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Hydrostatic limit for exclusion process with slow

boundary revisited

By

Kenkichi Tsunoda ∗

Abstract

We revisit in this short article the hydrostatic limit for the exclusion process with slow

boundary. The original proof of this result relies on estimates of the correlation functions. We

achieve the same result based on analysis of two different time scales, which do not need any

information about the correlation functions.

§ 1. Introduction

We study in this article the limiting behavior of the empirical measure under the

stationary state, called hydrostatic limit, for the exclusion process with slow boundary.

This model has been introduced in R. Baldasso, O. Menezes, A. Neumann and R. R.

Souza [1], and can be described as follows. Let N ∈ N be a scaling parameter. Each

particle in the bulk {1, . . . , N −1} behaves as an independent simple random walk with

exclusive constraints. The terminology slow boundary means that particles are created

or annihilated at the boundary, at a rate proportional to N−θ for some θ ≥ 0. It has

been established in Baldasso et al. [1] that the following phase transition occurs: the

boundary condition of the hydrodynamic equation is governed by Dirichlet boundary if

θ < 1, Robin boundary if θ = 1 and Neumann boundary if θ > 1, respectively. We omit

to introduce more detailed description and a historical background of this model here,

see Baldasso et al. [1] and references therein.

The purpose of this article is to introduce another proof of the hydrostatic limit,

stated in Theorem 2.2. It is worth mentioning that our proof does not use any informa-

tion about the correlation functions, while the original one strongly relies on estimates of
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the correlation functions. Although our proof can be applied to other particle systems,

we concentrate on the exclusion process with slow boundary in this article to make the

presentation simplest.

The original method we follow in this article has been introduced in Farfan, Landim

and Mourragui [3], to show the hydrostatic limit for the boundary gradient driven

symmetric exclusion process. This method has been generalized to the case of the

reaction-diffusion model in Landim and Tsunoda [10]. In fact, Landim and Tsunoda’s

method is robust enough to imply Theorem 2.2 for θ ≤ 1, see Section 3. However, the

result established in Section 3 is not enough to deduce Theorem 2.2 for θ > 1. This issue

will be examined in the first paragraph of Section 4. To complete the proof of Theorem

2.2, we further develop Landim and Tsunoda’s method in the case θ > 1, where the

boundary condition of the hydrodynamic equation is governed by Neumann boundary

conditions. The method developed in Section 4, which is a main contribution of this

article, seems somewhat new and may be of interest in other contexts.

We remark on several papers related to this work, but only on papers published after

Baldasso et al. [1]. The main motivation of this work is based on recent developments on

stationary nonequilibrium states. See Bertini et al [2] for this subject. The equilibrium

and non-equilibrium fluctuations for the exclusion process with slow boundary and

related models have been investigated in a series of studies by T. Franco, P. Gonçalves

and A. Neumann and their collaborators: [5, 4, 7]. The large deviation for the exclusion

process with a slow bond is examined in T. Franco and A. Neumann [6].

This article is organized as follows. In Section 2, we introduce the exclusion process

with slow boundary precisely. We also examine results on the hydrodynamic and hydro-

static limit, established in Baldasso et al. [1], in Subsections 2.2, 2.3, respectively. The

original proof of the hydrostatic limit is also examined in Subsection 2.3. In Sections

3, 4, we study the diffusive time scale or a certain sub-diffusive time scale, and deduce

Theorem 2.2 for θ ≤ 1 and for θ > 1, respectively.

§ 2. Model and main result

We introduce in this section the exclusion process with slow boundary and state

the hydrodynamic and hydrostatic limit for this particle system. We constantly refer

the reader to Baldasso et al. [1] as most of the statements in this section borrow from

the ones of Baldasso et al. [1].

§ 2.1. Exclusion process with slow boundary

For each N ∈ N, let IN be the one-dimensional discrete interval {1, . . . , N − 1}.
Elements of IN are represented by the letters x, y and z, while an element of the con-

tinuum interval [0, 1] is represented by the letter u. Denote the configuration space by
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ΩN = {0, 1}IN , and its element, called configuration, by η = {η(x) : x ∈ IN}. For

each x ∈ IN , η(x) represents the number of particles sitting at site x, in other words,

η(x) = 1 if there is a particle at site x, η(x) = 0 otherwise. For a configuration η ∈ ΩN ,

let ηx,y and ηx be the configurations obtained from η by exchanging the occupation

variables η(x) and η(y), by flipping the occupation variable η(x), respectively:

ηx,y(z) =


η(y) if z = x ,

η(x) if z = y ,

η(z) otherwise ,

ηx(z) =

1− η(x) if z = x ,

η(z) if z ̸= x .

We introduce the exclusion process with slow boundary, which is a Markov process

on ΩN whose generator is given by

LN = LN,0 + Lα
N,b + Lβ

N,b ,

with some fixed α, β ∈ (0, 1). In the previous formula, LN,0 stands for the generator of

the symmetric simple exclusion process in IN , that is, LN,0 acts on functions f : ΩN → R
as

LN,0f(η) =
N−2∑
x=1

[
f(ηx,x+1)− f(η)

]
.

