
RIMS Kôkyûroku Bessatsu
B78 (2020), 053–075

Cluster algebra and q-Painlevé equations: higher

order generalization and degeneration structure

By

Takao Suzuki∗and Naoto Okubo∗∗

Abstract

In this article we give a birational representation of an extended affine Weyl group of type

(Amn−1 + Am−1 + Am−1)
(1) with the aid of a cluster mutation. This group provides several

higher order generalizations of the q-Painlevé VI equation (q-PVI) as translations. We also

discuss a confluence of vertices of a quiver which can be applied to a degeneration structure of

the q-Painlevé equations.

§ 1. Introduction

The cluster algebra was introduced by Fomin and Zelevinsky in [2, 3]. It is a

variety of commutative ring described in terms of cluster variables and coefficients.

Its generating set is defined by an operation called a mutation which transforms a seed

consisting of cluster variables, coefficients and a quiver. Then new cluster variables (reps.

coefficients) are rational in original cluster variables and coefficients (reps. coefficients).

Hence we can obtain various discrete integrable systems from mutation-periodic quivers

([13]) as relations satisfied by cluster variables and coefficients.

In the previous work [15] the q-Painlevé VI equation ([6]) was derived from the

mutation-periodic quiver with 8 vertices; see Figure 4 in Section 3. As its extension, we

consider the quiver Qmn(A
(1)
m−1)

*1; see Figure 1. This quiver is invariant under some
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[0, 0] � [0,m− 1] � · · · � [0, 1] � [0, 0]

Figure 1. The quiver Qmn(A
(1)
m−1)

4→1−−→

Figure 2. Confluence of quiver (example)

compositions of mutations and permutations of vertices of quivers. Those operations

generate a group of birational transformations which is isomorphic to an extended affine

Weyl group of type (Amn−1 + Am−1 + Am−1)
(1)*2. And this group provides several

generalized q-PVI’s as translations. In the previous work [16] we investigated the case

m = 2 and derived three types of systems. In this article we review it quickly and give

an additional explanation about the q-hypergeometric solution of the generalized q-PVI;

see Section 2.

Our another aim is to propose a confluence of vertices of a quiver; see Figure 2.

We define a confluence of vertices of a quiver i → j by replacing two vertices i, j and an

arrow between them with one vertex j. In this article we only consider a confluence of

two vertices which are connected by arrows directly. At the level of the corresponding

skew-symmetric matrix, the confluence can be interpreted as the following operation.

*2This fact is first obtained in [12] as an extension of the previous work [9, 10] in which the binational
representation of the affine Weyl group of type (Am−1 +An−1)(1) is formulated.
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1. Add the i-th row to the j-th row.

2. Add the i-th column to the j-th column.

3. Delete the i-th row and the i-th column.

The confluence of skew-symmetric matrix corresponding to the one of Figure 2 is de-

scribed as follows. 
0 −1−1 1

1 0 −1 1

1 1 0 −1

−1−1 1 0

 4→1−−−→

0−2 0

2 0 −1

0 1 0

 .

It can be applied to the degeneration structure of the q-Painlevé equations ([18]), which

is described as follows.

A
(1)
1

|α|2=8

A
(1)
7

↗ ↘
E

(1)
8

A
(1)
0

→ E
(1)
7

A
(1)
1

→ E
(1)
6

A
(1)
2

→ D
(1)
5

A
(1)
3

→ A
(1)
4

A
(1)
4

→ E
(1)
3

A
(1)
5

→ E
(1)
2

A
(1)
6

→ A
(1)
1

A
(1)
7

E
(1)
0

A
(1)
8

In this table numerators and denominators stand for symmetry and surface types respec-

tively. Following [11], we use the symbols E
(1)
3 = (A2+A1)

(1) and E
(1)
2 = (A1+ A1

|α|2=14
)(1)

for the sake of simplicity. The typeD
(1)
5 /A

(1)
3 corresponds to q-PVI. In the previous work

[15] we derived 4 types of q-Painlevé equations containing q-PVI from some mutation-

periodic quivers. At that time we gave the quivers by using the operation called a

flattening which corresponds to the reduction of the discrete integrable system. Af-

terward, 9 equations below the one of type E
(1)
6 /A

(1)
2 were derived in [1] by using a

correspondence between quivers and Newton polygons. We obtain those quivers again

with the aid of a confluence of vertices of a quiver; see Section 3.

§ 2. Extended affine Weyl group and Generalized q-PVI

§ 2.1. Cluster mutation

Let Q = Qmn−1(A
(1)
m−1) (m,n ≥ 2) be the quiver given in Figure 1. We define a

mutation µ[j,i] at the vertex [j, i] as follows.

1. If there are k1 arrows from [j1, i1] to [j, i] and k2 arrows from [j, i] to [j2, i2], then

we add k1k2 arrows from [j1, i1] to [j2, i2].
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2. If 2-cycles appear via the operation 1, then we remove all of them.

3. We reverse the direction of all arrows touching [j, i].

Let I =
{
[j, i]

∣∣ 0 ≤ i ≤ m− 1, 0 ≤ j ≤ mn− 1
}

be a vertex set. We define a skew-

symmetric matrix Λ =
(
λ[j1,i1],[j2,i2]

)
[j1,i1],[j2,i2]∈I

corresponding to a quiver Q as fol-

lows.

