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Abstract

This paper is a survey about K3 surfaces with an automorphism and log rational surfaces,

in particular, log del Pezzo surfaces and log Enriques surfaces. It is also a reproduction on my

talk at ”Mathematical structures of integrable systems and their applications” held at Research

Institute for Mathematical Sciences in September 2018.

§ 1. Introduction

We can see a very interesting mathematical model such that algebra, geometry

and analysis are harmony through elliptic curves. A K3 surface is a 2-dimensional
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analogue of an elliptic curve. In algebraic geometry, it is a fundamental problem to study

automorphisms of algebraic varieties. We consider the problem for K3 surfaces which

are the most important and attractive (at least for this author) of complex surfaces.

It is known that the second cohomology of aK3 surface has a lattice structure. Thus

the study of K3 surfaces can often be attributed to the study of lattices by the Torelli

theorem [PS]. In particular, this viewpoint is effective for the study of automorphisms

of a K3 surface.

By the definition of K3 surfaces, these have a nowhere vanishing holomorphic 2-

form. A finite group which acts on a K3 surface as an automorphism is called symplectic

or non-symplectic if it acts trivially or non-trivially on a nowhere vanishing holomorphic

2-form, respectively.

For symplectic automorphism groups, we can see a relationship with Mathieu

groups which are sporadic simple groups. Any finite group of sympletic automorphisms

of a K3 surface is a subgroup of the Mathieu group M23 with at least five orbits in its

natural action on 24 letters [Mu]. On the other hand, the study of K3 surfaces with

non-symplectic symmetry has arisen as an application of the Torelli theorem, and by

now it has been recognized as closely related to classical geometry and special arith-

metic quotients. Most non-symplectic automorphisms give rational surfaces with at

worst quotient singularities. In particular, some of these correspond to log del Pezzo

surfaces or log Enriques surfaces.

This article is devoted to studies of non-symplectic automorphisms on K3 surfaces,

and log rational surfaces. We see basic results and recent progress for non-symplectic

automorphisms. We summarize the contents of this paper. In section 2, we overview

algebraic curves and algebraic surfaces via birational viewpoint. Then we check the

position of a K3 surfaces in the algebraic surfaces, and see basic properties of K3 sur-

faces. Section 3 is the main part. We treat automorphisms on K3 surfaces. Especially,

we study the classification of non-symplectic automorphisms in terms of p-elementary

lattices. In section 4, we give applications of theories of non-symplectic automorphisms

on K3 surfaces. In particular we apply them to log del Pezzo surfaces and log Enriques

surfaces.

We will work over C, the field of complex numbers, throughout this paper.

Acknowledgments. The author would like to thank Professor Shinsuke Iwao

who is the organizer of the conference. This work was supported by the Research

Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto

University.
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§ 2. What is a K3 surface?

From the beginning of algebraic geometry, it has been understood that birationally

equivalent varieties have many properties in common. Thus it is natural to attempt to

find in each birational equivalence class a variety which is simplest in some sense, and

then study these varieties in detail. In this section, we check the position of K3 surfaces

in algebraic surfaces through the birational viewpoint and review basic results of K3

surfaces.

The following is one of the most important birational invariants.

Definition 2.1. Let V be a smooth projective variety, KV a canonical divisor

of V and ΦnKV
the rational map from V to the projective space associated with the

linear system |nKV |. For n ≥ 1, we define the Kodaira dimension κ(V ) to be the largest

dimension of the image of ΦnKV
, or κ(V ) = −∞ if |nKV | = ∅, hence

κ(V ) :=

−∞ |nKV | = ∅
max{dim ImΦnKV

(V )|n ≥ 1} |nKV | 6= ∅
.

First, we recall the theory of algebraic curves. But the birational geometry dose

not arise for curves because a rational map form one non-singular curve to another is

in fact morphism.

§ 2.1. Algebraic curves

We recall some general results about automorphisms of non-singular algebraic

curves, i.e., compact Riemann surfaces. See [Ha, Chapter 4] or [GH, Chapter 2] for

more details.

The most important invariant of an algebraic curve C is its genus g := dimH1(C,OC).

Example 2.2. For an algebraic curve C, C ' P1 if and only if g = 0.

Example 2.3. We say an algebraic curve is elliptic if g = 1. The following

conditions are equivalent to each other.

• The genus of C is 1.

• C is of the form C/Λ for some lattice Λ ⊂ C.

• C is realized as a non-singular cubic curve in P2.

