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L7 estimates for the Stokes equations
around a rotating body

Toshiaki Hishida (32H £8)
Niigata University ($T#8KX%*), Niigata 950-2181 Japan

1 Introduction

Consider the motion of a viscous incompressible fluid around a compact rigid
body B = R3\ D (with smooth boundary 8D), that is formulated as the
exterior problem for the Navier-Stokes equations. The case that the body
B is rotating with a prescribed angular velocity, say w = (0,0,1)7, is of
particular interest. The problem is then the Navier-Stokes equations in the
domain D(t) = O(t)D, that depends on the time-variable unless the body B
is axisymmetric, subject to the inhomogeneous nonslip boundary condition,

where
cost —sint 0
O(t)=| sint cost 0 |.
0 0 1

It is reasonable to reduce the problem to an equivalent one in the exterior
domain D by using the coordinate system attached to the body B and by
making a change of unknown functions. The reduced problem is ([1], [4], [9],

[14])
Ou+u-Vu =Au+(wAz) Vu~wAu—Vp, in D x (0, 00),
V-u =0, ©in D x [0, 00),
subject to
ulop=wAz, u—0as|z|=00, ulo=a,

where u = (u;, uz, us)T and p are unknown velocity and pressure, respectively,
and A stands for the usual exterior product of three-dimensional vectors; so,
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w Az = (—x3,21,0)7. The most interesting (and difficult as well) feature is
that the drift term (w A ) - Vu is not subordinate to the viscous term Awu.
In fact, the fundamental solution of the linear operator

L=-A—-(wAz)-V+wA (1.1)

cannot be estimated from above by C/|z — y| unlike the Laplace operator,
see Proposition 3.1. Furthermore, the generated semigroup (superscript T
denotes the transpose)

e f(z) = O(t)"[e* F1(O(t)z)

on L?(R3)? is not analytic unlike the heat semigroup e*4, although it pos-
sesses some smoothing properties (the associated semigroup for the exterior

problem enjoys such properties as well [13], [14], [15], [16]).
~ There are some studies on the problem above within the framework of L?
space; weak solution [1], local unique solution [14], stationary solution (time-
periodic solution of the original problem) [10], [19], local and global strong
solution [11]. In particular, Galdi [10] has derived some pointwise estimates
such as |u(z)| < C/|z| for stationary solutions provided w is sufficiently small.
In the present paper, toward an analysis of the problem above in general

L1 spaces, we are concerned with the fundamental estimate

Vullg + [[pllg < Cllfll-1,0

for the linearized stationary problem
Lu+Vp=f, V-u=0. (1.2)

See Theorem 2.1 (whole space problem) and Theorem 2.2 (exterior problem)
in the next section. In section 3, we first consider the whole space problem
by real analytic method based on dyadic decomposition, square function
and maximal function to derive the estimate above for 1 < ¢ < o0. The
argument is a development of the previous study [6], in which an L9 estimate
of {V?u, Vp} for (1.2) in the whole space R® was provided. See also Farwig
[5], in which the translation of the body as well as the rotation has been
taken into account. The final section is devoted to the analysis of the exterior
problem by a localization procedure, which was developed in [2], [17] and [18].
Unlike the whole space problem, there is the restriction n/(n — 1) = 3/2 <
g < 3 = n. For the classical Stokes problem (the case w = 0) in general
space dimensions n > 3, Theorem 2.2 is due to Borchers and Miyakawa [2],
Galdi and Simader [12], Kozono and Sohr [17], [18], where the restriction



above is optimal; that is, ¢ > n/(n — 1) is necessary for the solvability in the
class {u,p} € Wol"’(D)" x L9(D) for all f € W-19(D)", and so is ¢ < n for
the uniqueness in that class. For the function spaces, see the next section.
Indeed the behavior of the fundamental solution of (1.1) is worse than that
of the Laplace operator, but Theorem 2.2 tells us that the same result as in
the case w = 0 holds true.

2 Results

To begin with, we introduce notation. Given a domain Q (= R3,D,---), the
class C§°(f2) consists of C*™ functions with compact supports contained in
Q. By L9(2) we denote the usual Lebesgue space with norm || - ||ls,0. For
Q=R3D and 1 < g < 0o, we need the homogeneous Sobolev spaces

WH(R®) = CR(R) ™ = {v € L{, (R%); Vv € LI(R)°}/R,

||V'||q,D

W,*(D) = Cg°(D)
_ { {v € L%/B-9(D); Vv € LY(D)3,v|sp = 0} for1 < ¢ <3(=n),

| {v € LL.(D); Vv € LYD)3 v|sp = 0} for 3 < g < o0,
(2.1)
and their dual spaces
W'I’Q(R'g) = Wl,Q/(q—l)(R3)t, W—l,q(D) — WOI,Q/(q—l) (D)*,
with norms ||+||-1,4rs and ||- ||-1,¢,p, respectively. The characterization above

of the space Wi*¥(D) is due to Galdi and Simader [12] (see also Kozono and
Sohr [17]). For a bounded domain Q, we use the usual Sobolev spaces W, ()

and W-14(Q) = W (Q)* with norm | - l-1,4,0. For simplicity, we use
the abbreviations || - ||; = || - |lg,p and || * ||-1,4 = || * ||-1,4,p0 for the exterior
domain D.

