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An Ultradiscrete Permanent Solution to the
Ultradiscrete Two-Dimensional Toda Equation

By

Hidetomo NAGAT*

Abstract

An ultradiscrete permanent solution to the ultradiscrete two-dimensional Toda equation
is proposed. The solution is obtained using an ultradiscrete analogue of the Jacobi identity
with provided certain elements.

§1. Introduction

The two-dimensional Toda equation is known as one of the celebrated equations of
integrable system[1]. By discretizing continuous variables in the equation, the discrete
two-dimensional Toda equation is obtained[2]. There are some expressions depending

on the method of the discretization. For example, one is expressed by

der(l+1,m,n+1)7(l,m+1,n—1)

1.1
1) =(1+d)r7(l+1,m+ 1L, n)r(l,m,n) —7(l+ 1,m,n)7(l,m + 1,n),

and another is

(1.2) T(l,m,n+)1(l+1,m+1,n—1)
. =t(l+1,m+ 1,n)r(l,m,n) — 7+ 1,m,n)r(l,m+ 1,n),

where [, m, n are independent variables and J, € are parameters. The former equation
is sometimes called the discrete two-dimensional Toda lattice equation and the latter
the discrete two-dimensional Toda molecule equation. Both of equations admit the
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determinant solutions and they are verified by using identities of determinants. In this
paper we focus on (1.2). The determinant solution is expressed by

7(l,m,n) =det[p(l +i—1,m + 7 — D]i<ij<n

o(l,m) o(l,m+1) o(l,m+n—1)
(1.3) o(l+1,m)  ¢(l+1,m+1) - ¢(l+1,m+n—1)

p(l+n—-1,m)op(l+n—-1,m+1)---¢p(l+n—-1,m+n—1)

where ¢(l, m) is an arbitrary function and (I, m,0) = 1. It is verified by using the Jacobi
identity. The ultradiscrete two-dimensional Toda equation can be obtained by ultradis-
cretizing (1.2) with variable transformation 7(1,m,n) = (—1)(+m)(+m+1)/2,T(m.n)/e[3],

T(l,mn+1)+T{I+1,m+1,n-1)

1.4
(4 =max(T({+1,m+1L,n)+T{,mn), T(l+1,mmn)+T{,m+1,n)).

An ultradiscrete solution can be also obtained by ultradiscretizing the solution of the
discrete one in general. However the determinant solution (1.3) is not always positive.
Thus, ultradiscrete solution to (1.4) cannot be obtained straightforwardly. For this
problem, we propose a direct proof in ultradiscrete system and give a solution to (1.4).

This paper consists on below. In section 2, we first introduce the ultradiscrete
permanent and an ultradiscrete analogue of the Jacobi identity. In section 3, we impose
some conditions for elements of matrix and rewrite the identity. Using the rewritten
identity, we give a solution to (1.4) in section 4. Finally, we give concluding remarks in
section 5.

§2. UP and the ultradiscrete Jacobi Identity

We start from the definition of the ultradiscrete permanent(UP)[4]. Let N be a
positive integer. The UP of N x N matrix A = [a,;] is defined by

(2.1) up[A] := max(aix, + @2r, + 0+ ANy ),
s

where m = (71, m2,...,7mn) is a set of all possible permutations of {1,2,..., N}. There
are several identities between UPs[5]. One of them is regarded as an ultradiscrete
analogue of the Jacobi identity, which is given by the following theorem/[6].

Theorem 2.1. Let N, k, | be positive integers satisfying 1 < k <l < N. Then,

max (up[A] + up[Af}], up[A}] + up[Af], up[Af] + up[A}))
=max (up[A] + U-p[A ]7 up[AZ] + up[Aﬂ)

(2.2)
= max (up[A] + UP[A ]a up[Aﬂ + up[Agc])
=max (up[Ak] + UP[Al]v [Aﬂ up[Agg]])
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holds. Here AY denotes the (N — 1) x (N — 1) matriz obtained by eliminating the kth
row and the lth column from A.

Due to the symmetry derived from the definition of UP, (2.2) cannot be applied to
the solution to the ultradiscrete two-dimensional Toda equation directly. In the next
section, we impose some conditions for the elements of UP in (2.2).

8§ 3. Specialization of the ultradiscrete Jacobi Identity

In this section, we show the following theorem.

Theorem 3.1.  Suppose a;; = |x; + jy;| fori,j =1,2,..., N, where x;, y; are

arbitrary parameters satisfying 0 < y; < yo < -+ < yn, and |- | denotes absolute value.
Then

(3.1) up[A] + up[A1y] = max (up[A1] + up[A¥], up[A}] + up[A7'])

holds.

