Cluster algebra and q-Painlevé equations: higher order generalization and degeneration structure

By
Takao Suzuki*and Naoto Okubo**

Abstract

In this article we give a birational representation of an extended affine Weyl group of type $\left(A_{m n-1}+A_{m-1}+A_{m-1}\right)^{(1)}$ with the aid of a cluster mutation. This group provides several higher order generalizations of the q-Painlevé VI equation (q - P_{VI}) as translations. We also discuss a confluence of vertices of a quiver which can be applied to a degeneration structure of the q-Painlevé equations.

§ 1. Introduction

The cluster algebra was introduced by Fomin and Zelevinsky in [2, 3]. It is a variety of commutative ring described in terms of cluster variables and coefficients. Its generating set is defined by an operation called a mutation which transforms a seed consisting of cluster variables, coefficients and a quiver. Then new cluster variables (reps. coefficients) are rational in original cluster variables and coefficients (reps. coefficients). Hence we can obtain various discrete integrable systems from mutation-periodic quivers ([13]) as relations satisfied by cluster variables and coefficients.

In the previous work [15] the q-Painlevé VI equation ([6]) was derived from the mutation-periodic quiver with 8 vertices; see Figure 4 in Section 3. As its extension, we consider the quiver $Q_{m n}\left(A_{m-1}^{(1)}\right)^{* 1}$; see Figure 1. This quiver is invariant under some

[^0]

Figure 1. The quiver $Q_{m n}\left(A_{m-1}^{(1)}\right)$

Figure 2. Confluence of quiver (example)
compositions of mutations and permutations of vertices of quivers. Those operations generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type $\left(A_{m n-1}+A_{m-1}+A_{m-1}\right)^{(1)^{*} 2}$. And this group provides several generalized q - P_{VI} 's as translations. In the previous work [16] we investigated the case $m=2$ and derived three types of systems. In this article we review it quickly and give an additional explanation about the q-hypergeometric solution of the generalized q - P_{VI}; see Section 2.

Our another aim is to propose a confluence of vertices of a quiver; see Figure 2. We define a confluence of vertices of a quiver $i \rightarrow j$ by replacing two vertices i, j and an arrow between them with one vertex j. In this article we only consider a confluence of two vertices which are connected by arrows directly. At the level of the corresponding skew-symmetric matrix, the confluence can be interpreted as the following operation.

[^1]1. Add the i-th row to the j-th row.
2. Add the i-th column to the j-th column.
3. Delete the i-th row and the i-th column.

The confluence of skew-symmetric matrix corresponding to the one of Figure 2 is described as follows.

$$
\left(\begin{array}{cccc}
0 & -1 & -1 & 1 \\
1 & 0 & -1 & 1 \\
1 & 1 & 0 & -1 \\
-1 & -1 & 1 & 0
\end{array}\right) \xrightarrow{4 \rightarrow 1}\left(\begin{array}{ccc}
0 & -2 & 0 \\
2 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

It can be applied to the degeneration structure of the q-Painlevé equations ([18]), which is described as follows.

$$
\frac{E_{8}^{(1)}}{A_{0}^{(1)}} \rightarrow \frac{E_{7}^{(1)}}{A_{1}^{(1)}} \rightarrow \frac{E_{6}^{(1)}}{A_{2}^{(1)}} \rightarrow \frac{D_{5}^{(1)}}{A_{3}^{(1)}} \rightarrow \frac{A_{4}^{(1)}}{A_{4}^{(1)}} \rightarrow \frac{E_{3}^{(1)}}{A_{5}^{(1)}} \rightarrow \frac{E_{2}^{(1)}}{A_{6}^{(1)}} \rightarrow \frac{A_{1}^{(1)}}{A_{7}^{(1)}=8}{ }^{\frac{|\alpha|^{(2)}}{(1)}}{ }^{\frac{E_{0}^{(1)}}{A_{8}^{(1)}}}
$$

In this table numerators and denominators stand for symmetry and surface types respectively. Following [11], we use the symbols $E_{3}^{(1)}=\left(A_{2}+A_{1}\right)^{(1)}$ and $E_{2}^{(1)}=\left(A_{1}+\underset{|\alpha|^{2}=14}{A_{1}}\right)^{(1)}$ for the sake of simplicity. The type $D_{5}^{(1)} / A_{3}^{(1)}$ corresponds to $q-P_{\mathrm{VI}}$. In the previous work [15] we derived 4 types of q-Painlevé equations containing q - P_{VI} from some mutationperiodic quivers. At that time we gave the quivers by using the operation called a flattening which corresponds to the reduction of the discrete integrable system. Afterward, 9 equations below the one of type $E_{6}^{(1)} / A_{2}^{(1)}$ were derived in [1] by using a correspondence between quivers and Newton polygons. We obtain those quivers again with the aid of a confluence of vertices of a quiver; see Section 3 .

§ 2. Extended affine Weyl group and Generalized $q-P_{\mathrm{VI}}$

§ 2.1. Cluster mutation

Let $Q=Q_{m n-1}\left(A_{m-1}^{(1)}\right)(m, n \geq 2)$ be the quiver given in Figure 1. We define a mutation $\mu_{[j, i]}$ at the vertex $[j, i]$ as follows.

1. If there are k_{1} arrows from $\left[j_{1}, i_{1}\right]$ to $[j, i]$ and k_{2} arrows from $[j, i]$ to $\left[j_{2}, i_{2}\right]$, then we add $k_{1} k_{2}$ arrows from $\left[j_{1}, i_{1}\right]$ to $\left[j_{2}, i_{2}\right]$.
2. If 2-cycles appear via the operation 1 , then we remove all of them.
3. We reverse the direction of all arrows touching $[j, i]$.

Let $I=\{[j, i] \mid 0 \leq i \leq m-1,0 \leq j \leq m n-1\}$ be a vertex set. We define a skewsymmetric matrix $\Lambda=\left(\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}\right)_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right] \in I}$ corresponding to a quiver Q as follows.

- If there are k arrows from $\left[j_{1}, i_{1}\right]$ to $\left[j_{2}, i_{2}\right]$, then we set $\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}=k$ and $\lambda_{\left[j_{2}, i_{2}\right],\left[j_{1}, i_{1}\right]}=-k$.
- If there is no arrow connecting two vertices $\left[j_{1}, i_{1}\right]$ and $\left[j_{2}, i_{2}\right]$ directly, then we set $\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}=\lambda_{\left[j_{2}, i_{2}\right],\left[j_{1}, i_{1}\right]}=0$.

Also let $\boldsymbol{y}=\left(y_{[j, i]}\right)_{[j, i] \in I}$ be a $m^{2} n$-tuple of coefficients. Then the mutation $\mu_{[j, i]}$: $(\Lambda, \boldsymbol{y}) \mapsto\left(\Lambda^{\prime}, \boldsymbol{y}^{\prime}\right)$ is given by

$$
\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}^{\prime}=\left\{\begin{array}{ll}
-\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]} & \left(\left[j_{1}, i_{1}\right]=[j, i] \vee\left[j_{2}, i_{2}\right]=[j, i]\right) \\
\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}+\lambda_{\left[j_{1}, i_{1}\right],[j, i]} \lambda_{[j, i],\left[j_{2}, i_{2}\right]}\left(\lambda_{\left[j_{1}, i_{1}\right],[j, i]}>0 \wedge \lambda_{[j, i],\left[j_{2}, i_{2}\right]}>0\right) \\
\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]}-\lambda_{\left[j_{1}, i_{1}\right],[j, i]} \lambda_{[j, i],\left[j_{2}, i_{2}\right]}\left(\lambda_{\left[j_{1}, i_{1}\right],[j, i]}<0 \wedge \lambda_{[j, i],\left[j_{2}, i_{2}\right]}<0\right) \\
\lambda_{\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]} & \text { (otherwise) }
\end{array},\right.
$$

and

$$
y_{\left[j_{1}, i_{1}\right]}^{\prime}=\left\{\begin{array}{ll}
y_{[j, i]}^{-1} & \left(\left[j_{1}, i_{1}\right]=[j, i]\right) \\
y_{\left[j_{1}, i_{1}\right]}\left(1+y_{[j, i]}^{-1}\right)^{\lambda_{\left[j_{1}, i_{1}\right],[j, i]}}\left(\lambda_{\left[j_{1}, i_{1}\right],[j, i]}<0\right) \\
y_{\left[j_{1}, i_{1}\right]}\left(1+y_{[j, i]}\right)^{\lambda_{\left[j_{1}, i_{1}\right],[j, i]}} & \left(\lambda_{\left[j_{1}, i_{1}\right],[j, i]}>0\right) \\
y_{\left[j_{1}, i_{1}\right]} & \text { (otherwise)}
\end{array} .\right.
$$