On the other hand, Lα
N,b and Lβ

N,b correspond to the dynamics at the left and right

boundary, respectively, which act functions f : ΩN → R as

Lα
N,bf(η) = cN−θrα(η)

[
f(η1)− f(η)

]
,

Lβ
N,bf(η) = cN−θrβ(η)

[
f(ηN−1)− f(η)

]
,

where

rα(η) = α [1− η(1)] + (1− α)η(1) ,

rβ(η) = β [1− η(N − 1)] + (1− β)η(N − 1) ,

with some fixed c > 0 and θ ≥ 0.

Denote by νNρ the product Bernoulli measure on ΩN with density ρ ∈ [0, 1]. It is

well known that νNρ is symmetric with respect to LN,0 for any ρ ∈ [0, 1]. Since rα and rβ

are chosen to satisfy the detailed balance conditions with respect to νNα and νNβ , these

measures are symmetric with respect to Lα
N,b and Lβ

N,b, respectively. However, it is also

well known that the Bernoulli measures are not invariant with respect to LN unless

α = β. Since the cardinality of the state space ΩN is finite and the Markov process

corresponding to LN is irreducible, there exists a unique stationary state, denoted by

µss
N , which is invariant under the dynamics.
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§ 2.2. Hydrodynamic limit

It has been investigated in Baldasso et al. [1] that the boundary condition of the

hydrodynamic equation depends on the parameter θ. More precisely, the hydrodynamic

behavior of the exclusion process with slow boundary is described as follows. Assume

for a while that the macroscopic density at time 0 is given by a measurable function

ρ0 : [0, 1] → [0, 1]. For any θ ≥ 0, the system in the bulk evolves according to the heat

equation in (0, 1): ∂tρ(t, u) = ∂2
uρ(t, u) ,

ρ(0, u) = ρ0(u) ,

where ρ(t, u) stands for the macroscopic density at time t ≥ 0 and position u ∈ [0, 1]. In

the case θ < 1, the boundary condition is governed by Dirichlet boundary conditions:ρ(t, 0) = α ,

ρ(t, 1) = β .

In the case θ = 1, the boundary condition is governed by Robin boundary conditions:∂uρ(t, 0) = c [ρ(t, 0)− α] ,

∂uρ(t, 1) = c [β − ρ(t, 1)] .

In the case θ > 1, the boundary condition is governed by Neumann boundary conditions:∂uρ(t, 0) = 0 ,

∂uρ(t, 1) = 0 .

We do not review precise definitions of weak solutions to these Cauchy problems here,

see [1, Subsection 2.3] for them. For each θ ≥ 0, denote these Cauchy problems by

(HDE)θ.

For each N ∈ N, denote by {SN
t : t ≥ 0} the semigroup associated to the Markov

process generated by N2LN and by µN a given initial distribution. Note that the

distribution of the process at time t is given by µNSN
t .

The following result has been established in Baldasso et al. [1].

Theorem 2.1 (Hydrodynamic limit). Assume that the initial distribution µN is

associated to a measurable function ρ0 : [0, 1] → [0, 1]. Namely, it holds for any δ > 0

and continuous function H : [0, 1] → R that

lim
N→∞

µN

(
η :

∣∣∣∣∣ 1

N − 1

∑
x∈IN

H(x/N)η(x)−
∫ 1

0

H(u)ρ0(u)du

∣∣∣∣∣ ≥ δ

)
= 0 .
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Then, for any t ≥ 0, δ > 0 and continuous function H : [0, 1] → R, we have

lim
N→∞

µNSN
t

(
η :

∣∣∣∣∣ 1

N − 1

∑
x∈IN

H(x/N)η(x)−
∫ 1

0

H(u)ρ(t, u)du

∣∣∣∣∣ ≥ δ

)
= 0 .

where ρ = ρ(θ) : [0,∞)× [0, 1] → [0, 1] stands for the unique weak solution to (HDE)θ.

§ 2.3. Hydrostatic limit

We examine in this subsection the hydrostatic limit established in Baldasso et al.

[1] and outline their proof to clarify the difference between their approach and ours. The

hydrodynamic limit describes the dynamical behavior of the empirical measure while

the hydrostatic limit states the law of large numbers for the empirical measure under

the stationary state µss
N .

For each θ ≥ 0, let ρθ : [0, 1] → [0, 1] be the function defined by

ρθ(u) =


ρD(u) = (β − α)u+ α , if θ < 1 ,

ρR(u) =
c(β − α)

2 + c
u+ α+

β − α

2 + c
, if θ = 1 ,

ρN (u) =
β + α

2
, if θ > 1 .

Note that, for each θ ≥ 0, ρθ is a stationary solution to (HDE)θ.

The following result has been established in Baldasso et al. [1].