Let B.(z) be the ball centered at z with radius r > 0. For sufficiently
large r > 0, we set D, = D N B, as well as B, = B,(0).
Let us consider the boundary value problem for the linearized equation

-Au—- (wAz) - Vu+wAu+Vp=f in D,
V.u=0 inD, (2.2)
u=0 on dD.
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Let 1 < g < 0o. Given f € W~14(D)3, we call {u,p} € WH(D)® x L(D)
weak solution to (2.2) if

1. V.u=0 in LY(D);
2. (W/\l')'Vu—w/\ueW—l,q(D)a;

3. {u,p} satisfies (2.2), in the sense of distributions, that is,

(Vu, Vo) = (wAz) - Vu—wAu,p)—(p,V-0)=(f,0) (23)
holds for all ¢ € C°(D)3, where (-, -) stands for various duality pair-
ings; by density, {u,p} satisfies (2.3) for all € W'/ V(D)3.

Since we make use of a cut-off technique, we first consider the whole space
problem with the inhomogeneous divergence condition

—Au—~(wAz) - Vut+wAu+Vp=f, V-u=g iR} (2.4)

a weak solution of which is defined in the same way as above.
The results on the existence, uniqueness and L? estimates of weak solu-
tions to (2.4) and to (2.2) are, respectively, as follows.

Theorem 2.1 Let 1 < q < oo and suppose that
FeEW MR, geLi(R?), (wAz)ge W LI(R3).

Then the problem (2.4) possesses a weak solution {u, p} € WH9(R3)®x LI(R?)
subject to the estimate

Vullgre + [1Pllgge + l(w Az) - Vi — w A uf| g g
S C(Ifll-rome + ligllgme + [|(w A 2)gll-1,48%) »
with some C > 0. The solution is unique in the class above up to a constant
multiple of w for u.
Theorem 2.2 Let 3/2 < q < 3. For every f € W-14(D)3, there ezists a

unique weak solution {u,p} € Wr¥(D)3 x LI(D) of the problem (2.2) subject
to the estimate

(2.5)

IVullg + lIpllg + [(w A 2) - Vu —w Aul|_14 < Clif]|-1,6, (2.6)
with some C > 0.

Remark 2.1. In Theorem 2.2, we have the embedding relation Wi ¥(D) C
L34/3~9(D) by (2.1). In this sense, the condition u — 0 is satisfied at infinity.



3 Whole space problem

This section is devoted to the analysis of the whole space problem (2.4).
Theorem 2.1 is implied by the following.

Theorem 3.1 Let 1 < g < 0o and f € W-14 (R3)3. Then the equation

Lu=-Au—(wAz)-Vu+wAu=f inR3 (3.1)

possesses a weak solution u € W (R®)® subject to the estimate

IVulloge + @ A 2) - Vi~ w0 Aullygps < Cllfll-sgms,  (32)

with some C > 0. The solution is unique in WI(R®)3 up to a constant
multiple of w for u.

For f € S(R?)3, the equation (3.1) admits a solution of the form [6]

ue)= [ Tenfa= [ owrkefotae 63

with the kernel

T(z,y) = /0 = O E 0= - 1), (3.4)

where €' = E*x is the heat semigroup and
B'(z) =t *E(z/V%),  E(z) = (4m) "3RI/,

On the Fourier side, the solution (3.3) is written as

AE) = (21)2 /R eirtu(n)ds

w . (3.5)
= [T oty foe,
V]
where ¢ = /—1. As mentioned in section 1, we have the following negative
assertion on a pointwise estimate of I'(z,y), which shows that the operator
(w A z) -V is not subordinate to the Laplacian.
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Proposition 3.1 There is no constant C > 0 such that

lz — y||IT(z,9)| < C, VY(z,y) €R®x R

Proof. This was shown in [6], but we give the proof for completeness. We
intend to estimate the RHS of

(2, 4)| > Caalz,y) = [ " B{O) - y)dt > 0.

