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Construction of a certain Galois action on

modular forms for an arbitrary unitary group
over any CM-field

Atsuo YAMAUCHI

0 Introduction

Let us consider holomorphic modular forms for any symplectic group Sp(l, F),
where F is a totally real algebraic number field of finite degree. In this case,
a holomorphic modular form f on $? (Hilbert-Siegel domain) has a Fourier
expansion of the following form:

f((zv)vea) = E Ch €Xp (27(’\/32 tr(hvzv)) ’ (0.1)

vEa

where a denotes the set of all archimedean primes of F', and h runs over the
points in a certain lattice in symmetric matrices of degree [ with coefficients
in F. Shimura showed that, for any ¢ € Aut(C), there exists a holomorphic
modular form f? whose Fourier expansion is given by

f7((20)vea) = ZCZ exp (27r\/—_12tr(h,,z,,)) . (0.2)

vea

It is also proved that this Galois action is compatible with Hecke operators.

In this lecture we will construct such a conjugate action on holomorphic
modular forms for an arbitrary unitary group over any CM-field K, which is
the content of [12] and a natural generalization of [11]. An essentially same
action was constructed in [4] by Milne, but the action was not explicitly
described in that paper. In this lecture we will write it explicitly and sim-
ply, which enables us to consider the precise arithmeticity for holomorphic
modular forms.
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1 Modular forms for an arbitrary unitary group

Let F be a totally real algebraic number field of finite degree and K be its
CM-extension (namely, a totally imaginary quadratic extension of F). Such
a field K is called a CM-field. As is well known, the non-trivial element of
Gal(K/F) is the complex conjugation for any embedding of K into C. We
denote this by p. Let a be the set of all archimedean primes of F, which can
be identified with those of K. For each v € a, there are two embeddings of K
into C which lie above v. By a CM-type of K, we denote a set ¥ = (¥y)yea
where each ¥, is an embedding of K into C which lies above v. We can view
a CM-type ¥ as an embedding of K into C® such that bY = (b¥*),ca for any
b € K. Through ¥, we can view K as a dense subset of C*. When beF,
we drop the symbol ¥ (since b¥ does not depend on ¥ ) and regard b as the
element (by)yeca in R®. We identify Z* with the free module Y veal v by
putting (ky)vca = Y pca kov- AlS0 put 1 = (1)vea = D .o v- We can define
the action of o € Aut(C) on Z2 by (3 ,ca kov)” = Y ypea ku(v0).

For a positive integer m, take a non-degenerate skew-hermitian matrix T
of dimension m with coefficients in K, i.e. det(T) # 0 and *T? = -T. We
view T as a skew-hermitian form on K} by (z1,22) — z,T"z5 and denote
by ¢ the dimension of maximal isotropic subspace of K}, with respect to T
Take a CM-type ¥ = (¥, )yea of K so that each hermitian matrix —/=17"%
has signature (r,,8,) (ry + 8, = m) with r, > s,. The choice of ¥ is unique
if and only if 7, # s, for each v € a. Choosing a suitable basis of K}, we
can express 1" as

( Tlg \

131

12}
T= . , (L)

tm—2q

\ 1, )

where 7,t; € K* so that 7 = —7, tf = —t; (1 < j < m — 2q) and
Im(r¥) > 0. Here we take t; (1 < j < m — 2q) so that Im(t;-l'”) > 0 if
lgjgr,,—qa.ndlm(t;-l'”)<Oifr,,—q+1_<_j$m—2qforea.chvea.
We call such T a “normal” skew-hermitian matrix with respect to ¥. For T'
as in (1.1) and 1 < j < m — 2¢, we denote by U(T,j), the CM-type of K
such that Im(t}’(T*’)”) > 0 for each v € a. Clearly, we have ¥(T,j) = ¥ if




JI<T—4¢
Note that, for each v € a, a “normal” skew-hermitian matrix T' with

respect to ¥ can be written as

_ Tl,v
T = ( T, ) (1.2)

0|3

with diagonal matrices T}, and T3, of degree r,, and s, which satisfy —\/—lTl‘I,'; >

0 and —/=1T}y < 0. (The symbol > 0 means positive definite.) In case
Ty = Sy = 2 for any v € a, we have ¢ = % if det(T) € Ng/r(K*) and
g =2 —1if det(T) € Ng/r(K*). In case r, > s, for some v € a, the
minimum of {sy},c, is equal to q.

