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New high-dimensional examples of ballistic random

walks in random environment

By

Ryoki Fukushima∗ and Alejandro F. Raḿırez∗∗

Abstract

We give new criteria for ballistic behavior of random walks in random environment which

are perturbations of the simple symmetric random walk on Zd in dimensions d ≥ 4. Our

results extend those of Sznitman [Ann. Probab. 31, no. 1, 285-322 (2003)] and the recent ones

of Ramı́rez and Saglietti [Preprint, arXiv:1808.01523], and allow us to exhibit new examples

in dimensions d ≥ 4 of ballistic random walks which do not satisfy Kalikow’s condition. Our

criteria implies ballisticity whenever the average of the local drift of the walk is not too small

compared with an appropriate moment of the centered environment. The proof relies on a

concentration inequality of Boucheron et al. [Ann. Probab. 33, no. 2, 514-560 (2005)].

§ 1. Introduction

A challenging open question about the model of multidimensional random walk in

random environment (RWRE), in the case of an independent and identically distributed

(i.i.d.) uniformly elliptic environment, is to characterize when the random walk is bal-

listic or not in terms of the law of the environment at a single site.

Received February 22, 2019. Revised July 9, 2019.
2010 Mathematics Subject Classification(s): 60K37, 82D30, 82C41.
Key Words: Random walk in random environment, small perturbations of simple random walk,
ballistic behavior, concentration inequalities.
This work was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University. R. Fukushima was supported by JSPS
KAKENHI Grant Number 16K05200. A.F. Ramı́rez was supported by Iniciativa Cient́ıfica Milenio,
Fondo Nacional de Desarrollo Cient́ıfico y Tecnológico 1180259 and JSPS KAKENHI Grant Number
JP17H01093. A.F. Ramı́rez thanks the Technische Universität München, where part of this work
was done, for its support.

∗Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-
ku, Kyoto 606-8502, Japan.
e-mail: ryoki@kurims.kyoto-u.ac.jp
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The first result in this direction is [SZ99], where it is proved that Kalikow’s condition

for the directional transience in [Kal81] implies ballisticity. Although the condition

itself depends on the whole environment, one can derive some sufficient conditions in

terms of the law of the environment at a single site, such as [SZ99, (2.36)] and [BS02,

Proposition 5.1].

Beyond Kalikow’s condition, partial answers to the question of ballisticity have

been given for the environments which are small perturbations of the simple symmetric

random walk on Zd. For dimensions d ≥ 3, Sznitman [Szn03] derived conditions on

the averaged local drift which imply ballisticity. Essentially, he showed that whenever

the averaged local drift in a given direction is not too small with respect to the L∞-

norm of the perturbation, one has ballistic behavior in that direction. As a corollary

of his results, he was able to provide examples of ballistic random walks in dimensions

d ≥ 3 that do not satisfy Kalikow’s condition. An improvement of these results was

obtained by Ramı́rez and Saglietti [RS19]. There, a ballisticity condition in terms of the

L2 and L∞-norms of the perturbation is proved, as well as a sharp sufficient condition

for Kalikow’s condition. The former condition is shown to improve that in [Szn03]

when d = 3. As a consequence, new examples of ballistic RWRE, which satisfy neither

Kalikow’s condition nor the conditions in [Szn03], were obtained in dimension d = 3.

In this article we refine the results of Sznitman [Szn03] in dimensions d ≥ 4, pro-

viding a ballisticity condition in terms of L2r and L∞-norms of the perturbation. As

a corollary, this gives new examples of ballistic RWRE which satisfy neither Kalikow’s

condition nor the conditions in [Szn03].

For more details on earlier works, see Section 2.2.

§ 2. Background and main results

§ 2.1. The model and basic assumptions

Let d ≥ 2 and write for each x ∈ Zd its ℓ1-norm as |x|. Define V := {x ∈ Zd :

|x| = 1} and denote by P the set of all probability vectors p = (p(e))e∈V on V . We now

consider the environmental space Ω := PZd

, and call each element ω = (ω(x))x∈Zd ∈ Ω

an environment. For each x ∈ Zd, we denote the components of ω(x) by ω(x, e) so

that ω(x) = (ω(x, e))e∈V . The random walk in the environment ω starting from x ∈ Zd

is then defined as the Markov chain X = (Xn)n≥0 which starts from x, and has the

transition probabilities

Px,ω(Xn+1 = y + e | Xn = y) = ω(y, e)

for all y ∈ Zd and e ∈ V . We denote its law by Px,ω and call it the quenched law of the

random walk. Let now P be a probability measure defined on Ω. Define the semi-direct



New high-dimensional examples of ballistic RWRE 111

product Px := P⊗ Px,ω on Ω× (Zd)N as

Px(A×B) :=

∫
A

Px,ω(B)dP.