We take, for instance, z, = (p,0,0) and y, = (0, p, 0) to get

C’logp

F33($pa yp) = / (47['t)"3/2 —-p (l—slnt)/ztdt > £1080p ;

for all p > 1 with C > 0 independent of o.. In fact, we have

(v?]
Fss(mp, yp > ZJk(p 2> ZJk
k=0
with
/6 .
Ji(p) = / {4 (t + /2 + 2km)}~3/2p (1—cost)/At+m/242km) gy

—7/6

which is estimated from below as

2\~3/2 /8 —p*(1—cost)/4kn
Jk(p) > (12k7*) e dt

—/6
/6 VTp/12V2k
> 2(12kn?)~3/2 / e~ 8kT gy — ’—? / e V' dt.
0 P Jo

for k£ > 1. If in particular k < p?, we then find

As a consequence,
c¥1 ¢ (Pds Clogp
F 3\Z )y 2 - T _/ - = )
(30 Yy pkgk pl s p



which completes the proof. [J
For the proof of Theorem 3.1, an essential step is to show

IVullogs < ClIFllgme, (3.6)

for the force of the form f = V - F with F € C$°(R3?)? on account of the
following density property.

Lemma 3.1 (Kozono and Sohr [17, Corollary 2.3]) Let Q be any domain and
let 1 < g < co. Then the space {V - F; F € C°(Q)°} is dense in W~14(Q)3.

Let us thus derive the L7 estimate of the operator T' defined by

TF(z) = Vu(z) = — /m i V.V, I(z,y) : F(y)dy (3.7)
to show (3.6), where

(VyI(z,y) : F(y)), = Z Oy, Teu(, y) Fu (y) (1<£<3).
1<uw<3

As in Proposition 3.1, the kernel of (3.7) does not seem to enjoy the pointwise
estimate |V,V,I'(z,y)| < C/|z — y|?; that is, the operator T does not seem
to be of Calder6n-Zygmund type. Nevertheless, the L? estimate is quite easy.

Proposition 3.2 The operator T enjoys
ITFljzre < [|Fl2re,
for all F € C{°(R3)°.

Proof. By the solution formula (3.5) we have

TF)(&) =-¢® /0°° O(1)Te ¥ (0(1)8) - F(O())dt.

The Planchrel theorem thus leads us to
—— 0 2 ~ 2
TPl = TPl < [ 6] [~ e ™POwIa) de

5 / e /ow e kI F(O(t)e) Pt
= /0 /Rs |§|26_'5|2t|ﬁ(§)|2d§dt = ||ﬁ“§’]Rs — “Fug,m:
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which completes the proof. [
We rewrite (3.7) as the form

TF = (:i"“’m)F)1 ctmgs for F= (Fu)1<p s

with

TE™ F(z) = Opug(z)

* dt 3.8
=Y [ 0wg0tm, « FuyOtn) T, Y
ik
where H = (Hp), < <3 is the Hessian matrix of E, that is,
Hi(z) = 05,05, E(z),  Hi,(z) =t"Hy (z/ V). (3.9)

We need also the adjoint operator
TG = (T*(“'")G)1su,uss for G =(Gem)icemes
with
0 dt
T*6IG(y) = Y / O(t) .0 (t)km / Hy,(0(t)2 — y)Gem(@)dz,
0 R3

k,t,m
(3.10)

for which the argument will be parallel to that for the operator 7.
We now introduce the Littlewood-Paley dyadic decomposition

Z &) =1 ((£€R\{0})

with

75(§) = B277JEl) - B¢,

where § € C*((0,00);[0,1]) is a fixed function so that 8 = 1 on (0,1} and
B =0 on [2,00). Note that

supp 7; C {£; 27! < [¢] < 2741} (3.11)



By use of 7;, we decompose the function H in (3.9) as

00
= Z Hy, j, Hy,; = (2m)~%%n; « Hy, (Hku,j =@Hku)~

j==00

In (3.8) and (3.10), respectively, we replace H by H; = (Hp,;), <kw<a 1O
define the decomposed operator

= (&m) x — ()
T;= (TJ )15t,m53’ L (TJ )15;;,1;53’
with
m * dt
TP = Y [ OWh0Mm(Hhy « Fu) O T, (312
JTRN
146 = 3 [ 0W00m [ Hiis(0)s ~1)Gum()isT
km
(3.13)
where
Hlty,j(x) = tns/szu,j(x/\/i)i
namely,
H}, 1 (6) = Hug(VE) = (Vi) Ha (VE9),
so that (3.11) leads to
ot gi-1 2i+1
supp Hf, ; C {5; = < €] < 7;—} (3.14)

In order to estimate Tfe"")F and T;("’")G defined by (3.12) and (3.13),
respectively, we make use of the square function (see Stein [22])

soe) = ([ l(¢’*v)(w)l"’ds) ,
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where {¢°}s>0 C S(R?) is a fixed family of radially symmetric functions
constructed in the following way: we take v € C§°(1/2,2) so that

2
do 1
2
o)'— =,
/1/27() ~ =3

define ¢(z) by $(¢) = (¢]) and set
# () =s"Po(/vE)  ($(9) = 1(valeD)

for s > 0. Then we have

/ ¢ (z)dz = 0; / FEerZ=1 (er\{), @G
supp & € {& 7% <lél < & . (3.16)