Proposition 2.4. Every automorphism of P1 is of the form

φ(x) =
ax+ b

cx+ d
,

where a, b, c, d ∈ C, ad− bc 6= 0. That is Aut(P1) = PGL1(C).
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Proposition 2.5. Let C be an algebraic curve of genus 1. We fix the point

O ∈ C. The pair (C,O) associates the group Aut(C,O) := {σ ∈ Aut(C)|σ(O) = O}.
We identify an element of C as a translation. Then we have the following exact sequence:

0 → C → Aut(C) → Aut(C,O) → 0.

Hence Aut(C) is a semi-product, Aut(C) = C ⋊ Aut(C,O). Indeed, Aut(C,O) is a

finite group of order 2, 4 or 6. The order depends on the j-invariant of C.

Proposition 2.6 (Hurwitz). Let C be an algebraic curve of g ≥ 2. Then Aut(C)

is a finite group of order at most 84(g − 1).

From these propositions we have the following table.

C P1 elliptic curve general type

g(C) 0 1 ≥ 2

κ(C) −∞ 0 1

Aut(C) PGL1(C) C⋊ finite group finite group

Table 1: Algebraic curves

The table implies that an automorphism group of an algebraic curve is an important

invariant. At least, it seems that it has the same information as the Kodaira dimension.

§ 2.2. Algebraic surfaces

We treat the structure of birational transformations of algebraic surfaces. For the

details, see [Ha, Chapter 5] or [Be1, Chapter 2].

For surfaces we see that the structure of birational maps is very simple. Birational

maps between surfaces can be described by monoidal transformations, i.e., blowing up

a single point. Any birational transformation of surfaces can be factored into a finite

sequence of monoidal transformations and their inverses.