Note that we don't consider cluster variables in this article. We denote a transposition of vertices $\left[j_{1}, i_{1}\right]$ and $\left[j_{2}, i_{2}\right]$ by $\left(\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]\right)$. It act on coefficients as

$$
\left(\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]\right)\left(y_{[j, i]}\right)=\left\{\begin{array}{l}
y_{\left[j_{2}, i_{2}\right]}\left([j, i]=\left[j_{1}, i_{1}\right]\right) \\
y_{\left[j_{1}, i_{1}\right]}\left([j, i]=\left[j_{2}, i_{2}\right]\right) . \\
y_{[j, i]} \quad(\text { otherwise })
\end{array}\right.
$$

In the following we use a notation of periodicity

$$
y_{[j, i]}=y_{[j, i+m]}=y_{[j+m n, i]} .
$$

\S 2.2. Birational representation of affine Weyl group

We introduce parameters corresponding to the simple roots of the affine root system as

$$
\begin{gathered}
\alpha_{j}=\prod_{i=0}^{m-1} y_{[j, i]} \quad(j=0, \ldots, m n-1), \\
\beta_{i}=\prod_{j=0}^{m n-1} y_{[j, i]}, \quad \beta_{i}^{\prime}=\prod_{j=0}^{m n-1} y_{[j, i+j]} \quad(i=0, \ldots, m-1),
\end{gathered}
$$

with

$$
\prod_{j=0}^{m n-1} \alpha_{j}=\prod_{i=0}^{m-1} \beta_{i}=\prod_{i=0}^{m-1} \beta_{i}^{\prime}=\prod_{i=0}^{m-1} \prod_{j=0}^{m n-1} y_{[j, i]}=q
$$

Note that

$$
\alpha_{j}=\alpha_{j+m n}, \quad \beta_{i}=\beta_{i+m}, \quad \beta_{i}^{\prime}=\beta_{i+m}^{\prime}
$$

Definition 2.1. We define birational transformations π, π^{\prime}, ρ, called Dynkin diagram automorphisms, by

$$
\begin{aligned}
\pi= & ([0,0],[1,1], \ldots,[m-1, m-1],[m, 0], \ldots,[m n-1, m-1]) \\
& \times([0,1],[1,2], \ldots,[m-1,0],[m, 1], \ldots,[m n-1,0]) \\
& \times \ldots \\
& \times([0, m-1],[1,0], \ldots,[m-1, m-2],[m, m-1], \ldots,[m n-1, m-2]), \\
\pi^{\prime}= & ([0,0],[1,0], \ldots,[m-1,0],[m, 0], \ldots,[m n-1,0]) \\
& \times([0,1],[1,1], \ldots,[m-1,1],[m, 1], \ldots,[m n-1,1]) \\
& \times \ldots \\
& \times([0, m-1],[1, m-1], \ldots,[m-1, m-1],[m, m-1], \ldots,[m n-1, m-1]), \\
\rho= & ([1,0],[m n-1, m-1])([1,1],[m n-1,0]) \ldots([1, m-1],[m n-1, m-2]) \\
& \times([2,0],[m n-2, m-2])([2,1],[m n-2, m-1]) \ldots([2, m-1],[m n-2, m-3]) \\
& \times \ldots \\
& \times([m-1,0],[m n-m+1,1])([m-1,1],[m n-m+1,2]) \ldots([m-1, m-1],[m n-m+1,0]) \\
& \times([m, 0],[m n-m, 0])([m, 1],[m n-m, 1]) \ldots([m, m-1],[m n-m, m-1]) \\
& \times \ldots \\
& \times([N, 0],[m n-N, 0])([N, 1],[m n-N, 1]) \ldots([N, m-1],[m n-N, m-1]),
\end{aligned}
$$

where

$$
\left(\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right], \ldots,\left[j_{k}, i_{k}\right]\right)=\left(\left[j_{1}, i_{1}\right],\left[j_{2}, i_{2}\right]\right)\left(\left[j_{2}, i_{2}\right],\left[j_{3}, i_{3}\right]\right) \ldots\left(\left[j_{k-1}, i_{k-1}\right],\left[j_{k}, i_{k}\right]\right)
$$

stands for a cyclic permutation and $N=\left\lfloor\frac{m n}{2}\right\rfloor$. Here we define a composition of two operations μ_{1}, μ_{2} by $\left(\mu_{1} \mu_{2}\right)(\boldsymbol{y})=\mu_{1}\left(\mu_{2}(\boldsymbol{y})\right)$.

These transformations act on the coefficients and the parameters as

$$
\begin{aligned}
& \pi\left(y_{[j, i]}\right)=y_{[j+1, i+1]}, \\
& \pi^{\prime}\left(y_{[j, i]}\right)=y_{[j+1, i]}, \\
& \rho\left(y_{\left[j_{2} m+j_{1}, i\right]}\right)=y_{\left[m n-j_{2} m-j_{1}, i-j_{1}\right]} \quad\left(j_{1}=0, \ldots, m-1 ; j_{2}=0, \ldots, n-1\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& \pi\left(\alpha_{j}\right)=\alpha_{j+1}, \quad \pi\left(\beta_{i}\right)=\beta_{i+1}, \quad \pi\left(\beta_{i}^{\prime}\right)=\beta_{i}^{\prime}, \\
& \pi^{\prime}\left(\alpha_{j}\right)=\alpha_{j+1}, \quad \pi^{\prime}\left(\beta_{i}\right)=\beta_{i}, \quad \pi^{\prime}\left(\beta_{i}^{\prime}\right)=\beta_{i-1}^{\prime}, \\
& \rho\left(\alpha_{j}\right)=\alpha_{m n-j}, \quad \rho\left(\beta_{i}\right)=\beta_{i}^{\prime}, \quad \rho\left(\beta_{i}^{\prime}\right)=\beta_{i},
\end{aligned}
$$

for $i=0, \ldots, m-1$ and $j=0, \ldots, m n-1$.
Definition 2.2. We define birational transformations r_{0}, called a simple reflection, by

$$
r_{0}=\mu_{[0,0]} \mu_{[0,1]} \ldots \mu_{[0, m-2]}([0, m-2],[0, m-1]) \mu_{[0, m-2]} \ldots \mu_{[0,1]} \mu_{[0,0]} .
$$

We also define birational transformations $r_{1}, \ldots, r_{m n-1}$ by using π, r_{0} as

$$
r_{j}=\pi^{-1} r_{j-1} \pi \quad(j=1, \ldots, m n-1) .
$$

The transformation r_{0} acts on the coefficients and the parameters as
$r_{0}\left(y_{[0, i]}\right)=\frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, i+k_{2}\right]}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, i+k_{2}+1\right]}}, \quad r_{0}\left(y_{[1, i]}\right)=\frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, i+k_{2}\right]}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, i+k_{2}\right]}} y_{[1, i]}$,
$r_{0}\left(y_{[m n-1, i]}\right)=\frac{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[0, i+k_{2}+1\right]}^{m-1}}{\sum_{k_{1}=0}^{m-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[0, i+k_{2}+1\right]}} y_{[m n-1, i]}, \quad r_{0}\left(y_{[j, i]}\right)=y_{[j, i]} \quad(j \neq 0,1, m n-1)$,
for $i=0, \ldots, m-1$ and

$$
\begin{aligned}
& r_{0}\left(\alpha_{0}\right)=\frac{1}{\alpha_{0}}, \quad r_{0}\left(\alpha_{1}\right)=\alpha_{0} \alpha_{1}, \quad r_{0}\left(\alpha_{m n-1}\right)=\alpha_{0} \alpha_{m n-1}, \quad r_{0}\left(\alpha_{k}\right)=\alpha_{k} \quad(k \neq 0,1, m n-1), \\
& r_{0}\left(\beta_{i}\right)=\beta_{i}, \quad r_{0}\left(\beta_{i}^{\prime}\right)=\beta_{i}^{\prime} \quad(i=0, \ldots, m-1)
\end{aligned}
$$