It is known that ||S - || gs is equivalent to || - ||,gs on the space LI(R3),1 <
g < 0o [22, Chapter I, 8.23]. Hence,
I Fligps < CIST;*™ Fllips = CNSTE™ Fllgpame.  (3.17)

Assume now that 1 < ¢/2 < oco. Then we will estimate

(STemFro) = [u [CI@ T nEETE (61

for w € L9/(¢-2(R?). By (3.12) we see

(¢° * T} F)(a)
=¥ O(t)2,0(8)km(6° x Hf,, ; * Fpu)(O(t)x)

vk I(s,5)
with

I(s,5) = [2¥7%s, 2%*44]



because (3.14) and (3.16) imply

# () ku,(E) t ¢ I(s,5)

and because ¢° is radially symmetric. We use the Schwarz inequality twice
to obtain

@+ TP F) @)l
<ox [ E[ | imao0s-vie i)

<8(1082)C Y. Huvglhge [ (ki 18" Ful) 0)2)%.

JTRIN 1(31.7)

Therefore, (3.18) is estimated as
(ST F)?,w)|
" s 9 dtds
SO sl [ [ | [wOOT)] (1Bl + 16 Funl?) (2)do T
3,2

wvk

_CZ“HkmlhRs/ / (6° % FL)(@)?

J7RN

/1(8,1 (]ch | * lw(O(®)T )|)() dxﬁ

where H HE

kv,j 18 the reflection of Hf, ., that is, H,fw i(z) = Hi, i(—x). Set

M) =sup [ (1F oW ) @%. @19

Then we have

(STE™F,w) < C Y | Hiwgllige / M w(z)SFy ()%ds.  (3.20)

[TRR

Similarly,

135




136

(ST G, w)| < C Y 1 Hiwglhps /R MEu)SGm () dy, (321)

k.tm

where

24 r dt

(1Hkwgl * ll) OC)W) 5 (3.22)

Mgk,l/)w(y) = sup/ ;
r>0

2-4p
To proceed with the estimates, it is necessary to find the behavior of the
following for j — Zoo: M*’w and M w as well as || Hyyjllige. For
this aim, the following lemma plays an important role (see [6]); that is, we
derive a pointwise estimate of Hy, j(z), independently of (k,v), in terms of

Y(@) = 1+

Lemma 3.2 Let 9 be as above. Then there is a constant C > 0, independent
of z €R®, j€Z and 1< k,v<3, such that

' |Hig(z)| < 0272977 (a), (3.23)
where Y(z) = t~¥/2y(c/V/3).

Proof. The proof is the same as in [6], but we give it for completeness. Since
Hi, (€) = —(27)73/2¢,&e 7| we have

— max{2—|a,0}
G GIER By P N CED

for multi-index .. On the other hand, there is a nonnegative function ¢ €
C§°(1/4, 4) such that, for || < 4,

1987;(6)| < Ca279I¢(2771¢)). (3.25)

In fact, setting b(r) = B(r) — B(2r) € C(1/4,4) and writing 7;(€) =
b(277)¢|), we have only to choose ¢ so that max{|(d/dr)"b(r)};0 < n < 4} <
¢(r), when we take |¢] ~ 27 by (3.11) into account. From (3.25) it follows
that
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29lel |92 Hy, 5 (€)| = 271

> (o) neeme

0<a'<a
<Co Y PI¢(271€))0% Hin (€,
0<a’'<a

for |o| < 4. Since |¢] > 2971 > 1/2 for j > 0 and |¢| < 29t < 1 for j < 0,
we use (3.24) and note |£| ~ 27 again to see

108 i ()] < C27le=21¢ (277 ]g)).
As a consequence,
(1 - 29 A¢)* e 3(8)| < C27%¢ (277)g)).

This together with

Hy, j(z) —3j / iT€(1 _ 02 T
"/’2_;: @ = = 2% (271)3/2 /R K $(1— 2% A¢)? Hy, ;(€)de (3.26)
imply that
H ] - - -
'¢2k.z,§”§' < C27%7 f ¢@lgl)de = c27),

which completes the groof O
To investigate M; )w and .M( ’ )'w, see Proposition 3.3 below after the
following lemma, we mtroduce the Hardy-Littlewood maximal function

1
Mg(z) = sup ———
@) =R B S

and need a variant of its LP-boundedness.

l9(y)|dy (3.27)

Lemma 3.3 Consider (3.27) in one dimension and let 1 < p < oo. Then
there is a constant C = C(p) > 0 such that

IlMgllp,r < Cligllp.r

for all 2m-periodic function g on R with g € LP(I), where I = (0, 2w).
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Proof. We first note that Mg is also 27r-periodic. Since

|Mgllco,r = [IMglloor < Cllglloog = Cllglloo,s

for all 27-periodic g € L*®(I), it suffices to show the weak (1,1) estimate;
then the Marcinkiewicz interpolation theorem implies the assertion. For 27-
periodic g € L*(I) and A > 0, we set E\ = {0 € I;, Mg(0) > A} and

Aglr) = = f g(B)ldt, >0,
2r Jp,(9)

where B,(0) = (§ — r,0 +r). We then find

Mg(8) = sup Ap(r) = sup Ay(r), fel
r>0 0<r<2r

In fact, for 27 < r < 4w, 2w-periodicity of g yields

1 0—2=x 6427 G+r
Ag(r) = o~ ( + / + / )
2r 0—r 6-2n 0+2n

- -217 {4r Ag(2m) + 2(r — 27) Ag(r — 27)},
from which together with Ag(2m) = Ag(w) it follows that

As(r) < sup Ag(p).

