THE NAVIER-STOKES EQUATIONS IN \mathbb{R}^n WITH LINEARLY GROWING INITIAL DATA

OKIHIRO SAWADA

ABSTRACT. The local-in-time mild solutions to the Navier-Stokes equations with the initial velocity U_0 of the form $U_0(x) = -Mx + u_0(x)$ is constructed, where M is an $n \times n$ constant matrix with $\text{tr} \, M = 0$ and $u_0 \in L^p_\sigma(\mathbb{R}^n)$. Key method is to establish Ornstein-Uhlenbeck semigroup and studying its property, for example, to establish the $L^p - L^q$ estimates. The solution is smooth in x, but no differentiate in t. Moreover, if $\|e^{tM}\| \leq 1$ for all $t \geq 0$, then this mild solution is even analytic in x. Also, some results related to main theorem are mentioned.

This paper is essentially based on the results in [21] with Matthias Hieber (in Technische Universität Darmstadt, Germany).

1. INTRODUCTION.

We consider the Navier-Stokes equations in the whole space \mathbb{R}^n ($n \geq 2$):

\[\begin{array}{ll}
U_t - \Delta U + (U, \nabla)U + \nabla P = 0, & \nabla \cdot U = 0 \quad \text{in } \mathbb{R}^n \times (0, T), \\
U|_{t=0} = U_0 \quad \text{with } \nabla \cdot U_0 = 0 \quad \text{in } \mathbb{R}^n.
\end{array} \]

Here, $U = (U_1(x,t), \ldots, U_n(x,t))$ and $P(x,t)$ stand for the unknown velocity and the unknown pressure of the viscous fluid at $x \in \mathbb{R}^n$ and $t > 0$; $U_0 = (U_0^1(x), \ldots, U_0^n(x))$ is the given initial velocity. The notations of differentiations are denoted as following: $U_t := \partial U/\partial t$, $\partial_i := \partial/\partial x_i$, $\Delta := \sum_{i=1}^{n} \partial_i^2$, $(U, \nabla) := \sum_{i=1}^{n} U^i \partial_i$, $\nabla P := (\partial_1 P, \ldots, \partial_n P)$, $\nabla \cdot U := \sum_{i=1}^{n} \partial_i U^i$.

Our purpose of this paper is to construct the mild solution of (NS), when the initial velocity may grow linearly at space infinity. So, we select the initial velocity is of the form

\[U_0(x) = -Mx + u_0(x), \quad x \in \mathbb{R}^n, \]

where M is a real valued $n \times n$ constant matrix with $\text{tr} \, M = 0$, and $u_0 \in L^p_\sigma(\mathbb{R}^n)$. Here, we denote $L^p(\mathbb{R}^n)$ by the usual Lebesgue space, and $L^p_\sigma(\mathbb{R}^n)$ by its solenoidal subspace; $H^s_p(\mathbb{R}^n) := (I - \Delta)^{-s/2}L^p(\mathbb{R}^n)$ stands for Sobolov space, and $H^s(\mathbb{R}^n) := H^s_2(\mathbb{R}^n)$ for simplicity. Throughout of this paper we do not distinguish the vector

\[^{1}\text{the author is a JSPS Research Fellow.} \]
Navier-Stokes with linearly growing data

valued functions and scalar as well as function spaces. Also, we sometimes omit \((\mathbb{R}^{n})\) as \(L^{p} := L^{p}(\mathbb{R}^{n})\), if no confusion occurs likely.

If the case \(M = 0\), it is well known that (NS) admits a local-in-time smooth solution, provided that the initial velocity \(U_{0}\) belongs to \(H^{n/2-1}(\mathbb{R}^{n})\) (by [9, 28]), \(L_{p}^{2}(\mathbb{R}^{n})\) for \(n \leq p \leq \infty\) (see e.g. [12, 14, 17, 27]). Some researchers tried (and still try) to construct the mild solution in several functions spaces (see e.g. [1, 6, 7, 30, 31, 32, 33, 34, 42]). However, the author has never seen yet that one can succeed it in the function space which contains some growing functions up to now.

In the case of \(M \neq 0\), the situation is more complicated, in general. Once we choose \(M\) so that \(Mx = (x_{2}, -x_{1}, 0)\), we can easily get a unique classical solution to (NS) with initial data given by (1.1), using rotating coordinate; see e.g. [3, 22]. However, we now impose \(M\) satisfying \(tr M = 0\) only. We thus cannot expect to apply this method, directly.

On the other hand, we consider the substitution

\[u := U - \bar{U} \quad \text{and} \quad \tilde{P} := P - \bar{P}, \]

where \(\bar{U} := -Mx\), \(\bar{P} := (\Pi x, x)\), \(\Pi := \frac{1}{2}((M^{sym})^{2} + (M^{ssym})^{2})\) and \(M^{sym} := \frac{1}{2}(M + M^{T})\) and \(M^{ssym} := \frac{1}{2}(M - M^{T})\). Here \(M^{T}\) denotes the transposed matrix of \(M\). At that time we notice that the pair \((U, P)\) satisfies (NS) in classical sense if and only if \((u, \tilde{P})\) solves

\[
\begin{align*}
\begin{cases}
 u_{t} - \Delta u + (u, \nabla)u - (Mx, \nabla)u - Mu + \nabla \tilde{P} = 0, \\
 \nabla \cdot u = 0 & \text{in } \mathbb{R}^{n} \times (0, T), \\
 u|_{t=0} = u_{0} & \text{in } \mathbb{R}^{n}.
 \end{cases}
\end{align*}
\]

Look at that \((\bar{U}, \bar{P})\) is a solution of not only (NS) but also the stationary Euler equations; this fact was firstly shown by Majda in [35]. Then \((u, \tilde{P})\) can be regarded as a perturbation between the solution to (NS) and Majda’s stationary solution. One of our motivations is to observe the stability and uniqueness of Majda’s solution.

