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1. INTRODUCTION

We study the theory of scattering for the nonlinear Schrédinger equa-
tion with the Stark effect in one or two space dimensions:

iByu = —%Au V(E-2yu+ Fow), (o) eRXRY,  (L1)

where n = 1 or 2, and u is a complex valued unknown function of
(t,z). Here F,,(u) and E - z are a nonlinearity and a linear potential,
respectively. The nonlinearity is given by

Fo(u) = Go(u) + Na(u),
Gn(u) = Mo|u|¥™u, (1.2)
Jvl(u) = Au® + M8, whenn=1,
No(u) = Aiu® + Mg@® + dguli, whenn =2,

where Ag € R, A;,A3,A3 € C and E € R™\ {0}. We remark that the

cubic nonlinearity uu? is excluded in one dimensional case. F, is a sum-
mation of the gauge invariant nonlinearity Gn(u) and the non-gauge
invariant one N,(u), and it is a critical power nonlinearity between
the short range case and the long range one in n space dimensions
(n =1,2). The above potential E - z is called the Stark potential with
a constant electric field E. Following [9], in this article, we prove the
existence of modified wave operators to the equation (1.1) for small
final states.
Let U(t) be the free Schrodinger group, that is,

U(t) = e4/2,

The Schrddinger operator —(1/2)A + E - z is essentially self-adjoint
on C§°(R"®). Hpg denotes the self-adjoint realization of that operator
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defined on C°(R™) and we define the unitary group Ug generated by
H E-

UE(t) = eaitHE.

F,(u) is a critical power nonlinearity between the short range scatter-

ing and the long range one. The modified wave operator W, for the
equation (1.1) is defined as follows. Let ¢ be a final state. Modifying
the solution Ug(t)¢ for the linear Schrodinger equation with the Stark
potential, we construct a suitable modified free dynamics A, which de-
pends on ¢, and we show the existence of a unique solution u for the
equation (1.1) which approaches A in L? as t — co. The mapping

W, : ¢ — u(0)

is called a modified wave operator. In this article, we prove the exis-
tence of modified wave operators for the equation (1.1).

The theory of scattering for the ordinary nonlinear Schrédinger equa-
tions with critical power nonlinearities was studied, e.g., in [3, 4, 5, 6,
7, 8].

Before stating our main results, we introduce several notations.

Notation. We denote the Schwartz space on R™ by S. Let S’ be the
set of tempered distributions on R™. For w € &', we denote the Fourier
transform of w by . For w € L}(R"), W is represented as

B(E) = (2m) 2 / w(z)e< dz.
]Rn
For s,m € R, we introduce the weighted Sobolev spaces H*™ corre-

sponding to the Lebesgue space L? as follows:
Hom = {p € 8 [[Yllgam = (14 |2*)™2(1 = A)?||12 < oo}

and put H® = H*°,
C denotes a constant and so forth. They may differ from line to line,
when it does not cause any confusion.

Our result is as follows.

Theorem 1.1. Letn =1 or 2. Assume that ¢ € H2 N H*? and that
l|@ll zr2nrro2 is sufficiently small. Then the eguation (1.1) has a unique
solution u satisfying

u € O((0,00); 1),
sup(tfu(t) ~ Up(t)e™ /%7~ )g)|12) < oo,

oo 1/4
Sl>1p {td (/ U (s)(Ug(—s)u(s) — e—il'l2/2se—i.5'(s,—iV)g{,)”‘;;ﬂ ds) :l < 00,
t>1 ¢



where
S(t,2) = Mole(x)[*" logt (13)

and d is a constant satisfyingn/4 <d<1,Y, =L and Y, = L4

Furthermore the modified wave operator W+ ¢ — u(0) is well-
defined.
A similar result holds for negative time.

Remark 1.1. Since the multiplication operator e~#1°/2 converges the
identity strongly in L? as t — 0o, the solution obtained in Theorem 1.1
approaches Ug(t)e*5®~"V)¢ in L2. Noting the phase correction S de-
pends only on the gauge invariant nonlinearity G,(u), we see that the
contribution of the non-gauge invariant term N,(u) is a short range
interaction, that is, it is negligible as t — oo, under our assumptions.
We also note that the assumption ¢ € H? is needed only if N,(u) # 0
(see Lemma 3.3 below).