Let T € K™ be a “normal” skew-hermitian matrix with respect to a CM-
type U = (¥,)pea. Then we can define the algebraic groups corresponding

to T and ¥ as follows.

U(T,¥) ={a€GL(m,K)|aT'o? =T},
Uy(T,¥) = {a€ GL(m,K)|aTta? =T, det(a) =1}.

As is well known, the algebraic group U, (7', ¥) has the strong approximation
property.

For each v € a, we can define the v-components of these algebraic groups
as follows.

U(T,¥), = {a€ GL(m,C)
Ui(T,¥), ={aeGL(m,C)

OKT‘I"’§ = T‘I’” } )
aT¥%a = TY, det(a) =1}.

Now we can define the corresponding symmetric domain ®, = D(T, ¥),
as

DT, ¥)y = {3 € Cpz |-V=1 ((To) ™" + %u(T1s) "'80) > 0},
where Ti,, Tz, are as in (1.2) and > 0 means positive definite. For any

3w € D(T,¥), and any a = ( ‘é"‘ g"‘ ) € U(T,¥), (where A, € Cy,
« a

B, € C», Cy € C, D, € C}7), put
a(3v) = (Aado + Bo,)(Casy + Da)—l-

Then the group U(T, ¥), acts on D(T, ¥), as a group of holomorphic auto-
morphism by 3, — @(3,). The automorphic factors are

po(0,30) = Cajv + Day
)\v(a, 31)) = As — BaTthﬁv (TI\I,’:)_I
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We have
l""u(ﬂaa 31:) = ﬂv(ﬂ, a(3v))/1'v(a’3v),
Ao(Bey30) = (B, a(30)) Au(e, 30),
det(a) det(\y (0, 3y)) = det(uy(, 30)),

for any «, 8 € U(T, ¥), and any 3, € D(T,¥),. Clearly, det(u,(e,30)) # 0
for any o € U(T, V), and 3, € D(T, ¥),.

Set
U(T, ¥ =[]UT9),,
vea
DT, ¥) =][[2(T, %),
vEa

and define the action of U(T, ¥), on ®(T, ¥) componentwise.
We define an embedding of U(T, ¥) into U(T, ¥)a by a — (a¥")yca and
also define an action of U(T, ¥) on D(T, ¥) by

a((ﬁv)vea) = (a% (311)),,&,
where o € U(T, ¥) and 3 = (3y)vea € D(T, ¥). We write

po(as3) = (¥, 30),
)‘v(a’Z) = ( w",ﬁv)

for o € U(T, ¥), 3 = (3v)vea € D(T, ¥) and v € a. We denote by 0 the point
(0;:)v€a € Q(Ta "I’)

Set k = (ky)veca € Z®. For a € U(T,¥) and a C-valued function f on
D(T, V), We define a C-valued function f|ro. on D(T, ¥) by

(Flee)(3) = f(e(3)) [T det(po(e, 2)) ™

vEa

For any congruence subgroup I' of U(T, ¥), we denote by M (T, ¥)(T),
the set of all holomorphic functions on D(T, ¥) such that f|,y = f for
any v € I An element of M(T, ¥)(T") is called a holomorphic modular
form of weight k with respect to I'. We denote by My (T, ¥) the union of
M(T, ¥)(T) for all congruence subgroups I' of U(T, ¥).

We need to consider adelizations of algebraic groups. Put

U(T,%)s = {z € GL(m,K,) |zT*z* =T},
Ul(T, \I/)A = {.’E € U(T, \I’)A ldet(a:) = 1} .
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Note that z,, the p-component of z, belongs to GL(m, O,) for almost all
non-archimedean primes p of K.