0<p<2r

Therefore, supg<,<sr A8(") = SUPg<,c2r Ao(r). The same procedure implies
that for alln € N

sup Ag(r) = sup Ay(r).

0<r<2nm 0<r<2n

Fix A > 0 arbitrarily, and for # € E) we choose r € I so that Ay(r) > A;
then, we have

f l9(8)|dt > A|B.(6)] = 2)r. (3.28)
B, (6)

Since the length of the members of the family {B,(#)}sck,, which is a cov-
ering of E), is bounded, the Vitali covering lemma ([21, Chapter I, 1.6])
implies that there is at most countable sub-family {B*)},, whose members
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are disjoint each other, such that Z |B(")|‘2 |Ex|/5. This combined with
k
(3.28) yields

B <58 < 33 [ ool S [ lotiae = Pl

We thus get

sup A|Ey| < 15||g]|1,r1,
A>0

which is the desired weak (1, 1) estimate. O

Proposition 3.3 Let 1 < p < 0o. Then the sublinear operators defined by
(3.19) and (8.22), respectively, enjoys

124 wl, < C2 M fwlly, WM wll, < 22w,
with some C = C(p) > 0 independent of j € Z and 1 < k,v < 3.

Proof. The reflection Hk,, j(z) also satisfies (3.23) on account of ¢(—z) =
¥(z). Note that ¥ 74(z) < CY?Vr(g) for 2% < t < 2. Thus, we have

24r ,
o< M) s orap [ v e = D00 Wi
2=

r>0

24
< 02 %l gup wz ”'(z Y) lw(O(2) y)[—-dy
>0 2-4r
Set
24y dt
Ru(e) =sup [ 1w(0@) ). (3.29)

r>0 Jo-4yp t

In terms of this together with (3.27), we obtain by [22, Chapter II, 2.1]

M}k"’) w(z) < €2~ %! sup (¢* * Rw)(x)
£>0

< Cr#(MRu)() [ vy
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The L? boundedness of the maximal operator M ([21, Chapter I, 1.3]) implies
1M, < €272 Rul,,

as long as Rw € LP(R3). It remains to show that the sublinear 6perator R
is bounded in LP(R®). Using the cylindrical coordinate z; = pcosf, zo =
psin @, r3 = z, we set .

W(p,z)(0) = w(pcosh, psinb, z).

Then we have

24r

dt
Ruw(z) = sup / 008 — |5 < 2°(M(s,)(6).
r>0 2—4y
By Lemma 3.3 we find
IMweanllpr < Cllweallpr,  I=1(0,2m).

Hence,

oo 2
iRuig<c [ [0 [ (Mug)@pasap:
00 2r
<c [ ["o [ winerasdpdz = Clul,

which implies the estimate for M}k'"). By use of

2‘ r dt

Rua) =sup [ [w(0@®)2)|F

instead of (3.29), the same estimate for M;""’) can be proved similarly. [
Proof of Theorem 3.1. In view of (3.20), we use Proposition 3.3 as well as

1Huslhze < 071 [ o(a)da,

which is implied by (3.23), to see that

STV FY,w)| £ €Y | Hiwgllige M wlles 283 | S Fow |2 s

TR

Y
< C (27 wllgsiq-21me Y I Fosllzms,
(14



for all w € L¥/(@-2(R?). By duality and by (3.17) we arrive at

IT™ Flgns < C2 | Fllgns (3.30)

with some C > 0 independent of F € C§°(R3)?, j€Zand1<tm<3
Hence, as long as 2 < g < o0,

00
with T¢™ = = 1™

j=—o0

T = (T(l,m))

1<4,m<3

is well-defined as a bounded operator on LY(R3)%. For 1 < ¢ < 2, we use the
adjoint operator T given by (3.10). The same argument as above implies
that T* is also a bounded operator on L%/(4-1)(R3)®; so, T is L9-bounded for
1 < g < 2 as well. We have thus proved (3.6) for 1 < ¢ < oo.