• If there are k arrows from [j1, i1] to [j2, i2], then we set λ[j1,i1],[j2,i2] = k and

λ[j2,i2],[j1,i1] = −k.

• If there is no arrow connecting two vertices [j1, i1] and [j2, i2] directly, then we set

λ[j1,i1],[j2,i2] = λ[j2,i2],[j1,i1] = 0.

Also let y =
(
y[j,i]

)
[j,i]∈I

be a m2n-tuple of coefficients. Then the mutation µ[j,i] :

(Λ,y) 7→ (Λ′,y′) is given by

λ′
[j1,i1],[j2,i2]

=



−λ[j1,i1],[j2,i2] ([j1, i1] = [j, i] ∨ [j2, i2] = [j, i])

λ[j1,i1],[j2,i2] + λ[j1,i1],[j,i] λ[j,i],[j2,i2] (λ[j1,i1],[j,i] > 0 ∧ λ[j,i],[j2,i2] > 0)

λ[j1,i1],[j2,i2] − λ[j1,i1],[j,i] λ[j,i],[j2,i2] (λ[j1,i1],[j,i] < 0 ∧ λ[j,i],[j2,i2] < 0)

λ[j1,i1],[j2,i2] (otherwise)

,

and

y′[j1,i1] =



y−1
[j,i] ([j1, i1] = [j, i])

y[j1,i1] (1 + y−1
[j,i])

λ[j1,i1],[j,i] (λ[j1,i1],[j,i] < 0)

y[j1,i1] (1 + y[j,i])
λ[j1,i1],[j,i] (λ[j1,i1],[j,i] > 0)

y[j1,i1] (otherwise)

.

Note that we don’t consider cluster variables in this article. We denote a transposition

of vertices [j1, i1] and [j2, i2] by ([j1, i1], [j2, i2]). It act on coefficients as

([j1, i1], [j2, i2])(y[j,i]) =


y[j2,i2] ([j, i] = [j1, i1])

y[j1,i1] ([j, i] = [j2, i2])

y[j,i] (otherwise)

.

In the following we use a notation of periodicity

y[j,i] = y[j,i+m] = y[j+mn,i].
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§ 2.2. Birational representation of affine Weyl group

We introduce parameters corresponding to the simple roots of the affine root system

as

αj =
m−1∏
i=0

y[j,i] (j = 0, . . . ,mn− 1),

βi =

mn−1∏
j=0

y[j,i], β′
i =

mn−1∏
j=0

y[j,i+j] (i = 0, . . . ,m− 1),

with

mn−1∏
j=0

αj =
m−1∏
i=0

βi =
m−1∏
i=0

β′
i =

m−1∏
i=0

mn−1∏
j=0

y[j,i] = q.

Note that

αj = αj+mn, βi = βi+m, β′
i = β′

i+m.

Definition 2.1. We define birational transformations π, π′, ρ, called Dynkin dia-

gram automorphisms, by

π= ([0, 0], [1, 1], . . . , [m− 1,m− 1], [m, 0], . . . , [mn− 1,m− 1])

× ([0, 1], [1, 2], . . . , [m− 1, 0], [m, 1], . . . , [mn− 1, 0])

× . . .

× ([0,m− 1], [1, 0], . . . , [m− 1,m− 2], [m,m− 1], . . . , [mn− 1,m− 2]),

π′ = ([0, 0], [1, 0], . . . , [m− 1, 0], [m, 0], . . . , [mn− 1, 0])

× ([0, 1], [1, 1], . . . , [m− 1, 1], [m, 1], . . . , [mn− 1, 1])

× . . .

× ([0,m− 1], [1,m− 1], . . . , [m− 1,m− 1], [m,m− 1], . . . , [mn− 1,m− 1]),

ρ = ([1, 0], [mn− 1,m− 1])([1, 1], [mn− 1, 0]) . . . ([1,m− 1], [mn− 1,m− 2])

× ([2, 0], [mn− 2,m− 2])([2, 1], [mn− 2,m− 1]) . . . ([2,m− 1], [mn− 2,m− 3])

× . . .

×([m−1,0], [mn−m+1,1])([m−1,1], [mn−m+1,2]). . .([m−1,m−1], [mn−m+1,0])

× ([m, 0], [mn−m, 0])([m, 1], [mn−m, 1]) . . . ([m,m− 1], [mn−m,m− 1])

× . . .

× ([N, 0], [mn−N, 0])([N, 1], [mn−N, 1]) . . . ([N,m− 1], [mn−N,m− 1]),

where

([j1, i1], [j2, i2], . . . , [jk, ik]) = ([j1, i1], [j2, i2])([j2, i2], [j3, i3]) . . . ([jk−1, ik−1], [jk, ik])
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stands for a cyclic permutation and N = ⌊mn
2 ⌋. Here we define a composition of two

operations µ1, µ2 by (µ1µ2)(y) = µ1(µ2(y)).