Definition 2.3. We define birational transformations s_{0}, called a simple reflection, by

$$
s_{0}=\mu_{[0,0]} \mu_{[1,0]} \cdots \mu_{[m n-2,0]}([m n-2,0],[m n-1,0]) \mu_{[m n-2,0]} \ldots \mu_{[1,0]} \mu_{[0,0]} .
$$

We also define birational transformations s_{1}, \ldots, s_{m-1} and $s_{0}^{\prime}, \ldots, s_{m-1}^{\prime}$ by using π, ρ, s_{0} as

$$
s_{i}=\pi^{-1} s_{i-1} \pi \quad(i=1, \ldots, m-1)
$$

and

$$
s_{i}^{\prime}=\rho s_{i} \rho \quad(i=0, \ldots, m-1) .
$$

In the case $m=2$, the transformation r_{0} acts on the coefficients and the parameters as
$s_{0}\left(y_{[j, 0]}\right)=\frac{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[j+k_{2}, 0\right]}}{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[j+k_{2}+1,0\right]}}, \quad s_{0}\left(y_{[j, 1]}\right)=\frac{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[j+k_{2}+1,0\right]}}{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[j+k_{2}, 0\right]}} y_{[j, 0]} y_{[j, 1]}$, for $j=0, \ldots, m n-1$ and

$$
\begin{aligned}
& s_{0}\left(\alpha_{j}\right)=\alpha_{j} \quad(j=0, \ldots, m n-1) \\
& s_{0}\left(\beta_{0}\right)=\frac{1}{\beta_{0}}, \quad s_{0}\left(\beta_{1}\right)=\beta_{0}^{2} \beta_{1}, \quad s_{0}\left(\beta_{i}^{\prime}\right)=\beta_{i}^{\prime} \quad(i=0, \ldots, m-1)
\end{aligned}
$$

In the case $m \geq 3$, the action of r_{0} is described as

$$
\begin{aligned}
& s_{0}\left(y_{[j, 0]}\right)=\frac{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[j+k_{2}, 0\right]}}{\sum_{k_{1}=0}^{m n-1} \prod_{k_{1}=0}^{k_{1}} y_{\left[j+k_{2}+1,0\right]}}, \quad s_{0}\left(y_{[j, 1]}\right)=\frac{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}} y_{\left[j+k_{2}, 0\right]}}{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[j+k_{2}, 0\right]}} y_{[j, 1]}, \\
& s_{0}\left(y_{[j, m-1]}\right)=\frac{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}=0} y_{\left[j+k_{2}+1,0\right]}}{\sum_{k_{1}=0}^{m n-1} \prod_{k_{2}=0}^{k_{1}-1} y_{\left[j+k_{2}+1,0\right]}} y_{[j, m-1]}, \quad s_{0}\left(y_{[j, i]}\right)=y_{[j, i]} \quad(i \neq 0,1, m-1),
\end{aligned}
$$

for $j=0, \ldots, m n-1$ and
$s_{0}\left(\alpha_{j}\right)=\alpha_{j} \quad(j=0, \ldots, m n-1)$,
$s_{0}\left(\beta_{0}\right)=\frac{1}{\beta_{0}}, \quad s_{0}\left(\beta_{1}\right)=\beta_{0} \beta_{1}, \quad s_{0}\left(\beta_{m-1}\right)=\beta_{0} \beta_{m-1}, \quad s_{0}\left(\beta_{k}\right)=\beta_{k} \quad(k \neq 0,1, m-1)$,
$s_{0}\left(\beta_{i}^{\prime}\right)=\beta_{i}^{\prime} \quad(i=0, \ldots, m-1)$.
Fact $2.4([5,12,16])$. The birational transformations defined in the above satisfy the fundamental relations of the extended affine Weyl group of type $\left(A_{m n-1}+A_{m-1}+\right.$ $\left.A_{m-1}\right)^{(1)}$

$$
\begin{aligned}
& r_{j}^{2}=s_{i}^{2}=\left(s_{i}^{\prime}\right)^{2}=1, \\
& \left(r_{j} r_{j+1}\right)^{3}=\left(s_{i} s_{i+1}\right)^{3}=\left(s_{i}^{\prime} s_{i+1}^{\prime}\right)^{3}=1 \\
& \left(r_{j_{1}} r_{j_{2}}\right)^{2}=\left(s_{i_{1}} s_{i_{2}}\right)^{2}=\left(s_{i_{1}}^{\prime} s_{i_{2}}^{\prime}\right)^{2}=1 \quad\left(i_{1} \neq i_{2}, i_{2} \pm 1 ; j_{1} \neq j_{2}, j_{2} \pm 1\right), \\
& \left(r_{j} s_{i}\right)^{2}=\left(r_{j} s_{i}^{\prime}\right)^{2}=\left(s_{i_{1}} s_{i_{2}}^{\prime}\right)^{2}=1,
\end{aligned}
$$

and

$$
\begin{aligned}
& \pi^{m n}=1, \quad\left(\pi^{\prime}\right)^{m n}=1, \quad \rho^{2}=1, \quad \pi \pi^{\prime}=\pi^{\prime} \pi, \quad \pi^{m}=\left(\pi^{\prime}\right)^{m}, \quad \pi^{\prime} \rho=\rho \pi^{-1}, \\
& \pi r_{j}=r_{j-1} \pi, \quad \pi^{\prime} r_{j}=r_{j-1} \pi^{\prime}, \quad \rho r_{j}=r_{m n-j} \rho, \\
& \pi s_{i}=s_{i-1} \pi, \quad \pi s_{i}^{\prime}=s_{i}^{\prime} \pi, \quad \pi^{\prime} s_{i}=s_{i} \pi^{\prime}, \quad \pi^{\prime} s_{i}^{\prime}=s_{i+1}^{\prime} \pi^{\prime}, \quad \rho s_{i}=s_{i}^{\prime} \rho,
\end{aligned}
$$

for $i, i_{1}, i_{2}=0, \ldots, m-1$ and $j=0, \ldots, m n-1$, where

$$
r_{j}=r_{j+m n}, \quad s_{i}=s_{i+m}, \quad s_{i}^{\prime}=s_{i+m}^{\prime} .
$$

§ 2.3. \quad Example (case $m=2$)

This case has already been considered in our previous work.

Fact 2.5 ([16]). Let

$$
\begin{aligned}
& T_{1}=s_{1}^{\prime} s_{1} \pi^{\prime} \pi^{-1}, \\
& T_{2}=\left(r_{0} r_{1} \ldots r_{n-2} r_{n} r_{n+1} \ldots r_{2 n-2} \pi^{\prime}\right)^{2}, \\
& T_{3}=r_{1} r_{2} \ldots r_{2 n-1} s_{1}^{\prime} \pi^{\prime} \\
& T_{4}=\left(r_{0} r_{2} \ldots r_{2 n-2} \pi^{\prime}\right)^{2} .
\end{aligned}
$$

Then they provides three types of q-Painlevé systems as follows ${ }^{* 3}$.

- T_{1} provides the q-Painlevé system $q-P_{(n, n)}$ arising from the q-DS hierarchy given in [20, 21].
- T_{2} provides the q-Garnier system given in [19].
- T_{4} provides the q-Painlevé system arising from the q-LUC hierarchy given in $\S 3.4$ of [23].