A typical example of \(M\) is \(M = R + J\), where

\[
R = \begin{pmatrix}
0 & -a & 0 \\
-0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \quad \text{and} \quad J = \begin{pmatrix}
-b & 0 & 0 \\
0 & -b & 0 \\
0 & 0 & 2b
\end{pmatrix}
\]

for \(a, b \in \mathbb{R}\). Note that \(R\) corresponds to pure rotation, and describes the Coriolis force. As we mentioned before, in the case of \(M = R\), the problem (NS2) was investigated by Hishida [22, 23, 24] and by Babin, Mahalov and Nicolaenko [3, 4].
Indeed, Hishida considered (NS2) with $M = R$ in an exterior domain $\Omega \subset \mathbb{R}^3$ and constructed a local-in-time mild solution, when the initial data u_0 belongs to $H^s(\Omega)$ for $s \geq 1/2$. Babin, Mahalov and Nicolaenko also showed that (NS) with $U_0(x) = -Rx + u_0(x)$ has a unique classical solution, provided that u_0 is in $L^p(\mathbb{R}^n)$ or u_0 is a smooth periodic function. In [44], the author of this paper proved the existence of a unique classical solution, still for $M = R$, provided that u_0 belongs to the Besov space $\dot{B}_{\infty,1}^0$. Note that $\dot{B}_{\infty,1}^0 \subset L^\infty$, and contains some almost periodic functions. In addition, the advantage of using $\dot{B}_{\infty,1}^0$ is the boundedness of the Riesz transform in $\dot{B}_{\infty,1}^0$. The definitions and properties of the homogeneous Besov spaces are found in e.g. [5, 47, 48]. In particular, $\dot{B}_{\infty,1}^0$ is investigated in [44, 45], more precise.

On the other hand, according to Majda in [35], $M = J$ illustrates the jet flows of the fluid. In fact, Jx corresponds to the drain along to x_1 and x_2-axises and to the outgoing to infinity along to x_3-axis. Giga and Kambe [15] also investigated the axisymmetric irrotational flow and studied the stability of the vortex, when the velocity field of the fluid U is expressed as $U = Jx + V$, where V is a two-dimensional velocity field $V = (V^1, V^2, 0)$.

In the background of this works, the author considers the following problem:

What is the boarder case between the well-posed and ill-posed of (NS)?

Here the (time-local) well-posed means that one can construct a local-in-time unique classical solution to (NS) with value continuous up to initial time. The author guesses that the boarder is just when the initial velocity grows linear order at space infinity. To consider the 1-dimensional Burgers equation $U_t - U_{xx} + UU_x = 0$, $U(0) = U_0$, which seems to be a model case of 1-dimensional Navier-Stokes equation, we know the answer: let $|U_0(x)| \sim |x|^s$ as $x \to \infty$,

1. if $s < 1$, then time-global well-posed,
2. if $s = 1$, then time-local well-posed,
3. if $s > 1$, then ill-posed for any time.

Using the Cole-Hopf transform, we apply the classical results by Tychonoff [49] to know above. On the multi-dimensional Burgers-like equation, similar results were also obtained by Giga and Yamada [20, 50]. Maybe, the structure of Burgers equation is far form that of Navier-Stokes, but the author still believes to obtain similar results on (NS).
Navier-Stokes with linearly growing data

On the other hand, Okamoto [40] (and see also Kim and Chae [29]) studied the uniqueness of (NS), when the velocity behaves $|x|$:

Theorem. Let $n=2,3$. If two pairs (U,P) and (\tilde{U}, \tilde{P}) are classical solutions to (NS) with same initial velocity, satisfying $|U| = O(|x|)$, $|\nabla U| = O(1)$, $|P| = O(|x|^{1-n/2})$ as $|x| \to \infty$, then $U(x,t) \equiv \tilde{U}(x,t)$ for $x \in \mathbb{R}^n$ and $t > 0$.

Nobody knows there is a solution satisfying above condition. One of our motivations is to give such a solution, ignoring the pressure condition.

This paper is organized as follows. In section 2 we shall state the main results on this paper, and refer to related results. In section 3 we prepare the tools. In particular, we establish several estimates for the semigroup. In section 4 we shall give the proofs of our main theorems, briefly.

