
RIMS Kôkyûroku Bessatsu
B79 (2020), 19–31

Transitions of generalised Bessel kernels related to

biorthogonal ensembles

By

KAWAMOTO Yosuke ∗

Abstract

Biorthogonal ensembles are generalisations of classical orthogonal ensembles such as the

Laguerre or the Hermite ensembles. Local fluctuation of these ensembles at the origin has been

studied, and determinantal kernels in the limit are described by the Wright generalised Bessel

functions. The limit kernels are one parameter deformations of the Bessel kernel and the sine

kernel for the Laguerre weight and the Hermite weight, respectively. We study transitions from

these generalised Bessel kernels to the sine kernel under appropriate scaling limits in common

with classical kernels.

§ 1. Introduction and main results

§ 1.1. Biorthogonal ensembles

We consider random point fields on an underlying space I ⊂ R. For θ > 0, we

focus on biorothogonal ensembles with N particles, which are described by the following

probability density functions on IN

pN (x1, . . . , xN ) =
1

ZN

∏
1≤i<j≤N

(xi − xj)(x
θ
i − xθ

j )
N∏

k=1

w(xk).(1.1)

Here ZN is the normalization constant and w : I → (0,∞) is a weight function of a

certain class.
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When θ = 1, (1.1) corresponds the classical orthogonal ensembles, which include

eigenvalue distributions of Gaussian random matrices with symmetry. The classical

ensembles play a fundamental role in random matrix theory, and a lot of results have

been established (see for example [3, 9, 14, 18]). Muttalib introduced (1.1) for general

θ to describe appropriate models of disordered conductors in the metallic regime [15].

The biorthogonal ensembles have determinantal structure in common with classical

ensembles. We define the n-correlation function ρn as

ρn(x1, . . . , xn) =
N !

(N − n)!

∫
I

. . .

∫
I

pN (x1, . . . , xN ) dxn+1 . . . dxN .

A random point field is called determinantal if there exists a function K : I × I → C
such that its correlation functions satisfy

ρn(x1, . . . , xn) = det[K(xi, xj)]1≤i,j≤n

for each 1 ≤ n ≤ N . Asymptotic behaviour of determinantal random point fields hence

boils down to asymptotic analysis for determinantal kernels.

For the biorthogonal ensembles (1.1), determinantal kernels KN are expressed in

terms of biorthogonal polynomials with respect to weight w. Assume that there exist

families of polynomials {pi(x)}i∈{0}∪N and {qi(x)}i∈{0}∪N such that deg(pi) = deg(qi) =

i and that these satisfy biorthogonal relation∫
I

pi(x)qj(x
θ)w(x) dx = δij .

The polynomials of course depend on θ and w, but we suppress the dependence from

the notations. Such families exist uniquely if matrix(∫
I

xi+jθw(x) dx

)
i,j=0,...,n−1

is non-singular for each n. Then a determinantal kernel KN for (1.1) is explicitly given

by

KN (x, y) =
√
w(x)w(y)

N−1∑
i=0

pi(x)qi(y
θ).(1.2)

In the present paper, we focus on the following two classical weights:

(Biorthogonal Laguerre ensemble) I = (0,∞), w(x) = xαe−x for α > −1.

(Biorthogonal Hermite ensemble) I = R, w(x) = |x|αe−x2

for α > −1.

The determinantal kernels (1.2) for the biorthogonal Laguerre and Hermite ensem-

bles are denoted by KLag,N
α,θ and KHer,N

α,θ , respectively.
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§ 1.2. Local statistics and generalised Bessel kernels

Local statistics at the origin for the biorthogonal Laguerre and Hermite ensembles

have been studied, and limit kernels are given explicitly [4]. Both kernels are described

by the Wright generalised Bessel functions. The special function was introduced by

Wright [20], which is the entire function given by

Ja,b(x) =

∞∑
m=0

(−x)m

m!Γ(a+ bm)
,

where a ∈ C and b ∈ (0,∞). Then we set

Lα,θ(x, y) = θ

∫ 1

0

Jα+1
θ , 1θ

(xt)Jα+1,θ((yt)
θ)tα dt.(1.3)