In this section we focus on the translation T_{1} and investigate a particular solution in terms of the basic hypergeometric function ${ }_{n} \phi_{n-1}$. The actions of T_{1} on the parameters are described as

$$
\begin{gathered}
T_{1}\left(\alpha_{j}\right)=\alpha_{j} \quad(j=0, \ldots, 2 n-1), \quad T_{1}\left(\beta_{0}\right)=q \beta_{0}, \quad T_{1}\left(\beta_{1}\right)=\frac{\beta_{1}}{q} \\
T_{1}\left(\beta_{0}^{\prime}\right)=q \beta_{0}^{\prime}, \quad T_{1}\left(\beta_{1}^{\prime}\right)=\frac{\beta_{1}^{\prime}}{q} .
\end{gathered}
$$

[^2]Recall that

$$
\begin{gathered}
\alpha_{j}=y_{[j, 0]} y_{[j, 1]}(j=0, \ldots, 2 n-1), \\
\beta_{i}=\prod_{j=0}^{2 n-1} y_{[j, i]}, \quad \beta_{i}^{\prime}=\prod_{j=0}^{n-1} y_{[2 j, i]} y_{[2 j+1, i+1]} \quad(i=0,1),
\end{gathered}
$$

and

$$
y_{[j, i]}=y_{[j, i+2]}=y_{[j+2 n, i]}, \quad \alpha_{j}=\alpha_{j+2 n}, \quad \beta_{i}=\beta_{i+2}, \quad \beta_{i}^{\prime}=\beta_{i+2}^{\prime} .
$$

The actions of T_{1} on the coefficients $y_{[0,0]}, \ldots, y_{[2 n-1,0]}$ are described as

$$
\begin{align*}
T_{1}\left(y_{[2 j, 0]}\right) & =\alpha_{2 j} \alpha_{2 j+1} y_{[2 j, 0]} \frac{S_{j}^{\prime} S_{j+1}}{S_{j} S_{j+1}^{\prime}} \\
T_{1}\left(y_{[2 j+1,0]}\right) & =\frac{1+y_{[2 j+2,0]}}{1+y_{[2 j, 0]}} y_{[2 j+3,0]} \frac{S_{j} S_{j+1}^{\prime}+\alpha_{2 j+1} y_{[2 j, 0]} S_{j}^{\prime} S_{j+1}}{S_{j+1} S_{j+2}^{\prime}+\alpha_{2 j+3} y_{[2 j+2,0]} S_{j+1}^{\prime} S_{j+2}}, \tag{2.1}
\end{align*}
$$

for $j=0, \ldots, n-1$, where

$$
\begin{align*}
& S_{j}=\sum_{k=j}^{n-1}\left(1+y_{[2 k, 0]}\right) \prod_{l=j}^{k-1} y_{[2 l, 0]} y_{[2 l+1,0]}+\sum_{k=0}^{j-1}\left(1+y_{[2 k, 0]}\right) \prod_{l=0}^{k+n-1} y_{[2 l, 0]} y_{[2 l+1,0]} \\
& S_{j}^{\prime}=\sum_{k=j}^{n-1}\left(1+y_{[2 k, 0]}^{-1}\right) \prod_{l=j}^{k-1} y_{[2 l, 0]}^{-1} y_{[2 l+1,1]}^{-1}+\sum_{k=0}^{j-1}\left(1+y_{[2 k, 0]}^{-1}\right) \prod_{l=0}^{k+n-1} y_{[2 l, 0]}^{-1} y_{[2 l+1,1]}^{-1} \tag{2.2}
\end{align*}
$$

Lemma 2.6. If, in system (2.1), we assume that

$$
y_{[2 j+1,1]}=-1 \quad(j=0, \ldots, n-1),
$$

then the coefficients $y_{[0,0]}, y_{[2,0]}, \ldots, y_{[2 n-2,0]}$ satisfy

$$
\begin{equation*}
T_{1}\left(y_{[2 j, 0]}\right)=\alpha_{2 j} \alpha_{2 j+1} y_{[2 j, 0]} \frac{S_{j+1}}{S_{j}} \quad(j=0, \ldots, n-1), \tag{2.3}
\end{equation*}
$$

where
$S_{j}=1+\sum_{k=j}^{j+n-2}(-1)^{k-j}\left(1-\alpha_{2 k+1}\right) \prod_{l=j}^{k-1} \alpha_{2 l+1} \prod_{l=j}^{k} y_{[2 l, 0]}+(-1)^{n-1} \frac{\prod_{k=0}^{n-1} \alpha_{2 k+1}}{\alpha_{2 j-1}} \prod_{k=0}^{n-1} y_{[2 k, 0]}$.
Proof. Substituting

$$
y_{[2 j+1,0]}=-\alpha_{2 j+1}, \quad y_{[2 j+1,1]}=-1 \quad(j=0, \ldots, n-1)
$$

into (2.2), we obtain
$S_{j}=1+\sum_{k=j}^{j+n-2}(-1)^{k-j}\left(1-\alpha_{2 k+1}\right) \prod_{l=j}^{k-1} \alpha_{2 l+1} \prod_{l=j}^{k} y_{[2 l, 0]}+(-1)^{n-1} \frac{\prod_{k=0}^{n-1} \alpha_{2 k+1}}{\alpha_{2 j-1}} \prod_{k=0}^{n-1} y_{[2 k, 0]}$,
$S_{j}^{\prime}=1+\frac{(-1)^{n-1}}{\prod_{k=0}^{n-1} y_{[2 k, 0]}}$,
and

$$
S_{j}+\alpha_{2 j+1} y_{[2 j, 0]} S_{j+1}=\left(1+y_{[2 j, 0]}\right)\left(1+(-1)^{n-1} \prod_{k=0}^{n-1} \alpha_{2 k+1} y_{[2 k, 0]}\right),
$$

for $j=0, \ldots, n-1$. Then system (2.1) implies (2.3). We also obtain

$$
T_{1}\left(y_{[2 j+1,0]}\right)=y_{[2 j+3,0]} \quad(j=0, \ldots, n-1),
$$

namely the assumption of this lemma is consistent with system (2.1).
Thanks to this lemma, we can show the following theorem easily by a direct calculation.

Theorem 2.7. Let n-tuple $\left(x_{0}, \ldots, x_{n-1}\right)$ be a solution of a system of linear q difference equations

$$
\begin{align*}
T_{1}\left(x_{j}\right)= & \left(\prod_{l=0}^{2 j-1} \alpha_{l}\right) x_{j}+\sum_{k=j+1}^{n-1}\left((-1)^{k-j-1}\left(1-\alpha_{2 k-1}\right) \prod_{l=0}^{2 k-2} \alpha_{l}\right) x_{k} \tag{2.4}\\
& +\sum_{k=0}^{j-1}\left((-1)^{k-j-1+n}\left(1-\alpha_{2 k-1}\right) \prod_{l=0}^{2 k-2} \alpha_{l}\right) q \beta_{0}^{\prime} x_{k}+\left((-1)^{n-1} \prod_{l=0}^{2 j-2} \alpha_{l}\right) q \beta_{0}^{\prime} x_{j},
\end{align*}
$$

for $j=0, \ldots, n-1$. We also set

$$
y_{[2 j, 0]}=\alpha_{2 j} \frac{x_{j+1}}{x_{j}} \quad(j=0, \ldots, n-2), \quad y_{[2 n-2,0]}=\alpha_{2 n-2} \beta_{0}^{\prime} \frac{x_{0}}{x_{n-1}} .
$$

Then $y_{[0,0]}, y_{[2,0]}, \ldots, y_{[2 n-2,0]}$ satisfy system (2.3).
System (2.4) is equivalent to the one given in [20] whose solution is described in terms of the basic hypergeometric function ${ }_{n} \phi_{n-1}$. Here the parameter β_{0}^{\prime} plays the role of the independent variable.

\S 3. Degeneration structure of q-Painlevé equations

In this section we start with the quiver $Q_{8}=Q_{4}\left(A_{1}^{(1)}\right)$ and consider confluences of vertices of quivers. These procedures give the degeneration scheme of q-Painlevé

Figure 3. Confluence of the quiver $Q_{4}\left(A_{1}^{(1)}\right)$

Figure 4. Q_{8}
equations below the one of type $D_{5}^{(1)} / A_{3}^{(1)}$. We list a correspondence between the quivers in Figure 3 and the q-Painlevé equations below ${ }^{*}$.