2. MAIN RESULTS.

Before mentioning the main results on this paper, we now define the operator A in $L^p_\sigma(\mathbb{R}^n)$ for $p \in [1, \infty]$ as

$$Au := -\Delta u - (Mx, \nabla)u + Mu$$

with domain $D(A) := \{u \in H^2_p \cap L^p_\sigma; (Mx, \nabla)u \in L^p\}$. We may prove that $-A$ generates a C_0-semigroup e^{-tA} on L^p_σ for $p \in [1, \infty)$; see e.g. [37, 38]. For $p = \infty$, $-A$ also generates a semigroup on L^{∞}_σ, but there is a lack of the strong continuity at $t = 0$. Remark that the semigroup e^{-tA} is not analytic, see [22]. In the next section the detail of properties of this semigroup will be observed.

Applying the projection \mathbb{P} to (NS2), formally, we have the abstract equation:

$$u_t + Au + \mathbb{P}(u, \nabla)u - 2\mathbb{P}Mu = 0, \quad u(0) = u_0.$$

We now deal with the whole space problem, the projection \mathbb{P} can be written explicitly by $\mathbb{P} := (\delta_{ij} + R_i R_j)_{1 \leq i,j \leq n}$, where δ_{ij} denotes the Kronecker's delta, and R_i is the Riesz transform defined by $R_i := \partial_i(-\Delta)^{-1/2}$. Note that A and \mathbb{P} commute, since $\nabla \cdot Au = 0$ if $\nabla \cdot u = 0$. Then, it is straightforward to get the integral equation:

$$u(t) = e^{-tA}u_0 - \int_0^t e^{-(t-s)A}\mathbb{P}u(s) \cdot \nabla u(s)ds + 2\int_0^t e^{-(t-s)A}\mathbb{P}Mu(s)ds$$

for $t \in (0, T)$ with $u(0) = u_0$, integrating (ABS) in time. For $T > 0$ we call a function $u \in C([0, T]; L^p_\sigma(\mathbb{R}^n))$ a mild solution, if u satisfies (INT).

We are now in position to state the local-in-time existence and uniqueness results for mild solutions in L^p_σ spaces.
2.1. **Theorem.** Let \(n \geq 2, \ p \in [n, \infty) \) and \(q \in [p, \infty) \). Let \(M \) be a real valued \(n \times n \) constant matrix with \(\mathrm{tr} M = 0 \), and assume that \(u_0 \in L^p_\sigma(\mathbb{R}^n) \). Then there exist \(T_0 > 0 \) and a unique mild solution \(u \) such that

\[
(2.1) \quad t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})} u \in C([0, T_0); L^q_\sigma(\mathbb{R}^n)),
\]

\[
(2.2) \quad t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})+\frac{1}{2}} \nabla u \in C([0, T_0); L^q(\mathbb{R}^n)).
\]

2.2. **Remark.** (i) The functions defined in (2.1) and (2.2) are continuous in \(t \) up to initial time, moreover, they vanish at \(t = 0 \) provided \(q \neq p \) in (2.1).

(ii) The case \(p = \infty \). It seems to be difficult to obtain the solvability in \(L^\infty \) or \(\text{BUC} \). This difficulty comes from unboundedness of the Riesz transform onto \(L^\infty \). Therefore, if we choose the initial data \(u_0 \in \dot{B}_{\infty, 1}^0 \) in \(\dot{B}^0_{\infty, 1} \), we can show the local existence of mild solution in \(C([0, T_0); \dot{B}^0_{\infty, 1}) \).

In order to prove Theorem 2.1 we derive the benefit estimates (for example, \(L^p - L^q \) estimates) for the semigroup \(e^{-tA} \) as well as heat semigroup. Nevertheless the semigroup \(e^{-tA} \) is not analytic, thanks to the explicit formula of the semigroup, we can derive them by direct calculations of the kernel; see Lemma 3.2. To construct the mild solution we use a standard iteration scheme.

From similar argument of the proof of Theorem 2.1 we are able to derive uniform bounds for \(\nabla^k u(t) \) for any \(k \in \mathbb{N} \), if \(t \leq T_k \) for some \(T_k \sim k^{-k} \). This implies evidently that \(u(t) \in C^\infty(\mathbb{R}^n) \) as long as mild solution exists.

Conversely, we cannot control the time-differentiation of \(u \), even if the initial data belongs to \(D(A) \), in general. Because, it cannot be expected that the solution is in \(D(A) \). This means, we do not know our mild solution is a strong solution, i.e.,

\[
\exists \ u \in C([0, T); D(A)) \cap C^1([0, 7); L^p_\sigma) \ ?
\]

Of course, this difficulty comes from non analyticity of the semigroup. Therefore, we do not know whether or not the mild solution satisfies (ABS), and (NS) with some pressure. Once the mild solution \(u \) solves (ABS), we show that the pair \((u, \nabla \tilde{P}) \) fulfillels (NS2), provided that

\[
\partial_t \tilde{P} := \sum_{i,j=1}^n \partial_i R_i R_j u^i u^j + 2 \sum_{i,j=1}^n m_{ij} R_i R_j u^i u^j.
\]

We thus get the solution to (NS) as \((U, P) := (u + Mx, \tilde{P} + (\Pi z, z)) \), formally. The uniqueness theorem related this situation was obtained in [44].
Navier-Stokes with linearly growing data

The estimates for the semigroup show that the linear term of (INT) grows at $t \to \infty$ exponentially, in general. Furthermore, the linear remainders, which is the last term of (INT), prevents Kato's argument in [27] (time-global well-posedness for small data). Hence, it seems to be difficult to obtain results on global existence of mild solutions, even if we solve it in scaling invariant space (e.g. $L^n(\mathbb{R}^n)$).