We see the Laguerre case first. Define the biorthogonal Bessel kernel KBe,α,θ :

(0,∞)× (0,∞) → R as

KBe,α,θ(x, y) = xαLα,θ(x, y).(1.4)

Then it was obtained as hard-edge scaling limit in [4] that

lim
N→∞

1

N
1
θ

KLag,N
α,θ

( x

N
1
θ

,
y

N
1
θ

)
= KBe,α,θ(x, y).(1.5)

We remark that the limit kernel is one parametrisation of the Bessel kernel KBe,α, which

is given by

KBe,α(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
,

where Jα is the Bessel function of order α. The Bessel kernel is arising from the hard-

edge scaling limit of the Laguerre unitary ensembles [8, 19]. When θ = 1, we see that

the biorthogonal Bessel kernel corresponds to the Bessel kernel as expected.

Borodin also showed that the biorthogonal Bessel kernel appeared as hard-edge

scaling limit of biorthogonal Jacobi ensemble, that is, the case that the weight is given

by w(x) = xα on I = (0, 1).

To see local statistics for the Hermite case, define the biorthogonal sine kernel

Ksin,α,θ : R× R → R as

Ksin,α,θ(x, y) = |x|α
{
Lα−1

2 ,θ(x
2, y2) + xθyLα+θ

2 ,θ(x
2, y2)

}
.

Then it was shown in [4] that

lim
N→∞

( 2

N

) 1
2θKHer,N

α,θ

(( 2

N

) 1
2θ x,

( 2

N

) 1
2θ y

)
= Ksin,α,θ(x, y).
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The limit kernel Ksin,α,θ is a generalisation of the sine kernel

Ksin(x, y) =
sinπ(x− y)

π(x− y)
,

which appears as the bulk scaling limit of the Gaussian or Laguerre unitary ensembles.

Actually when α = 0 and θ = 1, it is not difficult to see

Ksin,0,1(x, y) =
2

π
Ksin

( 2

π
x,

2

π
y
)
.

Recently, more and more studies on the biorthogonal Laguerre ensembles have been

done. Random matrix models related to the biorthogonal ensembles were found [6, 11].

They gave specific random matrices whose eigenvalue distributions are given by the

biorthogonal Laguerre ensembles.

Furthermore, it has been found intimate relations between the biorthogonal La-

guerre ensembles and the products of non-Hermitian random matrices. The Ginibre

matrices are square random matrices with no symmetry whose entries are independent

complex Gaussian distributions. It was shown that the squared singular values of M

products of independent Ginibre matrices were determinantal random point fields, and

its kernels were written in terms of Meijer G-functions [2]. This result was extended to

the case of products of rectangle Ginibre matrices [1]. For θ = M or θ = 1/M , these

kernels and the limit kernel of hard-edge scaling limit are related to KLag,N
α,θ and KBe,α,θ,

respectively [13, 21].

The global density of the biorthogonal Laguerre ensembles was studied in [7, 10, 11].

The limiting distribution of the empirical distribution of (x1

N , . . . , xN

N ) as N → ∞, where

(x1, . . . , xN ) are particles under the biorthogonal Laguerre ensemble, is given by the

associated equilibrium measure.

Furthermore, the global density is specified by the Fuss-Catalan distribution under

suitable scaling. Let ρθ be the probability density function which is uniquely determined

such that the s-th moment is the Fuss-Catalan number∫ ∞

0

xsρθ(x) dx =
1

θs+ 1

(
θs+ s

s

)
.

Then ρθ determines a probability measure on [0, (1+θ)1+θ/θθ], which is called the Fuss-

Catalan distribution. After change of variables sk = ( xk

Nθ )
θ for (x1, . . . , xN ) under the

biorthogonal Laguerre ensemble, we get that the empirical distribution of (s1, . . . , sN )

converges to the Fuss-Catalan distribution as N to infinity.