Q_{8}	Q_{7}	Q_{62}	Q_{52}	Q_{44}	Q_{45}	Q_{33}
$D_{5}^{(1)} / A_{3}^{(1)}$	$A_{4}^{(1)} / A_{4}^{(1)}$	$E_{3}^{(1)} / A_{5}^{(1)}$	$E_{2}^{(1)} / A_{6}^{(1)}$	$A_{1}^{(1)} / A_{7}^{(1)}$	$A_{1}^{(1)} / A_{7}^{(1)}$ $\|\alpha\|^{2}=8$	$E_{0}^{(1)} / A_{8}^{(1)}$

§3.1. Quiver Q_{8}

For the sake of simplicity, we rename the vertices of $Q_{4}\left(A_{1}^{(1)}\right)$ as

$$
\begin{array}{llll}
{[0,0]=1,} & {[0,1]=2,} & {[1,0]=6,} & {[1,1]=5} \\
{[2,0]=3,} & {[2,1]=4,} & {[3,0]=8,} & {[3,1]=7}
\end{array}
$$

[^3]Then we obtain the quiver Q_{8}; see Figure 4 . The skew-symmetric matrix Λ_{8} corresponding to Q_{8} is given by

$$
\Lambda_{8}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

In the following we denote a mutation at the vertex i by μ_{i} and a transposition of vertices i_{1}, i_{2} by $\left(i_{1}, i_{2}\right)$.

The quiver Q_{8} is invariant under compositions of mutations and permutations of vertices of quivers

$$
\begin{aligned}
& r_{0}=(1,4), \quad r_{1}=(2,3), \quad r_{2}=\mu_{1}(1,2) \mu_{1}, \quad r_{3}=\mu_{5}(5,6) \mu_{5}, \quad r_{4}=(5,8), \quad r_{5}=(6,7), \\
& \pi_{1}=(1,5,2,6)(4,8,3,7), \quad \pi_{2}=(1,2)(3,4)(5,6)(7,8) .
\end{aligned}
$$

Their actions on the coefficients $\boldsymbol{y}=\left(y_{1}, \ldots, y_{8}\right)$ generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type $D_{5}^{(1) * 5}$. The parameters corresponding to the simple roots of the affine root system are given by

$$
\alpha_{0}=\frac{y_{4}}{y_{1}}, \quad \alpha_{1}=\frac{y_{3}}{y_{2}}, \quad \alpha_{2}=y_{1} y_{2}, \quad \alpha_{3}=y_{5} y_{6}, \quad \alpha_{4}=\frac{y_{8}}{y_{5}}, \quad \alpha_{5}=\frac{y_{7}}{y_{6}} .
$$

The transformations π_{1}, π_{2} act on the parameters as

$$
\begin{aligned}
& \pi_{1}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)\right)=\left(\alpha_{4}, \alpha_{5}, \alpha_{3}, \alpha_{2}, \alpha_{1}, \alpha_{0}\right) \\
& \pi_{2}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)\right)=\left(\alpha_{1}, \alpha_{0}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{4}\right) .
\end{aligned}
$$

A translation of this Weyl group provides $q-P_{\mathrm{VI}}$; see [24].

§3.2. Quiver Q_{7}

Thanks to a symmetry of the quiver Q_{8}, it is enough to investigate the following confluences.

$$
8 \rightarrow 1, \quad 8 \rightarrow 2,
$$

[^4]

Figure 5. Q_{7}
from which we obtain the quiver Q_{7}. To be precise, we have to take a permutation $(1,2,6)(3,7,4,5)$ after the confluence $8 \rightarrow 2$. In the following we omit permutations after confluence procedures.

The quiver Q_{7} is invariant under compositions of mutations and permutations
$r_{0}=\mu_{1} \mu_{2}(2,6) \mu_{2} \mu_{1}, \quad r_{1}=(2,3), \quad r_{2}=\mu_{2}(2,4) \mu_{2}, \quad r_{3}=\mu_{5}(5,6) \mu_{5}, \quad r_{4}=(6,7)$, $\pi_{1}=(1,5,3,7,4)(2,6) \mu_{2}$.

Their actions on the coefficients generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type $A_{4}^{(1)}$. The parameters corresponding to the simple roots are given by

$$
\alpha_{0}=y_{1} y_{2} y_{6}, \quad \alpha_{1}=\frac{y_{3}}{y_{2}}, \quad \alpha_{2}=y_{2} y_{4}, \quad \alpha_{3}=y_{5} y_{6}, \quad \alpha_{4}=\frac{y_{7}}{y_{6}} .
$$

The transformation π_{1} acts on the parameters as

$$
\pi_{1}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)\right)=\left(\alpha_{3}, \alpha_{4}, \alpha_{0}, \alpha_{1}, \alpha_{2}\right)
$$

A translation of this Weyl group provides q-Painlevé V equation; see [17, 22].
In the confluence $8 \rightarrow 1$ a degeneration of the coefficients is given by a replacement $y_{1} \rightarrow y_{1} / \varepsilon, y_{8} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

Q_{8}	$r_{2} r_{4} r_{3} r_{4} r_{2}=\mu_{1} \mu_{8} \mu_{2}(2,6) \mu_{2} \mu_{8} \mu_{1}$	r_{1}	$r_{0} r_{2} r_{0}$	r_{3}	r_{5}
Q_{7}	r_{0}	r_{1}	r_{2}	r_{3}	r_{4}

For example, the action $r_{2} r_{4} r_{3} r_{4} r_{2}\left(y_{1} y_{8}\right)$ in Q_{8} is reduced to the one $r_{0}\left(y_{1}\right)$ in Q_{7} as

Figure 6. Q_{61}

Figure 7. Q_{62}
follows.

$$
\begin{aligned}
r_{2} r_{4} r_{3} r_{4} r_{2}\left(y_{1} y_{8}\right) & =\frac{\left(1+y_{1}+y_{1} y_{6}+y_{1} y_{6} y_{2}\right)\left(1+y_{8}+y_{8} y_{1}+y_{8} y_{1} y_{6}\right)}{y_{1} y_{6}\left(1+y_{2}+y_{2} y_{8}+y_{2} y_{8} y_{1}\right)\left(1+y_{6}+y_{6} y_{2}+y_{6} y_{2} y_{8}\right)} \\
& \xrightarrow[\substack{y_{1} \rightarrow y_{1} \varepsilon \\
y_{8} \in \varepsilon}]{ } \frac{\left(\varepsilon+y_{1}+y_{1} y_{6}+y_{1} y_{6} y_{2}\right)\left(1+\varepsilon+y_{1}+y_{1} y_{6}\right)}{y_{1} y_{6}\left(1+y_{2}+y_{2} \varepsilon+y_{2} y_{1}\right)\left(1+y_{6}+y_{6} y_{2}+y_{6} y_{2} \varepsilon\right)} \\
& \xrightarrow{\varepsilon \rightarrow 0} \frac{1+y_{1}+y_{1} y_{6}}{y_{6}\left(1+y_{2}+y_{2} y_{1}\right)} \\
& =r_{0}\left(y_{1}\right) .
\end{aligned}
$$

Note that, throughout this section, we haven't clarified degenerations of mutations or transformations denoted by π_{1}, π_{2} yet. It is a future problem.

§ 3.3. Quiver with 6 vertices

For the quiver Q_{7}, it is enough to investigate the following confluences.

$$
7 \rightarrow 1, \quad 7 \rightarrow 2, \quad 7 \rightarrow 4, \quad 5 \rightarrow 1, \quad 5 \rightarrow 2, \quad 5 \rightarrow 4, \quad 4 \rightarrow 1, \quad 3 \rightarrow 1 .
$$

Then we obtain the quivers Q_{61} and Q_{62}.

3.3.1. $\quad Q_{61}$

The quiver Q_{61} is obtained via the following confluences.

$$
Q_{7} \rightarrow Q_{61}: \quad 7 \rightarrow 1, \quad 5 \rightarrow 4, \quad 3 \rightarrow 1 .
$$

To be precise, the quiver obtained after the confluence $5 \rightarrow 4$ is different from the one Q_{61}. We have to take a mutation μ_{1} after the confluence procedure in order to obtain Q_{61}.