We denote by U(T, ¥)y, and Uy (T, ¥);, the non-archimedean components
of U(T, ¥)4 and U;(T, ¥) 4, respectively, and view U(T, ¥), and Uy(T, ¥)a,
as the archimedean components of U(T,¥)4 and U;(T, ¥)4, respectively.
We regard U(T, ¥) and U, (T, ¥), as subgroups of U(T, ¥)4 and Uy (T, ¥)4,
through diagonal embeddings. As is well known, the algebraic group U (7, ¥)
has the strong approximation property.

For symplectic group Sp(g, F), take the corresponding symmetric domain
92 = {2 = (2)vea € (CY)*|*2 = 2y, Im(z,) >0 foreachv€a}. For z =
(20)vea € 97, Put

0? v — ¥ 1,) - (2 ¥ | 1 -1
eo(T, ¥)(2) = ( 03::3 (2 2 ‘1)0,‘”(: +53 7) ) ,
9 vea

Sv—4q
where r,, s, are as above. Then &o(T, ¥) gives a holomorphic embedding of
% into D (T, ¥). This is compatible with the injection Io (T, W) of Sp(q, F)
into U, (T, ¥) defined by

Io(T, %) ( 1 Q2 )

Q3 Qg

, 0 -I-1, a 0 o 1, 0 -3\
1, 0 I-1, a 0 aJ\1, 0 I-1,
where a = ( * O ) € Sp(g, F) with oy, 03, a3,a4 € FJ. We have
Q3 Oy

Io(T, ¥)(@) (eo(T, ¥)(2)) = &0(T, ¥) ((2))

for any a € Sp(g, F) and z € $%. We can define pull-back of modular forms
by o(T,¥). For k = (ky)vca € Z® and f € My(T, ¥), define a function
fleo(T, ¥) on $j as v

1 —ky
(fleo(T, ) (2) = f(eo(T, ¥)(2)) Hdet ((T‘I'")'lz,, + 5 lq) ,

veEa

where z = (2y)vea € H3. Then fleo(T, ¥) is a holomorphic modular form on
53 (of weight k) with respect to some congruence subgroup of Sp(g, F).
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2 Galois action

For a CM-field K, its CM-type ¥, and any o € Gal(Q/Q), we can define
another CM-type Wo = {40 |t € ¥} of K. We denote by Ky (or simply K*
if there is no fear of confusion), the corresponding algebraic number field to
{0 € Gal(Q/Q) |¥o = ¥} which is a finite index subgroup of Gal(Q/Q). As
is well known, K7, is a CM-field contained in the Galois closure of K. Viewing
¥ as a union of [F : Q] different right Gal(Q/K)-cosets in Gal(Q/Q), we
define a CM-type ¥* of Ky as follows

Gal(Q/K3)¥" = (Gal(@/K)¥) .

We call U* by “the reflex of ¥” and the couple (K3, ¥*) by “the reflex of
(K, ¥)”. From the definition, we have (K3)” = K3, for any o € Gal(Q/Q)
(or € Aut(C)). By N}, we denote the group homomorphism z — [, cg» ¥
from K3* to K*. It is a morphism of algebraic groups if we view K™ and
K* as algebraic groups defined over Q, and so it can naturally be extended
to the homomorphism of (K3), to K. ,

For a CM-type ¥ and any o € Aut(C), a certain idele class gg(0o) €
KX/K*KX is defined in [3] (or essentially in [2]). Take an abelian variety
(A, 1) of type (K, ¥) with a O-lattice L in K and a complex analytic iso-
morphism © of C*/LY onto A. (See, [9].) We denote by A, the subgroup
of all torsion points of A, which coincides with the image of K /L by ©o0¥.
Next take (A, ). Then it is an abelian variety of type (K, ¥o) and we have