The density function of the Fuss-Catalan distribution is explicitly described by

using the following parametrisation. We consider

x =
(sin((1 + θ)φ))1+θ

sinφ(sin(θφ))θ
for 0 < φ <

π

1 + θ
,
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and this gives a one-to-one correspondence between (0, π/(1+θ)) and (0, (1+θ)1+θ/θθ).

The density function in terms of this parametrisation is given by

ρθ(x) =
1

πx

sin((1 + θ)φ) sinφ

sin(θφ)
=

sin(θφ)θ−1(sinφ)2

π sin((θ + 1)φ)θ
for 0 < φ <

π

1 + θ
.

Local statistics of the biorhogonal Laguerre ensembles other than the origin was also

shown [21]. For any α and θ, let x0 be a point in the bulk region x0 ∈ (0, (1+θ)1+θ/θθ),

then we have

lim
N→∞

eπ(cotφ)(x−y) x
1−θ
θ

0

ρθ(φ)
KLag,N

α,θ

(
Nθ

(
x0 +

x

Nρθ(φ)

) 1
θ

, Nθ
(
x0 +

y

Nρθ(φ)

) 1
θ
)

(1.6)

= Ksin(x, y),

uniformly for x and y in any compact subset in R. At the soft-edge x0 = (1+ θ)1+θ/θθ,

the Airy kernel was obtained as an appropriate scaling limit [21].

One of the most important topic in random matrix theory is the universality for

random matrices in the following sense: limit kernels such as the Bessel, the sine, and

the Airy kernels, which are obtained as local fluctuation of classical Gaussian ensembles,

are reobtained from eigenvalue distributions of a quite wide class of random matrices, or

log-gases with a quite wide class of weight functions. It is reasonable to believe that the

biorthogonal Bessel kernel and the birothogonal sine kernel are also universal. In fact,

when θ = 1
2 , the universality of the biorthogonal Bessel kernel was shown for general

Laguerre type weight [12].

§ 1.3. Transition of generalised Bessel kernels

For the classical case θ = 1, there exist transition relations between three universal

kernels, that is, the Bessel, the sine, and the Airy kernels [5, 8]. We focus on hard-edge

to bulk transition in the sense that the distribution at the hard-edge tends to the bulk

distribution at large distance from the hard-edge of the system up to scaling. More

precisely the scaled Bessel kernel converges to the sine kernel: for any α > −1,

lim
c→∞

π
√
cKBe,α(c+ π

√
cx, c+ π

√
cy) = Ksin(x, y).

Local statistics on the bulk (1.6) indicates that hard-edge to bulk transition also holds

for general θ, and the main aim of the present paper is to show the transition. Let

ρ1Be,α,θ be the one-correlation function with respect to KBe,α,θ, that is, ρ1Be,α,θ(x, x) =

KBe,α,θ(x, x). Taking into account of asymptotics

ρ1Be,α,θ(x) ∼
θ

1
1+θ sin( π

1+θ )

π
x− 1

1+θ as x → ∞,
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we set the scaled biorthogonal Bessel kernel

Kc
Be,α,θ(x, y) =

πc
1

1+θ

θ
1

1+θ sin( π
1+θ )

KBe,α,θ

(
c+

πc
1

1+θ

θ
1

1+θ sin( π
1+θ )

x, c+
πc

1
1+θ

θ
1

1+θ sin( π
1+θ )

y
)
.(1.7)

Then we have the following hard-edge to bulk transitions for the biorthogonal Bessel

kernels.

Theorem 1.1. For any α > −1 and θ > 0, we have

lim
c→∞

eπ cot( π
1+θ )(x−y)Kc

Be,α,θ(x, y) = Ksin(x, y).(1.8)

uniformly for x and y in compact subsets.

Remark. The factor eπ cot( π
1+θ )(x−y) in the left hand side of (1.8) is not essen-

tial, because K(x, y) and f(x)
f(y)K(x, y) define the same determinantal kernel for a non-

vanishing function f . We choose the factor in Theorem 1.1 such that the limit form is

Ksin.