We call Px the averaged or annealed law of the random walk starting from x.

Throughout this article, we will assume that (ω(x))x∈Zd are i.i.d. under P. We will

denote by µ the common law of ω(x), x ∈ Zd, that is, P = µZd

. We will also assume

that each ω(x) is a small perturbation of the weights of the simple symmetric random

walk, that is,

(2.1) ϵ = ϵ(µ) := 4d

∥∥∥∥ω(0)− ( 1

2d
, . . . ,

1

2d

)∥∥∥∥
L∞(µ)

∈ (0, 1),

where for any random vector v = (v(e))e∈V , we define its L∞(µ)-norm as

||v||L∞(µ) := inf{m > 0: |v(e)| ≤ m, µ-a.s. for all e ∈ V }.

Note that (2.1) implies that there exists an event Ωϵ with P(Ωϵ) = 1 such that for any

ω ∈ Ωϵ, x ∈ Zd and e ∈ V , ∣∣∣∣ω(x, e)− 1

2d

∣∣∣∣ ≤ ϵ

4d
.

As a consequence, it follows that P is uniformly elliptic, that is, ω(x, e) ≥ κ for all

x ∈ Zd and e ∈ V with

κ :=
1

4d
.

In the statement of our result, as well as earlier works, we use the local drift of the

RWRE at site x defined by

d(x, ω) :=
∑
e∈V

ω(x, e)e,

and the average local drift in direction e1 defined by

λ := E[d(0) · e1].

(We will omit ω when we write an expectation.)

§ 2.2. Background and earlier works

We explain the background on the question of ballisticity for RWRE which we

address in this paper. Let us start by introducing the concepts of directional transience

which is closely related to ballisticity. Given l ∈ Sd−1 := {x ∈ Rd : |x| = 1}, one says

that the random walk is transient in direction l if

lim
n→∞

Xn · l = ∞ P0-a.s.
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On the other hand, one says that it is ballistic in direction l if it satisfies

lim inf
n→∞

Xn · l
n

> 0 P0-a.s.

It is well-known that any random walk in an i.i.d. uniformly elliptic environment which

is ballistic in direction l satisfies

(2.2) lim
n→∞

Xn

n
= vP,

where vP is deterministic and vP · l > 0. See, for example, [DR14, Theorem 12 and

Remark 6]. An open question about the RWRE model is whether in dimensions d ≥ 2,

every random walk in an i.i.d. uniformly elliptic environment which is transient in a

given direction, is ballistic (see [Szn04, p.243] for example).

Historically, Kalikow had found a sufficient condition for the directional transience

in [Kal81] and that condition was later proved to imply ballisticity in [SZ99], where it

is called Kalikow’s condition. In order to understand the relation between directional

transience and ballisticity, several quantitative conditions for the directional transience

have been introduced. In [Szn01, Szn02], Sznitman defined the so-called conditions (T)

and (T′): for γ ∈ (0, 1] and l ∈ Sd−1, we say that condition (T)γ |l is satisfied if there

exists an open set O ⊂ Sd−1 which contains l, such that for every l′ ∈ O,

lim sup
L→∞

1

Lγ
logP0

(
XTU

L,l′
· l′ < 0

)
< 0,

where

UL,l′ := {x ∈ Zd : −L ≤ x · l′ ≤ L}.

Condition (T)|l is nothing but (T)1|l, while we say that condition (T′)|l is satisfied

if (T)γ |l is satisfied for all γ ∈ (0, 1). In [BDR14], for each M ≥ 1 and l ∈ Sd−1,

the polynomial condition (P)M |l was introduced, which is essentially defined as the

requirement that the probability P0(XTU
L,l′

· l′ < 0) decays like L−M for l ∈ O, where

O ⊂ Sd−1 contains l. It is currently known that conditions (P)M |l for M ≥ 15d + 5,

(T)γ |l for γ ∈ (0, 1), (T′)|l and (T)|l are all equivalent (see [Szn02, BDR14, GR18]) and

they imply (2.2). In this paper, we write (P) for (P)15d+5|e1 to simplify the notation.