Remark 1.2. If we consider the asymptotic behavior of solutions to
the Cauchy problem for the equation (1.1) with initial data u(0,z) =
¢o(z), = € R", then we see from Theorem 1.1 that for any initial
data ¢y belonging to the range of the modified wave operator W+,
there exists a unique global solution u € C([0, 00); L?) of the Cauchy
problem for the equation (1.1) which has the modified free profile
Ug(t)e=1°/2%e~iS®=i9) ¢ More precisely, u satisfies the asymptotic for-
mula of Theorem 1.1. However it is not clear how to describe the initial
data belonging to the range of the operator W,.

2. THE CAUCHY PROBLEM AT INFINITE INITIAL TIME

First we reduce the scattering problem for the equation (1.1) to that
of the following non-autonomous nonlinear Schrédinger equation with-
out a potential

1
10w = —§Av + Fo(t,v), (t,z) e RxR", (2.1)
where n =1, 2,
F.(t,v) = Gn(v) + Nyp(t,v), (2.2)
(t ’U) =\ v3e—2z’(tE-:z:—-t3|E|2/3) + A3,53e4i(tE-a:—t3}E|2/3)’ (23)

Na(t,v) =A% —i(tBe—ER/3) 4 )\ 52 e3i(tE-;—t3|E[2/3)

+ A\guieitE ==t |E*/3) 24

Gn(v) is defined by (1.2). By a direct calculation, we obtain the follow-
ing relation between a solution to the equation (1.1) and that to the
equation (2.1). The following proposition is not essentially new but
almost well-known (see Cycon, Froese, Kirsch and Simon [2]).
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Proposition 2.1. If v solves the equation (2.1), then
2

u(t,z) = v (t T+ E—E) g~ HtE= 1| /6)
? 7 2

solves the equation (1.1).
Conwversely, if u solves the equation (1.1), then

t2 : 3 2
to)=u(t,z— =E | etBa-tIEr/3)

solves the equation (2.1).

According to Proposition 2.1, Theorem 1.1 is an immediate conse-
quence of Proposition 2.2 below.

Proposition 2.2. Assume that ¢ satisfies all the assumptions of The-
orem 1.1. Then there ezists a unique solution v for the equation (2.1)
satisfying

v € C([0,00); L?),
sup (t"llv(t) — U(t)e17*e S "’“W)cbllm) < o0,
t>1

oo 1/4
St‘;lf [td (/ |lv(s) — U(s)e—“"2/2se‘is(s’"iv)d)“yn ds) } < 00,
Z t

where S is defined by (1.3), d is a constant satisfying n/4 < d < 1,
Y, =L® and Yo = L%,
A similar result holds for negative time.

In what follows, we shall prove Proposition 2.2.

Let n = 1, 2, and let v, be a given asymptotic profile of the equation
(2.1), namely an approximate solution for that equation as ¢ — oo. We
introduce the following function:

R = Lv, — Fyu(t,v,), (2.5)
where
] 1
L= z@t + §A

The function R is difference between the left hand sides and the right
hand ones in the equation (2.1) substituted v = v,.

We can prove the following proposition (sée Propositions 3.4 and 3.5
in (8)]).

Proposition 2.3. Assume that there ezists a constant n’ > 0 such that
lva(®llz2 <7,
[va()llzee < 7/(1+12)72,

/ U(r — 8)R(s) ds

/ U(t — s)R(s) ds

Lﬁ- ((tvoo) i¥n)

<71+,
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fort > 0, where Y; = L® and Yy, = L%, and assume that ' > 0 is
sufficiently small. Then there exists a unique solution v for the equation
(2.1) satisfying

v € C([0,00); L?),
sup (t¥lv(t) — va(t)||22) < o0,

Sup [t" ( [ ) lv(s) — va(s)ll%, dS) mJ < oo,

where d is a constant satisfyingn/4<d <1,Y, =LP and Y, = L.
A similar result holds for negative time.

3. REMAINDER ESTIMATES AND PROOF OF THEOREM 1.1

In this section, we prove Proposition 2.2 to obtain Theorem 1.1.
First we introduce the Strichartz estimate for the free Schrodinger
equation obtained by Yajima [10]. We define the linear operator

(Th)(t) = /t T Ul - s)h(s) ds,

where h is a function of (¢, z).