These transformations act on the coefficients and the parameters as

π(y[j,i]) = y[j+1,i+1],

π′(y[j,i]) = y[j+1,i],

ρ(y[j2m+j1,i]) = y[mn−j2m−j1,i−j1] (j1 = 0, . . . ,m− 1; j2 = 0, . . . , n− 1).

and

π(αj) = αj+1, π(βi) = βi+1, π(β′
i) = β′

i,

π′(αj) = αj+1, π′(βi) = βi, π′(β′
i) = β′

i−1,

ρ(αj) = αmn−j , ρ(βi) = β′
i, ρ(β′

i) = βi,

for i = 0, . . . ,m− 1 and j = 0, . . . ,mn− 1.

Definition 2.2. We define birational transformations r0, called a simple reflection,

by

r0 = µ[0,0] µ[0,1] . . . µ[0,m−2] ([0,m− 2], [0,m− 1])µ[0,m−2] . . . µ[0,1] µ[0,0].

We also define birational transformations r1, . . . , rmn−1 by using π, r0 as

rj = π−1rj−1 π (j = 1, . . . ,mn− 1).

The transformation r0 acts on the coefficients and the parameters as

r0(y[0,i]) =

∑m−1
k1=0

∏k1−1
k2=0 y[0,i+k2]∑m−1

k1=0

∏k1

k2=0 y[0,i+k2+1]

, r0(y[1,i]) =

∑m−1
k1=0

∏k1

k2=0 y[0,i+k2]∑m−1
k1=0

∏k1−1
k2=0 y[0,i+k2]

y[1,i],

r0(y[mn−1,i]) =

∑m−1
k1=0

∏k1

k2=0 y[0,i+k2+1]∑m−1
k1=0

∏k1−1
k2=0 y[0,i+k2+1]

y[mn−1,i], r0(y[j,i]) = y[j,i] (j ̸= 0, 1,mn−1),

for i = 0, . . . ,m− 1 and

r0(α0) =
1

α0
, r0(α1)=α0 α1, r0(αmn−1)=α0 αmn−1, r0(αk)=αk (k ̸= 0, 1,mn−1),

r0(βi) = βi, r0(β
′
i) = β′

i (i = 0, . . . ,m− 1),

Definition 2.3. We define birational transformations s0, called a simple reflection,

by

s0 = µ[0,0] µ[1,0] . . . µ[mn−2,0] ([mn− 2, 0], [mn− 1, 0])µ[mn−2,0] . . . µ[1,0] µ[0,0].
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We also define birational transformations s1, . . . , sm−1 and s′0, . . . , s
′
m−1 by using π, ρ, s0

as

si = π−1si−1 π (i = 1, . . . ,m− 1),

and

s′i = ρ si ρ (i = 0, . . . ,m− 1).

In the case m = 2, the transformation r0 acts on the coefficients and the parameters

as

s0(y[j,0]) =

∑mn−1
k1=0

∏k1−1
k2=0 y[j+k2,0]∑mn−1

k1=0

∏k1

k2=0 y[j+k2+1,0]

, s0(y[j,1]) =

∑mn−1
k1=0

∏k1

k2=0 y[j+k2+1,0]∑mn−1
k1=0

∏k1−1
k2=0 y[j+k2,0]

y[j,0] y[j,1],

for j = 0, . . . ,mn− 1 and

s0(αj) = αj (j = 0, . . . ,mn− 1),

s0(β0) =
1

β0
, s0(β1) = β2

0 β1, s0(β
′
i) = β′

i (i = 0, . . . ,m− 1).

In the case m ≥ 3, the action of r0 is described as

s0(y[j,0]) =

∑mn−1
k1=0

∏k1−1
k2=0 y[j+k2,0]∑mn−1

k1=0

∏k1

k2=0 y[j+k2+1,0]

, s0(y[j,1]) =

∑mn−1
k1=0

∏k1

k2=0 y[j+k2,0]∑mn−1
k1=0

∏k1−1
k2=0 y[j+k2,0]

y[j,1],

s0(y[j,m−1]) =

∑mn−1
k1=0

∏k1

k2=0 y[j+k2+1,0]∑mn−1
k1=0

∏k1−1
k2=0 y[j+k2+1,0]

y[j,m−1], s0(y[j,i]) = y[j,i] (i ̸= 0, 1,m− 1),

for j = 0, . . . ,mn− 1 and

s0(αj) = αj (j = 0, . . . ,mn− 1),

s0(β0) =
1

β0
, s0(β1) = β0 β1, s0(βm−1) = β0 βm−1, s0(βk) = βk (k ̸= 0, 1,m− 1),

s0(β
′
i) = β′

i (i = 0, . . . ,m− 1).

Fact 2.4 ([5, 12, 16]). The birational transformations defined in the above satisfy

the fundamental relations of the extended affine Weyl group of type (Amn−1 +Am−1 +

Am−1)
(1)

r2j = s2i = (s′i)
2 = 1,

(rj rj+1)
3 = (si si+1)

3 = (s′i s
′
i+1)

3 = 1,

(rj1rj2)
2 = (si1si2)

2 = (s′i1s
′
i2)

2 = 1 (i1 ̸= i2, i2 ± 1; j1 ̸= j2, j2 ± 1),

(rj si)
2 = (rj s

′
i)

2 = (si1s
′
i2)

2 = 1,
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and

πmn = 1, (π′)mn = 1, ρ2 = 1, π π′ = π′π, πm = (π′)m, π′ρ = ρ π−1,

π rj = rj−1 π, π′rj = rj−1 π
′, ρ rj = rmn−j ρ,

π si = si−1 π, π s′i = s′i π, π′si = si π
′, π′s′i = s′i+1 π

′, ρ si = s′i ρ,

for i, i1, i2 = 0, . . . ,m− 1 and j = 0, . . . ,mn− 1, where

rj = rj+mn, si = si+m, s′i = s′i+m.

