<table>
<thead>
<tr>
<th>Title</th>
<th>Upper bound of the best constant of the Trudinger-Moser inequality and its application to the Gagliardo-Nirenberg inequality (Harmonic Analysis and Nonlinear Partial Differential Equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kozono, Hideo; Sato, Tokushi; Wadade, Hidemitsu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2004(1401): 41-47</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/26052</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Upper bound of the best constant of the Trudinger-Moser inequality and its application to the GagliardO-Nirenberg inequality

Hideo Kozono, Tokushi Sato, Hidemitsu Wadade

Mathematical Institute, Tohoku University

We consider the best constant of the Trudinger-Moser inequality in \mathbb{R}^n. Let Ω be an arbitrary domain in \mathbb{R}^n. It is well known that the Sobolev space $H_0^{1/p,p}(\Omega)$, $1 < p < \infty$, is continuously embedded into $L^q(\Omega)$ for all q with $p \leq q < \infty$. However, we cannot take $q = \infty$ in such an embedding. For bounded domains Ω, Trudinger [18] treated the case $p = n(\geq 2)$, i.e., $H_0^{1,n}(\Omega)$ and proved that there are two constants α and C such that

\[
\| \exp(\alpha |u|^{n'}) \|_{L^1(\Omega)} \leq C|\Omega| \tag{0.1}
\]

holds for all $u \in H_0^{1,n}(\Omega)$ with $\|\nabla u\|_{L^n(\Omega)} \leq 1$. Here and hereafter p' represents the Hölder conjugate exponent of p, i.e., $p' = p/(p-1)$. Moser [9] gave the optimal constant for α in (0.1), which shows that one cannot take α greater than $1/(n^{n-2}\omega_n^{n-1})$, where ω_n is the volume of the unit n-ball, that is, $\omega_n := |B_1| = 2\pi^{n/2}/(n\Gamma(n/2))$ (Γ : the gamma function). Adams [2] generalized Moser's result to the case $H_0^{m,n/m}(\Omega)$ for positive integers $m < n$ and obtained the sharp constant corresponding to (0.1).

When $\Omega = \mathbb{R}^n$, Ogawa [10] and Ogawa-Ozawa [11] treated the Hilbert space $H^{n/2,2}(\mathbb{R}^n)$ and then Ozawa [14] gave the following general embedding theorem in the Sobolev space $H^{n/p,p}(\mathbb{R}^n)$ of the fractional derivatives which states that

\[
\| \Phi_p(\alpha |u|^{p'}) \|_{L^1(\mathbb{R}^n)} \leq C\|u\|_{L^p(\mathbb{R}^n)}^p \tag{0.2}
\]
holds for all $u \in H^{n/p,p}(\mathbb{R}^n)$ with $\|(-\Delta)^{n/(2p)}u\|_{L^p(\mathbb{R}^n)} \leq 1$, where

$$\Phi_p(\xi) = \exp(\xi) - \sum_{j=0}^{j_p-1} \frac{\xi^j}{j!} = \sum_{j=j_p}^{\infty} \frac{\xi^j}{j!}, \quad j_p := \min\{j \in \mathbb{N} \mid j \geq p - 1\}.$$

The advantage of (0.2) gives the scale invariant form. Concerning the sharp constant for α in (0.2), Adachi-Tanaka [1] proved a similar result to Moser's in $H^{1,n}(\mathbb{R}^n)$.

Our purpose is to generalize Adachi-Tanaka's result to the space $H^{n/p,p}(\mathbb{R}^n)$ of the fractional derivatives. We show an upper bound of the constant α in (0.2). Indeed, the following theorem holds:

Theorem 0.1. Let $2 \leq p < \infty$. Then, for every $\alpha \in (A_p, \infty)$, there exists a sequence $\{u_k\}_{k=1}^\infty \subset H^{n/p,p}(\mathbb{R}^n) \setminus \{0\}$ with $\|(-\Delta)^{n/(2p)}u_k\|_{L^p(\mathbb{R}^n)} \leq 1$ such that

$$\frac{\|\Phi_p(\alpha|u_k|^p')\|_{L^1(\mathbb{R}^n)}}{\|u_k\|_{L^p(\mathbb{R}^n)}^p} \to \infty \text{ as } k \to \infty,$$

where A_p is defined by

$$A_p := \frac{1}{\omega_n} \left[\frac{\pi^{n/2}2^{n/p}\Gamma(n/(2p'))}{\Gamma(n/(2p'))} \right]^{p'}.$$

Remark. Let α_p be the best constant of (0.2), i.e.,

$$\alpha_p := \sup\{\alpha > 0 \mid \text{The inequality (0.2) holds with some constant } C.\}.$$

Then Theorem 0.1 implies that $\alpha_p \leq A_p$ for $2 \leq p < \infty$.