Now we turn to the earlier works more directly related to our results. First, al-

though it is natural to expect that the condition E[d(0) · e1] > 0 implies ballisticity

in direction e1, it is not the case since in [BSZ03], examples of random walks with

E[d(0) · e1] > 0 and vP = 0 or even vP · e1 < 0 are given. This illustrates a complicated

nature of the ballisticity question. On the other hand, it was shown in [Szn03], improv-

ing upon [Szn02], that such a pathology does not occur when the environment is a small

perturbation of simple symmetric random walk. More precisely, for any η ∈ (0, 1), there
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exists some ϵ0 = ϵ(η, d) ∈ (0, 1) such that if ϵ ≤ ϵ0 (recall (2.1)) and

(2.3) λ := E[d(0) · e1] ≥

ϵ2.5−η if d = 3,

ϵ3−η if d ≥ 4,

then the random walk satisfies condition (T′) (and hence (T)) in direction e1. Sub-

sequently in [RS19], an improvement of this result was obtained comparing λ to the

variance of the environment at a given site. To state this extension, we define δ̃(0, e) :=

ω(0, e)− E[ω(0, e)] and

(2.4) σ2r :=

(∑
e∈V

E
[
δ̃(0, e)2r

]) 1
2r

≤ (2d)
1
2r ϵ,

where the inequality holds when P(Ωϵ) = 1. Note that by the Hölder inequality, we

have σ2 ≤ (2d)
r−1
r σ2r. One of the main results in [RS19] says that if d = 3, for any

η ∈ (0, 1) there exists ϵ0 = ϵ0(η) ∈ (0, 1) such that if ϵ ≤ ϵ0 and

λ ≥ σ2ϵ
1.5−η,

then condition (P) is satisfied. It is natural to expect that an improvement of Sznitman’s

result in [Szn03] should be also possible in dimensions d ≥ 4, replacing the right-hand

side of (2.3) by some quantity similar to the variance. This is the content of our main

result that we present in the next section.

§ 2.3. Main results

Theorem 2.1. Suppose d ≥ 4 and P(Ωϵ) = 1. Then, for every r ≥ 144d2, there

exists an ϵ0(r) ∈ (0, 1) such that if ϵ ≤ ϵ0 and

(2.5) λ := E[d(0 · e1)] ≥
√
rσ2rϵ

2− 1√
r ,

then condition (T) holds in direction e1. In particular, X is ballistic in direction e1.

Theorem 2.1 gives new examples (apart from those already given in [Szn03]) of bal-

listic random walks in dimensions d ≥ 4 which satisfy (T) but not Kalikow’s condition.

Corollary 2.2. Given ϵ0 > 0, there exist RWRE in dimensions d ≥ 4 satisfy-

ing (2.5) and such that

(i) P(Ωϵ) = 1 for ϵ ≤ ϵ0 and λ := E[d(0) · e1] ≤ ϵ3,

(ii) (T) holds in direction e1 but Kalikow’s condition fails in all directions.
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As in [Szn03] and [RS19], such an example can be constructed by first fixing ρ ∈
(0, 1] and by setting µ to be the law of the random probability ω(0) on P given by

ω(0, e) = p(e) +
λ

2
e · e1 for e ∈ V,

where λ > 0 is a constant to be specified later and (p(e))e∈V is a random probability

vector with distribution µ̂ on P which is isotropic (i.e., invariant under rotations of R3

which preserve Z3) and such that

Varµ̂(p(e1))− Covµ̂(p(e1), p(−e1)) ≥ ρσ2(µ̂) > 0.

It is not difficult to check that given r ≥ 144d2, one can choose constants k1, k2, k3 > 0

(depending only on r, ϵ0 and ρ) such that

ϵ(µ̂) ≤ k1ϵ0 and

k2ϵ(µ̂)
1.9 ≤ σ2 ≤ (2d)

r−1
r σ2r ≤ k3ϵ(µ̂)

1.1.

We can now choose λ so that both (2.5) and condition (i) of Corollary 2.2 is satisfied.

The fact that Kalikow’s condition is not satisfied is a consequence of [RS19, Theorem 5].

§ 3. Proof of Theorem 2.1

Let us first explain the outline of the proof, which largely follows the arguments

in [Szn03] and [RS19].