The quiver Q_{61} is invariant under compositions of mutations and permutations

$$
\begin{aligned}
& r_{1}=\mu_{5}(5,6) \mu_{5}, \quad r_{2}=\mu_{1}(1,2) \mu_{1}, \quad r_{3}=(1,4), \quad r_{4}=(2,3), \\
& \pi_{1}=(1,5,4,6) \mu_{1} \mu_{5}, \quad \pi_{2}=(1,2)(3,4)(5,6) .
\end{aligned}
$$

The actions of simple reflections r_{1}, \ldots, r_{4} on the coefficients generate a group of birational transformations which is isomorphic to the Weyl group of type D_{4}. The parameters corresponding to the simple roots are given by

$$
\alpha_{1}=y_{5} y_{6}, \quad \alpha_{2}=y_{1} y_{2}, \quad \alpha_{3}=\frac{y_{4}}{y_{1}}, \quad \alpha_{4}=\frac{y_{3}}{y_{2}}
$$

The transformations π_{1}, π_{2} act on the parameters as

$$
\pi_{1}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)\right)=\left(\alpha_{3}, \alpha_{2}, \alpha_{1}, \alpha_{4}\right), \quad \pi_{2}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{3}\right)
$$

Note that π_{1} is not an involution unlike π_{2} because $\pi_{1}^{2}\left(y_{i}\right) \neq y_{i}$ for any i.
In this case the simple reflections aren't obtained via a limiting procedure. They are derived from the simple reflections of the quiver Q_{8}. A set of the coefficients $\left\{y_{1}, \ldots, y_{6}\right\}$ is closed under actions of r_{0}, \ldots, r_{3} in Q_{8}. Moreover, the quiver Q_{61} is obtained by removing two vertices 7,8 and all arrows touching 7,8 from Q_{8}. These facts induce the following degeneration.

$$
\begin{array}{|l|l|l|l|l|}
\hline Q_{8} & r_{3} & r_{2} & r_{0} & r_{1} \\
\hline Q_{61} & r_{1} & r_{2} & r_{3} & r_{4} \\
\hline
\end{array}
$$

3.3.2. $\quad Q_{62}$

The quiver Q_{62} is obtained via the following confluences.

$$
Q_{7} \rightarrow Q_{62}: \quad 7 \rightarrow 2, \quad 7 \rightarrow 4, \quad 5 \rightarrow 1, \quad 5 \rightarrow 2, \quad 4 \rightarrow 1 .
$$

Similarly as Q_{61}, we have to take mutations μ_{2} and μ_{7} after the confluences $7 \rightarrow 4$ and $5 \rightarrow 2$ respectively. We also have to take μ_{2} and μ_{7} in this order after $5 \rightarrow 1$ or $4 \rightarrow 1$. The quiver Q_{62} is invariant under compositions of mutations and permutations

$$
\begin{aligned}
& r_{0}=\mu_{1}(1,2) \mu_{1}, \quad r_{1}=\mu_{3}(3,4) \mu_{3}, \quad r_{2}=\mu_{5}(5,6) \mu_{5}, \quad \pi_{1}=(1,3,6)(2,4,5), \\
& s_{0}=\mu_{1} \mu_{3}(3,6) \mu_{3} \mu_{1}, \quad s_{1}=\mu_{2} \mu_{4}(4,5) \mu_{4} \mu_{2}, \quad \pi_{2}=(1,2)(3,4)(5,6) .
\end{aligned}
$$

Their actions on the coefficients generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type $\left(A_{2}+A_{1}\right)^{(1)}$. The parameters corresponding to the simple roots are given by

$$
\alpha_{0}=y_{1} y_{2}, \quad \alpha_{1}=y_{3} y_{4}, \quad \alpha_{2}=y_{5} y_{6}, \quad \beta_{0}=y_{1} y_{3} y_{6}, \quad \beta_{1}=y_{2} y_{4} y_{5} .
$$

The transformations π_{1}, π_{2} act on the parameters as

$$
\pi_{1}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \beta_{0}, \beta_{1}\right)\right)=\left(\alpha_{1}, \alpha_{2}, \alpha_{0}, \beta_{0}, \beta_{1}\right), \quad \pi_{2}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \beta_{0}, \beta_{1}\right)\right)=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{0}\right)
$$

Translations of this Weyl group provide q-Painlevé III and IV equations; see [7, 8, 22].

Figure 8. Q_{51}

Figure 9. Q_{52}

In the confluence $7 \rightarrow 2$ a degeneration of the coefficients is given by a replacement $y_{2} \rightarrow y_{2} / \varepsilon, y_{7} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

Q_{7}	$r_{4} r_{0} r_{4}=\mu_{7} \mu_{2}(1,2) \mu_{2} \mu_{7}$	$r_{1} r_{2} r_{1}$	r_{3}	$r_{1} r_{0} r_{1}$	$r_{2} r_{4} r_{3} r_{4} r_{2}=\mu_{2} \mu_{7} \mu_{4}(4,5) \mu_{4} \mu_{7} \mu_{2}$
Q_{62}	r_{0}	r_{1}	r_{2}	s_{0}	s_{1}

§ 3.4. Quiver with 5 vertices

For the quivers Q_{61} and Q_{62}, it is enough to investigate the following confluences.

$$
\begin{array}{ll}
Q_{61}: & 6 \rightarrow 1, \quad 6 \rightarrow 2 . \\
Q_{62}: & 6 \rightarrow 1, \quad 6 \rightarrow 2, \quad 6 \rightarrow 3, \quad 6 \rightarrow 4, \quad 4 \rightarrow 1, \quad 4 \rightarrow 2 .
\end{array}
$$

Then we obtain the quivers Q_{51} and Q_{52}.

3.4.1. $\quad Q_{51}$

The quiver Q_{51} is obtained via the following confluences.

$$
\begin{array}{ll}
Q_{61} \rightarrow Q_{51}: & 6 \rightarrow 1, \quad 6 \rightarrow 2 . \\
Q_{62} \rightarrow Q_{51}: & 6 \rightarrow 1, \\
6 \rightarrow 3, & 4 \rightarrow 2 .
\end{array}
$$

It is invariant under compositions of mutations and permutations

$$
r_{1}=\mu_{1} \mu_{2}(2,5) \mu_{2} \mu_{1}, \quad r_{2}=(1,4), \quad r_{3}=\mu_{1}(1,3) \mu_{1}, \quad \pi_{1}=(2,3,5) \mu_{2} .
$$

The actions of simple reflections r_{1}, r_{2}, r_{3} on the coefficients generate a group of birational transformations which is isomorphic to the Weyl group of type A_{3}. The parameters corresponding to the simple roots are given by

$$
\alpha_{1}=y_{1} y_{2} y_{5}, \quad \alpha_{2}=\frac{y_{4}}{y_{1}}, \quad \alpha_{3}=y_{1} y_{3} .
$$

Note that the transformation π_{1} is not an involution due to the same reason as Q_{61}, although it acts on the parameters as

$$
\pi_{1}\left(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right)=\left(\alpha_{3}, \alpha_{2}, \alpha_{1}\right)
$$

In the confluence $6 \rightarrow 2\left(Q_{61} \rightarrow Q_{51}\right)$ a degeneration of the coefficients is given by a replacement $y_{2} \rightarrow y_{2} / \varepsilon, y_{6} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|c|c|c|c|}
\hline Q_{61} & r_{2} r_{1} r_{2}=\mu_{1} \mu_{6} \mu_{2}(2,5) \mu_{2} \mu_{6} \mu_{1} & r_{3} & r_{4} r_{2} r_{4} \\
\hline Q_{51} & r_{1} & r_{2} & r_{3} \\
\hline
\end{array}
$$

3.4.2. Q_{52}

The quiver Q_{52} is obtained via the following confluences.

$$
Q_{62} \rightarrow Q_{52}: \quad 6 \rightarrow 2, \quad 6 \rightarrow 4, \quad 4 \rightarrow 1
$$

It is invariant under compositions of mutations and permutations

$$
r_{0}=\mu_{1} \mu_{2}(2,5) \mu_{2} \mu_{1}, \quad r_{1}=\mu_{3}(3,4) \mu_{3}, \quad \pi_{1}=(1,3,2,4,5) \mu_{1}
$$

The actions of simple reflections r_{0}, r_{1} on the coefficients generate a group of birational transformations which is isomorphic to the affine Weyl group of type $A_{1}^{(1)}$. The parameters corresponding to the simple roots are given by

$$
\alpha_{0}=y_{1} y_{2} y_{5}, \quad \alpha_{1}=y_{3} y_{4}
$$

The transformation π_{1} is not an involution due to the same reason as Q_{61}, although it acts on the parameters as

$$
\pi_{1}\left(\left(\alpha_{0}, \alpha_{1}\right)\right)=\left(\alpha_{1}, \alpha_{0}\right)
$$

Therefore the group $\left\langle r_{0}, r_{1}, \pi_{1}\right\rangle$ is not an extended affine Weyl group of type $A_{1}^{(1)}$. Nevertheless those transformations provide the q-Painlevé II equation and another q Painlevé equation; see $[1,15]$.