§ 2.3. Example (case m = 2)

This case has already been considered in our previous work.

Fact 2.5 ([16]). Let

T1 = s′1 s1 π
′π−1,

T2 = (r0 r1 . . . rn−2 rn rn+1 . . . r2n−2 π
′)2,

T3 = r1 r2 . . . r2n−1 s
′
1 π

′,

T4 = (r0 r2 . . . r2n−2 π
′)2.

Then they provides three types of q-Painlevé systems as follows*3.

• T1 provides the q-Painlevé system q-P(n,n) arising from the q-DS hierarchy given in

[20, 21].

• T2 provides the q-Garnier system given in [19].

• T4 provides the q-Painlevé system arising from the q-LUC hierarchy given in §3.4
of [23].

In this section we focus on the translation T1 and investigate a particular solution in

terms of the basic hypergeometric function nϕn−1. The actions of T1 on the parameters

are described as

T1(αj) = αj (j = 0, . . . , 2n− 1), T1(β0) = q β0, T1(β1) =
β1

q
,

T1(β
′
0) = q β′

0, T1(β
′
1) =

β′
1

q
.

*3We conjecture that T3 provides the variation of the q-Garnier system T−1
aN+1

T−1
c1 given in §3.2.4 of

[14].
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Recall that

αj = y[j,0] y[j,1] (j = 0, . . . , 2n− 1),

βi =
2n−1∏
j=0

y[j,i], β′
i =

n−1∏
j=0

y[2j,i] y[2j+1,i+1] (i = 0, 1),

and

y[j,i] = y[j,i+2] = y[j+2n,i], αj = αj+2n, βi = βi+2, β′
i = β′

i+2.

The actions of T1 on the coefficients y[0,0], . . . , y[2n−1,0] are described as

T1(y[2j,0]) = α2j α2j+1 y[2j,0]
S′
j Sj+1

Sj S′
j+1

,

T1(y[2j+1,0]) =
1 + y[2j+2,0]

1 + y[2j,0]
y[2j+3,0]

Sj S
′
j+1 + α2j+1 y[2j,0] S

′
j Sj+1

Sj+1 S′
j+2 + α2j+3 y[2j+2,0] S

′
j+1 Sj+2

,

(2.1)

for j = 0, . . . , n− 1, where

Sj =
n−1∑
k=j

(
1 + y[2k,0]

) k−1∏
l=j

y[2l,0] y[2l+1,0] +

j−1∑
k=0

(
1 + y[2k,0]

) k+n−1∏
l=0

y[2l,0] y[2l+1,0],

S′
j =

n−1∑
k=j

(
1 + y−1

[2k,0]

) k−1∏
l=j

y−1
[2l,0] y

−1
[2l+1,1] +

j−1∑
k=0

(
1 + y−1

[2k,0]

) k+n−1∏
l=0

y−1
[2l,0] y

−1
[2l+1,1].

(2.2)

Lemma 2.6. If, in system (2.1), we assume that

y[2j+1,1] = −1 (j = 0, . . . , n− 1),

then the coefficients y[0,0], y[2,0], . . . , y[2n−2,0] satisfy

(2.3) T1(y[2j,0]) = α2j α2j+1 y[2j,0]
Sj+1

Sj
(j = 0, . . . , n− 1),

where

Sj = 1 +

j+n−2∑
k=j

(−1)k−j(1− α2k+1)
k−1∏
l=j

α2l+1

k∏
l=j

y[2l,0] + (−1)n−1

∏n−1
k=0 α2k+1

α2j−1

n−1∏
k=0

y[2k,0].

Proof. Substituting

y[2j+1,0] = −α2j+1, y[2j+1,1] = −1 (j = 0, . . . , n− 1),
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into (2.2), we obtain

Sj = 1 +

j+n−2∑
k=j

(−1)k−j(1− α2k+1)

k−1∏
l=j

α2l+1

k∏
l=j

y[2l,0] + (−1)n−1

∏n−1
k=0 α2k+1

α2j−1

n−1∏
k=0

y[2k,0],

S′
j = 1 +

(−1)n−1∏n−1
k=0 y[2k,0]

,

and

Sj + α2j+1 y[2j,0] Sj+1 =
(
1 + y[2j,0]

)(
1 + (−1)n−1

n−1∏
k=0

α2k+1 y[2k,0]

)
,

for j = 0, . . . , n− 1. Then system (2.1) implies (2.3). We also obtain

T1(y[2j+1,0]) = y[2j+3,0] (j = 0, . . . , n− 1),

namely the assumption of this lemma is consistent with system (2.1).

Thanks to this lemma, we can show the following theorem easily by a direct calcu-

lation.