‘the following commutative diagram

KIL —22 5 A
xaj’ ©,0(¥0) J'a
K/a'L . Agor

with some a € K% and complex analytic isomorphism 6, of C*/(aL)¥ onto
A°. The coset aK* K is uniquely determined only by (K,¥) and o (not
depending on A or L). We denote this coset by g (o). For a € gy(0), we have
aa? € x(0)F*FX, where x(o) € [], 2y C QX which satisfies [x(0)™*,Q] =
olg,,. We define 1(0,a) € F* by %;5,,)- € i(o,a)F%. If o is trivial on Ky, we
have g¢(0) = Ny (b)K*KX with b € (K})X such that b7, K3] = olky,,;
this fact is a main theorem of complex multiplication theory of [9]. Note that
9\11(0'1)9\110'1 (02) = 9\11(0102)'
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Set
( o € Aut(C), )
Qo
a= a € (K;l()m—2q+1’

Cir,w)(C) = { (0;T,¥;0)

Vs

Qm—2q
where ag € gu(0),
and a; € gy(rj)(o) for 1 <j<m—2q |

\

where K denotes the non-archimedean component of the idele group K -
Note that, for any o € Aut(C), there exists some (o;T, ¥;a) € Cir5)(C).
For any (0;7T,¥; a) € Cir,4)(C), take B(o; T, ¥;a) € GL(m, K,) as

(3 + 2581, (3 - 25y,
al’
1
B(o; T, U;a) =
p afn_zq P
(3 — *F%)1, (3 + 51,

The following theorem is the main theorem of this lecture.

Main Theorem Let T be a “normal” skew-hermitian matriz with respect to
a CM-type ¥, which is expressed as in (1.1). For any (0; T, ¥;a) € C(r,1)(C),
take T € K™ as

t(o,a0)T - 1,
(o, a1)t

~
I

L(U, am-2q)tm—2q
(o, a0)T" - 14

Then T is a “normal” skew-hermitian matriz with respect to the CM-type Vo.
Given any f € My(T,¥), take an open compact subgroup Cn of Ui(T, ¥)n
so that f € M(T,¥) ((Uy(T,¥)a x Cu) NUL(T,¥)). Then there exists
fl@T¥ia) ¢ My (T, ¥o) which satisfies the following property.

(i) In case g >0, for any & € U(T, Vo), we have

(fT¥9) e @) eo(T, ¥o) = ((flxa)leo(T, ¥))” - (2.1)
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Here a € U(T, V) such that
an € Ch - B(o;T,¥;0)anB(0; T, ¥;a) ™" (2.2)

" where ap and &y, mean the non-archimedean parts of a and &. The action
of o in the right hand side of (2.1) is as defined in (0.2).
(i) In case ¢ =0, for any & € U(T, Vo), we have

(fCT¥9).3)(0) = {(flka) (0)}°,

where « is as in (2.2). )
Remarkl We can easily prove that T is “normal” with respect to Vo.
Moreover, we obtain ¥(7',j) = ¥(T,j)o for 1 < j <m —2q.

~

Remark2 For any Z, € U(T, ¥0o),, we can easily verify that
B(o;T,¥;a)inB(0; T, ¥;a)~" € U(T, ¥)p.
It is because we have
B(o; T, ¥;a)T'B(0; T, ¥; 0) = X(0)Th,

where T}, and Ty, denote the non-archimedean components of T and 7.
Remark3 Clearly the modular form f(T"¥9) is uniquely determined, since

the set (Jzcuer we) @ © €0(57) (or {&(0) ld € U(T,\Ila)} if ¢ = 0) is dense in
D(T, Vo). i
Remark4 For any & € U(T, ¥o), there exists a € U(T, ¥) which satisfies

(2.2). Because we have ( det(4) 1 ) € U(T, V) and
m—1

~ -1
B(o;T, ¥;a)6,B(0; T, ¥;a)~" ( det(a) 1 ) € Uy(T, ¥) a4,
m-—1

the strong approximation property of Uy (T, ¥) shows that.
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