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On poly-Euler numbers of the second kind

By

Takao Komatsu∗

Abstract

For an integer k, define poly-Euler numbers of the second kind Ê
(k)
n (n = 0, 1, . . . ) by

Lik(1− e−4t)

4 sinh t
=

∞∑
n=0

Ê(k)
n

tn

n!
.

When k = 1, Ên = Ê
(1)
n are Euler numbers of the second kind or complimentary Euler numbers

defined by

t

sinh t
=

∞∑
n=0

Ên
tn

n!
.

Euler numbers of the second kind were introduced as special cases of hypergeometric Eu-

ler numbers of the second kind in [7], so that they would supplement hypergeometric Euler

numbers. In this paper, we give several properties of Euler numbers of the second kind. In

particular, we determine their denominators. We also show several properties of poly-Euler

numbers of the second kind, including duality formulae and congruence relations.

§ 1. Introduction

For an integer k, poly-Euler numbers E
(k)
n (n = 0, 1, . . . ) are defined by

(1.1)
Lik(1− e−4t)

4t cosh t
=

∞∑
n=0

E(k)
n

tn

n!

([11, 12, 13]), where

Lik(z) =

∞∑
n=1

zn

nk
(|z| < 1, k ∈ Z)
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is the k-th polylogarithm function. When k = 1, En = E
(1)
n are the Euler numbers

defined by

(1.2)
1

cosh t
=

∞∑
n=0

En
tn

n!
.

Euler numbers have been extensively studied by many authors (see e.g. [8, 11, 12, 13, 14]

and references therein), in particular, by means of Bernoulli numbers. In [7], for N ≥ 0

hypergeometric Euler numbers EN,n (n = 0, 1, 2, . . . ) are defined by

1

1F2(1;N + 1, (2N + 1)/2; t2/4)
=

t2N/(2N)!

cosh t−
∑N−1

n=0 t2n/(2n)!

=
∞∑

n=0

EN,n
tn

n!
,(1.3)

where 1F2(a; b, c; z) is the hypergeometric function defined by

1F2(a; b, c; z) =
∞∑

n=0

(a)(n)

(b)(n)(c)(n)
zn

n!
.

Here (x)(n) is the rising factorial, defined by (x)(n) = x(x + 1) · · · (x + n − 1) (n ≥ 1)

with (x)(0) = 1. Note that When N = 0, En = E0,n are the Euler numbers defined in

(1.2).

The sums of products of hypergeometric Euler numbers can be expressed as for

N ≥ 1 and n ≥ 0,

n∑
i=0

(
n

i

)
EN,iEN,n−i =

n∑
k=0

(
n

k

)
2N − k

2N
EN,kÊN−1,n−k .

where ÊN,n are the hypergeometric Euler numbers of the second kind or complementary

hypergeometric Euler numbers defined by

1

1F2(1;N + 1, (2N + 3)/2; t2/4)
=

t2N+1/(2N + 1)!

sinh t−
∑N−1

n=0 t2n+1/(2n+ 1)!

=
∞∑

n=0

ÊN,n
tn

n!
(1.4)

([7, Theorem 4]). When n = 0, Ên = Ê0,n are the Euler numbers of the second kind or

complementary Euler numbers defined by

(1.5)
t

sinh t
=

∞∑
n=0

Ên
tn

n!
.
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In [8], Ên are called weighted Bernoulli numbers. But they mean different in different

literatures. On the other hand, the sums of products of hypergeometric Euler numbers

of the second kind can be also expressed as

n∑
i=0

(
n

i

)
ÊN,iÊN,n−i =

n∑
k=0

(
n

k

)
2N − k + 1

2N + 1
ÊN,kEN,n−k

([7, Theorem 6]).

Euler numbers of the second kind are complementary in view of determinants too.

It is known that the Euler numbers are given by the determinant

(1.6) E2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2! 1
1
4!

1
2! 1

...
. . .

. . .
1

(2n−2)!
1

(2n−4)!
1
2! 1

1
(2n)!

1
(2n−2)! · · · 1

4!
1
2!