Theorem 1.1 is lifted to the convergence of associated random point fields. Determi-

nantal random point fields associated with Hermitian kernels are studied in [16, 17]. Al-

though KBe,α,θ is non-Hermitian, there exists determinantal random point field µBe,α,θ

associated with KBe,α,θ, because (1.5) holds also in compact uniform sense [11, 21].

Furthermore, compact uniform convergence of kernels implies weak convergence of the

associated determinantal random point fields. (See e.g. [16, Proposition 3.11] for Her-

mitian kernels. The same claim holds for the non-Hermitian case.) We then conclude

the following as a corollary of Theorem 1.1.

Corollary 1.2. Let µc
Be,α,θ be the determinantal random point field associated

with Kc
Be,α,θ. Let µsin be the sine random point field, that is, the determinantal random

point field associated with Ksin. Then we have

lim
c→∞

µc
Be,α,θ = µsin weakly.

In contrast to the biorthogonal Laguerre ensembles, studies on the biorthogonal

Hermite ensembles has not made much progress. To our best knowledge, the global

density for the biorthogonal Hermite ensembles is not known precisely, and especially,

bulk region has not been found. Accordingly, local statistics on bulk except for the

origin has not been shown. On the other hand, computation for Theorem 1.1 also yields

a transition of the biorthogonal sine kernels, that is, the biorthogonal sine kernels are

approximately the sine kernel at large distance from the origin. This fact supports the
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intuition that local statistics on bulk except for the origin is given by the sine kernel.

Remark that

ρ1sin,α,θ(x) ∼
2θ

1
1+θ sin( π

1+θ )

π
x

−1+θ
1+θ as |x| → ∞,

where ρ1sin,α,θ is the one-correlation function with respect toKsin,α,θ, that is, ρ
1
sin,α,θ(x) =

Ksin,α,θ(x, x). We then set

Kc
sin,α,θ(x, y) =

πc
1−θ
1+θ

2θ
1

1+θ sin( π
1+θ )

Ksin,α,θ

(
c+

πc
1−θ
1+θ

2θ
1

1+θ sin( π
1+θ )

x, c+
πc

1−θ
1+θ

2θ
1

1+θ sin( π
1+θ )

y
)
.

Theorem 1.3. For any α > −1 and θ > 0, we have

lim
c→∞

eπ cot( π
1+θ )(x−y)Kc

sin,α,θ(x, y) = Ksin(x, y),

uniformly for x and y in compact subsets.

Remark. If the determinantal random point field associated with Ksin,α,θ exists,

then we immediately see that Theorem 1.3 derives convergence of the associated random

point fields same as Corollary 1.2. However, we cannot show the existence using the

results in [16, 17] directly, since Ksin,α,θ is not Hermitian kernel. Compact uniform

convergence of (1.6) yields the existence, whilst (1.6) has been proven only pointwise

convergence currently unlike the case of the biorthogonal Bessel kernel.

§ 2. Proof of the main results

§ 2.1. Asymptotics of the Wright generalised Bessel functions

In this subsection we prepare asymptotics of the Wright generalised Bessel func-

tions. Remarking that our definition of the Wright generalised Bessel functions is dif-

ferent to that in [20], we quote the following asymptotic result.

Lemma 2.1 ([20]). Assume α > −1 and θ > 0. We assume arg(z) = ξ, |ξ| ≤ π,

and set

Z1 = (θ|z|)
1

1+θ ei
ξ+π
1+θ , Z2 = (θ|z|)

1
1+θ ei

ξ−π
1+θ .

Then we have

Jα,θ(z) = H(Z1) +H(Z2),

where H(z) satisfies

H(z) = z
1
2−αe(1+θ−1)z

{ M∑
m=0

(−1)mam
zm

+O(|z|−M−1)
}
, as |z| → ∞

for any M . Here {ak}k∈N are constants which depend on α and θ.
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We note that {ak}k∈N are explicitly given in [20], and especially a0 = (2π(1+θ))−
1
2 .