Lemma 3.1. Letn denote the space dimension, and let (g,r) and (g, )
be pairs of positive numbers satisfying 2/qg =n(1/2—-1/r), 2 < q < o0,
2/G = n(1/2 - 1/7) and 2 < § < 0o. Then T' is a bounded opera-
tor from L¥ ((Tp, 00); LY (R™)) into LI((To, 00); L1 (R™)) with norm uni-
formly bounded with respect to Ty, where (§',7') is a pair of positive
numbers satisfying 1/§+1/§ = 1 and 1/7 +1/7 = 1. Furthermore, if
h € LI ((Ty, 00); LE (R™)), then Th € Cy([Ty, 00); LA(R™)).

Let

valt, 2) =(U(B)e e S ) 0)

1 ol I 1'.2:2 4
=W¢ (?> gilzl?/2—iS(t2/t),

(3.1)
where S is defined by (1.3). This modified free dynamics was intro-
duced by Ozawa [7] for the ordinary nonlinear Schrédinger equation
with a nonlinearity Alu|?u in one space dimension. In order to prove




Proposition 2.2, we show that v, satisfies the assumptions in Proposi-
tion 2.3. It is sufficient to show only the estimates

lva(®)llz2 < 7', (3:2)
loa ()l < m't7H2, (3.3)

/ " Ut - $)R(s) ds

LZ

(3.4)
S nlt—d,
Lg((taoo);yﬂ-)

+

/w U(s — 7)R(r)dr

where R is defined by (2.5). In fact, in order to avoid a singularity at
¢t = 0, multiplying a cut off function § € C*°(R) such that 6(t) = 0
if t < 1/2 and 6(t) = 1 if t > 3/4 to v,, we easily see from the esti-
mates (3.2)—(3.4) that the resulting function satisfies the assumptions
in Proposition 2.3.

First we consider the gauge invariant nonlinearity Gy (u).

Lemma 3.2. There ezists a constant C > 0 such that fort > 1,

lva(®)llz2 = || @l L2,
[va(®)llze < Cligllat™?,

' 2
120a(8) — Calva®)llzr <Clllos + 1611302 B

t2

Since we can prove this lemma in the same way as Lemma 2.2 in [8],
we omit the proof.

We next consider the non-gauge invariant and non-autonomous non-
linearity N,(t,u). In order to obtain the estimate (3.4), we need the
following lemma, which is shown in Lemma 3.3 in [9].

Lemma 3.3. Assume that ||¢||g2nmo2 < 1. Then, there ezxists a con-
stant C > 0 such that fort > 1,

/t-oo U(t — 8)Np(s,v.(s)) ds

Lz

< C||¢|| zznmoat™,
Lg((t:m);yﬂ)

-+

/s " U(s = T)Na(r, va(r)) dr

where 0 <d < 1.

Proof. As mentioned above, this lemma was shown in Lemma 3.3 in
[9]. For convenience of readers, we describe the proof of this lemma. It
is sufficient to prove for a single power nonlinearity of the form

Ny(t,v) = Aplgme—ila- DB~ EP/3)
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where A € C,

(I,m) = (3,0) or (0,3), when n =1,
(I,m) = (2,0), (1,1) or (0,2) whenn = 2,

a=Il—-m

Note that I + m =1+ 2/n and a # £1. Then

Na(t,v,)
=21+17/2 p (%) i1 (,2) gi{a1) (82 (t.2)+05 ) 5
T P (3) onietem g (el i),
where
P(z) = i*3(z)'3(z)
61(t,z) = |21|:2 s (t ?) . Ot x) = —tE -z, 03(t) = tj@i

We calculate the integrand U(—s)Ny (s, va(s)):

U( S) { 1 1 p (E) eiaol(s,z)ei(a—1)02(s,w)85(812(&—1)03(8))}

3+n/2 P

1 T iaf1(s,x) ji(a— 8, s
, [U( s){ P (;) 3001 (8,2) (1) (B2(s.2) +05( ))H
1 1 L i (s,x i(a—1)(82(s,2)+83(s))
+ aU(—S) {A (WP (—S_) € 1( )) 6( 2 8
1 . )
4+ iU(—s) {V (mp (%) ew01(s,z)) v (el(a-l)(92(s,x)+93(8)))}

+ = U( S) { 3+n/2 ::) i (s, m)A (ez(a—l)(ﬂz(s,z)+93(s)))}

_ U(—S) {as ( = /2P ( ) mol(s,z)ei(a—l)oz(s,m)) ei(a—l)ea(s)} )
—+n

Noting the relation

A (ei(a—l)(oz(sﬁ)‘i'oa(s))) = i(a — 1)ei(a—1)02(s,2)as(ei(a—l)as(s)),
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we have
U( S) { 1 - p (E) eiael(s,m) ei(a—l)gz(s,z)as(ei(a—l)es(s))}