∣∣∣∣∣∣∣∣∣∣∣∣∣
(Cf. [3, p.52]). Euler numbers of the second kind ([6, Corollary 2.2]) can be expressed

as

(1.7) Ê2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
3! 1
1
5!

1
3! 1

...
. . .

. . .
1

(2n−1)!
1

(2n−3)!
1
3! 1

1
(2n+1)!

1
(2n−1)! · · · 1

5!
1
3!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since Bernoulli numbers can be expressed as

Bn = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2! 1
1
3!

1
2! 1

...
. . .

. . .
1

(n−1)!
1

(n−2)!
1
2! 1

1
n!

1
(n−1)! · · · 1

3!
1
2!

∣∣∣∣∣∣∣∣∣∣∣∣∣
(Cf. [3, p.53]), Euler numbers and those of second kind fill the gaps each other in

Bernoulli numbers.

In [7, Proposition 1.1], it is shown that hypergeometric Euler numbers EN,n satisfy

the relation:
n/2∑
i=0

1

(2N + n− 2i)!(2i)!
EN,2i = 0 (n ≥ 2 is even)

with EN,0 = 1.
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From (1.4), we have

t2N+1

(2N + 1)!
=

( ∞∑
n=N

t2n+1

(2n+ 1)!

)( ∞∑
n=0

ÊN,n
tn

n!

)

= t2N+1

( ∞∑
n=0

1+(−1)n

2 tn

(2N + n+ 1)!

)( ∞∑
n=0

ÊN,n
tn

n!

)

= t2N+1
∞∑

n=0

(
n∑

i=0

1+(−1)n−i

2

(2N + n− i+ 1)!

ÊN,i

i!

)
tn .

Therefore, the hypergeometric Euler numbers of the second kind satisfy the recurrence

relation for even n ≥ 2
n/2∑
i=0

ÊN,2i

(2N + n− 2i+ 1)!(2i)!
= 0

or for n ≥ 1

(1.8) ÊN,2n = −(2n)!(2N + 1)!
n−1∑
i=0

ÊN,2i

(2N + 2n− 2i+ 1)!(2i)!
.

It turns that ÊN,2n can be given by the determinant ([6, Theorem 2.1]).

Theorem 1.1. For N ≥ 0 and n ≥ 1, we have

ÊN,2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣

(2N+1)!
(2N+3)! 1

(2N+1)!
(2N+5)!

. . .
. . .

...
. . . 1

(2N+1)!
(2N+2n+1)! · · ·

(2N+1)!
(2N+5)!

(2N+1)!
(2N+3)!

∣∣∣∣∣∣∣∣∣∣∣
.

When N = 0, we obtain the determinant expression of Euler numbers of the second

kind in (1.7).

Similarly to Theorem 1.1, we get the determinant expression of hypergeometric

Euler numbers ([6, Theorem 2.3]).

Theorem 1.2. For N ≥ 0 and n ≥ 1, we have

EN,2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣

(2N)!
(2N+2)! 1

(2N)!
(2N+4)!

. . .
. . .

...
. . . 1

(2N)!
(2N+2n)! · · ·

(2N)!
(2N+4)!

(2N)!
(2N+2)!

∣∣∣∣∣∣∣∣∣∣∣
.
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When N = 0, we obtain the determinant expression of Euler numbers in (1.6).

In Section 2, we shall show several properties of Euler numbers of the second kind.

In particular, we determine the denominator of Ê2n. In Section 3, we introduce poly-

Euler numbers of the second kind as one directed generalizations of the original Euler

numbers of the second kind. We give some expressions of poly-Euler numbers of the

second kind with both positive and negative indices. In Section 4, we show one type of

duality formula for poly-Euler numbers of the second kind. In Section 5, we shall give

several congruence relations of poly-Euler numbers of the second kind with negative

indices.

§ 2. Euler numbers of the second kind

In this section, we shall show several properties of Euler numbers of the second

kind. In particular, we determine the denominator of Ê2n. We also give some identities

involving Euler numbers of the second kind, as analogous results of those in Euler

numbers.