Theorem 2.7. Let n-tuple (x0, . . . , xn−1) be a solution of a system of linear q-

difference equations

T1(xj) =

(
2j−1∏
l=0

αl

)
xj +

n−1∑
k=j+1

(
(−1)k−j−1(1− α2k−1)

2k−2∏
l=0

αl

)
xk

+

j−1∑
k=0

(
(−1)k−j−1+n(1− α2k−1)

2k−2∏
l=0

αl

)
q β′

0 xk +

(
(−1)n−1

2j−2∏
l=0

αl

)
q β′

0 xj ,

(2.4)

for j = 0, . . . , n− 1. We also set

y[2j,0] = α2j
xj+1

xj
(j = 0, . . . , n− 2), y[2n−2,0] = α2n−2 β

′
0

x0

xn−1
.

Then y[0,0], y[2,0], . . . , y[2n−2,0] satisfy system (2.3).

System (2.4) is equivalent to the one given in [20] whose solution is described in

terms of the basic hypergeometric function nϕn−1. Here the parameter β′
0 plays the role

of the independent variable.

§ 3. Degeneration structure of q-Painlevé equations

In this section we start with the quiver Q8 = Q4(A
(1)
1 ) and consider confluences

of vertices of quivers. These procedures give the degeneration scheme of q-Painlevé
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Figure 3. Confluence of the quiver Q4(A
(1)
1 )

Figure 4. Q8

equations below the one of type D
(1)
5 /A

(1)
3 . We list a correspondence between the

quivers in Figure 3 and the q-Painlevé equations below*4.

Q8 Q7 Q62 Q52 Q44 Q45 Q33

D
(1)
5 /A

(1)
3 A

(1)
4 /A

(1)
4 E

(1)
3 /A

(1)
5 E

(1)
2 /A

(1)
6 A

(1)
1 /A

(1)
7 A

(1)
1

|α|2=8

/A
(1)
7 E

(1)
0 /A

(1)
8

§ 3.1. Quiver Q8

For the sake of simplicity, we rename the vertices of Q4(A
(1)
1 ) as

[0, 0] = 1, [0, 1] = 2, [1, 0] = 6, [1, 1] = 5,

[2, 0] = 3, [2, 1] = 4, [3, 0] = 8, [3, 1] = 7.

*4Among the other 7 quivers, Q41 and Q31 are ones of finite type. We expect that the rest 5 quivers
correspond to the q-hypergeometric functions for the following reasons. The assumption of Lemma
2.6 turns into y5 = y7 = −1 in the quiver Q8. On the other hand, if we remove two vertices 5, 7 and
all arrows touching 5, 7 from the quiver Q8, then we obtain the one Q61. Besides, the degeneration
scheme below Q61 is similar to the one of q-hypergeometric functions.
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Then we obtain the quiver Q8; see Figure 4. The skew-symmetric matrix Λ8 corre-

sponding to Q8 is given by

Λ8 =



0 0 0 0 −1 1 1 −1

0 0 0 0 1 −1−1 1

0 0 0 0 1 −1−1 1

0 0 0 0 −1 1 1 −1

1 −1−1 1 0 0 0 0

−1 1 1 −1 0 0 0 0

−1 1 1 −1 0 0 0 0

1 −1−1 1 0 0 0 0


.

In the following we denote a mutation at the vertex i by µi and a transposition of

vertices i1, i2 by (i1, i2).

The quiver Q8 is invariant under compositions of mutations and permutations of

vertices of quivers

r0 = (1, 4), r1 = (2, 3), r2 = µ1 (1, 2)µ1, r3 = µ5 (5, 6)µ5, r4 = (5, 8), r5 = (6, 7),

π1 = (1, 5, 2, 6)(4, 8, 3, 7), π2 = (1, 2)(3, 4)(5, 6)(7, 8).

Their actions on the coefficients y = (y1, . . . , y8) generate a group of birational trans-

formations which is isomorphic to an extended affine Weyl group of type D
(1)
5

*5. The

parameters corresponding to the simple roots of the affine root system are given by

α0 =
y4
y1

, α1 =
y3
y2

, α2 = y1 y2, α3 = y5 y6, α4 =
y8
y5

, α5 =
y7
y6

.

The transformations π1, π2 act on the parameters as

π1((α0, α1, α2, α3, α4, α5)) = (α4, α5, α3, α2, α1, α0),

π2((α0, α1, α2, α3, α4, α5)) = (α1, α0, α2, α3, α5, α4).

A translation of this Weyl group provides q-PVI; see [24].

§ 3.2. Quiver Q7

Thanks to a symmetry of the quiver Q8, it is enough to investigate the following

confluences.

8 → 1, 8 → 2,

*5The formulations of the extended affine Weyl groups in this section were given systematically in
the previous work [1].
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Figure 5. Q7

from which we obtain the quiver Q7. To be precise, we have to take a permutation

(1, 2, 6)(3, 7, 4, 5) after the confluence 8 → 2. In the following we omit permutations

after confluence procedures.

The quiver Q7 is invariant under compositions of mutations and permutations

r0 = µ1 µ2 (2, 6)µ2 µ1, r1 = (2, 3), r2 = µ2 (2, 4)µ2, r3 = µ5 (5, 6)µ5, r4 = (6, 7),

π1 = (1, 5, 3, 7, 4)(2, 6)µ2.