For simplifying notations we put

θ̂ =
1 + θ

θ
θ

1+θ

.(2.1)

Then Lemma 2.1 yields the following key estimates.

Lemma 2.2.

(1) For x ≥ 0 we have

Jα,θ(x) = J̃α,θ(x)(1 +O(x− 1
1+θ )),(2.2)

where

J̃α,θ(x) =

√
2

π(1 + θ)
(θx)(

1
2−α) 1

1+θ exp
{
(1 + θ−1)(θx)

1
1+θ cos

( π

1 + θ

)}
(2.3)

× cos
((1

2
− α

) π

1 + θ
+ (1 + θ−1)(θx)

1
1+θ sin

( π

1 + θ

))
.

(2) We have

J̃α+1
θ , 1θ

(x)J̃α+1,θ(y
θ) =

θ
1

1+θ

π(1 + θ)
x

θ−2α−2
2(1+θ) y−

θ(1+2α)
2(1+θ) exp

{
θ̂ cos

( π

1 + θ

)
(−x

θ
1+θ + y

θ
1+θ )

}
×
{
cos

(θ − 4α− 3

2(1 + θ)
π + θ̂ sin(

π

1 + θ
)(x

θ
1+θ + y

θ
1+θ )

)
+ cos

( θ − 1

2(1 + θ)
π + θ̂ sin

( π

1 + θ

)
(x

θ
1+θ − y

θ
1+θ )

)}
.

Proof. We use Lemma 2.1 for M = 0. Then we see (2.2) from direct computation.

It is not difficult to see (2) from (2.3) and trigonometric formulae.

§ 2.2. Proof of Theorem 1.1

We give a proof of Theorem 1.1 in this subsection using the asymptotic results in

the previous subsection. To simplify notations we use

xc = c+
πc

1
1+θ

θ
1

1+θ sin( π
1+θ )

x, yc = c+
πc

1
1+θ

θ
1

1+θ sin( π
1+θ )

y.(2.4)

Then from (1.3), (1.4), and (1.7) we have

Kc
Be,α,θ(x, y) =

θ
θ

1+θ π

sin( π
1+θ )

c
1

1+θ xα
c

∫ 1

0

Jα+1
θ , 1θ

(xct)Jα+1,θ((yct)
θ)tα dt

=
θ

θ
1+θ π

sin( π
1+θ )

(I1 + I2),(2.5)
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where we set

I1(x, y) =c
1

1+θ xα
c

∫ 1

c−1 log c

Jα+1
θ , 1θ

(xct)Jα+1,θ((yct)
θ)tα dt,

I2(x, y) =c
1

1+θ xα
c

∫ c−1 log c

0

Jα+1
θ , 1θ

(xct)Jα+1,θ((yct)
θ)tα dt.

Let us analyse I1 first, which turns out to be a main term. Because O((xct)
− 1

1+θ ) =

O((log c)−
1

1+θ ) and O(((yct)
θ)−

1
1+θ ) = O((log c)−

θ
1+θ ) as c to infinity uniformly for

t ≥ c−1 log c and x, y in compact subsets, we obtain from Lemma 2.2 (1) that

I1(x, y) = c
1

1+θ xα
c

∫ 1

c−1 log c

J̃α+1
θ , 1θ

(xct)J̃α+1,θ((yct)
θ)tα dt

(
1 +O

(
(log c)−min{ 1

1+θ ,
θ

1+θ }
))
,

where the error term is uniform for x, y in compact subsets. Then Lemma 2.2 (2) yields

I1(x, y) =
θ

1
1+θ

π(1 + θ)
(Ĩ1(x, y) + Ĩ2(x, y))

(
1 +O

(
(log c)−min{ 1

1+θ ,
θ

1+θ }
))
,(2.6)

where

Ĩ1(x, y) =c
1

1+θ xα
c

∫ 1

c−1 log c

x
θ−2α−2
2(1+θ)

c y
− θ(1+2α)