From the definitions (1.2) and (1.5),

E2n+1 = Ê2n+1 = 0 (n ≥ 0) .

We also know that

(2.1)
1

cos t
=

∞∑
n=0

(−1)nE2n
t2n

(2n)!

and

(2.2)
t

sin t
=

∞∑
n=0

(−1)nÊ2n
t2n

(2n)!

Euler numbers E2n are integers, but Euler numbers of the second kind Ê2n are

rational numbers. We can know the denominator of Ê2n completely.

Theorem 2.1. For an integer n ≥ 1, the denominator of Euler numbers of the

second kind Ê2n is given by ∏
(p−1)|2n

p ,

where p runs over all odd primes with (p− 1)|2n. In particular, ∏
(p−1)|2n

p

 Ê2n

is an integer, where p runs over all odd primes with (p− 1)|2n.
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Proof. Notice that for n ≥ 1, we have

Ên = 2nBn

(
1

2

)
= (2− 2n)Bn ,

where Bn(x) is the Bernoulli polynomial, defined by

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

When x = 0, Bn = Bn(0) is the classical Bernoulli number with B1 = −1/2. By Von

Staud-Clausen theorem, for n ≥ 1

B2n +
∑

(p−1)|2n

1

p

is an integer, where the sum extends over all primes p with (p−1)|2n. By Fermat’s Little

Theorem, if (p−1)|2n, then m2n ≡ 1 (mod p) for m = 1, 2, . . . , p−1. Thus, 22n ≡ 1 ̸≡ 2

(mod p) for any odd prime p. Therefore, the denominator of Euler numbers of the second

kind is given by ∏
(p−1)|2n

p

where the product extends over all odd primes p with (p− 1)|2n.

Example 2.2. The odd primes p satisfying (p− 1)|24 are 3, 5, 7, 13, and

Ê24 =
1982765468311237

1365
=

47 · 103 · 178481 · 2294797
3 · 5 · 7 · 13

.

The odd prime p satisfying (p− 1)|26 is 3, and

Ê26 = −286994504449393

3
= −13 · 31 · 601 · 1801 · 657931

3
.

Remark. For any integer n ≥ 0,

(2n+ 1)(2n− 1) · · · 3Ê2n =
(2n+ 1)!

2nn!
Ê2n

is an integer.

It is known that Euler numbers satisfy the recurrence relation

n∑
j=0

(
2n

2j

)
E2j = 0 (n ≥ 1)

with E0 = 1. Similarly, Euler numbers of the second kind satisfy the following recurrence

relation.
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Theorem 2.3. For n ≥ 1,

n∑
j=0

(
2n+ 1

2j

)
Ê2j = 0

and Ê0 = 1.

Proof. From the definition (1.5), we have

t =
t

sinh t
sinh t

=

 ∞∑
j=0

Ê2j
t2j

(2j)!

( ∞∑
l=0

t2l+1

(2l + 1)!

)

=

∞∑
n=0

n∑
j=0

(
2n+ 1

2j

)
Ê2j

t2n+1

(2n+ 1)!
(n = j + l) .

Comparing the coefficients on both sides, we get the result.

For a positive integer n and a nonnegative integer k, Euler numbers satisfy the

relation
n∑

j=0

(
2n

2j

)
(2k + 1)2n−2jE2j = 2

k∑
l=1

(−1)k−l(2l)2n

(e.g. [9]). Euler numbers of the second kind satisfy the following relation.

Theorem 2.4. For a positive integer n and a nonnegative integer k,

n∑
j=0

(
2n+ 1

2j

)
(2k + 1)2n−2j+1Ê2j = 2(2n+ 1)

k∑
l=1

(2l)2n .

Proof. Put

A(t) =

∞∑
k=0

tk cos kx and B(t) =

∞∑
k=0

tk sin kx .