In Section 3.1, we introduce some notation and preliminary results. In particular,

we quote a sufficient condition for (P) from [RS19], which we will verify in order to prove

ballisticity. It is given in terms of an exit distribution from a large box. In [Szn03],

Sznitman developed a renormalization argument to reduce the problem to two conditions

on ρ̂ and p defined below, which are of perturbative nature. We will not reproduce the

argument but the result in Lemma 3.1.

In Section 3.2, we show how to apply Lemma 3.1 in our setting. One of the condition

(on p) follows from relatively weak L∞-control on the perturbation. The other condition

(on ρ̂) is about a uniform positivity of the Green operator applied to the local drift in

direction e1, which we will denote by GU [d · e1](0). Assuming two propositions on this

quantity, we complete the proof of ballisticity.

In Section 3.3, we prove the two propositions left unproved in the previous section.

The first says that the mean value E[GU [d ·e1](0)] is positive and not too small, and the

second says that GU [d ·e1](0) is concentrated around the mean. For the first one, we use

the same bound as in [RS19]. For the second, we use a concentration inequality due to

Boucheron, Bousquet, Lugosi and Massart [BBLM05], which is a high moment analogue
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of the Efron-Stein inequality (see also [BLM13]). Previously, this concentration bound

is proved by the Azuma–Hoeffding inequality in [Szn03], and its variation that takes

into account the variance in [RS19].

§ 3.1. Notation and preliminaries

In this section, we introduce some notations and preliminary results which will be

used in the proof. For A ⊂ Zd, we denote its outer boundary by

(3.1) ∂A := {y ∈ Zd \A : |y − z| = 1 for some z ∈ A}

and the first exit time of the random walk from A by TA := inf{n ≥ 0: Xn ̸∈ A}.
In order to state a sufficient condition for (P), we define a box and its frontal side

for M ∈ N (to be fixed later) by

B := (−M,M)×
(
−1

4
M3,

1

4
M3

)d−1

,

∂+B := {x ∈ ∂B : x · e1 ≥ M}.

Following the argument in [RS19, (23) and (24)], we find that if

(3.2) P0(XTB
̸∈ ∂+B) <

1

M15d+5
for some M ≥ exp{100 + 4d(log κ)2},

then condition (P) holds.

The condition (3.2) is a kind of effective (i.e., finite volume) criterion but it is still

hard to check in practice. We quote a result from [Szn03] that gives a bound on the

left-hand side of (3.2) in terms of more explicit functional of ω. To this end, note first

that by using the quenched exit probability

qB(ω) := P0,ω(XTB
/∈ ∂+B) and ρB(ω) :=

qB(ω)

1− qB(ω)
,

we can bound

(3.3) P0(XTB
/∈ ∂+B) = E[qB ] ≤ E[

√
ρB ].

To estimate the right-hand side of (3.3), we are going to use [Szn03, Theorem 1.1] which

requires further notation. Let us first introduce the second mesoscopic scale L ∈ N and

define the slab

U := UL,e1 = {y ∈ Z : −L ≤ y · e1 < L}.

We define the Green operator on L∞(U) by the formula

GU [f ](x, ω) := Ex,ω

[
TU−1∑
n=0

f(Xn)

]
,
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and then

ρ̂ := sup

{
1− 1

LGU [d · e1](x)
1 + 1

LGU [d · e1](x)
: x · e1 = 0, sup

2≤j≤d
|x · ej | <

1

4
M3

}
.

It is simple to check that ϵ < 1
4d implies supx,ω∈Ωϵ

Ex,ω[TU ] < ∞ and hence GU and ρ̂

are well-defined. Let us next fix positive integers h and H satisfying 2h ≤ H ≤ 1
32M

3

(cf. [Szn03, (1.9)]). Then define the stopping time

S := inf
n≥0

{
|(Xn −X0) · e1| ≥ L or sup

2≤j≤d
|(Xn −X0) · ej | ≥ h

}

and the displacement variable

∆(x, ω) := Ex,ω[XS ]− x.

Finally define for γ1 ∈ (0, 1],

p := inf
j≥2

P

(
min
z∈B̃j

∆(z, ω) · e1 ≥ γ1L

)
,

where for 2 ≤ j ≤ d,

B̃j := {y ∈ B : |y · ej | < H}.

Now we can state a bound on E[√ρB ] in terms of ρ̂ and p. Note that our M corresponds

to NL in [Szn03].