2(1+θ)
c t−

1
1+θ exp

{
θ̂ cos

( π

1 + θ

)
(−x

θ
1+θ
c + y

θ
1+θ
c )t

θ
1+θ

}
× cos

(θ − 4α− 3

2(1 + θ)
π + θ̂ sin

( π

1 + θ

)
(x

θ
1+θ
c + y

θ
1+θ
c )t

θ
1+θ

)
dt,

Ĩ2(x, y) =c
1

1+θ xα
c

∫ 1

c−1 log c

x
θ−2α−2
2(1+θ)

c y
− θ(1+2α)

2(1+θ)
c t−

1
1+θ exp

{
θ̂ cos

( π

1 + θ

)
(−x

θ
1+θ
c + y

θ
1+θ
c )t

θ
1+θ

}
× cos

( θ − 1

2(1 + θ)
π + θ̂ sin

( π

1 + θ

)
(x

θ
1+θ
c − y

θ
1+θ
c )t

θ
1+θ

)
dt.

Here θ̂ is given by (2.1) as before.

Lemma 2.3. We have the following compact uniform convergence for x and y:

lim
c→∞

Ĩ1(x, y) = 0, lim
c→∞

Ĩ2(x, y) = eπ cot( π
1+θ )(−x+y)

(1 + θ) sin( π
1+θ )

θ
Ksin(x, y),(2.7)

and in particular,

lim
c→∞

I1(x, y) = eπ cot( π
1+θ )(−x+y)

sin( π
1+θ )

θ
θ

1+θ π
Ksin(x, y).(2.8)

Proof. Note that limc→∞ c
1

1+θ xα
c x

θ−2α−2
2(1+θ)

c y
− θ(1+2α)

2(1+θ)
c = 1 since xc and yc are given

as (2.4). Furthermore, we see

x
θ

1+θ
c + y

θ
1+θ
c = 2c

θ
1+θ +O(1),(2.9)

x
θ

1+θ
c − y

θ
1+θ
c =

π

θ̂ sin( π
1+θ )

(x− y) +O(c−
θ

1+θ ),(2.10)
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as c to infinity, where the error terms are uniform for x, y in compact subsets. Because

of (2.9) and θ̂ sin( π
1+θ ) > 0, cosine in the integrand of Ĩ1 oscillates. Therefore integration

by parts yields that

lim
c→∞

Ĩ1(x, y) = lim
c→∞

∫ 1

c−1 log c

t−
1

1+θ eπ cot( π
1+θ )(−x+y)t

θ
1+θ

× cos
(θ − 4α− 3

2(1 + θ)
π + θ̂ sin

( π

1 + θ

)
(2c

θ
1+θ +O(1))t

θ
1+θ

)
dt

= 0.

On the other hand, (2.10) and straightforward calculation yield

lim
c→∞

Ĩ2(x, y) =

∫ 1

0

t−
1

1+θ eπ cot( π
1+θ )(−x+y)t

θ
1+θ

cos
( θ − 1

2(1 + θ)
π + π(x− y)t

θ
1+θ

)
dt

=
1 + θ

θ

∫ 1

0

eπ cot( π
1+θ )(−x+y)t sin

( π

1 + θ
− π(x− y)t

)
dt

= eπ cot( π
1+θ )(−x+y)

(1 + θ) sin( π
1+θ )

θ

sinπ(x− y)

π(x− y)
.

Finally (2.8) follows from (2.6) and (2.7).

Lemma 2.4. We have

lim
c→∞

I2(x, y) = 0,

uniformly for x and y in compact subsets.

Proof. By change of variables we get

I2(x, y) = c−
θ

1+θ

(xc

c

)α
∫ log c

0

Jα+1
θ , 1θ

(c−1xct)Jα+1,θ((c
−1yct)

θ)tα dt.