In the confluence $6 \rightarrow 2$ a degeneration of the coefficients is given by a replacement $y_{2} \rightarrow y_{2} / \varepsilon, y_{6} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|l|c|c|}
\hline Q_{62} & r_{0} r_{2} r_{0}=\mu_{1} \mu_{6} \mu_{2}(2,5) \mu_{2} \mu_{6} \mu_{1} & r_{1} \\
\hline Q_{52} & r_{0} & r_{1} \\
\hline
\end{array}
$$

Figure 10. Q_{41}

Figure 11. Q_{42}

Figure 12. Q_{43}

§3.5. Quiver with 4 vertices

For the quivers Q_{51} and Q_{52}, it is enough to investigate the following confluences.
$Q_{51}: \quad 5 \rightarrow 1, \quad 5 \rightarrow 3, \quad 4 \rightarrow 2, \quad 3 \rightarrow 2$.
$Q_{52}: \quad 5 \rightarrow 1, \quad 5 \rightarrow 2, \quad 5 \rightarrow 3, \quad 5 \rightarrow 4, \quad 4 \rightarrow 1, \quad 4 \rightarrow 2, \quad 3 \rightarrow 1, \quad 3 \rightarrow 2, \quad 2 \rightarrow 1$.
Then we obtain the quivers $Q_{41}, Q_{42}, Q_{43}, Q_{44}$ and Q_{45}. Note that, in the quiver Q_{51}, all of arrows are removed via the confluence $5 \rightarrow 2$.

3.5.1. $\quad Q_{41}$

The quiver Q_{41} is obtained via the following confluences.

$$
\begin{array}{lll}
Q_{51} \rightarrow Q_{41}: & 5 \rightarrow 1, & 4 \rightarrow 2 \\
Q_{52} \rightarrow Q_{41}: & 5 \rightarrow 2, & 2 \rightarrow 1
\end{array}
$$

It is invariant under compositions of mutations and permutations

$$
r_{1}=\mu_{1}(1,2) \mu_{1}, \quad r_{2}=\mu_{3}(3,4) \mu_{3}, \quad \pi_{1}=(1,4,2,3)
$$

Since the fundamental relation $\left(r_{1} r_{2}\right)^{3}=1$ is satisfied, the actions of simple reflections r_{1}, r_{2} on the coefficients generate a group of birational transformations which is isomorphic to the Weyl group of type A_{2}. The parameters corresponding to the simple roots are given by

$$
\alpha_{1}=y_{1} y_{2}, \quad \alpha_{2}=y_{3} y_{4} .
$$

The transformation π_{1} acts on the parameters as

$$
\pi_{1}\left(\left(\alpha_{1}, \alpha_{2}\right)\right)=\left(\alpha_{2}, \alpha_{1}\right)
$$

In the confluence $5 \rightarrow 1\left(Q_{51} \rightarrow Q_{41}\right)$ a degeneration of the coefficients is given by a replacement $y_{1} \rightarrow y_{1} / \varepsilon, y_{5} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|c|c|c|}
\hline Q_{51} & r_{1}=\mu_{5} \mu_{1}(1,2) \mu_{1} \mu_{5} & r_{2} r_{3} r_{2} \\
\hline Q_{41} & r_{1} & r_{2} \\
\hline
\end{array}
$$

3.5.2. $\quad Q_{42}$

The quiver Q_{42} is obtained via the following confluences.

$$
\begin{array}{lll}
Q_{51} \rightarrow Q_{42}: & 5 \rightarrow 3, & 3 \rightarrow 2 \\
Q_{52} \rightarrow Q_{42}: & 5 \rightarrow 4, & 3 \rightarrow 1 .
\end{array}
$$

It is invariant under compositions of mutations and permutations

$$
r_{1}=(1,4), \quad \pi_{1}=(2,3) \mu_{2}
$$

The action of a simple reflection r_{1} on the coefficients generates a group of birational transformations which is isomorphic to the Weyl group of type A_{1}. The parameter corresponding to the simple root is given by

$$
\alpha_{1}=\frac{y_{4}}{y_{1}},
$$

which is invariant under the action of π_{1}.
In the confluence $5 \rightarrow 3\left(Q_{51} \rightarrow Q_{42}\right)$ a degeneration of the coefficients is given by a replacement $y_{3} \rightarrow y_{3} / \varepsilon, y_{5} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|l|l|}
\hline Q_{51} & r_{2} \\
\hline Q_{42} & r_{1} \\
\hline
\end{array}
$$

3.5.3. $\quad Q_{43}$

The quiver Q_{43} is obtained via the following confluences.

$$
Q_{52} \rightarrow Q_{43}: \quad 4 \rightarrow 2, \quad 3 \rightarrow 2 .
$$

It is invariant under a composition of a mutation and a permutation

$$
\pi_{1}=(1,4,3) \mu_{1}
$$

3.5.4. $\quad Q_{44}$

The quiver Q_{44} is obtained via the following confluence.

$$
Q_{52} \rightarrow Q_{44}: \quad 5 \rightarrow 1
$$

It is invariant under compositions of mutations and permutations

$$
r_{0}=\mu_{1}(1,2) \mu_{1}, \quad r_{1}=\mu_{3}(3,4) \mu_{3}, \quad \pi_{1}=(1,4,2,3) .
$$

Figure 15. Q_{31}

Figure 16. Q_{32}

Figure 17. Q_{33}

Their actions on the coefficients generate a group of birational transformations which is isomorphic to an extended affine Weyl group of type $A_{1}^{(1)}$. The parameters corresponding to the simple roots are given by

$$
\alpha_{0}=y_{1} y_{2}, \quad \alpha_{1}=y_{3} y_{4} .
$$

The transformation π_{1} acts on the parameters as

$$
\pi_{1}\left(\left(\alpha_{0}, \alpha_{1}\right)\right)=\left(\alpha_{1}, \alpha_{0}\right)
$$

A translation of this Weyl group provides a q-Painlevé equation; see [1].
In the confluence $5 \rightarrow 1$ a degeneration of the coefficients is given by a replacement $y_{1} \rightarrow y_{1} / \varepsilon, y_{5} \rightarrow \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|l|c|c|}
\hline Q_{52} & r_{0}=\mu_{5} \mu_{1}(1,2) \mu_{1} \mu_{5} & r_{1} \\
\hline Q_{44} & r_{0} & r_{1} \\
\hline
\end{array}
$$

3.5.5. $\quad Q_{45}$

The quiver Q_{45} is obtained via the following confluences.

$$
Q_{52} \rightarrow Q_{45}: \quad 5 \rightarrow 3, \quad 4 \rightarrow 1
$$

It is invariant under a composition of a mutation and a permutation

$$
\pi_{1}=(1,2,3,4) \mu_{1},
$$

which provides the q-Painlevé I equation; see [15].

§3.6. Quiver with 3 vertices

For the quiver $Q_{41}, Q_{42}, Q_{43}, Q_{44}$ and Q_{45}, it is enough to investigate the following confluences.

$$
\begin{array}{ll}
Q_{41}: & 4 \rightarrow 1 . \\
Q_{42}: & 4 \rightarrow 2, \quad 4 \rightarrow 3 . \\
Q_{43}: & 4 \rightarrow 1, \quad 4 \rightarrow 3, \quad 3 \rightarrow 2, \quad 2 \rightarrow 1 \\
Q_{44}: & 4 \rightarrow 1 . \\
Q_{45}: & 4 \rightarrow 1, \quad 4 \rightarrow 2, \quad 4 \rightarrow 3, \quad 3 \rightarrow 1, \quad 3 \rightarrow 2, \quad 2 \rightarrow 1
\end{array}
$$

Then we obtain the quivers Q_{31}, Q_{32} and Q_{33}. Note that, in the quiver Q_{42} and Q_{43}, all of arrows are removed via the confluence $3 \rightarrow 2$ and $3 \rightarrow 1$ respectively.

