA™ED + (g + pr —m — 2)A™ "5,
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