Their actions on the coefficients generate a group of birational transformations which is

isomorphic to an extended affine Weyl group of type A
(1)
4 . The parameters correspond-

ing to the simple roots are given by

α0 = y1 y2 y6, α1 =
y3
y2

, α2 = y2 y4, α3 = y5 y6, α4 =
y7
y6

.

The transformation π1 acts on the parameters as

π1((α0, α1, α2, α3, α4)) = (α3, α4, α0, α1, α2).

A translation of this Weyl group provides q-Painlevé V equation; see [17, 22].

In the confluence 8 → 1 a degeneration of the coefficients is given by a replacement

y1 → y1/ε, y8 → ε and taking a limit ε → 0. This limiting procedure induces a

degeneration of the simple reflections as follows.

Q8 r2 r4 r3 r4 r2 = µ1 µ8 µ2 (2, 6)µ2 µ8 µ1 r1 r0 r2 r0 r3 r5

Q7 r0 r1 r2 r3 r4

For example, the action r2 r4 r3 r4 r2(y1 y8) in Q8 is reduced to the one r0(y1) in Q7 as
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Figure 6. Q61 Figure 7. Q62

follows.

r2 r4 r3 r4 r2(y1 y8) =
(1 + y1 + y1 y6 + y1 y6 y2)(1 + y8 + y8 y1 + y8 y1 y6)

y1 y6 (1 + y2 + y2 y8 + y2 y8 y1)(1 + y6 + y6 y2 + y6 y2 y8)
y1→y1/ε

y8→ε−−−−−→ (ε+ y1 + y1 y6 + y1 y6 y2)(1 + ε+ y1 + y1 y6)

y1 y6 (1 + y2 + y2 ε+ y2 y1)(1 + y6 + y6 y2 + y6 y2 ε)

ε→0−−−→ 1 + y1 + y1 y6
y6 (1 + y2 + y2 y1)

= r0(y1).

Note that, throughout this section, we haven’t clarified degenerations of mutations or

transformations denoted by π1, π2 yet. It is a future problem.

§ 3.3. Quiver with 6 vertices

For the quiver Q7, it is enough to investigate the following confluences.

7 → 1, 7 → 2, 7 → 4, 5 → 1, 5 → 2, 5 → 4, 4 → 1, 3 → 1.

Then we obtain the quivers Q61 and Q62.

3.3.1. Q61

The quiver Q61 is obtained via the following confluences.

Q7 → Q61 : 7 → 1, 5 → 4, 3 → 1.

To be precise, the quiver obtained after the confluence 5 → 4 is different from the one

Q61. We have to take a mutation µ1 after the confluence procedure in order to obtain

Q61.

The quiver Q61 is invariant under compositions of mutations and permutations

r1 = µ5 (5, 6)µ5, r2 = µ1 (1, 2)µ1, r3 = (1, 4), r4 = (2, 3),

π1 = (1, 5, 4, 6)µ1 µ5, π2 = (1, 2)(3, 4)(5, 6).
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The actions of simple reflections r1, . . . , r4 on the coefficients generate a group of bira-

tional transformations which is isomorphic to the Weyl group of type D4. The param-

eters corresponding to the simple roots are given by

α1 = y5 y6, α2 = y1 y2, α3 =
y4
y1

, α4 =
y3
y2

.

The transformations π1, π2 act on the parameters as

π1((α1, α2, α3, α4)) = (α3, α2, α1, α4), π2((α1, α2, α3, α4)) = (α1, α2, α4, α3).

Note that π1 is not an involution unlike π2 because π2
1(yi) ̸= yi for any i.

In this case the simple reflections aren’t obtained via a limiting procedure. They are

derived from the simple reflections of the quiver Q8. A set of the coefficients {y1, . . . , y6}
is closed under actions of r0, . . . , r3 in Q8. Moreover, the quiver Q61 is obtained by

removing two vertices 7, 8 and all arrows touching 7, 8 from Q8. These facts induce the

following degeneration.

Q8 r3 r2 r0 r1

Q61 r1 r2 r3 r4

3.3.2. Q62

The quiver Q62 is obtained via the following confluences.

Q7 → Q62 : 7 → 2, 7 → 4, 5 → 1, 5 → 2, 4 → 1.

Similarly as Q61, we have to take mutations µ2 and µ7 after the confluences 7 → 4 and

5 → 2 respectively. We also have to take µ2 and µ7 in this order after 5 → 1 or 4 → 1.

The quiver Q62 is invariant under compositions of mutations and permutations

r0 = µ1 (1, 2)µ1, r1 = µ3 (3, 4)µ3, r2 = µ5 (5, 6)µ5, π1 = (1, 3, 6)(2, 4, 5),

s0 = µ1 µ3 (3, 6)µ3 µ1, s1 = µ2 µ4 (4, 5)µ4 µ2, π2 = (1, 2)(3, 4)(5, 6).

Their actions on the coefficients generate a group of birational transformations which

is isomorphic to an extended affine Weyl group of type (A2 + A1)
(1). The parameters

corresponding to the simple roots are given by

α0 = y1 y2, α1 = y3 y4, α2 = y5 y6, β0 = y1 y3 y6, β1 = y2 y4 y5.

The transformations π1, π2 act on the parameters as

π1((α0, α1, α2, β0, β1))=(α1, α2, α0, β0, β1), π2((α0, α1, α2, β0, β1))=(α0, α1, α2, β1, β0).