Lemma 3.1 (Theorem 1.1 in [Szn03]). Let M̄ := [M3/(32H)] and assume that

δ−1 := exp

{
−γ1M

32L

}
+

10M

γ1L
exp

{
−γ1M

32L

(
HL

2hM
− 4

γ1

)2

+

}
< 1.

Then

E[
√
ρB ] ≤ κ−2

(
2E[ρ̂]M

2L

(1− E[ρ̂] 12 )+
+ 2dκ−M

2 exp

{
−M̄

2

(
p− 7M

M̄

log κ−1

log δ

)2

+

})
.

Remark. In application, this lemma requires to check that E[ρ̂] < 1 and p is not

too small. We will check these conditions in perturbative ways. First, since we assume

E[d(0) · e1] > 0, if the fluctuation of ω is small, then it is reasonable to believe that

GU [d · e1](x) > 0 for many points, which morally implies ρ̂ < 1. Second, for the same

reason, ∆(x, ω) should be biased in the direction e1 and we may (and will) choose γ1

small so that p is close to 1.
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§ 3.2. High-level proof of Theorem 2.1

In this section, we will have to choose ϵ > 0 small as necessary. We write ϵ ≪ 1

instead of “ϵ > 0 sufficiently small depending only on d and r”, for simplicity.

Let us write

(3.4) λ0 :=
√
rσ2rϵ

2− 1√
r

for the lower bound on λ := E[d(0) · e1] assumed in Theorem 2.1. It is good to keep

in mind that since σ2r is bounded, limϵ→0 λ0 = 0. Note first that if σ2r ≤ ϵ2, then for

ϵ ≪ 1,

λ ≥
√
rσ2

2rϵ
− 1√

r ≥ 4d(1 + 9ϵ)σ2
2

since σ2r ≥ (2d)−
r−1
r σ2. By [RS19, Theorem 3], this implies Kalikow’s condition and

the random walk is ballistic. We will hence assume that

(3.5) σ2r > ϵ2.

It remains to show that this and λ ≥ λ0 implies the condition (3.2).

We will use Lemma 3.1 with the parameters

M := ϵ
− 1√

r λ−1
0 , L := c1(d, r)ϵ

−1,(3.6)

H := M2, h := ϵ
− 1

2
√

rL2 and γ1 :=
c2
10

λ0L,(3.7)

where the choice of c1(d, r) > 0 will be specified in the proof. By (3.5), the requirement

M ≥ exp{100 + 4d(log κ)2} in (3.2) is satisfied when ϵ ≪ 1. Note also that the above

choices of parameters satisfy 2h ≤ H ≤ 1
32M

3 in the previous section. Furthermore, we

can compute

γ1M

L
=

c2
10

ϵ
− 1√

r and
HL

2hM
− 4

γ1
=

1

c1λ0

(
1

2
ϵ
1− 1

2
√

r − 40

c2
ϵ

)
.

Using this, we find that there exists a constant c3(d, r) > 0 such that for ϵ ≪ 1,

δ−1 ≤ c3(d, r) exp
{
−ϵ

− 1
2
√

r

}
< 1.

Hence from Lemma 3.1, it follows that for ϵ ≪ 1,

(3.8) E[
√
ρB ] ≤ κ−2 E[ρ̂]M

2L

(1− E[ρ̂] 12 )+
+ 2d exp

{
M

[
log 4d

2
− 50

log 4d

log 2

(
p− 7

100

)2

+

]}
.

Therefore, if we prove that

(3.9) E[ρ̂] ≤ 1− 1

10
dλ0L and p ≥ 3

4
,
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then using (3.8), we get

(3.10) E[
√
ρB ] ≤ κ−2 80

dλ0L
exp

{
− d

20
λ0M

}
+ 2d exp{−M log 4d}.

Substituting (3.6) into (3.10) and recalling (3.3), we can conclude that

(3.11) P0(XTB
/∈ ∂+B) ≤ exp

{
−c4(d, r)ϵ

− 1√
r

}
,

for some constant c4(d, r) > 0, whenever ϵ ≪ 1. This implies (3.2).

Let us verify (3.9) for ϵ ≪ 1. First, by the same arguments as in [Szn03, (4.8)], if

we choose c1 = ϵL < 3
4 , then

(3.12) sup
ω∈Ωϵ

ρ̂ ≤ 3.

Thus in order to bound E[ρ̂], we only need to prove that with high probability, GU [d ·
e1](x) is uniformly positive on

HM :=

{
x ∈ Zd : x · e1 = 0, sup

2≤j≤d
|x · ej | <

1

4
M3

}
.