Fix a compact set K ⊂ [0,∞). Then from Lemma 2.2 (1), there exist positive

constants m and c1 which are independent of t, x, y such that for any t ≥ m and

x, y ∈ K,

|Jα+1
θ , 1θ

(c−1xct)Jα+1,θ((c
−1yct)

θ)tα| ≤ c1 exp
{
θ̂ cos

( π

1 + θ

)( t
c

) θ
1+θ (−x

θ
1+θ
c + y

θ
1+θ
c )

}
.

Combining this with (2.10) we have

lim
c→∞

sup
x,y∈K

∣∣∣c− θ
1+θ

(xc

c

)α
∫ log c

m

Jα+1
θ , 1θ

(c−1xct)Jα+1,θ((c
−1yct)

θ)tα dt
∣∣∣ = 0.(2.11)

Since the Wright generalised Bessel functions are analytic, then there exists a pos-

itive constant c2 such that

sup
c∈N,t∈[0,m], x,y∈K

∣∣∣(xc

c

)α

Jα+1
θ , 1θ

(c−1xct)Jα+1,θ((c
−1yct)

θ)tα
∣∣∣ ≤ c2,
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which yields

lim
c→∞

sup
x,y∈K

∣∣∣c− θ
1+θ

(xc

c

)α
∫ m

0

Jα+1
θ , 1θ

(c−1xct)Jα+1,θ((c
−1yct)

θ)tα dt
∣∣∣(2.12)

≤ lim
c→∞

mc2c
− θ

1+θ = 0.

We then conclude the lemma from (2.11) and (2.12).

Proof of Theorem 1.1

Theorem 1.1 immediately follows from (2.5), Lemma 2.3 and Lemma 2.4.

§ 2.3. Proof of Theorem 1.3

We can prove Theorem 1.3 by similar calculation as in the proof of Theorem 1.1.

For simplicity we set

x̃c = c+
πc

1−θ
1+θ

2θ
1

1+θ sin( π
1+θ )

x, ỹc = c+
πc

1−θ
1+θ

2θ
1

1+θ sin( π
1+θ )

y.

Then

Kc
sin,α,θ(x, y) =

πc
1−θ
1+θ |x̃c|α

2θ
1

1+θ sin( π
1+θ )

{
Lα−1

2 ,θ(x̃
2
c , ỹ

2
c ) + x̃θ

c ỹcLα+θ
2 ,θ(x̃

2
c , ỹ

2
c )
}
.(2.13)

Lemma 2.5. We have

lim
c→∞

c
1−θ
1+θ |x̃c|αLα−1

2 ,θ(x̃
2
c , ỹ

2
c ) = lim

c→∞
c

1−θ
1+θ |x̃c|αx̃θ

c ỹcLα+θ
2 ,θ(x̃

2
c , ỹ

2
c )(2.14)

=
θ

1
1+θ sin( π

1+θ )

π
eπ cot( π

1+θ )(−x+y)Ksin(x, y),

uniformly for x and y in compact subsets.

Proof. Following the proof in Section 2.2, we divide the integral into two parts as

follows:

c
1−θ
1+θ |x̃c|αLα−1

2 ,θ(x̃
2
c , ỹ

2
c )(2.15)

= θc
1−θ
1+θ |x̃c|α

{∫ c−2 log c

0

+

∫ 1

c−2 log c

}
Jα+1

2θ , 1θ
(x̃2

ct)Jα+1
2 ,θ((ỹ

2
c t)

θ)t
α−1
2 dt.

Using Lemma 2.2 and the fact that

x̃
2θ

1+θ
c − ỹ

2θ
1+θ
c =

π

θ̂ sin( π
1+θ )

(x− y) +O(c−
2θ

1+θ ),

we get that the second integral of the right hand side of (2.15) converges to the most

right hand side of (2.14), and the first integral vanishes. The calculations are the same

manner as in Lemma 2.3 and Lemma 2.4 respectively, we then omit it.

Furthermore, we can obtain the second equality in (2.14) by the same way.
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Proof of Theorem 1.3

Theorem 1.3 immediately follows from (2.13) and Lemma 2.5.
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