[U( 5) { 3+1n/2 P (% ) £io01(8,2) ei(a—1)(02(s,m)+oa(s))}]
4+ 2 U(— s { ( e -”S_v") eia01(s,z)) ei(a—l)(02(3,2)+03(a))}
+iU(~s) {V ( S (_E) eiaﬂl(s,m)) Rvi (ei(a—l)(az(a,m)-}-Os(s)))}
(=

U S) { 33+n/2 .’E) giabi(s, z)e-(a—l)Bz(s,z)as(e,;(a_l)ga(s))}

S
—U(-s) {as ( 3+n/2 :z) giof1(s,2) gila—1)8a(s, :z:)) (a—1)03(s)} .

‘ Since a # —1, we have

U( S) { 1 _* p (%) eiael (s,x) ei(a—-l)oz (s,w)as(ei(a—l)%(s)) }

33+n/2

1 Z\ iab i(ee—1)(6 0

=———6 U(=9){ <7 p(_) £i001(5,2) gi(a—1)(82(s,2)+63(s))
S

¢ 1 T\ ichi(s,2) | pila—1)(Ba(s,z)+05(s))
| + VA (P (5) o)
) 1 T\ iaby(s) i(a—1)(6a(s,z)+05(s))
9 {7 (i (3) nen) -9 et

| 2 1 T\ iabi(s,z) i(a—1)82(s,z) | ,i(a—1)85(s)
‘ —-&—-—U( S){ (mp ;)e“ 1 3’6 2 e 3 .

By the identity (3.5), the above identity is equivalent to
U(—5)Nn(s,va(s))

?;((14 1)|E,‘|2 s 1\8 par S J S ’
where
1 P Z iab (s,2) ji(a— 8,z)+03(s
Il(S) a—+1 {s3+n/2 (s)e i ) { )(92( ) 0())}7

.’E) iab (s,z) > ei(a—l)(@g(s,w)-{—as(s))} ,
S

1
L(s) = a+1{ (s3+"/2p

_ L T giodi(s2) i(a—1)(82(s,2)+85(s))
Is(s) = a+1 { (s3+“/2 (s) V(e )
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_ 2 1 L iaf1(s,x) Ji(a—1)02(s,x) i(a—1)03(s)
I4(s) = ATl {83 (WP (;) e\ e e 3 .

Integrating the identity (3.6) over the interval (¢, 0o) and applying U ()
to the resulting equality, we have

/tooU(t — 5)Np(s,vq(8)) ds
(3.7)
3
z(a—1)|E|2( Il(t+Z/ U(t—s)I d)

By the definitions of I, I, I3 and I,, we have
1Lz < CE %9l l17,
1@z < Ct2(|§|3w, whenn =1,
I1:(t)l|zs < Ct™4||B]|%s, whenn =2,
122(s) 122 < Cs~*(log 5)*||¢ll ransro,
125(s) |2 < Cs™2(log 5)||l| eanmros,

1 a(s)llz2 < Cs™*(log ) |||l ransro-

We have used Holder’s inequality, the Sobolev embedding and the as-
sumption ||¢||g2ngoz < 1. We note that the L2-norms of I, I3 and I4
are integrable over the interval (¢,00). Applying the above inequalities
and Lemma 3.1 to the identity (3.7), we obtain this lemma. O

Proof of Theorem 1.1. Assume all the assumptions in Theorem 1.1.
Let v, be the function defined by (3.1). According to Proposition 2.3,
as mentioned before, it is sufficient to show the estimates (3.2)—(3.4).
The estimates (3.2) and (3.3) immediately follow from the definition of
v,. We prove the estimate (3.4). Since

R = E'Ua - Gn(va) - Nn(ta ’Ua):
by Lemmas 3.1, 3.2 and 3.3, we have

/too U(t — s)R(s)ds . + /::o U(s—1)R(t)ds

L3((t,00)iYn)

<c / " 1£0a(s) — Ga(va(s)) 2 ds

t— $)Nu(s,u.(s)) ds|| + / " Uls — )Na(r, va(r)) dr
L2 s

Lg((tsoo);yn)
<C| ||l m2npoat™,

where n/4 < d < 1 appearing in the assumption of Theorem 1.1.
Taking 7' = C||@||g2npo2, We see that the condition (3.4) is satisfied.
According to Proposition 2.3, this completes the proof of Theorem 1.1.
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