In 2-dimensional case, we can apply the maximum principle for the vorticity, at least when $M = 0$, see e.g. [11, 13]. Once we obtain the uniform bound for vorticity, we can get global solution, see [16]. However, in our situation we need some new idea. Indeed, taking rot into (NS2), for general M we have the vorticity equation on the scalar function $\omega := \text{rot} u$:

(VOR) \[\omega_t - \Delta \omega - (M x, \nabla)\omega + \text{tr} M \omega + (u, \nabla)\omega = 0 \]

with $\omega(0) = \omega_0 := \text{rot} u_0$; under our assumption we suppose $\text{tr} M = 0$. At least we may not apply the maximum principle for (VOR) directly, so it is not known how to get the estimate like $||\omega(t)||_q \leq ||\omega_0||_q$ for $t > 0$ with some q. In [44, Lemma 3.3] we have the following estimates:

\[||\omega(t)||_{\dot{B}_{\infty,1}^{0}} \leq C ||\omega_0||_{\dot{B}_{\infty,1}^{0}} \exp \left\{ C \sum_{k=0}^{2} \int_{0}^{t} ||\nabla^{k}u(s)||_{\dot{B}_{\infty,1}^{0}} ds \right\}. \]

But this is very far from what we desire, this does not help us.

It is a natural question to consider the exterior domains Ω, instead of \mathbb{R}^n. This initial-boundary value problem leads us to interesting applications such as spin-coating of fluids. This will be the content of a forthcoming publication; in the future we will prove that $-A$ generates a C_0-semigroup on $L^p(\Omega)$ for $1 < p < \infty$.

We are forced to derive the estimates T_k independent of k under some condition on M. In fact, if we select M so that $||e^{tM}|| \leq 1$ for all $t \leq 0$, then we take T_k uniformly in k; involving the iteration scheme, we can control $||\nabla^{k}u(t)||_q$ for all k, simultaneously. It is easy to verify that $M = R$ should satisfy $||e^{tR}|| = 1$. Once we obtain it, the analyticity in x of $u(t)$ can be shown. Actually, spatial-analyticity is deduced form the following estimates of regularizing rates for higher order derivatives of u:

2.3. Theorem. Let $n \geq 2$, $u_0 \in L^p(\mathbb{R}^n)$. Assume that $||e^{tM}|| \leq 1$ for all $t \geq 0$. Let u be the local-in-time mild solution obtained by Theorem 2.1 in the class of

\[u \in C([0, T]; L^p(\mathbb{R}^n)) \cap C((0, T]; L^p(\mathbb{R}^n)) \]
for some $r \in (n, \infty]$ and $T > 0$. Assume further that there exist positive constants M_1, M_2 such that
\[\sup_{0 < t < T} ||u(t)||_n \leq M_1 \quad \text{and} \quad \sup_{0 < t < T} t^{\frac{n}{2}(\frac{1}{n} - \frac{1}{r})} ||u(t)||_r \leq M_2. \]
Then there exist constants K_1 and K_2 (depending only on n, M, r, T, M_1, M_2) such that
\[||\nabla m \mathrm{u}(t)||_q \leq K_1 (K_2 m)^m t^{-\frac{m}{2}-\frac{n}{2}(\frac{1}{n} - \frac{1}{q})} \]
for all $t \in (0, T]$, $q \in [n, \infty]$ and $m \in \mathbb{N}_0$. Here $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

It is easy to see that from Theorem 2.3 the mild solution $u(t)$ is analytic in x. More precisely, we get the estimate for the size of the radius of convergence of $\frac{d}{dt}e^{-tA}$ and ∇ do not commute, in general, we actually obtain that
\[\Xi \text{ is taken small enough such that } \epsilon \sim 1/|\alpha| \text{ with induction on } |\alpha| \text{ to get (2.3).} \]

As the author mentioned before, due to the unbounded coefficient in the drift term, e^{-tA} is not analytic. Hence the estimate for $||\nabla^m e^{-tA}||$ does not follow automatically as the classical Stokes semigroup from the analytic semigroup theory. Therefore, we must establish the $L^p - L^q$ estimates with higher order differentials, see Lemma 3.3 in the next section.
Navier-Stokes with linearly growing data

The author does not know whether one can still show (2.3), when we relax the assumption on M, for example, $\|e^{tM}\| \leq C_\ast$ with some $C_\ast > 1$. In our proof we need $C_\ast = 1$ to choose the constants K_1 and K_2 independently in m. We only obtain the spatial-analyticity, since the time-analyticity of u does not follow from our method directly. Probably, the mild solution should not be analytic in time! The author also guesses that this method is not applicable for the boundary value problem, since we need suitable commutativity between the semigroup and differential.

3. ESTIMATES FOR THE SEMIGROUP e^{-tA}.

In this section we establish the semigroup theory and research its properties. In the next section we use these tools for proofs of main theorems.