For |t| < 1, we have

A(t) +
√
−1B(t) =

∞∑
k=0

tk(cosx+
√
−1 sinx)k

=
1

1− t cosx−
√
−1t sinx

=
1− t cosx+

√
−1t sinx

1− 2t cosx+ t2
.
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Hence, we get

A(t) =
1− t cosx

1− 2t cosx+ t2
and B(t) =

t sinx

1− 2t cosx+ t2
(|t| < 1) ,

yielding

∞∑
k=0

tk cos(2k + 1)x =
A(

√
t)−A(−

√
t)

2
√
t

=
(1− t) cosx

(1 + t)2 − 4t cos2 x
,

∞∑
k=0

tk cos 2kx =
A(

√
t) +A(−

√
t)

2
=

1− 2t cos2 x+ t

(1 + t)2 − 4t cos2 x
,

∞∑
k=0

tk sin(2k + 1)x =
B(

√
t)−B(−

√
t)

2
√
t

=
(1 + t) sinx

(1 + t)2 − 4t cos2 x
,

∞∑
k=0

tk sin 2kx =
B(

√
t) +B(−

√
t)

2
=

t sin 2x

(1 + t)2 − 4t cos2 x
.

Thus, for |t| < 1, we have

∞∑
k=0

tk
2k∑
j=0

cos(2k − 2j)x =
∞∑
k=0

tk

(
2

∞∑
l=0

tl cos 2lx− 1

)

= 2

( ∞∑
k=0

tk

)( ∞∑
l=0

tl cos 2lx

)
−

∞∑
k=0

tk

=
2

1− t

1− 2t cos2 x+ t

(1 + t)2 − 4t cos2 x
− 1

1− t

=
1 + t

(1 + t)2 − 4t cos2 x
=

1

sinx

∞∑
k=0

tk sin(2k + 1)x .

Therefore, we obtain

(2.3)

2k∑
j=0

cos(2k − 2j)x =
sin(2k + 1)x

sinx
.

The right-hand side of (2.3) is equal to

x

sinx

sin(2k + 1)x

x

=

 ∞∑
j=0

(−1)jÊ2j
x2j

(2j)!

( ∞∑
m=0

(−1)m(2k + 1)2m+1 x2m

(2m+ 1)!

)

=
∞∑

n=0

(−1)n
n∑

j=0

(
2n+ 1

2j

)
(2k + 1)2n−2j+1Ê2j

x2n

(2n+ 1)!
(j +m = n) .
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The left-hand side of (2.3) is equal to

2k∑
j=0

∞∑
n=0

(−1)n(2k − 2j)2n
x2n

(2n)!
.

Comparing the coefficients on both sides, we have

n∑
j=0

(
2n+ 1

2j

)
(2k + 1)2n−2j+1 Ê2j

(2n+ 1)!
=

2k∑
l=0

(2k − 2l)2n

(2n)!

= 2
k∑

l=1

(2l)2n

(2n)!
.

Therefore, we get the desired result.

§ 3. Poly-Euler numbers of the second kind

In this section we introduce poly-Euler numbers of the second kind as one directed

generalizations of the original Euler numbers of the second kind. A different direction of

generalizations is in (1.4) as hypergeometric Euler numbers of the second kind. Similar

poly numbers are poly-Bernoulli numbers ([4]) and poly-Cauchy numbers ([5]). We shall

give some expressions of poly-Euler numbers of the second kind with both positive and

negative indices.

For an integer k, define poly-Euler numbers of the second kind Ê
(k)
n (n = 0, 1, . . . )

by

(3.1)
Lik(1− e−4t)

4 sinh t
=

∞∑
n=0

Ê(k)
n

tn

n!
.

When k = 1, Ên = Ê
(1)
n are Euler numbers of the second kind or complimentary Euler

numbers defined in (1.5). Several values of poly-Euler numbers of the second kind can

be seen in Table 1.

Poly-Euler numbers of the second kind can be expressed explicitly in terms of

poly-Bernoulli numbers B
(k)
n ([4]) defined by

Lik(1− e−t)

1− e−t
=

∞∑
n=0

B(k)
n

tn

n!
.

When k = 1, Bn = B
(1)
n is the Bernoulli number with B1 = 1/2. Notice that poly-

Bernoulli numbers can be expressed explicitly ([4, Theorem 1]) in terms of the Stirling

numbers of the second kind
{

m
j

}
:

B(k)
m =

m∑
j=0

(−1)m−jj!