3.6.1. $\quad Q_{31}$

The quiver Q_{31} is obtained via the following confluences.

$$
\begin{array}{ll}
Q_{41} \rightarrow Q_{31}: & 4 \rightarrow 1 . \\
Q_{42} \rightarrow Q_{31}: & 4 \rightarrow 2, \quad 4 \rightarrow 3 \\
Q_{43} \rightarrow Q_{31}: & 3 \rightarrow 2, \quad 2 \rightarrow 1 . \\
Q_{45} \rightarrow Q_{31}: & 4 \rightarrow 3, \quad 3 \rightarrow 2, \quad 2 \rightarrow 1 .
\end{array}
$$

It is invariant under compositions of mutations and permutations

$$
r_{1}=\mu_{1} \mu_{2}(2,3) \mu_{2} \mu_{1}, \quad \pi_{1}=(1,2,3) .
$$

The action of r_{1} on the coefficients generates a group of birational transformations which is isomorphic to the Weyl group of type A_{1}. The parameter corresponding to the simple root is given by

$$
\alpha_{1}=y_{1} y_{2} y_{3} .
$$

which is invariant under the action of π_{1}.
In the confluence $4 \rightarrow 1\left(Q_{41} \rightarrow Q_{31}\right)$ a degeneration of the coefficients is given by a replacement $y_{1} \rightarrow \varepsilon, y_{4} \rightarrow y_{1} / \varepsilon$ and taking a limit $\varepsilon \rightarrow 0$. This limiting procedure induces a degeneration of the simple reflections as follows.

$$
\begin{array}{|l|c|}
\hline Q_{41} & r_{1} r_{2} r_{1}=\mu_{1} \mu_{4} \mu_{2}(2,3) \mu_{2} \mu_{4} \mu_{1} \\
\hline Q_{31} & r_{1} \\
\hline
\end{array}
$$

3.6.2. $\quad Q_{32}$

The quiver Q_{32} is obtained via the following confluences.

$$
\begin{array}{ll}
Q_{43} \rightarrow Q_{32}: & 4 \rightarrow 1, \quad 4 \rightarrow 3 . \\
Q_{44} \rightarrow Q_{32}: & 4 \rightarrow 1 . \\
Q_{45} \rightarrow Q_{32}: & 4 \rightarrow 2, \quad 3 \rightarrow 1 .
\end{array}
$$

It is invariant under compositions of mutations and permutations

$$
\pi_{1}=(2,3) \mu_{1}, \quad \pi_{2}=(1,2,3)
$$

3.6.3. $\quad Q_{33}$

The quiver Q_{33} is obtained via the following confluence.

$$
Q_{45} \rightarrow Q_{33}: \quad 4 \rightarrow 1 .
$$

It is invariant under a permutation

$$
\pi_{1}=(1,2,3)
$$

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 15K04911.

References

[1] M. Bershtein, P. Gavrylenko and A. Marshakov, Cluster integrable systems, q-Painlevé equations and their quantization, J. High Energ. Phys. (2018) 077.
[2] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002) 497-529.
[3] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Compositio Mathematica 143 (2007) 112-164.
[4] R. Inoue, T. Ishibashi and H. Oya, Cluster realizations of Weyl groups and higher Teichmüller theory, arXiv:1902.02716.
[5] R. Inoue, T. Lam and P. Pylyavskyy, On the cluster nature and quantization of geometric R-matrices, to appear in Publ. RIMS (arXiv:1607.00722).
[6] M. Jimbo and H. Sakai, A q-analog of the sixth Painlevé equation, Let. Math. Phys. 38 (1996) 145-154.
[7] K. Kajiwara and K. Kimura, On a q-difference Painlevé III equation. I. Derivation, symmetry and Riccati type solutions, J. Nonlin. Math. Phys. 10 (2003) 86-102.
[8] K. Kajiwara, M. Noumi and Y. Yamada, A study on the fourth q-Painlevé equation, J. Phys. A: Math. Gen. 34 (2001) 8563-8581.
[9] K. Kajiwara, M. Noumi and Y. Yamada, Discrete dynamical systems with $W\left(A_{m-1}^{(1)} \times\right.$ $\left.A_{n-1}^{(1)}\right)$ symmetry, Lett. Math. Phys. 60 (2002) 211-219.
[10] K. Kajiwara, M. Noumi and Y. Yamada, q-Painlevé systems arising from q-KP hierarchy, Lett. Math. Phys. 62 (2003) 259-268.
[11] K. Kajiwara, M. Noumi and Y. Yamada, Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor. 50 (2017) Number 7.
[12] T. Masuda, N. Okubo and T. Tsuda, in preparation.
[13] T. Nakanishi, Periodicities in cluster algebras and dilogarithm identities, EMS Series of Congress Reports (2011) 407-444.
[14] H. Nagao and Y. Yamada, Variations of q-Garnier system, J. Phys. A: Math. and Theor. 51 (2018) 135204.
[15] N. Okubo, Bilinear equations and q-discrete Painlevé equations satisfied by variables and coefficients in cluster algebras, J. Phys. A: Math. Theor. 48 (2015) 355201.
[16] N. Okubo and T. Suzuki, Generalized q-Painlevé VI systems of type $\left(A_{2 n+1}+A_{1}+A_{1}\right)^{(1)}$ arising from cluster algebra, arXiv:1810.03252.
[17] A. Ramani, B. Grammaticos and Y. Ohta, The q-Painlevé V equation and its geometrical description, J. Phys. A: Math. Gen. 34 (2001) 2505-2513.
[18] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001) 165-229.
[19] H. Sakai, A q-analog of the Garnier system, Funkcial. Ekvac. 48 (2005) 237-297.
[20] T. Suzuki, A q-analogue of the Drinfeld-Sokolov hierarchy of type A and q-Painlevé system, AMS Contemp. Math. 651 (2015) 25-38.
[21] T. Suzuki, A reformulation of the generalized q-Painlevé VI system with $W\left(A_{2 n+1}^{(1)}\right)$ symmetry, J. Integrable Syst. 2 (2017) xyw017.
[22] T. Tsuda, Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006) 39-47.
[23] T. Tsuda, On an integrable system of q-difference equations satisfied by the universal characters: its Lax formalism and an application to q-Painlevé equations, Comm. Math. Phys. 293 (2010) 347-359.
[24] T. Tsuda and T. Masuda, q-Painlevé VI equation arising from $q-U C$ hierarchy, Comm. Math. Phys. 262 (2006) 595-609.

[^0]: Received January 30, 2019. Revised April 22, 2019.
 2010 Mathematics Subject Classification(s): 39A13, 13F60, 17B80, 34M55, 37K35
 *Department of Mathematics, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
 e-mail: suzuki@math.kindai.ac.jp
 ** Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258, Japan
 e-mail: okubo@gem.aoyama.ac.jp
 ${ }^{*}$ This quiver is also investigated in a recent work [12]. We follow the notation of [4] in which the quiver $Q_{m}(\mathfrak{g})$ is proposed for a Kac-Moody Lie algebra \mathfrak{g}. Here the symbol $A_{m-1}^{(1)}$ stands for the affine Lie algebra of type $A_{m-1}^{(1)}$.
 (C) 2020 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

[^1]: ${ }^{*}$ This fact is first obtained in [12] as an extension of the previous work [9, 10] in which the binational representation of the affine Weyl group of type $\left(A_{m-1}+A_{n-1}\right)^{(1)}$ is formulated.

[^2]: ${ }^{*}$ We conjecture that T_{3} provides the variation of the q-Garnier system $T_{a_{N+1}}^{-1} T_{c_{1}}^{-1}$ given in $\S 3.2 .4$ of [14].

[^3]: ${ }^{*}$ Among the other 7 quivers, Q_{41} and Q_{31} are ones of finite type. We expect that the rest 5 quivers correspond to the q-hypergeometric functions for the following reasons. The assumption of Lemma 2.6 turns into $y_{5}=y_{7}=-1$ in the quiver Q_{8}. On the other hand, if we remove two vertices 5,7 and all arrows touching 5,7 from the quiver Q_{8}, then we obtain the one Q_{61}. Besides, the degeneration scheme below Q_{61} is similar to the one of q-hypergeometric functions.

[^4]: ${ }^{*}$ The formulations of the extended affine Weyl groups in this section were given systematically in the previous work [1].