Let M be an $n \times n$ matrix of real valued constants; it is not necessary to impose $\text{tr} M = 0$ throughout this section. We now introduce the operator A by

$$Au := -\Delta u - (Mx, \nabla)u + Mu,$$

where $u := (u_1, \ldots, u_n) \in L^p(\mathbb{R}^n)$ for $p \in [1, \infty]$ and A is an $n \times n$ matrix operator. Observe that by simple calculation

$$\nabla \cdot \{- (Mx, \nabla)u + Mu\} = 0, \quad \text{provided } \nabla \cdot u = 0.$$

We thus define A as the realization of A in $L^p_\sigma(\mathbb{R}^n)$

(3.1)

$$\begin{align*}
A u & := Au \\
D(A) & := \{u \in H^2_p \cap L^p_\sigma; (Mx, \nabla)u \in L^p\}.
\end{align*}$$

By standard perturbation theory it follows that

3.1. Lemma. The operator $-A$ generates a C_0-semigroup on $L^p_\sigma(\mathbb{R}^n)$ for $p \in [1, \infty)$. The semigroup $\{e^{-tA}\}_{t \geq 0}$ has an explicit formula by

(3.2) $$(e^{-tA}u)(x) := \frac{e^{-tM}}{(4\pi)^{n/2}(\det Q_t)^{1/2}} \int_{\mathbb{R}^n} u(e^{tM}x - y)e^{-\frac{1}{2}(Q_t^{-1}y,y)}dy,$$

where $Q_t := \int_0^t e^{sM}e^{sMT}ds$.

Notice that in the case $M = 0$ the semigroup e^{-tA} coincides with the heat semigroup, since $t^{-1}Q_t = Id$. The proof of Lemma 3.1 was shown by e.g. Metafune and his collaborators [37, 38]. Note that the semigroup e^{-tA} is not analytic, In fact, if we intend to show that e^{-tA} is analytic semigroup, we may construct the counter example by using (Mx, ∇) term; see [22]. The operator $-A$ also generates
a semigroup on $L^\infty(\mathbb{R}^n)$. But, as same as heat semigroup, there is a lack of strong
continuity at $t = 0$ in L^∞.

We now turn to $L^p - L^q$ smoothing properties as well as gradient estimates for e^{-tA}. Due to the non analyticity of e^{-tA}, gradient estimates do not follow from the
general theory of analytic semigroups.

3.2. Lemma. Let $n \geq 1$ and $1 \leq p \leq q \leq \infty$. Then there exist constants $\tilde{C}_0 > 0$
and $\omega_0 \geq 0$ such that

\begin{align}
\|e^{-tA}f\|_q & \leq \tilde{C}_0 t^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{q})} e^{\omega_0 t} \|f\|_p, \quad t > 0, \\
\|\nabla e^{-tA}f\|_p & \leq \tilde{C}_0 t^{-\frac{n}{2}} e^{\omega_0 t} \|f\|_p, \quad t > 0.
\end{align}

Moreover, for $p < q$ and $f \in L^p(\mathbb{R}^n)$ we have

\begin{align}
\|e^{-tA}f\|_q & \rightarrow 0 \quad \text{as} \quad t \rightarrow 0, \\
\|\nabla e^{-tA}f\|_p & \rightarrow 0 \quad \text{as} \quad t \rightarrow 0.
\end{align}

We can prove (3.3) and (3.4) by direct calculations of the kernel of explicit
formula and Young's inequality. In the proofs of (3.5) and (3.6) we use triangle
inequality, (3.3), (3.4) and the density $C^\infty_0 \subset L^p$ for $p < \infty$. We skip the proof
of Lemma 3.2 in this paper, because one can find it in [21]. Note also that if M
satisfies $\|e^{-tM}\| \leq C$ for all $t > 0$ with some constant C, we may take $\omega_0 = 0$. In
the special case $M = Id$, $L^p - L^q$ estimates for e^{-tA} were obtained by Gallay and
Wayne [10].

To next we estimate for higher order derivatives of semigroup, i.e., for $\nabla^m e^{-tA}f$,
which are very useful to consider smoothing properties of mild solutions. The main
difficulty is that the semigroup e^{-tA} and tdifferential ∇ do not commute, in general.
Nevertheless, we obtain following estimates similar to those of the heat semigroup.

3.3. Lemma. Let $n \geq 1$ and $1 \leq p \leq q \leq \infty$. Then there exist constants $\tilde{C}_1, \tilde{C}_2, \tilde{C}_3 > 0$, $\omega_1, \omega_2, \omega_3, \omega_4 \geq 0$ (depending only on n, p, q and M) such that

\begin{align}
\|\nabla^m e^{-tA}f\|_q & \leq \tilde{C}_1 e^{(\omega_1 + \omega_2) t} t^{-\frac{m}{2}(\frac{1}{p} - \frac{1}{q})} \|\nabla^m f\|_p \\
\|\nabla^m e^{-tA}f\|_q & \leq \tilde{C}_2 (\tilde{C}_3 m)^{m/2} e^{(\omega_3 + \omega_4) t} t^{-\frac{m}{2}(\frac{1}{p} - \frac{1}{q})} \|f\|_p
\end{align}

for $t > 0$, $m \in \mathbb{N}$ and $f \in H^m_p(\mathbb{R}^n)$, and

It is evident to get (3.7) by (2.4) m-th times. So, it is clear to see that the
assertion (3.7) holds true with $\omega_2 = 0$, provided that $\|e^{tM}\| \leq 1$ for all $t > 0$. To
Navier-Stokes with linearly growing data

obtain (3.8), we split e^{-tA} into $m + 1$ parts, and use (2.4) m-th times. Then we have

$$
\| \nabla^m e^{-tA} f \|_q \leq C \tilde{C}^m \| (\nabla e^{-t/(m+1)A})^m e^{-t/(m+1)A} f \|_q
$$

with some constants C and \tilde{C}. For each terms we apply (3.3) and (3.4), and sum up with them to show (3.8). In (3.8) the top order of dependence of m is $m^{m/2}$, which is natural in the sense that this order is same as that of heat semigroup.