(j + 1)k

{
m

j

}
.
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Table 1. The numbers Ê
(k)
n for 1 ≤ n ≤ 7 and 1 ≤ k ≤ 5

k 1 2 3 4 5

Ê
(k)
1 0 −1 − 3

2 − 7
4 − 15

8

Ê
(k)
2 − 1

3
5
9

59
27

275
81

1004
243

Ê
(k)
3 0 1 − 11

6 − 211
36 − 985

108

Ê
(k)
4

7
15 − 679

225 − 12737
3375

245789
50625

12383617
759375

Ê
(k)
5 0 − 7

3
527
30

47171
2700 − 85361

9000

Ê
(k)
6 − 31

21
60001
2205

483221
231525 − 1961354909

24310125 − 205924986214
2552563125

Ê
(k)
7 0 31

3 − 45853
210 − 1250393

132300
763114237
2315250

Here, the Stirling numbers of the second kind are defined by{n
k

}
=

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn ,

yielding from

xn =

n∑
k=0

{n
k

}
x(x− 1) · · · (x− k + 1) .

Lemma 3.1. For integers n and k with n ≥ 0, we have

Ê(k)
n =

1

2

n∑
m=0

(
n

m

)
4m
(
(−1)n−m + (−3)n−m

)
B(k)

m .

When the index is negative, we had a more explicit formula without Bernoulli

numbers [6].

Lemma 3.2. For nonnegative integers n and k, we have

Ê(−k)
n =

(−1)k

2

k∑
l=0

(−1)ll!

{
k

l

}(
(4l + 3)n + (4l + 1)n

)
.

Lemma 3.2 can be stated as follows too.

Lemma 3.3. For nonnegative integers n and k, we have

Ê(−k)
n = (−1)k

k∑
l=0

(−1)ll!

{
k

l

} ⌊n
2 ⌋∑

m=0

(
n

2m

)
(4l + 2)n−2m .
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Table 2. The numbers Ê
(−k)
n for 1 ≤ n ≤ 7 and 0 ≥ −k ≥ −4

−k 0 −1 −2 −3 −4

Ê
(−k)
1 2 6 14 30 62

Ê
(−k)
2 5 37 165 613 2085

Ê
(−k)
3 14 234 1826 10770 55154

Ê
(−k)
4 41 1513 19689 175465 1287657

Ê
(−k)
5 122 9966 210134 2741670 27930182

Ê
(−k)
6 365 66637 2236365 41809933 578341965

Ê
(−k)
7 1094 450834 23819306 628464090 11615023034

Several exact values can be seen in Table 2. As special cases, we have the following.

Lemma 3.4. For nonnegative integers n and k, we have

Ê
(−k)
0 = 1, Ê

(−k)
1 = 2k+2 − 2, Ê

(−k)
2 = 32 · 3k − 2k+5 + 5,

Ê
(−k)
3 = 384 · 4k − 576 · 3k + 220 · 2k − 14,

Ê
(−k)
4 = 6144 · 5k − 12288 · 4k + 7616 · 3k − 1472 · 2k + 41,

Ê
(−k)
5 = 122880 · 6k − 307200 · 5k + 264960 · 4k − 90240 · 3k + 9844 · 2k − 122,

Ê(0)
n =

3n + 1

2
, Ê(−1)

n =
7n + 5n

2
, Ê(−2)

n =
2(11n + 9n)− (7n + 5n)

2
,

Ê(−3)
n =

6(15n + 13n)− 6(11n + 9n) + (7n + 5n)

2
,

Ê(−4)
n =

24(19n + 17n)− 36(15n + 13n) + 14(11n + 9n)− (7n + 5n)

2
,

Ê(−5)
n =

120(23n + 21n)− 240(19n + 17n) + 150(15n + 13n)− 30(11n + 9n) + (7n + 5n)

2
.