Next, if we give a similar type estimate to (0.2) by taking another normalization such as $\|(I - \Delta)^{n/(2p)}u\|_{L^p(\mathbb{R}^n)} \leq 1$, then we can cover all $1 < p < \infty$. Moreover, when $p = 2$, it turns out that our constant A_2 of (0.3) is optimal. To state our second result, let us recall the rearrangement f^* of the measurable function f on \mathbb{R}^n. For detail, see Section 2 (Stein-Weiss [16]). We denote by f^{**} the average function of f^*, i.e.,

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(\tau)d\tau \quad \text{for } t > 0.$$

Our theorem now reads:
Theorem 0.2. Let $1 < p < \infty$ and A_p be as in (0.3).

(i) For every $\alpha \in (A_p, \infty)$, there exists a sequence $\{u_k\}_{k=1}^{\infty} \subset H^{n/p,p}(\mathbb{R}^n)$ with $\|(I - \Delta)^{n/(2p)} u_k\|_{L^p(\mathbb{R}^n)} \leq 1$ such that

$$\|\Phi_p(\alpha |u_k|^p')\|_{L^1(\mathbb{R}^n)} \to \infty \text{ as } k \to \infty.$$

(ii) We define A_p^* by

$$A_p^* = A_p / B_p^{1/(p-1)},$$

where

$$B_p := (p - 1)^p \sup \left\{ \int_0^\infty (f^{**}(t) - f^*(t))^p dt \mid \|f\|_{L^p(\mathbb{R}^n)} \leq 1 \right\}.$$

Then for every $\alpha \in (0, A_p^*)$, there exists a positive constant C depending only on p and α such that

$$\|\Phi_p(\alpha |u|^p)\|_{L^1(\mathbb{R}^n)} \leq C$$

holds for all $u \in H^{n/p,p}(\mathbb{R}^n)$ with $\|(I - \Delta)^{n/(2p)} u\|_{L^p(\mathbb{R}^n)} \leq 1$.

Remark. Later, we shall show that

$$1 \leq B_p \leq p^p - (p - 1)^p \quad \text{for } 1 < p < \infty.$$

In particular, for $2 \leq p < \infty$, there holds

$$B_p = (p - 1)^{p-1}.$$

(0.5)

In any case, we obtain $A_p^* \leq A_p$ for $1 < p < \infty$.

Since it follows from (0.5) that $B_2 = 1$, we see that $A_2 = A_2^* = (2\pi)^n/\omega_n$ is the best constant of (0.4). Hence, the following corollary holds:

Corollary 0.1. (i) For every $\alpha \in ((2\pi)^n/\omega_n, \infty)$, there exists a sequence $\{u_k\}_{k=1}^{\infty} \subset H^{n/2,2}(\mathbb{R}^n)$ with $\|(I - \Delta)^{n/4} u_k\|_{L^2(\mathbb{R}^n)} \leq 1$ such that

$$\|\Phi_2(\alpha |u_k|^2)\|_{L^1(\mathbb{R}^n)} \to \infty \text{ as } k \to \infty.$$

(ii) For every $\alpha \in (0, (2\pi)^n/\omega_n)$, there exists a positive constant C depending only on α such that

$$\|\Phi_2(\alpha |u|^2)\|_{L^1(\mathbb{R}^n)} \leq C$$

holds for all $u \in H^{n/2,2}(\mathbb{R}^n)$ with $\|(I - \Delta)^{n/4} u\|_{L^2(\mathbb{R}^n)} \leq 1$.

(0.6)
It seems to be an interesting question whether or not (0.6) does hold for
\(\alpha = (2\pi)^n/\omega_n \).

Next, we consider the Gagliardo-Nirenberg interpolation inequality which is closely related to the Trudinger-Moser inequality. Ozawa [14] proved that for \(1 < p < \infty \) there is a constant \(M \) depending only on \(p \) such that

\[
\|u\|_{L^q(\mathbb{R}^n)} \leq M q^{1/p'} \|u\|_{L^p(\mathbb{R}^n)}^{p/q} \|(-\Delta)^{n/(2p)} u\|_{L^p(\mathbb{R}^n)}^{1-p/q} \tag{0.7}
\]

holds for all \(u \in H^{n/p,p}(\mathbb{R}^n) \) and for all \(q \in [1, \infty) \). Ozawa [13],[14] also showed the fact that (0.2) and (0.7) are equivalent and he gave the relation between \(\alpha \) in (0.2) and \(M \) in (0.7). Combining his formula with our result, we obtain an estimate of \(M \) from below. Indeed, there holds the following theorem:

Theorem 0.3. Let \(2 \leq p < \infty \). We define \(M_p \) and \(m_p \) as follows.

\[
M_p := \inf\{M > 0 \mid \text{The inequality (0.7) holds for all } u \in H^{n/p,p}(\mathbb{R}^n) \text{ and for all } q \in [p, \infty) \},
\]

\[
m_p := \inf\{M > 0 \mid \text{There exists } q_0 \in [p, \infty) \text{ such that the inequality (0.7) holds for all } u \in H^{n/p,p}(\mathbb{R}^n) \text{ and for all } q \in [q_0, \infty) \}.\]

Then there holds

\[
M_p \geq m_p \geq \frac{1}{(p'eA_p^{*})^{1/p'}}.
\]

Since Ozawa [13],[14] gave the relation between the constants \(\alpha \) in (0.2) and \(M \) in (0.7), we obtain a lower bound of the best constant for the Sobolev inequality in the critical exponent:

Theorem 0.4. Let \(1 < p < \infty \).