As shown by Theorem 2.3 and its remarks, it is important to derive $\| \nabla^m u \|_\infty$ for proving the spatial-analyticity. In the following lemma, the estimate of the operator norm of $\nabla e^{-tA} \mathcal{P}$ into L^p for all $p \in [1, \infty]$ will be done:

3.4. Lemma. Let $n \geq 1$, $1 \leq p \leq \infty$ and let A and \mathcal{P} be as above. Then there exist constants $C > 0$ and $\omega \geq 0$ such that

$$
\| \nabla e^{-tA} \mathcal{P} \|_{L(L^p(\mathbb{R}^n))} \leq Ct^{-1/2}e^{\omega t}, \quad t > 0.
$$

The proof is based on [2, Proposition 8.2.3, Lemma 8.2.2]. In the case $M = 0$, we find it in [14]. We omit its detail to make this paper short.

4. PROOFS OF THEOREMS.

We are now in position to show that (NS2) admits a local-in-time mild solution, and to investigate its properties. Fistly, we give the proof of Theorem 2.1 briefly, in the case $p = n$, although that is standard argument by Kato [27].

Proof of Theorem 2.1. Let $n \geq 2$ and $u_0 \in L^n_\sigma(\mathbb{R}^n)$. For $j \geq 1$ and $t > 0$ we define functions u_{j+1} by

$$
u_{j+1}(t) := e^{-tA}u_0 - \int_0^t e^{-(t-s)A} \mathcal{P}(u_j(s), \nabla) u_j(s) ds + 2 \int_0^t e^{-(t-s)A} \mathcal{P} M u_j(s) ds,
$$

and stratified at $u_1(t) := e^{-tA}u_0$. Note that $u_j(t)$ keeps divergence-free for all $t > 0$ and j. For $T \in (0, 1]$ and $\delta \in (0, 1)$ we define

$$
A_0 := \sup_{0 < t \leq T} t^{\frac{1}{2}} \| e^{-tA} u_0 \|_{n/\delta} \quad \text{and} \quad A'_0 := \sup_{0 < t \leq T} t^{1/2} \| \nabla e^{-tA} u_0 \|_n
$$

as well as $A_j := A_j(T)$ and $A'_j := A'_j(T)$, where

$$
A_j(T) := \sup_{0 < t \leq T} t^{1/2} \| u_j(t) \|_{n/\delta} \quad \text{and} \quad A'_j(T) := \sup_{0 < t \leq T} t^{1/2} \| \nabla u_j(t) \|_n, \quad j \geq 1.
$$
We thus obtain that
\[
\|u_{j+1}(t)\|_{n/\delta}
\leq \|e^{\Delta}u_0\|_{n/\delta} + \int_0^t \|e^{-(t-s)A}P u_j(s) \cdot \nabla u_j(s)\|_{n/\delta} ds + 2 \int_0^t \|e^{-(t-s)A}P Mu_j(s)\|_{n/\delta} ds
\leq t^{-\frac{1-\delta}{2}}A_0 + C \int_0^t (t-s)^{-\frac{n}{2} \left(\frac{1}{r}-\frac{\delta}{n}\right)} \|u_j(s) \cdot \nabla u_j(s)\|_{r} ds + C \int_0^t \|u_j(s)\|_{n/\delta} ds,
\]
where \(r := \frac{n}{1+\delta} \).

In order to estimate the second term on the right hand side of last inequality, we now apply Hölder’s inequality to conclude that
\[
\|u_j(s) \cdot \nabla u_j(s)\|_{r} \leq \|u_j(s)\|_{n/\delta} \|\nabla u_j(s)\|_{n} \leq A_j A_j'^{s^{-\frac{1-\delta}{2}-\frac{1}{2}}},
\]
Multiplying with \(t^{\frac{1-\delta}{2}} \) and taking \(\sup_{0<t\leq T} \) on both sides we obtain
\[
(4.1) \quad A_{j+1} \leq A_0 + C_1 A_j A_j' + C_2 TA_j
\]
with some positive constants \(C_1 \), \(C_2 \) independent of \(j \) and \(T \).