§ 4. Duality formulae for poly-Euler numbers of the second kind

It is known that the duality formula B
(−k)
n = B

(−n)
k (n, k ≥ 0) holds for poly-

Bernoulli numbers ([4]). In this section, we shall show a different type of duality formula

for poly-Euler numbers of the second kind.

Theorem 4.1. For nonnegative integers n and k, we have

n∑
m=0

(
n

m

)
2− En−m

4n
Ê(−k)

m =
k∑

m=0

(
k

m

)
2− Ek−m

4k
Ê(−n)

m .
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This theorem is proven by using the expression of poly-Bernoulli numbers in terms

of poly-Euler numbers of the second kind. In [6, Theorem 3], poly-Euler numbers of the

second kind are expressed in terms of poly-Bernoulli numbers:

Ê(k)
n =

1

2

n∑
m=0

(
n

m

)
4m
(
(−1)n−m + (−3)n−m

)
B(k)

m .

Proposition 4.2. For integers n and k with n ≥ 0, we have

B(k)
n =

n∑
m=0

(
n

m

)
2− En−m

4n
Ê(k)

m .

Proof. Since

(4.1)
Lik(1− e−4t)

1− e−4t
=

2

e−t + e−3t

Lik(1− e−4t)

2(et − e−t)
,

we have

∞∑
n=0

B(k)
n

(4t)n

n!
=

(
2et − 1

cosh t

)( ∞∑
n=0

Ê(k)
n

tn

n!

)

=

(
2

∞∑
l=0

tl

l!

)( ∞∑
m=0

Ê(k)
m

tm

m!

)
−

( ∞∑
l=0

El
tl

l!

)( ∞∑
m=0

Ê(k)
m

tm

m!

)

= 2
∞∑

n=0

n∑
m=0

(
n

m

)
Ê(k)

m

tn

n!
−

∞∑
n=0

n∑
m=0

(
n

m

)
En−mÊ(k)

m

tn

n!
.

Comparing the coefficients on both sides, we get

4nB(k)
n =

n∑
m=0

(
n

m

)
(2− En−m)Ê(k)

m .

Proof of Theorem 4.1. From Proposition 4.2 and the duality formula B
(−k)
n =

B
(−n)
k , we get the desired result.

We can also describe the positivity of poly-Euler numbers of the second kind with

negative index.
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Theorem 4.3. For nonnegative integers n and k, we have

Ê(−k)
n =

min(n,k)∑
j=0

(j!)2
n∑

m=0

k∑
µ=0

(
n

m

)(
k

µ

){
n−m

j

}{
µ

j

}
4n−mÊ(0)

m

=

min(n,k)∑
j=0

(j!)2
n∑

m=0

k∑
µ=0

(
n

m

)(
k

µ

){
n−m

j

}{
µ

j

}
4n−m(3m + 1)

2
.

Proof. From (4.1), we have

∞∑
k=0

Li−k(1− e−4x)

4 sinhx

(4y)k

k!
=

e−x + e−3x

2

∞∑
k=0

Li−k(1− e−4x)

1− e−4x

(4y)k

k!

= e−4xLi0(1− e−4x)

4 sinhx

e4(x+y)

e4x + e4y − e4(x+y)

=
∞∑

m=0

Ê(0)
m

xm

m!
e4y

∞∑
j=0

(j!)2
(e4x − 1)j

j!

(e4y − 1)j

j!

=

∞∑
j=0

(j!)2

( ∞∑
m=0

Ê(0)
m

xm

m!

) ∞∑
ν=j

{
ν

j

}
(4x)ν

ν!


×

( ∞∑
l=0

(4y)l

l!

) ∞∑
µ=j

{
µ

j

}
(4y)ν

ν!


=

∞∑
j=0

(j!)2
∞∑

n=0

n∑
m=0

(
n

m

)
Ê(0)

m

{
n−m

j

}
4n−mxn

n!

×
∞∑
k=0

k∑
µ=0

(
k

µ

){
µ

j

}
4k

yk

k!
.

Since the left hand side is equal to

∞∑
k=0

∞∑
n=0

Ê(−k)
n

xn

n!

(4y)k

k!
,

comparing the coefficients on both sides, we get the desired result.