Proposition 2.7. Let ϕ : S 99K S′ be a birational map. Then there is a surface

S′′ and a commutative diagram

S′′

f

~~~~
~~
~~
~~ g

  A
AA

AA
AA

A

S
ϕ

/ /_______ S′
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where the morphism f , g are composite of monoidal transformations.

Example 2.8. The blowing up of P1 × P1 at a point is isomorphic to two times

blowing up of P2 at a point.

Definition 2.9. A surface S is minimal if every birational morphism S → S′ is

an isomorphism.

We show that every surface can be mapped to a minimal surface by a birational

morphism. Indeed, if S is not minimal, there is some surface S′ and a birational

morphism S → S′. Every algebraic surface has a minimal model in exactly one of the

classes in Table 2. This model is unique (up to isomorphisms) except for the surfaces

with κ = −∞. And the minimal models for rational surfaces are P2 and the Hirzebruch

surfaces Fn, n = 0, 2, 3 . . . .

κ pg P2 P12 q S

0 0 0 ≥ 1 ruled surface
−∞

0 0 0 0 rational surface

1 1 1 2 Abelian surface

0 1 1 hyper elliptic surface
0

1 1 1 0 K3 surface

0 1 1 0 Enriques surface

1 ≥ 1 elliptic surface

2 ≥ 1 ≥ 1 general type

Table 2: Classification of algebraic surfaces

Here q = dimH1(S,OS), pg = dimH2(S,OS) and Pn = dimH0(S,OX(nKS)).

The birational geometry of algebraic surfaces was largely worked out by the Italian

school of algebraic geometry in the years 1890–1910. Then they inherently had Table 2.

On the other hand, they knew when birational automorphism groups of algebraic sur-

faces, except K3 surfaces and Enriques surfaces, are finite. Indeed, the Torelli theorem

is necessary for studies of automorphisms of K3 surfaces and Enriques surfaces.

§ 2.3. K3 surfaces

We shall give a review of the theory ofK3 surfaces. For details, see [BHPV, Chapter

VIII], [Be2] and [Hu]. Japanese have to read [Kn4].
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Definition 2.10. Let X be a compact complex surface. If its canonical line

bundle KX is trivial and H1(X,OX) = 0 then X is called a K3 surface 1.

Any K3 surface is Kähler ([Siu]), and most of them are not algebraic. But we

assume that all K3 surfaces are algebraic in this paper. Indeed, we are interested

in finite non-symplectic automorphisms on K3 surfaces. If K3 surface X has a non-

symplectic automorphism of finite order then X is algebraic. See also Proposition 3.6.

Remark. Since KX is trivial, H2,0(X) = H0(X,Ω2
X) is 1-dimensional by the

Serre duality. Hence X has a nowhere vanishing holomorphic 2-form ωX .

Example 2.11. Let X ⊂ P3 be a nonsingular quartic surface. Then KX = 0 by

the adjunction formula. Since Hi(Pn,OPn(k)) = 0 for all 0 < i < n, k ∈ Z, it follows

that H1(X,OX) = 0 from the exact sequence

0 → OP3(−4) → OP3 → OX −→ 0.

Thus X is a K3 surface.

Example 2.12. Let T be a 2-dimensional complex torus and ι : T → T the

involution a 7→ −a. Then there are 16 nodes in T/ι. The surfaces X given by the

minimal resolution X → T/ι is a K3 surface. We call it the Kummer surface of T .

Note that if T is not abelian then X is not algebraic.

By definition, χ(OX) =
∑2
i=0 dimHi(X,OX) = 2 and the Noether formula thus

yields

2 = χ(OX) =
K2
X + χ(X)

12
.

Hence the topological Euler number χ(X) = 24. Moreover we have the following result.

Proposition 2.13. Let X be a K3 surface. Then

H1(X,Z) = H1(X,Z) = H3(X,Z) = H3(X,Z) = 0.

And H2(X,Z) is torsion-free.

We consider the cup product on H2(X,Z):

〈 , 〉 : H2(X,Z)×H2(X,Z) → Z.

Then the pair (H2(X,Z), 〈 , 〉) has a structure of a lattice. Moreover by Wu’s formula,

the Poincaré duality and the Hirzebruch index theorem, we see that (H2(X,Z), 〈 , 〉) is
1The name K3 derives from the initials of three Mathematicians Kummer, Kähler, Kodaira and
also from the name of the mountain K2 in the Karakorum.
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an even unimodular lattice of rank 22 with signature (3,19). By the classification of even

unimodular indefinite lattices ([Se, Chapter 5, §2, Theorem 5]), we have H2(X,Z) '
U⊕3 ⊕ E⊕2

8 . Throughout this article we shall denote by Am, Dn, El the negative-

definite root lattice of type Am, Dn, El respectively. We denote by U the even indefinite

unimodular lattice of rank 2. For a lattice L, L(m) is the lattice whose bilinear form is

the one on L multiplied by m.

Definition 2.14. Let ωX be a nowhere vanishing holomorphic 2-form on X. Set