Let f € W-19(R®)3. By [17, Lemma 2.2] there is F' € LY(R?®)? such that

V-F=f  [Flgs < Ollfl-1am (3.31)

We take Fy € C5°(R®)® so that ||Fy — F|l,gs — 0 as k — oo. Let uy be the
solution (3.3) with f = V - Fy. For each k and m € N, we take a constant

vector b{™ € R satisfying

/ (us(@) + b{™)dz = 0
Bm
so that

llux + bim)”q, < CmIIVukIIq, m S C'mIIVukllq,m < Cm”Fk”q,R"'

by the Poincaré inequality and by (3.6). Therefore, there exist u(™ €
W'4(B,,)? and V € LI(R3)? such that

e + 5 = w™|lgp, =0,  |[Vug — Vlgge 50 (k- 00)
with Vu(™(z) = V(z) (a.a. z € B,,). We first set
g=u® onB;; b= bg).

Consider next the case m = 2; since Vu®(z) = V(z) = Vul)(z) = Vii(z)
for a.a. £ € By C By, the du"ference u@(z) — U(z) =: a is a constant vector
and
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B0 — by — a| = [[B? — b — allg,5,

B @ @ (3.32)
< lug + bx — Ullg,m, + lluk + b5 — u'?|lg,8, = 0

as k — 0o. One extends % by

2)_a on B,.

7 = uf
Then (3.32) implies
lur + b — Tllg,, < llue + b — u®llg,p, +|Ba[*|6 — b —a 0

as k — oo. We repeat this procedure for m = 3,4,---. By induction there
is a function % € W?(R?)? so that

e + b — llg, + [V = Vg = 0 (3.39)

as k — oo for all m € N. In terms of (1.1), it follows from (3.33) together
with Lug = V - F}, that

Lbyy=wAby=L{ug+b)-V-Fr=>Lu—-V-F inD'(R%?
as k — 0o. But, then, there is a constant vector b € R? such that
WAby = wAb=Lb
as k — oo. Cosequently, we get
Lu-b=V-F in D'(R3)?

and u = U — b is the desired solution. By (3.33) we have ||Vui — Vul|;rs = 0
and, therefore, the estimate (3.6) holds true for the obtained solution u as
well. This together with (3.31) implies the estimate (3.2).

It remains to prove the uniqueness. We use the duality method. Let us
consider the adjoint equation

Lv=-Av+ (wAz)-Vv—wAv=V_.F (3.34)

with F € C°(R®)°. This admits the solution

o(z) = /0 ” 0()e™V - FI(0()Tz)dt,



where one has only to replace O(t) by O(t)T in the formula (3.3). By the
argument for (3.3) we have v € W' (R3)3 for all r € (1, 00) with ||Vo|l,gs <
C||F||rgs- We now let u € Wl"f’(]Rs)3 be a weak solution of Lu = 0 in
W-19(R%)3. One can take v as a test function to get

(Lu,v) = 0.

Similarly, one takes u as a test function for (3.34) in W-19/(--D(R3)? to
obtain

(L*v,u) = (V- F,u).
Therefore,
(V- F,u) =0.

Since F € C°(R%)? is arbitrary, we obtain v = 0 in W19(R%)3 by Lemma
3.1. Namely, u is a constant vector; but, it should be a constant multiple of
w because w Au=0. O

To complete the proof of Theorem 2.1, we need

Lemma 3.4 Let v € S'(R3) be the solution of
—Av—(wAz)-Vv=0 in R3.
Then supp v C {0}.

Proof. This was shown in [6], but we give the proof for completeness. We
first see that

€7 - (wAE)-Vio=0  inRE
For any ¢ € Cg°(R? \ {0}), the adjoint equation
€*n+ (wAE)-Ven=¢  inR}

is solvable; in fact,

10 = [ 0@ e € CR®E\ {0
is a solution. Hence, we have

{@,0) = @ [6"n+ (WAE) Ven) = (|€*T — (wAE) - Veb,m) =0,
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which completes the proof. [
Proof of Theorem 2.1. Since

V- [wAz) - Vu—wAul=(wAz)-V(V-u)=V - [(wAZ)V-u,
we formally obtain from the problem (2.4)
p=-V-(-A)7"[f+ Vg + (wAz)g].

Since (—A)~! can be justified as a bounded operator from W-14(R3) to
Whe(R®) ([12], [18]), we get

lIpllgre < Cllf + Vg + (w A z)g[ 1,02, (3.35)
which implies
If = Vpll-10rs < C (Ifll-1,0r2 + IV + (w A Z)gl|-1,4re) -

Theorem 3.1 thus provides a solution u € W14(R®). Since the obtained u
and p fulfill

(A+(wAz)-V)(V-u—g)=0,
Lemma 3.4 yields V - u = g in LY(R3). The estimate (3.2) together with
(3.35) implies (2.5). This completes the proof of Theorem 2.1. O
4 Exterior problem

In this section we will prove Theorem 2.2 for the exterior problem (2.2).
We combine Theorem 2.1 for the whole space problem with the following
lemma on the interior one. Let  C R?® be a bounded domain with smooth
boundary 02, and consider the usual Stokes problem with the inhomogeneous
divergence condition

—Au+Vp=f, V.-u=g inQ; ulsgg=0. (4.1)

Lemma 4.1 (Cattabriga [3], Solonnikov [20], Kozono and Sohr [17]) Let Q
be as above and 1 < q < 00. Suppose that

few M@, ge L), /n 9(z)dz = 0.