Remark. When k = 1 in Theorem 4.3, we have

Ê(−1)
n =

0 if n = 0;∑n
m=0

(
n
m

) {
n−m

1

}
4n−mÊ

(0)
m if n ≥ 1 .

It matches the result in Lemma 3.4, as

Ê(−1)
n =

7n + 5n

2
(n ≥ 0) .
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§ 5. Congruence relations

Poly-Euler numbers of the second kind with positive indices are rational numbers,

but those with negative indices are integers. Hence, it is worthwhile considering con-

gruence relations.

In [6], we determined the parity and the divisibility of poly-Euler numbers of the

second kind as follows.

Lemma 5.1. For any nonnegative integer k, we have

Ê(−k)
n ≡

0 (mod 2) if n is odd,

1 (mod 2) if n is even.

Lemma 5.2. For an odd prime p with p > 3 and a nonnegative integer k, we

have

Ê(−k)
p ≡ 2k+2 − 2 (mod p) .

For a nonnegative integer k, we have

Ê
(−k)
3 ≡ (−1)k + 1 (mod 3) ,

Ê
(−k)
2 ≡ 0 (mod 2) .

In this section, we shall give some more congruence relations of poly-Euler numbers

of the second kind with negative indices.

Proposition 5.3. Let p be an odd prime, and k be a fixed nonnegative integer.

Then for integers n and m with n,m ≥ 0 and n ≡ m (mod p− 1), we have

Ê(−k)
n ≡ Ê(−k)

m (mod p) .

Proof. By Fermat’s Little Theorem, if n ≡ m (mod p− 1), then

(4l + 3)n ≡ (4l + 3)m and (4l + 1)n ≡ (4l + 1)m (mod p) .

By Lemma 3.2 with the fact that (4l + 3)n + (4l + 1)n is even for n ≥ 0, we get the

desired result.
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Example 5.4. Let p = 5 and k = 3. As 6 ≡ 2 (mod 4),

Ê
(−3)
6 − Ê

(−3)
2 = 41809933− 613 = 5 · 8361864 .

Let p = 3 and k = 4. As 7 ≡ 5 (mod 2),

Ê
(−4)
7 − Ê

(−4)
5 = 11615023034− 27930182 = 3 · 3862364284 .

Theorem 5.5. Let p be an odd prime. If k ≡ p−2 (mod p−1) for odd integers

n and k, then we have

Ê(−k)
n ≡ 0 (mod p) .

Proof. Notice that if l ≥ p then l! ≡ 0 (mod p), and if (p − 1) ̸ |k,
{

k
p−1

}
≡ 0

(mod p). Hence, by Lemma 3.3,

Ê(−k)
n = (−1)k

k∑
l=0

(−1)ll!

{
k

l

}
B(n, l)

= (−1)k
p−2∑
l=0

(−1)ll!

{
k

l

}
B(n, l) ,

where

B(n, l) :=

⌊n
2 ⌋∑

m=0

(
n

2m

)
(4l + 2)n−2m

=

0 (mod p) if l = p−1
2 ;

−B(n, p− l − 1) (mod p) if l = 1, 2, . . . , p−3
2 .

Thus, we get

Ê(−k)
n ≡ −

p−2∑
l=1

(−1)ll!

{
p− 2

l

}
B(n, l)

≡ −
(p−3)/2∑

l=1

(−1)ll!

{
p− 2

l

}(
B(n, l) +B(n, p− l − 1)

)
≡ 0 (mod p) .

Therefore, we have the desired result.
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Example 5.6. Let p = 5. Then for any odd number n we have Ê
(−3)
n ≡ 0

(mod 5). Together with Lemma 5.1, we can know that Ê
(−3)
n ≡ 0 (mod 10). As seen in

Table 2, all of

Ê
(−3)
1 = 30, Ê

(−3)
3 = 10770, Ê

(−3)
5 = 2741670 and Ê

(−3)
7 = 628464090

are divided by 5.

Let p = 7. Then for any odd number n we have E
(−5)
n ≡ 0 (mod 7).
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