Similarly, taking \(\nabla \) into approximations, and estimating it in the \(L^n \)-norm, by (3.4) we obtain
\[
(4.2) \quad A_{j+1}' \leq A_0' + C_3 A_j A_j' + C_4 TA_j
\]
with some positive constants \(C_3 \) and \(C_4 \). The estimates (3.5) and (3.6) imply that for any \(\lambda > 0 \), there exists \(\tilde{T}_0 > 0 \) such that \(A_0, A_0' \leq \lambda \) for all \(T \leq \tilde{T}_0 \). More precisely, we may choose \(\tilde{T}_0 \leq \min \left(1, \frac{1}{3C_1}, \frac{1}{3C_3}, \frac{1}{3C_4} \right) \) provided \(\lambda \leq \min \left(\frac{1}{3C_1}, \frac{1}{3C_3}, \frac{1}{3C_4} \right) \). Therefore, we obtain bounds for \(A_j(T) \) and \(A_j'(T) \) for any \(T \leq \tilde{T}_0 \) uniformly in \(j \) provided that \(\tilde{T}_0 \) is small enough.

Using the uniform bounds of \(A_j \) and \(A_j' \) we obtained, it follows that \(t^{\frac{1-\delta}{2}}\|u_j(t)\|_{q} \) as well as \(t^{1-\frac{\delta}{2}}\|\nabla u_j(t)\|_{q} \) are bounded for \(q \in [n, \infty) \), \(t \leq \tilde{T}_0 \) and all \(j \in \mathbb{N} \). The continuity of the above functions also follows from similar calculations and (3.5). We can derive estimates for the differences \(u_{j+1} - u_j \) vanish as \(j \rightarrow \infty \) on \([0, T_0]\) by similar way, provided that we take suitable \(T_0 \leq \tilde{T}_0 \). It thus follows that the above sequences are Cauchy sequences and we conclude that there are unique limit functions
\[
t^{\frac{1}{2}-\frac{\delta}{2}} u(t) \in C([0, T_0]; L^q), \quad t^{1-\frac{\delta}{2}} v(t) \in C([0, T_0]; L^q),
\]
of the sequences \((t^{\frac{1}{2}-\frac{\delta}{2}} u_j(t))_{j \geq 1}\) and \((t^{1-\frac{\delta}{2}} \nabla u_j(t))_{j \geq 1}\). Finally, note that \(v(t) = t^{1/2} \nabla u(t) \) and that \(u \) is a mild solution on \([0, T_0] \). Uniqueness of mild solutions follows from Gronwall inequality. This completes the proof of Theorem 2.1. \(\square \)
Navier-Stokes with linearly growing data

We now turn to the proof of Theorem 2.3. In the case $M = 0$, recently Giga and author [19] proved that mild solutions are analytic in x. The following proof is a modification of their proof to our situation. So, we only give the outline of the proof, briefly. Of course, the reader can find the precise proof in [21].

Proof of Theorem 2.3. We start by proving the assertion under the additional assumption that mild solution is already smooth. Because, we may show this property using same argument as below. We derive first an equivalent estimates to (2.3):

For $\delta \in (1/2, 1]$ there exist constants $K_{1} > 0$, $K_{2} > 0$ (depending only on n, r, M, M_{1}, M_{2}, T and δ) such that

(4.3) $\| \nabla^{m} u(t) \|_{q} \leq K_{1}(K_{2}m)^{m-\delta}t^{-\frac{m}{2}-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})}$

for all $t \in (0, T)$, $q \in [n, \infty]$ and $m \in \mathbb{N}_{0}$.

To get (4.3), we use an induction with respect to m. One may suppose $\nabla^{m} u$ is continuous up to $t = 0$ with value in $L^{q}(\mathbb{R}^{n})$ by considering $u(\eta)$ for $\eta > 0$ as initial data and sending $\eta \to 0$. To this end, let $k_{0} \geq 2$ (depending only on n and M). Then (4.3) follows for all $m \leq k_{0}$, provided K_{1} is chosen large enough. Assume hence that $k \geq k_{0}$, and that (4.3) holds for all $q \in [n, \infty]$ and all $m \leq k - 1$. We claim that (4.3) holds for $m = k$.

For simplicity, we first prove the assertion under the additional assumptions that $T \leq 1$, $n \geq 3$ and $q < \infty$. The claim then follows by minor modifications of the proof given below. We start by noticing that for $q \in [n, \infty)$ and $\epsilon \in (0, 1)$

\[
\| \nabla^{k} u(t) \|_{q} \leq \| \nabla^{k} e^{-tA} u_{0} \|_{q} + \left(\int_{0}^{(1-\epsilon)T} + \int_{(1-\epsilon)T}^{T} \right) \| \nabla^{k} e^{-(t-s)A} \nabla u(s) \|_{q} ds
+ 2 \left(\int_{0}^{(1-\epsilon)T} + \int_{(1-\epsilon)T}^{T} \right) \| \nabla^{k} e^{-(t-s)A} \nabla u(s) \|_{q} ds
\]

We shall estimate each the above terms $B_{1} - B_{5}$ separately.