SX := {x ∈ H2(X,Z)|〈x, ωX〉 = 0} and TX := S⊥
X in H2(X,Z). These are called the

Néron-Severi lattice and the transcendental lattice, respectively.

Proposition 2.15. Let r be the Picard number of X, i.e. r = rankSX . Then

we have r ≤ 20. And X is projective if and only if the signature of SX is (1, r− 1), i.e.,

SX is a hyperbolic lattice.

The most interesting structure associated to a K3 surface is its weight-two Hodge

structure on H2(X,Z) given by the decomposition

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

By the definition of K3 surfaces, h2,0(X) = h0,2(X). Therefore we have the follow-

ing proposition.

Proposition 2.16. Let X be a K3 surface. Then h2,0(X) = h0,2(X) = 1,

h1,1(X) = 20.

Since the Hodge decomposition is orthogonal with respect to the cup product, it is

in fact completely determined by the complex line H2,0(X) ⊂ H2(X,C).

Definition 2.17. AHodge isometry is an isomorphism fromH2(X,Z) toH2(Y,Z)
which preserves the cup product and maps H2,0(X) to H2,0(Y ).

The following theorem is the most important theorem for K3 surfaces.

Theorem 2.18 (Global Torelli Theorem). Two K3 surfaces X and Y are iso-

morphic if and only if there exists a Hodge isometry φ : H2(X,Z) → H2(Y,Z). If φ

maps a Kähler class on X to a Kähler class on Y , then there exists a unique isomor-

phism f : Y → X with f∗ = φ.

The period of a K3 surface X is by definition the natural weight-two Hodge struc-

ture on the lattice H2(X,Z). Thus, Theorem 2.18 asserts that two K3 surfaces are

isomorphic if and only if their periods are isomorphic. The second assertion of Theo-

rem 2.18 allows us to describe the automorphism group Aut(X) as the group of Hodge

isometries of H2(X,Z) preserving Kähler classes.
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A non-singular rational curve on X is a (−2)-vector in H2(X,Z). Every (−2)-class

δ ∈ H2(X,Z) defines a reflection

sδ : H
2(X,Z) → H2(X,Z), x 7→ x+ 〈x, δ〉δ.

For a lattice L, we put W (L) := 〈{sδ ∈ O(L)|δ ∈ L, δ2 = −2}〉. Let ψ be an

isometry of L. Since ψ ◦ sδ ◦ ψ−1 = sψ(δ), W (L) is a normal subgroup in O(L).

Theorem 2.18 says the natural composite homomorphism

Aut(X) → O(SX) → O(SX)/W (SX)

has a finite kernel or a finite cokernel (see [PS]). Hence Aut(X) and O(SX)/W (SX) are

isomorphic up to finite groups. In particular Aut(X) is finite if and only if W (SX) has

finite index in O(SX).

The problem of describing algebraic K3 surfaces with a finite automorphism group

was reduced to a purely algebraic problem, i.e., describe the hyperbolic lattices S for

which the factor group O(S)/W (S) is finite. Indeed Nikulin ([Ni3, Ni4]) has completely

classified the Néron-Severi lattices SX of algebraicK3 surfaces with finite automorphism

groups.

§ 3. Automorphisms of K3 surfaces

In this section, we recall some progress on finite automorphism groups of K3 sur-

faces. Let G ⊂ Aut(X) be a finite subgroup. By definition of K3 surfaces, there exists

a unique nowhere vanishing holomorphic 2-form on X, up to constant. Hence for every

g ∈ G, there exist some non-zero scalar α(g) ∈ C× which satisfy g∗ωX = α(g)ωX .

Clearly, α : G → C× is a group homomorphism. Since α(G) is a subgroup of C×, it is

a cyclic group of order I. Then we have the following exact sequence

(3.1) 1 → Kerα→ G→ Z/IZ → 1.

Example 3.1. Put F := X4
0 +X

4
1 +X

4
2 +X

4
3 . Let X be the K3 surface defined

by the quartic surface F = 0 in P3. Clearly, G := S4⋉ (Z/4Z)3 acts on X as projective

transformations. Since ωX is given by the Pincaré residue of

d
(
X1

X0

)
∧ d
(
X2

X0

)
∧ d
(
X3

X0

)
F

,

we have 1 → S4 ⋉ (Z/4Z)2 → G→ Z/4Z → 1.

Definition 3.2. Let g be an automorphism of X. If g∗ωX = ωX then g is called

a symplectic automorphism.

Let G be an automorphism group of X. If every g ∈ G is symplectic then G is

called a symplectic automorphism group.
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Lemma 3.3. Let G be a finite symplectic automorphism group of X. Then G

has fixed points.

Proof. We assume that G has no fixed points. Since the natural map X →
X/G is étale, there exits a nowhere vanishing holomorphic 2-form on X/G. Moreover

H0(X/G,Ω1
X/G) = H0(X,Ω1

X) = 0. Hence X/G is a K3 surface.

Now, it follows that χ(X) = |G| ·χ(X/G). The Euler number of K3 surfaces is 24.

This implies that |G| = 1.

Theorem 3.4 ([Ni2]). Let g be a symplectic automorphism of order n on X.