Translations of this Weyl group provide q-Painlevé III and IV equations; see [7, 8, 22].
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Figure 8. Q51 Figure 9. Q52

In the confluence 7 → 2 a degeneration of the coefficients is given by a replacement

y2 → y2/ε, y7 → ε and taking a limit ε → 0. This limiting procedure induces a

degeneration of the simple reflections as follows.

Q7 r4 r0 r4 = µ7 µ2 (1, 2)µ2 µ7 r1 r2 r1 r3 r1 r0 r1 r2 r4 r3 r4 r2 = µ2 µ7 µ4 (4, 5)µ4 µ7 µ2

Q62 r0 r1 r2 s0 s1

§ 3.4. Quiver with 5 vertices

For the quivers Q61 and Q62, it is enough to investigate the following confluences.

Q61 : 6 → 1, 6 → 2.

Q62 : 6 → 1, 6 → 2, 6 → 3, 6 → 4, 4 → 1, 4 → 2.

Then we obtain the quivers Q51 and Q52.

3.4.1. Q51

The quiver Q51 is obtained via the following confluences.

Q61 → Q51 : 6 → 1, 6 → 2.

Q62 → Q51 : 6 → 1, 6 → 3, 4 → 2.

It is invariant under compositions of mutations and permutations

r1 = µ1 µ2 (2, 5)µ2 µ1, r2 = (1, 4), r3 = µ1 (1, 3)µ1, π1 = (2, 3, 5)µ2.

The actions of simple reflections r1, r2, r3 on the coefficients generate a group of bira-

tional transformations which is isomorphic to the Weyl group of type A3. The param-

eters corresponding to the simple roots are given by

α1 = y1 y2 y5, α2 =
y4
y1

, α3 = y1 y3.
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Note that the transformation π1 is not an involution due to the same reason as Q61,

although it acts on the parameters as

π1((α1, α2, α3)) = (α3, α2, α1).

In the confluence 6 → 2 (Q61 → Q51) a degeneration of the coefficients is given by

a replacement y2 → y2/ε, y6 → ε and taking a limit ε → 0. This limiting procedure

induces a degeneration of the simple reflections as follows.

Q61 r2 r1 r2 = µ1 µ6 µ2 (2, 5)µ2 µ6 µ1 r3 r4 r2 r4

Q51 r1 r2 r3

3.4.2. Q52

The quiver Q52 is obtained via the following confluences.

Q62 → Q52 : 6 → 2, 6 → 4, 4 → 1.

It is invariant under compositions of mutations and permutations

r0 = µ1 µ2 (2, 5)µ2 µ1, r1 = µ3 (3, 4)µ3, π1 = (1, 3, 2, 4, 5)µ1.

The actions of simple reflections r0, r1 on the coefficients generate a group of birational

transformations which is isomorphic to the affine Weyl group of type A
(1)
1 . The param-

eters corresponding to the simple roots are given by

α0 = y1 y2 y5, α1 = y3 y4.

The transformation π1 is not an involution due to the same reason as Q61, although it

acts on the parameters as

π1((α0, α1)) = (α1, α0).

Therefore the group ⟨r0, r1, π1⟩ is not an extended affine Weyl group of type A
(1)
1 .

Nevertheless those transformations provide the q-Painlevé II equation and another q-

Painlevé equation; see [1, 15].

In the confluence 6 → 2 a degeneration of the coefficients is given by a replacement

y2 → y2/ε, y6 → ε and taking a limit ε → 0. This limiting procedure induces a

degeneration of the simple reflections as follows.

Q62 r0 r2 r0 = µ1 µ6 µ2 (2, 5)µ2 µ6 µ1 r1

Q52 r0 r1
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Figure 10. Q41 Figure 11. Q42 Figure 12. Q43 Figure 13. Q44 Figure 14. Q45

§ 3.5. Quiver with 4 vertices

For the quivers Q51 and Q52, it is enough to investigate the following confluences.

Q51 : 5 → 1, 5 → 3, 4 → 2, 3 → 2.

Q52 : 5 → 1, 5 → 2, 5 → 3, 5 → 4, 4 → 1, 4 → 2, 3 → 1, 3 → 2, 2 → 1.

Then we obtain the quivers Q41, Q42, Q43, Q44 and Q45. Note that, in the quiver Q51,

all of arrows are removed via the confluence 5 → 2.

3.5.1. Q41

The quiver Q41 is obtained via the following confluences.

Q51 → Q41 : 5 → 1, 4 → 2.

Q52 → Q41 : 5 → 2, 2 → 1.

It is invariant under compositions of mutations and permutations

r1 = µ1 (1, 2)µ1, r2 = µ3 (3, 4)µ3, π1 = (1, 4, 2, 3).

Since the fundamental relation (r1 r2)
3 = 1 is satisfied, the actions of simple reflections

r1, r2 on the coefficients generate a group of birational transformations which is isomor-

phic to the Weyl group of type A2. The parameters corresponding to the simple roots

are given by

α1 = y1 y2, α2 = y3 y4.

The transformation π1 acts on the parameters as

π1((α1, α2)) = (α2, α1).