Then the problem (4.1) possesses a unigue (up to an additive constant for p)
weak solution {u,p} € Wy (Q)3 x LI(Q) subject to the estimate

IVullgn + llp - Bllae < C(Ifl-Laa + llgllen), (42)

where p = -I—glﬂ / p(z)dz.
Q

To begin with, we employ a localization procedure to derive the following
estimate, which will be refined later, see Proposition 4.2.

Lemma 4.2 Let 3/2 < ¢ < 00. Given f € ’W‘l’q(D)", let
{v.p} € Wy*(D)* x L*(D)

be a weak solution to the problem (2.2). Fiz p > py > 0 so large that
R3\ D C B,,, and take ¥ € C$°(B,;[0,1]) such that ¢y = 1 on B,,. Then

) (4.3)

Proof. By use of the cut-off function % fixed above, we decompose the solution
{u,p} as

“VU”q + Hp”q + [[(w A ) Vu—wA u“—l,q

]D YEple)is

<C (|If||-1,q + llulle,p, + lIpll-14.0, +

with some C > 0.

{u=U+V, U=(1-19)u, V = yu, (4.4)

p=0+T, o= (1-19)p, T = Y¥p.
Then {U,c} is a weak solution of
=AU - (wAz) - VU+wAU+Vo=2;,, V-U=-u-V¢ inR3,
where
Z1=(1-9Y)f+2Vy - Vu+ [AY + (w Az) - Vplu — (Vi)p.
Similarly, {V, 7} is a weak solution of

—AV+Vr=2;, V-V=u-V¢ inD,; Vlsp, =0,
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where
Zy =yY[f+ (wAZ) Vu—wAu]—2Vy - Vu — (Ay)u+ (Vy)p.

It therefore follows from Theorem 2.1 and Lemma 4.1, respectively, that

IVUllggs + [lo]lgre

4.5
< ClZ4)|rqms + Cllu- Vg + Cll@ AD) - V) |crgmer )
and that
IVVle,p, + lITll¢.0,
1 (4.6)
< C||Za|l-1,4,0, + Cllu - VYllg,p, + D, /DF 7(z)dz| -

Let ¢ € C°(R3)3. We then have

K@ = %) f, ) < I f -1l VI(L = ¥)@]llesca-1)
< 1 Fll-1.q (IVSllasa-1) + Clidllasca-1),0,)
< Ol f -1l V@llgs(a-1) 85

Here, we have used the condition ¢ > 3/2, so that ¢/(g — 1) < 3, to apply
the Sobolev inequality ;

llesa-1).0, < Clldllr,p, < Clidllrrs < ClIVHllg/q-1)R3s

where 1/r = (g — 1)/q — 1/3. Similarly, we obtain

[(2VY - Vu + [AY + (w A z) - Vlu, ¢)|

< Cllullg,n, (IV@lle/q-1),0, + 1¥lle/(a-1).0,)
< C““”q.D,,“V¢“q/(q—1),lk3,

and

1{(V¥)p, )| < |Ipll-1,0,0, IV (V) 8lla/(4-1),D,
< Clipll-1,4,0,IV®lgs(q-1) R85

as well as



K(w A z)(u-VY),8)| < Cllullg,n,l|8lle/(a-1).D,
< Cllullg,n,IVOllg/q-1)re-

In view of (4.5), we collect the estimates above to find

IVUllogs + llollors < C (Ifll-1,0 + llellg,p, + llPll-14.0,) - (4.7)

In the same way, we see that

[(Z2, )| < C (I fll-1.4 + llullg,, + lIPll-10,5,) IVSlle/tg-1),D,

for all ¢ € C§°(D,)?; here, we have used the Poincaré inequality and so the
condition ¢ > 3/2 is not necessary. This combined with (4.6) implies that

) (4.8)

IVVlla.0, + lI7lle.p,

<C (Hfll-l,q + llullg,n, + 11Pll-1.4,0, + /D ¥(z)p(z)dz

By (4.5) and (4.6) we obtain

IVully + llpllq

<C (Ilf ll-1,6 + lulla,0, + llPll-1,0.0, + fD Y (z)p(z)dz
(4

).

WA Z) Vu—wAull_1g=If + Au = Vp||_14 < [|Fll-14 + [ Vullg + IIpll,

yields (4.3). O
We next show the existence and summability of weak solutions to the
problem (2.2) and of those to the adjoint one

which together with

-Av+ (wAzZ) - Vv—wAv-=Vr=f  inD,
-V-.-v=0 in D, (4.9)
v=_0 on dD.

for nice force terms f, being in a dense subspace of W~19(D)3; see Lemma
3.1.
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Lemma 4.3 Let F € C°(D)°. Then the problem (2.2) with f =V - F has
a weak solution {u,p} of class

u € WJ"(D)a, peL(D) for 3/2 < Vr < oco. (4.10)
The same assertion for the adjoint problem (4.9) holds true as well.