Proof. Equation (3.1) holds if we show the inequality
(3.2) up[A] + up[A;¥] > up[A;] + up[AY]

for (2.2). Each UP in (3.2) can be expanded by using the following formula[4]

lz1 + il lze + 21 - |+ Ny
|2 +y2| |z2 +2y2| -+ |22+ Nyg
up . . . .
(3.3) lzn +yn| |lzy +2yn]| - |zn + Nyn|
N
= en{la)lcl} szxz‘f‘ Z 1+pzl+p12(1_pj) Yi |
Pi ) . .
i=1 j=t
where z; is arbitrary and 0 < y; < yo < -+ < yny. Moreover, by introducing a
transformation p; = 2u; — 1, up[A] is reduced to
(3.4)
N
wplA] = max | D (2w +yiN =it D))+ D iy =2 Y iy
pi€{01} \ i 1<j<i<N 1<i<j<N

—Z — i+ Dyi + ).
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Similar procedure, we obtain

N-1

up[Ajy] = max domiRri+ N =)+ > my =2 Y i
ni€{0.1} \ i3 9<j<icN—1 2<i<j<N-1
- Z —1 + 1 yz + xl)
N
up[Af] = max (> 2z yi2N —i+2)+ D> gy —2 Y il
ni€f01} \ 155 2<j<i<N 2<i<j<N
- Z —1 + 2 yz + 1‘1)
N-1
up[Ay] = max D omiRri N —i— 1))+ > iy —2 > iy
ni€{0.1} \ i 1<j<i<N-1 1<i<j<N-1

_Z _Zyz+xz)

Thus (3.2) is reduced into
(3.5)

max

'MZ

pi2w +yi 2N — i+ 1)+ > =2 > iy
i=1 1<j<i<N 1<i<j<N

N—1
+ max Z vi(2z; + y;(2N — 1)) + Z viy; — 2 Z viviyi | + YN — Y1

vi€{0,1} \ = 2<j<i<N—1 2<i<j<N-1
N
> max1 ZHZ 2x; +y; (2N — i+ 2)) + Z Wiy — 2 Z i b5 Ys
pi€{0,1} \ = 2<j<i<N 2<i<j<N
N-1
+ max vi(2r; +yi(2N —i—1)) + Z Viyj — 2 Z ViVjYi
vi€{0,1} \ — 1<j<i<N-—1 1<i<j<N-1

Introducing transformations \; = u; + v;, 0; = p; — v, we rewrite LHS of (3.5) as

N N

1

(rAnfff)( Ai(2z; +yi(2N — i) + - ) E Ai(yi — 1) + E Ailj — E AiAjYi
1 =1 1<j<i<N 1<i<y<N

1=

N
1
PR NEDY Uinyi>+yN_yla
i=1 1<i<j<N
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where max(y, »,) F'(A1,...,AN,01,...,0n) denotes the maximum value of F' among

22N=2 cases of (A1,...,AN,01,...,0n) replacing by

(3.6) (Aisoi) € 1 {(2,0),(1,1),(1,-1),(0,0)} (i=2,3,...,N—1).

Note o; is determined as 0 when \; # 1. Thus we have
(3.7)
up[A] + up[A} ]

N N
_ 1
=, Dax <Z>\z’(2$i+yi(2N—Z))+§Z)w(y¢—y1)+ dooNyi— Y AN

A1, an€{0,1} \2=1 =1 1<j<i<N 1<i<yj<N
T %k, 6{ 1 1} Zak Yki +y1 Z TkiOk; Yk, ) TYN — Y1,
01 on=1 1<Z<_7STL
where n is the total number of ¢ such that \; = 1 and k; is a rearranged number
satisfying
(38) 1§k1<k2<<kn§N, )\kzzl

Similarly, RHS of (3.5) is expressed by
(3.9)
up[A;] + up[AY]

N N
. 1
= , max <E )\i(21’i+yi(2N—Z))+§ > Ny )+ D> Ayi— Y NNy

AN €{0,1} \i=1 i=1 1<j<i<N 1<i<j<N

1 n
T akirél{a;)i,l} §Zaki(3yki —y1) — Z OkiOk; Yk >

o1=—1,0n=1 =1 1§Z<]Sn

Comparing (3.7) and (3.9), one can check the terms depending on A are the same
expressions. Thus (3.2) holds if we show

1 n
W25 |G Lt ) = D, owoi | +uv =
D i=1 1<i<j<n

(3.10)

1 n

o'kie{—l,l} 4 “
o1=—1,05=1 1<i<i<n
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We denote LHS and RHS of (3.10) as L and R hereafter. From proposition A.1 in the
appendix, L and R can be given as below. When ki # 1, L is reduced to

(3.11) L=

N | =

D ED" e +y) = D, DMy +un —
=1

1<i<yj<n
by setting oy, = (—1)"7%, and
1 n—1
(312)  R=g (Z(—l)”‘z“(yki — 1) + 3k, — y1> - ) (=D,
i=1 1<i<j<n—1
by or, = (—1)" ! fori =1,2,...,n — 1 and o4, = 1. Hence, in this case we have
(3.13) L—-R=yn —yg, > 0.