Then n ≤ 8. Moreover, the set of fixed points of g has cardinality 8, 6, 4, 4, 2, 3, or 2, if

n = 2, 3, 4, 5, 6, 7, or 8, respectively.

Mukai [Mu] has determined all maximum finite symplectic automorphism groups

(11 of them); see also Kondo [Kn2] for a lattice-theoretic proof.

Theorem 3.5 ([Mu]). Suppose that G is a finite group of symplectic automor-

phisms of K3 surface. Then G is a subgroup of one of the 11 maximum symplectic

automorphism groups of X below:

G order

PSL2(7) 168

A6 360

S5 120

M20 = (Z/2Z)4 ⋊ A5 960

F384 = (Z/2Z)4 ⋊S4 384

A4,4 = (S4 ×S4) ∩ A8 288

T192 = (Q8 ∗Q8)⋊S3 192

H192 = (Z/2Z)4 ⋊D12 192

N72 = (Z/3Z)2 ⋊D8 72

M9 = (Z/3Z)2 ⋊Q8 72

T48 = Q8 ⋊S3 48

Table 3. Symplectic automorphism groups

First remarks of non-symplectic cases are the following two Propositions.

Proposition 3.6 ([Ni2]). If a K3 surface X has a finite non-symplectic auto-

morphism g then X is algebraic.
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Proof. We consider the quotient surface X/g. Since g does not act trivially on

H2(X,OX) = H0(X,Ω2
X) = C〈ωX〉, we have H2(X/g,OX/g) = 0. By the classification

of complex surfaces (see [BHPV, Chapter VI]), X/g is Enriques or rational. Since an

Enriques surface and a rational surface are algebraic, we can pull back an ample class

of X/g to X.

Proposition 3.7 ([Ni2, Xi, MO]). Suppose that Z/IZ is a non-symplectic auto-

morphism group of X. Then Φ(I) ≤ 21 and I 6= 60, where Φ is the Euler function.

Moreover, for each I satisfying Φ(I) ≤ 21 and I 6= 60, there exists a K3 surface

XI admitting a cyclic group action 〈g〉 with 〈g〉 ' 〈α(g)〉 = Z/IZ.

Φ(I) 20 18 16 12 10 8 6 4 2 1

66 54 60 42 22 30 18 12 6 2

50 38 48 36 11 24 14 10 4 1

I 44 27 40 28 20 9 8 3

33 19 34 26 16 7 5

25 32 21 15

17 13

Table 4. Φ(I) ≤ 21

The generator of Z/IZ is a non-symplectic automorphism of order I. We call it

a purely non-symplectic automorphism, hence it satisfies g∗ωX = ζIωX where ζI is a

primitive I-th root of unity.

Example 3.8 ([Ke, Example 3.2]). We consider the pair of the K3 surface and

the automorphism given by the following:

X : y2 = x3 + t11 − t, g(x, y, t) = (ζ260x, ζ
3
60y, ζ

6
60t).

g is non-symplectic and not purely. Indeed it satisfies g∗ωX = ζ12ωX , hence g5 is a

purely non-symplectic automorphism of order 12 and g12 is a symplectic automorphism

of order 5.

In the exact sequence of (3.1), we have |Kerα| ≤ |M20| = 960 and I ≤ 66. The

finite automorphism group of a K3 surface with largest order is determined by Kondo.

Theorem 3.9 ([Kn3]). Let G be a finite automorphism group of X. Then |G| ≤
3840. If |G| = 3840, then G is isomorphic to an extension of M20 by Z/4Z. And such

pair (X,G) is unique up to isomorphism. Indeed, X is a Kummer surface.
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Structure of finite non-symplectic automorphism groups is clear. But a generator

(a non-symplectic automorphism) of such a group is not so. Non-symplectic automor-

phisms have been studied by Nikulin who is a pioneer and several mathematicians. In

the following we treat purely non-symplectic automorphisms.

§ 3.1. Classification of non-symplectic automorphisms

In this section, we collect some basic results for non-symplectic automorphisms on

a K3 surface. For the details, see [Ni2, Ni3, AST], and so on.

Lemma 3.10. Let σ be a non-symplectic automorphism of order I on a K3

surface X. Then the followings are hold.

(1) The eigen values of σ∗ | TX are the primitive I-th roots of unity, hence σ∗ | TX ⊗C
can be diagonalized as: 

ζIEq 0 · · · · · · · · · 0
...

. . .
...

... ζnI Eq
...

...
. . . 0

0 · · · · · · · · · 0 ζI−1
I Eq


,

where Eq is the identity matrix of size q and 1 ≤ n ≤ I − 1 is co-prime with I.

(2) Let P i,j be an isolated fixed point of σ on X. Then σ can be written as(
ζiI 0

0 ζjI

)
(i+ j ≡ 1 mod I)

under some appropriate local coordinates around P i,j.

(3) Let C be an irreducible fixed curve of σ and Q a point on C. Then σ can be written

as (
1 0

0 ζI

)
under some appropriate local coordinates around Q. In particular, fixed curves are

non-singular.

Lemma 3.10 (1) implies that Φ(I) divides rankTX , where Φ is the Euler function.

Lemma 3.10 (2) and (3) imply that the fixed locus of σ is either empty or the disjoint

union of non-singular curves Cl and isolated points P ik,jkk :

Xσ = {x ∈ X|σ(x) = x}
= {P i1,j11 , . . . , P iM ,jM

M } q C1 q · · · q CN .