In the confluence 5 → 1 (Q51 → Q41) a degeneration of the coefficients is given by

a replacement y1 → y1/ε, y5 → ε and taking a limit ε → 0. This limiting procedure

induces a degeneration of the simple reflections as follows.

Q51 r1 = µ5 µ1 (1, 2)µ1 µ5 r2 r3 r2

Q41 r1 r2
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3.5.2. Q42

The quiver Q42 is obtained via the following confluences.

Q51 → Q42 : 5 → 3, 3 → 2.

Q52 → Q42 : 5 → 4, 3 → 1.

It is invariant under compositions of mutations and permutations

r1 = (1, 4), π1 = (2, 3)µ2.

The action of a simple reflection r1 on the coefficients generates a group of birational

transformations which is isomorphic to the Weyl group of type A1. The parameter

corresponding to the simple root is given by

α1 =
y4
y1

,

which is invariant under the action of π1.

In the confluence 5 → 3 (Q51 → Q42) a degeneration of the coefficients is given by

a replacement y3 → y3/ε, y5 → ε and taking a limit ε → 0. This limiting procedure

induces a degeneration of the simple reflections as follows.

Q51 r2

Q42 r1

3.5.3. Q43

The quiver Q43 is obtained via the following confluences.

Q52 → Q43 : 4 → 2, 3 → 2.

It is invariant under a composition of a mutation and a permutation

π1 = (1, 4, 3)µ1.

3.5.4. Q44

The quiver Q44 is obtained via the following confluence.

Q52 → Q44 : 5 → 1.

It is invariant under compositions of mutations and permutations

r0 = µ1 (1, 2)µ1, r1 = µ3 (3, 4)µ3, π1 = (1, 4, 2, 3).
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Figure 15. Q31 Figure 16. Q32 Figure 17. Q33

Their actions on the coefficients generate a group of birational transformations which is

isomorphic to an extended affine Weyl group of type A
(1)
1 . The parameters correspond-

ing to the simple roots are given by

α0 = y1 y2, α1 = y3 y4.

The transformation π1 acts on the parameters as

π1((α0, α1)) = (α1, α0).

A translation of this Weyl group provides a q-Painlevé equation; see [1].

In the confluence 5 → 1 a degeneration of the coefficients is given by a replacement

y1 → y1/ε, y5 → ε and taking a limit ε → 0. This limiting procedure induces a

degeneration of the simple reflections as follows.

Q52 r0 = µ5 µ1 (1, 2)µ1 µ5 r1

Q44 r0 r1

3.5.5. Q45

The quiver Q45 is obtained via the following confluences.

Q52 → Q45 : 5 → 3, 4 → 1.

It is invariant under a composition of a mutation and a permutation

π1 = (1, 2, 3, 4)µ1,

which provides the q-Painlevé I equation; see [15].
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§ 3.6. Quiver with 3 vertices

For the quiver Q41, Q42, Q43, Q44 and Q45, it is enough to investigate the following

confluences.

Q41 : 4 → 1.

Q42 : 4 → 2, 4 → 3.

Q43 : 4 → 1, 4 → 3, 3 → 2, 2 → 1.

Q44 : 4 → 1.

Q45 : 4 → 1, 4 → 2, 4 → 3, 3 → 1, 3 → 2, 2 → 1.

Then we obtain the quivers Q31, Q32 and Q33. Note that, in the quiver Q42 and Q43,

all of arrows are removed via the confluence 3 → 2 and 3 → 1 respectively.

3.6.1. Q31

The quiver Q31 is obtained via the following confluences.

Q41 → Q31 : 4 → 1.

Q42 → Q31 : 4 → 2, 4 → 3.

Q43 → Q31 : 3 → 2, 2 → 1.

Q45 → Q31 : 4 → 3, 3 → 2, 2 → 1.

It is invariant under compositions of mutations and permutations

r1 = µ1 µ2 (2, 3)µ2 µ1, π1 = (1, 2, 3).

The action of r1 on the coefficients generates a group of birational transformations which

is isomorphic to the Weyl group of type A1. The parameter corresponding to the simple

root is given by

α1 = y1 y2 y3.

which is invariant under the action of π1.

In the confluence 4 → 1 (Q41 → Q31) a degeneration of the coefficients is given by

a replacement y1 → ε, y4 → y1/ε and taking a limit ε → 0. This limiting procedure

induces a degeneration of the simple reflections as follows.

Q41 r1 r2 r1 = µ1 µ4 µ2 (2, 3)µ2 µ4 µ1

Q31 r1

3.6.2. Q32
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The quiver Q32 is obtained via the following confluences.

Q43 → Q32 : 4 → 1, 4 → 3.

Q44 → Q32 : 4 → 1.

Q45 → Q32 : 4 → 2, 3 → 1.

It is invariant under compositions of mutations and permutations

π1 = (2, 3)µ1, π2 = (1, 2, 3).

3.6.3. Q33

The quiver Q33 is obtained via the following confluence.

Q45 → Q33 : 4 → 1.

It is invariant under a permutation

π1 = (1, 2, 3).
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[22] T. Tsuda, Tau functions of q-Painlevé III and IV equations, Lett. Math. Phys. 75 (2006)

39–47.

[23] T. Tsuda, On an integrable system of q-difference equations satisfied by the universal

characters: its Lax formalism and an application to q-Painlevé equations, Comm. Math.
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