When k; =1, L and R are rewritten as

1 n
L= max y1+§20ki(yki—y1)— Z OkiOk;Yk; | T YN — Y1,
1=

Tk, e{—1,1}

(3.14) N 2<i<j<n
1 n
R = Uklrg{aﬁyl} —y1 + B Z ok, (Byr, +y1) — Z OkiOky Y,
’Lo-Nzl =2 2S'L<JS7’L

In this case, L is reduced to

(315) L= 30 )~ Y (1) g

i=2 2<i<j<n

by setting oy, = 1, o, = (—1)" "¢ for i = 2,3,...,n, and

n—1
(3.16) R=-y1+ 5 (Z(—l)”_z+1(yki + 1) + 3y, + y1> - Y (=),

2\Z 2<i<j<n—1
by o, = =1, 0%, = (=1)" "l for i =2,3,...,n— 1, 0, = 1. Hence, we have
(3.17) L—-—R=yn—yi, >0.
Therefore this completes the proof. O

§4. UP solution to the ultradiscrete two-dimensional Toda equation

From theorem 3.1, we obtain an UP solution to the ultradiscrete two-dimensional
Toda equation, namely, we obtain the following theorem.
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Theorem 4.1.  Define T'(I,m,n) = up||pi+i—1+(m~+j—1)q+i—1|l1<i,j<n, where
Di, q; are arbitrary parameters satisfying

(4.1) 0<qgi <g<---<gn

and T(l,m,0) = 0. Then T(l,m,n) satisfies the ultradiscrete two-dimensional Toda
equation
(4.2)

Tl,mn)+T(+1,m+1,n—-2)

=max(T({+1,m+1,n—1)+T{,mn—-1),T(l+1,mmn—1)+T(I,m+1n-—1)).

Finally, we comment on the relation between the obtained UP and its discrete ana-
logue. The obtained UP is expressed by up{|x;+jyill1<i j<n as well as some ultradiscrete
soliton solutions[4, 8]. For this type of UP, we have the following theorem[9].

Theorem 4.2.  Define
(4.3) D =[X;Y] + (1) (X Y)) < j<n,

where X; > 0,1 <Y; <Yy <---<Yy. Then det[D] can be ultradiscretized as the UP,
that is,

(4.4) E1_i>r_ri_10e€10g det[D] = upl|z; —l—jer‘ngi,jgN
holds under the transformations X; = erile | Y; = eYile.

Theorem 4.2 is proved by expanding (4.3) and using (3.3). From this theorem,
we can confirm that some discrete soliton solutions in determinant form take positive
values and can be ultradiscretized as ultradiscrete ones in UP form(See [9]). However,
the theorem cannot apply to the determinant solution to (1.2) even if we set ¢(I,m) in
(1.3) as (4.3). In fact, det[Di] may take a negative value. This fact shows there is a
gap between UP soliton solutions and the UP solution to (4.2).

8§5. Concluding Remarks

We have given an UP solution to the ultradiscrete two-dimensional Toda equation.
It is confirmed by using an ultradiscrete analogue of the Jacobi identity. In other
words, we have given a direct proof in ultradiscrete system. This approach enable
us avoiding for considering positivity and magnitude relations among parameters in
discrete systems. However, instead of that, the problem remains that the discrete
analogue of our obtained solution is not cleared. Clarifying the relations is one of future
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problems. In addition, we note that a solution to the ultradiscrete two-dimensional
Toda equation is discussed in [7] from the view point of biorthogonal polynomials. Its
solution is derived from the determinant solution with a finite boundary condition while
our solution semi-infinite condition. Investigating the relation between them is also a
future problem.

§ A. Maximum values of (3.10)

In this appendix, we give the following proposition[8].
Proposition A.1.  Suppose m, n are positive integers and p;, q; satisfy

O0=pPnt1 <Pn <pPn-1<--<p1
(A1) 0=¢n+1 <G <qu-1< <@
(m —1)(pi —pj) < ¢ — q; <m(pi — pj) (1<i<j<n+1)
Define g(o1,09,...,0,) by
n
(A.2) g(01,09,...,0,) == Zaiqi — Z Ti0iD;,
i=1 1<i<j<n
where o; is 1 or —1. Then,
(A.3) 9(01,02, ... Onky.-y0pn) > g(01,09,...,00)

holds for 0 < k <n —1. Here G; is defined by

l=n—k—1 i—1
1 ( Z aH—Z&lgm—l)