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The global Torelli Theorem gives the following.

Remark. Let X be a K3 surface and gi (i = 1, 2) automorphisms of X such that

g∗1 |SX = g∗2 |SX and that g∗1ωX = g∗2ωX . Then g1 = g2 in Aut(X).

The Remark says that for study of non-symplectic automorphisms, the action on

SX is important. Hence the invariant lattice SσX := {x ∈ SX |σ∗(x) = x} plays an

essential role for the classification of non-symplectic automorphisms.

Theorem 3.11 ([Ni3]). Let σ be a non-symplectic involution. Then SσX is a 2-

elementary lattice 2, hence, Hom(SσX ,Z)/SσX = (Z/2Z)⊕a. And the fixed locus of σ is

of the form

Xσ =


ϕ SσX = U(2)⊕ E8(2),

C(1) q C(1) SσX = U ⊕ E8(2),

C(g) q P1 q . . .P1 otherwise,

where C(g) is a genus g curve with g = (22− rankSσX − a)/2. Moreover the number of

P1 is given by (rankSσX − a)/2.

Example 3.12. Let C be a smooth sextic curve in P2 and X → P2 the double

cover branched along C. Then X is a K3 surfaces and the covering transformation

induces a non-symplectic involution ι.

Since the Néron-Severi lattice SX consists of the pull-back of a hyperplane in P2,

SσX = SX = A1(= 〈−2〉) with (rankSX , a) = (1, 1). The fixed locus of ι is a genus 10

curve coming from C. Indeed we have 10 = (22− 1− 1)/2 and 0 = (1− 1)/2.

As the same as these, fixed loci of non-symplectic automorphisms of order pk char-

acterized in terms of the invariants of p-elementary lattices.

Theorem 3.13 ([AS, T1]). Let σ be a non-symplectic automorphism of order 3.

Then SσX is a 3-elementary lattice hence, Hom(SσX ,Z)/SσX = (Z/3Z)⊕a. And the fixed

locus of σ is of the form

Xσ = C(g) q P1 q . . .P1 q {P1, . . . , Pn}

where C(g) is a genus g curve with g = (22− rankSσX−2a)/4 and Pi are isolated points.

Moreover the number of P1 is given by (2 + rankSσX − 2a)/4 and n = (rankSσX − 2)/2.

In the case (rankSσX , a) = (8, 7) for which (g, ♯P1) = (0,−1), this means a fixed locus

consisting of 3 isolated points and no curve component.

2See also [Ni1] and [RS] for p-elementary lattices.
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We do not have the complete classification of non-symplectic automorphisms. See

[AlST, AlS, AS2, AST, OZ4, Sc, T2, T3, T4] for cases of pime-power order and [Kn1,

MO, Xi, Br] for cases of non-pime-power order.

Problem 3.14. Classify non-symplectic automorphisms of order 4 and 9 under

generic conditions.

It seems that the Problem is difficult when the quotient surface of a K3 surface by

a non-symplectic automorphism is a log Enriques surface.

Remark. Moduli spaces ofK3 surfaces with a non-symplectic automorphism have

also been studied. For example, see [M, MOT].

§ 4. Log rational surfaces

Let Z be a normal algebraic surface with at worst log terminal singularities (i.e.,

quotient singularities). Z is called a log del Pezzo if the anticanonical divisor −KZ is

ample. Z is called log Enriques if the irregularity dimH1(Z,OZ) = 0 and a positive

multiple IKZ of a canonical Weil divisor KZ is linearly equivalent to zero. These

surfaces constitute one of the most interesting classes of rational surfaces; they naturally

appear in the outputs of the (log) minimal model program and their classification is an

interesting problem. The index I of Z is the least positive integer such that IKZ is a

Cartier divisor.

§ 4.1. Log del Pezzo surfaces

See also [AN, Na, OT] for details.

Log del Pezzo surfaces with index I = 1 are sometimes called Gorenstein del Pezzo

surfaces and their classification is a classical topic. In the index I = 2 Alexeev and

Nikulin [AN] (over C) and Nakayama [Na] (char. p ≥ 0 and also for log pairs) gave

complete classifications, whose methods are independent in nature. Ohashi and Taki

[OT] discuss a generalization of the ideas of [AN] to treat log del Pezzo surfaces of index

three. We review the classification of log del Pezzo surfaces of index ≤ 2.

Theorem 4.1 ([AN]). Let Z be a log del Pezzo surface of index ≤ 2. The fol-

lowings hold:

(1) There exists a branched covering X → Z such that X is a K3 surface with a

non-symplectic automorphism of order 2. Moreover the automorphism fixes a non-

singular curve with genus ≥ 2.
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(2) Let ι be a non-symplectic automorphism of order 2 on a K3 surface X. If the fixed

locus of ι contains a non-singular curve with genus ≥ 2 then we have a log del Pezzo