This follows from the following two propositions.

Proposition 3.2. Suppose d ≥ 3 and (2.5) holds. There exist constants c5(d), c6(d) >

0 such that if ϵ ≤ 1
8d , L ∈ [2, c5(d)/ϵ] ∩ N and

(3.13) λ ≥ c6(d)σ
2
2

(
ϵ logL+

1

L

)
,

then

(3.14) E[GU (d · e1)(0)] ≥
2

5
dλL2.

Proposition 3.3. Suppose d ≥ 4 and r ≥ 2 even. Then, there exists a constant

c7(d, r) > 0 such that if L ≤ c7(d, r)ϵ
−1, then

(3.15) P(|GU [d · e1](0)− E[GU [d · e1](0)]| ≥ u) ≤

(c7(d, r)r)
r
L
(
σ2r

u

)2r
for d = 4,

(c7(d, r)r)
r(σ2r

u

)2r
for d ≥ 5.

for all u ≥ 0.

We postpone the justification of these propositions to the next section and complete

the proof of (3.9) first. By using σ2 ≤ min{(2d) r−1
r σ2r,

√
2dϵ}, one can verify that the
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assumption (3.13) holds under (2.5). Thus we can use (3.14) and (3.15) to deduce the

following bound on the deviation probability for ϵ ≪ 1:

D : = P
(

inf
x∈HM

GU [d · e1](x) ≤
1

5
dλ0L

2

)
(3.14)

≤ P
(

inf
x∈HM

(GU [d · e1](x)− E[GU [d · e1](x)]) ≤ −1

5
dλ0L

2

)
≤ 2

(
M3

2

)d−1

P
(
GU [d · e1](x)− E[GU [d · e1](x)] ≤ −1

5
dλ0L

2

)
(3.15),(3.4)

≤ 2

(
M3

2

)d−1(
25c7(d)

d2

)r

Lϵ2
√
r

(3.5)

≤ c8(d)
rϵ

√
rλ0L,

(3.16)

where in the last inequality we have used the condtion r ≥ 144d2 of Theorem 2.1, (3.5)

and the definition of λ0 in (3.4). From this and (3.12), it follows that

E[ρ̂] ≤
1− 1

5dλ0L

1 + 1
5dλ0L

+ 3D

≤ 1− 1

10
dλ0L.

Let us turn to prove that p ≥ 3
4 . By the same argument as in [Szn03, (4.12)] (see

also [Szn03, (2.10)]), one can prove that

|∆(0, ω) · e1 −GU (d · e1)(0)| ≤
1

5
dλ0L

2.

Then by using (3.14) and (3.15) again, we obtain through a computation similar to the

previous one that

p ≥ 1− sup
j≥2

M2dP
(
GU [d · e1]− E[GU [d · e1](0)] ≤ − 1

10
dλ0L

2

)
≥ 1−M2dc9(d)

rϵ
√
rλ0L

≥ 1− 1

10
dλ0L

≥ 3

4
,

where we have again used the condition r ≥ 144d2 in the third inequality. This completes

the proof of (3.9) and hence Theorem 2.1.

§ 3.3. Lower bound on GU [d · e1](0)

In this section, we justify two propositions left unproved in the last section. First,

Proposition 3.2 is nothing but [RS19, Proposition 7], which is an improvement of [Szn03,

Proposition 3.1].
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So we only provide a proof of Proposition 3.15. We will use an inequality of

Boucheron, Bousquet, Lugossi and Massart [BBLM05, Theorem 2] (see also the mono-

graph [BLM13, Theorem 15.5]), whose statement we reproduce here.

Theorem 3.4. For N ≥ 1, let X1, . . . , XN be independent random variables

taking values in a set X , with laws µ1, . . . , µN respectively, and f : X → R a measurable

function. Let Z := f(X1, . . . , XN ),

V+ :=
N∑

n=1

E′[(Z − Z ′
n)

2
+] and V− :=

N∑
n=1

E′[(Z − Z ′
n)

2
−],

where X ′
1, . . . , X

′
n are independent copies of X1, . . . , Xn and Z ′

n is obtained from Zn

by replacing Xn by X ′
n, while E′ denotes expectation with respect to the (X ′

1, . . . , X
′
N )

variables only. Then, for any real q ≥ 2, we have that

(3.17) ∥Z − E[Z]∥q ≤

√ √
e√

e− 1
q
(
∥V+∥1/2q/2 + ∥V−∥1/2q/2

)
,

where e denotes Napier’s constant.