Proof. We first employ the standard L? technique. When g = 2, one can
take ¢ = u in (2.3) to get

IVullf = (V- F,u)
since

[(wa)-Vu]-ud:IJ:l/ n-(wAz)|u*doc =0
Dg 2 0Dp

for every sufficiently large R > 0, where 7 is the unit exterior normal vector
to the boundary dDg. We thus have the a priori estimate

IVullz < [|F]l2-

Then the Galerkin method (traced back to Fujita [7]) provides a distribution
solution

ue Wy*(D)® c L(DY,  pe LE(D),

see Galdi [8], [10]. Asin (4.4), we use a cut-off technique to split the solution
{u, p} into flows {U, o} for the whole space problem and {V, 7} for the interior
one. Along the same line as in the proof of Lemma 4.2, Theorem 2.1 and
Lemma 4.1 lead to

ue Wim(D)}, pel’(D) for3/2<Vr<s6.

By the same argument once more, we obtain (4.10) for the problem (2.2).
The problem (4.9) is nothing but (2.2) with {p,w} replaced by {—=,—w},
and so the same assertion holds. [J

As a corollary, we have the following uniqueness assertion.

Proposition 4.1 Let 1 < ¢ < 3. Suppose that {u,p} € WJ’“(D)“l x L(D)
is a weak solution to the problem (2.2) with f = 0. Then {u,p} = {0,0}.




Proof. Consider the adjoint problem (4.9) with f = V - F, where F €
C§°(D)°. By Lemma 4.3 there is a weak solution {v, 7} of class (4.10). Since
q/(g — 1) > 3/2, one can put ¢ = v in (2.3) with f = 0:

(Vu, Vo) — ((wAzZ) Vu—wAu,v)=0
Similarly, one can take u as a test function for (4.9); to get
(Vu,Vu) + (wAz)  Vo—wAv,u) =(V - Fu).

From two equalities above it follows that (V - F,u) = 0 for all F' € C{°(D)®.
By Lemma 3.1 we get

(fiu) =0,

for all f € W-14/@=1 (D)3, which yields u = 0 in W?(D)3. Going back to
(2.3) with f = 0, we find p = 0 in L9(D). This completes the proof. O

By Lemma 4.2 together with Proposition 4.1 we have the following a
priori estimate.

Proposition 4.2 Let 3/2 < ¢ < 3. Given f € W-9(D)3, let {u,p} €
Wi(D)3 x L9 (D) be a weak solution to the problem (2.2). Then the estimate
(2.6) holds.

Proof. Suppose the contrary. Then there exist sequences fx € W~ Le(D)3
and {u, pr} € W29(D)3 x LI(D) so that

IVklle + llpelly + ll(w A 2) - Vg — w Argl| 1,4 =1,

while

as k — oo. Then we have
lukllrg,0, < l|Vurllg,n, + Clluxllg,,n, < Cl|Vuxlly < C

where 1/q, = 1/q — 1/3, as well as ||pilq,0, < ||pxllq < 1. By the Rellich
compactness theorem, there are subsequences, which we denote by u; and p;
again, so that they strongly converge in L?(D,) and W~14(D,), respectively.
From (4.2) it follows that {uk, pr} and {(wAz)- Vg —wAug} are the Cauchy
sequences, respectlvely, in W0 4(D)® x LY(D) and in W~ 14(D)3; hence, there

exists {u, p} € Wl9(D)? x L(D) so that
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{]IV'u.k — Vullg + lloe — pllg = 0, (4.11)

HwAz) Vug —wAu] - [(wAz) Vu—wAull|-1,4 =0,

as k — oo. It easily turns out that the pair {u,p} is a weak solution to (2.2)
with f = 0. Since ¢ < 3, Lemma 4.1 tells us that {u,p} = {0,0}, which
contradicts

Vullg +plls + (WA Z) - Vu —wAull1g=1.

This completes the proof. O

Proof of Theorem 2.2. The uniqueness part follows from Proposition 4.1.
Given f € W~14(D)3, we take F}, € C°(D)® so that ||V - Fy — f||-14 = 0
as k — oo. By Lemma 4.3 there is a solution {ug,px} of class (4.10) to
the problem (2.2) with the force V - Fi. One can take r = ¢ in (4.10) since
g > 3/2. By Proposition 4.2 one can use (2.6) to show that there exists
{u,p} € Wol Y(D)® x LY(D) so that the same convergence properties as in
(4.11) hold. We see that the pair {u,p} obtained above is a weak solution to
(2.2) with the estimate (2.6). We have completed the proof. O
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