(i) For every \(M > (p'eA_p^{*})^{-1/p'} \), there exists \(q_0 \in [p, \infty) \) depending only on \(p \) and \(M \) such that

\[
\|u\|_{L^q(\mathbb{R}^n)} \leq M q^{1/p'} \|I - \Delta)^{n/(2p)} u\|_{L^p(\mathbb{R}^n)} \tag{0.8}
\]

holds for all \(u \in H^{n/p,p}(\mathbb{R}^n) \) and for all \(q \in [q_0, \infty) \).

(ii) We define \(\overline{M}_p \) and \(\overline{m}_p \) as follows.

\[
\overline{M}_p := \inf\{M > 0 \mid \text{The inequality (0.8) holds for all } u \in H^{n/p,p}(\mathbb{R}^n) \text{ and for all } q \in [p, \infty) \},
\]

\[
\overline{m}_p := \inf\{M > 0 \mid \text{There exists } q_0 \in [p, \infty) \text{ such that the inequality (0.8) holds for all } u \in H^{n/p,p}(\mathbb{R}^n) \text{ and for all } q \in [q_0, \infty) \}.
\]
Then there holds

\[\overline{M}_{p} \geqq \overline{m}_{p} \geqq \frac{1}{(p'eA_{p})^{1/p'}}. \]

Since we have obtained \(A_{2} = A_{2}^{*} \) for \(p = 2 \), we see that

\[\frac{1}{\sqrt{2eA_{2}}} = \frac{1}{\sqrt{2eA_{2}^{*}}} = \sqrt{\frac{\omega_{n}}{2^{n+1}e\pi^{n}}} \]

Hence, the above theorem gives the best constant for (0.8). Indeed, we have the following corollary:

Corollary 0.2. (i) For every \(M > \sqrt{\omega_{n}/(2^{n+1}e\pi^{n})} \), there exists \(q_{0} \in [2, \infty) \) such that

\[\|u\|_{L^{q}(\mathbb{R}^{n})} \leqq Mq^{1/2}\|(I - \Delta)^{n/4}u\|_{L^{2}(\mathbb{R}^{n})} \]

holds for all \(u \in H^{n/2,2}(\mathbb{R}^{n}) \) and for all \(q \in [q_{0}, \infty) \).

(ii) For every \(0 < M < \sqrt{\omega_{n}/(2^{n+1}e\pi^{n})} \) and \(q \in [2, \infty) \), there exist \(q_{0} \in [q, \infty) \) and \(u_{0} \in H^{n/2,2}(\mathbb{R}^{n}) \) such that

\[\|u_{0}\|_{L^{q_{0}}(\mathbb{R}^{n})} > Mq_{0}^{1/2}\|(I - \Delta)^{n/4}u_{0}\|_{L^{2}(\mathbb{R}^{n})} \]

holds.

To prove our theorems, by means of the Riesz and the Bessel potentials, we first reduce the Trudinger-Moser inequality to some equivalent form of the fractional integral. The technique of symmetric decreasing rearrangement plays an important role for the estimate of fractional integrals in \(\mathbb{R}^{n} \). To this end, we make use of O'Neil's result [12] on the rearrangement of the convolution of functions. Such a procedure is similar to Adams [2]. First, we shall show that for every \(\alpha \in (0, A_{p}^{*}) \), there exists a positive constant \(C \) depending only on \(p \) and \(\alpha \) such that (0.4) holds for all \(u \in H^{n/p,p}(\mathbb{R}^{n}) \) with \(\|(I - \Delta)^{n/(2p)}u\|_{L^{p}(\mathbb{R}^{n})} \leqq 1 \). On the other hand, we shall show that the constant \(C \) holding (0.2) and (0.4) in \(\mathbb{R}^{n} \) can be also available for the corresponding inequality in bounded domains. Since Adams [2] gave the sharp constant \(\alpha \) in the corresponding inequality to (0.1), we obtain an upper bound \(A_{p} \) as in (0.3). For general \(p \), we have \(A_{p}^{*} \leqq A_{p} \). In particular, for \(p = 2 \), there holds \(A_{2}^{*} = A_{2} \), which provides us the best constant of (0.4).
References