The estimates for B_{1} are derived from (3.8) as follows:

\[
B_{1} \leq \tilde{C}_{2}(\tilde{C}_{3}k)^{k/2}e^{\omega_{3}t} \| u_{0} \|_{n} t^{\frac{k}{2}(\frac{1}{n}-\frac{1}{q})-\epsilon} \leq C_{5}(C_{6}k)^{-\delta}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{k}{2}}, \quad t \in (0, T)
\]

with constants $C_{5} := \tilde{C}_{2} || u_{0} ||_{n} \leq \tilde{C}_{2}M_{1}$ and $C_{6} := \tilde{C}_{3}e^{\omega_{3}}$. Similarly, we also have the estimates for B_{2}, B_{4} and B_{5}.
Okihiro Sawada

The main part is B_3. We now calculate $\nabla^k(u \otimes u)$ by Leibniz's rule. We divide the sum into two parts:

$$B_3 \leq C_7 \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} \| \nabla^k u(s) \|_q \| u(s) \|_\infty ds$$

$$+ C_7 \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} \max_{|\beta| = k} \left(\frac{\beta}{\gamma} \right) \| \partial_\gamma^\beta u(s) \|_q \| \partial_\beta^\gamma u(s) \|_\infty ds$$

$$=: B_{3a} + B_{3b}$$

with constant $C_7 = 2\tilde{C}_1 e^{\omega_1}$; note that C_7 does not depend on k, since we assumed that $\| e^{tM} \| \leq 1$ and $T \leq 1$. Here $\gamma < \beta$ means $\gamma_i \leq \beta_i$ for all i and $|\gamma| < |\beta|$ for multi-indices β and γ.

Consider B_{3a}. Then there exists $C > 0$ (depending only on n, p, M, M_1, M_2 such that $\| u(s) \|_\infty \leq C s^{-1/2}$; see Step 1 of the proof of Proposition 3.1 in [19]. Thus

$$B_{3a} \leq C_8 \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} s^{-1/2} \| \nabla^k u(s) \|_q ds$$

with some constant $C_8 := C_8(n, p, q, M, M_1, M_2)$. We next estimate B_{3b}. By assumption of induction we obtain that

$$B_{3b} \leq C_7 \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} s^{-1/2} \max_{0 < \gamma < \beta} \left(\frac{\beta}{\gamma} \right) K_1(K_2|\gamma|)^{|\gamma| - \delta} s^{-\frac{n}{2} - \frac{k}{2} - \frac{1}{2}} ds$$

$$\leq C_7 K_1^2 K_2^{k-2} \sum_{0 < \gamma < \beta} \left(\frac{\beta}{\gamma} \right) |\gamma|^{-\delta} |\beta - \gamma|^{-\delta} \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} s^{-1/2} ds$$

For the multiplication of multi-sequences we apply Kahane's lemma [25, Lemma 2.1] and obtain

$$B_{3b} \leq C_9 K_1^2 K_2^{k-2} K_3^{k-25} k^{k-\delta} I(\epsilon)$$

where $I(\epsilon) := \int_{1-\epsilon}^{1} (1 - r)^{-1/2} r^{-\frac{n}{2} - \frac{k}{2} - \frac{1}{2}} dr$ and C_9 depends only on C_7 and δ; so C_9 is independent of k and $C_9 \sim \sum_{j=1}^{\infty} j^{-1/2-\delta/2}$. We now put b_ϵ by

$$b_\epsilon := \tilde{C}_5(\tilde{C}_6 k / \epsilon)^{k/2} + C_9 K_1^2 K_2^{k-25} k^{k-\delta} I(\epsilon)$$

with some \tilde{C}_5 and \tilde{C}_6. Combining the estimates for $B_1 - B_5$, we thus obtain

$$\| \nabla^k u(t) \|_q \leq b_\epsilon t^{-\frac{n}{2} - \frac{k}{2} - \frac{1}{2}} + \tilde{C}_8 \int_{(1-\epsilon)t}^{t} (t - s)^{-1/2} s^{-1/2} \| \nabla^k u(s) \|_q ds$$
with some \tilde{C}_6 independent of k. Applying a Gronwall’s type inequality (see [19, Lemma 2.4]), there exists $\varepsilon_k \in (0, 1)$ such that
\begin{equation}
\|\nabla^k u(t)\|_q \leq 2b_{\varepsilon_k} t^{-\frac{3}{2}(\frac{1}{4} - \frac{1}{q}) - \frac{3}{2}}, \quad t \in (0, T).
\end{equation}
If $\varepsilon_k := 1/k$ then $I(1/k) \leq \frac{1}{2(C_8)}$ for sufficiently large k, say $k \geq k_0 := k_0(n, p, M, M_1, M_2)$. Finally, we show $2b_{1/k} \leq K_1(K_2k)^{k-\delta}$ for any k with suitable constants K_1 and K_2. Choosing K_1 large enough (4.3) holds for $k \leq k_0$, i.e., there exists a constant $K_0 > 0$ (depending only on n, p, M, M_1 and M_2) such that $\|\nabla^k u(t)\|_q \leq K_0$ for $k \leq k_0$. Since $I(1/k) \leq 2$ for all $k \geq 2$,
\[2b_{1/k} \leq 2(\tilde{C}_6\tilde{C}_6^{k-\delta} + 2C_9K_1^2K_2^{k-2\delta})k^{k-\delta}.
\]
Choosing the constants K_1 and K_2,
\[K_1 := \max \left(K_0, 4\tilde{C}_6\right) \quad \text{and} \quad K_2 := \max \left(\tilde{C}_6, (4C_9K_1)^{\delta}\right),
\]
we obtain (4.3) for all k. The proof is complete.

\section*{References}

Okihiro Sawada

Navier-Stokes with linearly growing data

DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO 3-4-1, SHINJUKU 169-855, JAPAN

E-mail address: sawada@gm.math.waseda.ac.jp