Proof of Proposition 3.3. We will follow the proof of [Szn03, Proposition 3.2] and

of [RS19, Proposition 10]. Let us enumerate the elements of U as U = {xn : n ∈ N}. We

will apply Theorem 3.4 to the random variable Z := GU [d · e1], which is a measurable

function of the independent random variables {Xn := ω(xn) : n ∈ N}. Let us first note
that by the Cauchy-Schwarz inequality,

E
[
V r
+

]
=
∑
i1∈N

· · ·
∑
ir∈N

E[E′[(Z − Zi1)
2
+] · · ·E′[(Z − Zir )

2
+]]

≤
∑
i1∈N

· · ·
∑
ir∈N

E
[(
E′[(Z − Z ′

i1)
2
+

)r]1/r · · ·E[(E′[(Z − Z ′
ir )

2
+

)r]1/r
=

(∑
n∈N

E
[(
E′[(Z − Z ′

n)
2
+

)r]1/r)r

.

(3.18)

We will now obtain an upper bound for the right-most expression of (3.18). For each n

and all environments ω, ω′ ∈ Ωϵ with ω = ω′ off xn, we define

Γn(ω, ω
′) := GU [d · e1](0, ω)−GU [d · e1](0, ω′).
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Using Minkowski’s integral inequality and Jensen’s inequality, we see that

E
[(
E′[(Z − Z ′

n)
2
+

)r]1/r
=

(∫ (∫
(Γn)

2
+(ω, ω

′)µ(dω′(xn))

)r

P(dω)
)1/r

≤
∫ (∫

(Γn)
2r
+ (ω, ω′)P(dω)

)1/r

µ(dω′(xn))

≤
(∫∫

Γ2r
n (ω, ω′)P(dω)µ(dω′(xn))

)1/r

.

(3.19)

On the other hand, as in [Szn03, (3.47)], we have that for all α ∈ (0, 1),

(3.20) |Γn(ω, ω
′)|2 ≤ c10(d)g0,U (0, xn)

2
2−α

(∑
e∈U

|ω(xn, e)− ω′(xn, e)|

)2

under the condition L < c11(d)
1−α
2−αϵ

−1 in [Szn03, Proposition 2.3], where g0,U denotes

the Green function for the simple symmetric random walk killed upon exiting U . We

set α := 1 − 1
r . Hence the constants depending on α below actually depending on r.

Substituting (3.20) into (3.19), we see that

E
[(
E′[(Z − Z ′

n)
2
+]
)r]1/r

≤ c12(d)g0,U (0, xn)
2

2−α

∫∫ (∑
e∈U

|δ̃(xn, e)− δ̃′(xn, e)|

)2r

µ(dω(xn))µ(dω
′(xn))

1/r

≤ 2(4d)2c12(d)g0,U (0, xn)
2

2−ασ2
2r.

(3.21)

Now, as explained in the proof of [Szn03, Proposition 3.2], for α > 4
5 , there exist

constants c13(d, α), c14(d, α) > 0 such that for L ≤ c13(d, α)ϵ
−1,

∑
n∈N

g0,U (0, xn)
2

2−α ≤

c14(d, α)L
4 1−α

2−α for d = 4,

c14(d, α) for d ≥ 5.

Combining the above with (3.21) and (3.18), we get that for all α ∈ (0, 1], whenever

L ≤ c13(d, α)ϵ
−1,

(3.22) ∥V+∥r ≤

c15(d, α)L
4 1−α

2−ασ2
2r for d = 4,

c15(d, α)σ
2
2r for d ≥ 5,

for some c15(d, α) > 0. Recalling α = 1 − 1
4r and applying Theorem 3.4 and esti-

mate (3.22), one can deduce (3.15).
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§ 4. Concluding remark

Although the main theme of this work is to prove ballisticity under a stochastically

small perturbation, we still need a uniform control on the perturbation. More precisely,

it is (3.12), Proposition 3.2 and (3.20) that require the uniform control. This is be-

cause they rely on the deterministic bounds on the Green functions proved in [Szn03,

Section 2], which holds uniformly in ω ∈ Ωϵ for small ϵ.

It would be desirable to find suitable bounds on the Green functions associated

with RWRE that hold with high probability, only assuming that the perturbation is

stochastically small.
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