_ = l=n—k
(A.4) 0i = l:n—]l;:—l iﬁl
-1 ( Z o+ Z oy = m)
=1 I=n—k

Proof. We prove by mathematical induction on k. For k = 0, (A.3) holds since

n—1
(AS) g(0-170-27 s 76-71) - 9(0-170-27 SRR _5-71) = 25n (QR — DPn Zaz) > 0.

i=1

We assume
(A6> g(ala 02y ey On—k—1,0n—Fky--- 75-n) > g(ala 02,..-30n—k—1,0n—k,--- 70n)
holds for a certain k. Let us prove the inequality

. g 017027---75n—k—1a5n—k;---76n ) 017027"'7_6n—k—176n—k7"'70n ’
(A7) g( ) = 9( )
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where &; and &; are defined by

( l=n—k—2
1 E o <m-—1
- _ =1
On—k-1= l=n—k—2 ;
—1 E o >m
\ =1
. l=n—k—2 i—1
1 E o]+ Op_k—1+ E o <m-—1
- =1 l=n—k
(A.8) 0; = l=n—k—2 i—1 )
-1 E o+ 0n—k—1+ E gL =>m
\ =1 l=n—Fk
. l=n—k—2 i—1
1 E 0] — Op—k—1+ E op<m-—1
~ =1 = n k
0i = l=n—k—2
-1 E Oy —On—k—1+ E gL >m
. =1 l=n—Fk

Then, from (A.8), we have

(A.9)
g(O'l,O'Q,...,5'n_k_1,5'n_k;,..., ) gloy,02, H,_O_-n—k—l;a-n—k:;-",é-n)
n n—k—
:25n—k—1Qn—k—1 + g - Jz -2 E Ui6n—k—1pn—k—1
i=n—=k =1
n—k—2 n n n
> > oile; - 65)p E Gn-k-1(05+65)p; — > (5:0j — 6i0;)p;
i=1 j=n—k j=n—k i=n—k j=i+1

We denote Z;.:lkfz o; by S and consider two cases of S > mor § < m — 1.
In the case of S > m, 7; and &; are given by

(A.10)
~1 (i=n—k—1,...,58"—1)

gi = ) 0; =

(—1)5"+ (i=8*...,n) i (i # S*)
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from (A.8). The symbol S* denotes n — k + .S — m. Thus we have
(A.11)

9(017027 e 70_-n—k—175-n—k:7 R 70-71) - 9(017027 ) _5-n—k—170-n—k: s 70n)

S*—1
=2 <_Qn—k—1 +qs- +S(pn-k-1—ps)— Y pj+(ST—n+ k‘)ps»«)

i=n—k

>2(=Gn-k-1+ qs* +S(Pn—r—-1 —ps+) = (8" =n+Ek)pp_p + (S* —n+k)ps-)

=2 (~Gn-k—1+ g5+ + S(Pn—r-1 = Pn—k) + M(Pn_r — Ps-))
>2(=qn-t-1+qs + m@Pn—r—1 — Pn—k) + M(Pr—k — Ps~))
=2 (m(pn—k—1 — Ps+) = (Gn—k-1 — gs5~))

>0.

In the case of S < m — 1, 7; and 6, are given by
(A.12)
1 (i=n—-k—-1,...,5.—-1) . —0; (1=54)

0; = ) 0; =

(—1)S-+itt (i=2S5,...,n) i (i #S.)

where S, =n —k — S +m. Thus we have

9(017027 cee 75-n—k—115-n—ka <o 7Un> - 9(017027 ) _5-n—k—170-n—k7 s 7Un)

s -1
=2 (an1 —qs+ = S(Pn—k—1-Ds.)— Y pi+ (S —n+ /f)ps*>

i=n—k

(A13) >2(qn—k-1 = qs» — S(Pn—k-1 —ps+) = (S« =n+k)pn—r + (S« —n + k)ps-)
=2 (gn—k—-1 — g5+ — S(Pn—k—1 — Pn—k) — (M — 1) (Pn—k — ps.))
22 (Gn—-k-1 — qs+ — (m = 1)(pn—k—1 — Pn—k) — (M — 1) (Pn—r — ps.))
=2 (gn—t-1—gqs- — (m = 1)(pn—k—1 — ps.))
>0.

Therefore, (A.7) holds and we completed the proof.

Proposition leads that

(A.14) | max g(o1,02,...,0n) = g(G1,02,...,0n),
“I<i<n
where
1 i=1,2,...,m
(A.15) g; = ( )

(=1)m+i (i=m+1,m+2,...,n)
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Using this result, we can determine o; for L and R in (3.10).

[
2]
3]
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