surface of index 2 by contracting some curves on X/ι.

(3) We can study log del Pezzo surfaces which are constructed in (2) by using techniques

of K3 surfaces.

By the theorem and Theorem 3.11, we can study all log del Pezzo surfaces of index

≤ 2. The following is the case of index 3.

Theorem 4.2 ([OT]). Let Z be a log del Pezzo surface of index 3. Assume that

the linear system | − 3KZ | contains a divisor 2C where C is a smooth curve which does

not intersect the singularities. (We call the assumption the Multiple Smooth Divisor

Property.) The followings hold:

(1) There exists a branched covering X → Z such that X is a K3 surface with a

non-symplectic automorphism of order 3. Moreover the automorphism fixes a non-

singular curve with genus ≥ 2.

(2) Let σ be a non-symplectic automorphism of order 3 on a K3 surface X. If the fixed

locus of σ contains a non-singular curve with genus ≥ 2 then we have a log del

Pezzo surface of index 3 by contracting some curves on X/σ.

(3) We can study log del Pezzo surfaces which are constructed in (2) by using techniques

of K3 surfaces.

By the theorem and Theorem 3.13, we can study log del Pezzo surfaces of index

3 which have the multiple smooth divisor property. But there exists a log del Pezzo

surfaces of index 3 which does not correspond to a K3 surfaces with a non-symplectic

automorphism of order 3, hence there exists a log del Pezzo surface which does not

satisfy the multiple smooth divisor property.

Lemma 4.3. Let Z be a log del Pezzo surface of index 3 which has the multiple

smooth divisor property. Then we have K2
Z = 8(g(C)− 1)/3.

Proof. Assume that the linear system | − 3KZ | contains a divisor 2C where C is

a smooth curve which does not intersect the singularities. Then we have

2g(C)− 2 = C2 + C.KZ

=
9

4
K2
Z − 3

2
K2
Z

=
3

4
K2
Z

by the genus formula.
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Example 4.4. The weighted projective space Z1 = P(1, 1, 3) is a log del Pezzo

surface of index 3. But it does not satisfy the multiple smooth divisor property. Because

K2
Z1

= 25/3.

We put Z2 = P(1, 2, 9). It is easy to see that Z2 is a log del Pezzo surface of index

3 and has singularities at (0, 0, 1) and (0, 1, 0). Note that | − 3/2KZ2
| = |OZ2

(18)|. Let
C be an element of OZ2

(18) defined by {x18+y9+z2+(terms of degree 18) = 0} where

x, y and z are homogeneous coordinates of Z2. Then the smooth divisor C does not pass

through (0, 0, 1) and (0, 1, 0). Hence Z2 satisfies the multiple smooth divisor property.

Example 4.5. Let Z be a weighted hypersurface of degree 10 in P(1, 1, 5, 9).
Note that Z is a log del Pezzo surface with a singular point induced by (0, 0, 0, 1) and

O(KZ) ' OZ(10 − 1 − 1 − 5 − 9) = OZ(−6). Let C be an element of OZ(9) defined

by {x9 + y9 + x2y2z + w + · · · = 0} where x, y, z and w are homogeneous coordinates

of P(1, 1, 5, 9). Then the smooth divisor C does not pass through (0, 0, 0, 1). Hence Z

satisfies the multiple smooth divisor property.

Let ν : Z̃ → Z be the minimal resolution. Then we haveKZ̃ = ν∗KZ−1/3E−2/3F .

Here E and F are smooth rational curves such that E2 = −2, F 2 = −5 and E.F = 1.

By blowing-up at the intersection point of E and F , we obtain Zr → Z which is called

the right resolution.

Note that Zr has a (−3)-curve, a (−6)-curve and the strict transform of C. Let

π : X̃ → Zr be the triple cover branched along these curves. By contracting of the

(−1)-curve induced from the (−3)-curve: X̃ → X, we have a K3 surfaces X and the

covering transformation induces a non-symplectic automorphism σ of order 3 which

fixes a genus 4 curve, a smooth rational curve and an isolated point. We remark that

these correspond to C, F and E, respectively.

By Theorem 3.13 and the classification of 3-elementary lattices, we have SX =

SσX = U ⊕A2.

Remark. Fujita and Yasutake [FY] have given complete classification of log del

Pezzo surfaces of index 3. The technique for the classification based on the argument

of [Na].

Problem 4.6. Under appropriate assumptions, study log del Pezzo surfaces of

index 5 corresponding to K3 surfaces with an non-symplectic automorphism of order

5. (But it seems that most log del Pezzo surfaces of index 5 do not correspond to K3

surfaces with an non-symplectic automorphism.)

§ 4.2. Log Enriques surfaces

See [Z1, Z2, T5] for details.
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Without loss of generality, we assume that a log Enriques surface Z has no Du

Val singular points, because if Z ′ → Z is the minimal resolution of all Du Val singular

points of Z then Z ′ is also a log Enriques surface of the same index of Z.

Let Z be a log Enriques surface of index I. The Galois Z/IZ-cover

π : Y := SpecOZ

(
I−1⊕
i=0

OZ(−iKZ)

)
→ Z

is called the (global) canonical covering. Note that Y is either an abelian surface or aK3

surface with at worst Du Val singular points, and that π is unramified over Z \Sing(Z).
A log Enriques surface Z is of type Am or Dn if, by definition, its canonical cover Y has

a singular point of type Am or Dn, respectively.

It is interesting to consider the index I of a log Enriques surface. Blache [Bl, Z1]

proved that I ≤ 21. Thus if I is prime then I = 2, 3, 5, 7, 11, 13, 17 or 19.

Theorem 4.7 ([OZ1, OZ2, OZ3, OZ5, OZ4]). The followings hold:

(1) There is one log Enriques surface of type D19 (resp. A19, D18), up to isomorphism.

(2) There are two log Enriques surfaces of type A18, up to isomorphism.

(3) There are two log Enriques surfaces of index 5 and type A17, up to isomorphism.

The followings do not refer to singular points. But these determine log Enriques surfaces

with large prime indices:

(4) There are two maximal log Enriques surfaces of index 11, up to isomorphism.

(5) If I=13, 17 or 19 then there is a unique log Enriques surface of index I, up to

isomorphism.

Remark. If a log Enriques surface is of type A19 (resp. A18, D18 or D19) then

its index is 2 (resp. 3).

To prove Theorem 4.7, we studied non-symplectic automorphisms of K3 surfaces,

because the canonical covering π is a cyclic Galois covering of order I which acts faith-

fully on the space H0(Y,OY (KY )). And we have gotten the following.

Theorem 4.8 ([OZ1, OZ3, OZ5, OZ4]). Let σI be a non-symplectic automor-

phism of order I on a K3 surface XI and XσI

I be the fixed locus of σI ; X
σI

I = {x ∈
XI |σI(x) = x}. Then the followings hold:

(1) If Xσ3
3 consists of only (smooth) rational curves and possibly some isolated points,

and contains at least 6 rational curves then a pair (X3, 〈σ3〉) is unique up to iso-

morphism.
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(2) If Xσ2
2 consists of only (smooth) rational curves and contains at least 10 rational

curves then a pair (X2, 〈σ2〉) is unique up to isomorphism.

(3) If Xσ5
5 contains no curves of genus ≥ 2, but contains at least 3 rational curves then

a pair (X5, 〈σ5〉) is unique up to isomorphism.

(4) Put M := {x ∈ H2(X11,Z)|σ∗
11(x) = x}. A pair (X11, 〈σ11〉) is unique up to

isomorphism if and only if M = U ⊕A10.

(5) Pairs (X13, 〈σ13〉), (X17, 〈σ17〉) and (X19, 〈σ19〉) are unique up to isomorphism,

respectively.

These theorems miss the case of I = 7. Recently we have the following.

Theorem 4.9 ([T5]). The followings hold:

(1) There is, up to isomorphism, only one log Enriques surface of index 7 and type A15.

(2) If Xσ7
7 consists of only smooth rational curves and some isolated points and contains

at least 2 rational curves then a pair (X7, 〈σ7〉) is unique up to isomorphism.

Example 4.10 ([AST, Example 6.1 (3)]). Put

XAST : y2 = x3 + 3
√

−27/4x+ t7 − 1, σAST(x, y, t) = (x, y, ζ7t).

Then XAST is a K3 surface with SXAST
= U ⊕ E8 ⊕ A6 and σAST is a non-symplectic

automorphism of order 7. Note that XAST has one singular fiber of type I7 over t = 0,

one singular fiber of type II∗ over t = ∞ and 7 singular fibers of type I1 over t7 = 1.

Example 4.11. We consider the pair (XAST, 〈σAST〉) in Example 4.10. Let

f : XAST → Y be the contraction of the following rational tree ∆AST of Dynkin type

A15 to a point Q:

Γ2 − Γ3 − Γ4 − Γ5 − Γ6 − Γ7 − S −Θ1 −Θ2 −Θ3 −Θ4 −Θ5 −Θ6 −Θ7 −Θ8,

where S is a cross-section, Γi is a component of a singular fiber of type I7 and Θj is

a component of a singular fiber of type II∗. Here a singular fiber of type I7 is given

by
∑7
i=1 Γi which Γ7 meets S, and a singular fiber of type II∗ is given by

∑6
j=1 jΘj +

4Θ7 + 2Θ8 + 3Θ9. Hence Γ7 and Θ6 are fixed curves of σAST.

Then σAST induces an automorphism τ on Y so that Y τ := {Q, f(P )} where P is

the isolated fixed point of type P 2,6 on Θ9. Now the quotient surface ZAST := Y/τ is a

log Enriques surface of index 7 and type A15. Note that ZAST has exactly two singular

points under the two fixed points Q and f(P ).
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