Theorem 2.2 (Hydrostatic limit). For any δ > 0 and continuous function H :

[0, 1] → R, we have

lim
N→∞

µss
N

(
η :

∣∣∣∣∣ 1

N − 1

∑
x∈IN

H(x/N)η(x)−
∫ 1

0

H(u)ρθ(u)du

∣∣∣∣∣ ≥ δ

)
= 0 .

We here outline the proof given in Baldasso et al. [1]. Their proof is summarized

as follows. For x, y ∈ IN , let ρN (x) and φN (x, y) be the mean of η(x) and the two-point

correlation function of η(x), η(y) under the stationary state µss
N , respectively:

ρN (x) =

∫
ΩN

η(x)µss
N (dη) ,

φN (x, y) =

∫
ΩN

[
η(x)− ρN (x)

] [
η(y)− ρN (y)

]
µss
N (dη) .

Since µss
N is invariant with respect to LN , for each x ∈ IN , we have∫

ΩN

LNη(x)µss
N (dη) = 0 .
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Computing the left-hand side, we can obtain a system of linear equations for {ρN (x) :

x ∈ IN}, see the proof of [1, Lemma 3.1] for this system. Since this system is linear, it

is not difficult to obtain the explicit formula

ρN (x) = aNx+ bN , x ∈ IN ,(2.1)

where

aN =
c(β − α)

2Nθ + c(N − 2)
and bN = α+ aN

(
Nθ

c
− 1

)
.

A similar computation for
[
η(x)− ρN (x)

] [
η(y)− ρN (y)

]
together with some cou-

pling argument permits us to obtain the estimate

max
0<x<y<N

∣∣φN (x, y)
∣∣ ≤ C

Nθ +N
,(2.2)

for some constant C > 0. Theorem 2.2 easily follows from (2.1), (2.2) and standard

arguments based on the Chebyshev inequality.

We conclude this subsection mentioning a few comments on the proof. For θ ≤ 1,

note that the function ρθ is the unique stationary solution to (HDE)θ. This fact together

with Proposition 3.1 below implies Theorem 2.2 immediately. However, for θ > 1, the set

of stationary solutions to (HDE)θ is not a singleton, since the corresponding Neumann

Laplacian on [0, 1] has the eigenvalue 0 in its spectrum. Therefore, the concentration

result, given in Proposition 3.1, does not imply Theorem 2.2 for θ > 1. To overcome

this difficulty, besides Proposition 3.1, we need another characterization of the density

(α + β)/2 amoung [0, 1], which is a limiting density in the case θ > 1. Indeed, we will

see that (α + β)/2 can be characterized as a unique attractor of the integral equation

(4.4). This is what we will investigate in Section 4.

An approach based on the estimates for the correlation functions is very useful for

several problems if available, see for instance [5, 4, 7]. However, this approach can not be

applied to almost all interacting systems, even so-called gradient systems. Compared to

this approach, the method developed in this paper is robust enough to be applicable to

a gradient particle system (should be possible for a non-gradient system). For instance,

one can obtain similar results for the setting of Farfan et al. [3] with slow boundary.

§ 3. The diffusive time scale N2

We investigate in this section the diffusive time scale, to analyze the empirical

measure under µss
N . As examined in Section 1, we shall follow the method developed

in Landim and Tsunoda [10], to prove some concentration result, stated in Proposition
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3.1. As a direct consequence of Proposition 3.1, which is a main result of this section,

we shall prove Theorem 2.2 for θ ≤ 1.

Let M+ be the set of all Borel measures on [0, 1], whose total mass is bounded

above by 1. M+ is endowed with the weak topology, which is metrizable and becomes

a compact Polish space. Denote its metric by d, see for instance [10, Subsection 2.2]

for the definition of d. For a masure π ∈ M+ and a function H : [0, 1] → R, denote
by ⟨π,H⟩ the integral of H with respect to π whenever it has a meaning. For functions

H1,H2 : [0, 1] → R, we also denote by ⟨H1,H2⟩ the L2-inner product with respect to

the Lebesgue measure du whenever it has a meaning.

For a configuration η ∈ ΩN , define the empirical measure by

πN (du) = π(η, du) =
1

N − 1

∑
x∈IN

η(x)δx/N (du) ,

where δu stands for the point mass at u ∈ [0, 1]. Recall the definition of the stationary

state µss
N , introduced at the last paragraph of Subsection 2.1. Define the probability

measure PN on M+ by

PN = µss
N ◦ (πN )−1 .

For each θ ≥ 0, let Eθ be the set of all measures π(du) = ρ(u)du in M+ whose

density is a stationary solution to (HDE)θ. It is easy to see that Eθ coincides with

{ρD(u)du} for θ < 1, {ρR(u)du} for θ = 1 and {ϱdu : ϱ ∈ [0, 1]} for θ > 1, respectively.

Following the proof of [10, Theorem 2.2], we can prove the following proposition:

Proposition 3.1. The sequence of measures {PN}N∈N asymptotically concen-

trates on the set Eθ. Namely, for any δ > 0, we have

lim
N→∞

PN

(
π ∈ M+ : inf

π∈Eθ

d(π, π) ≥ δ

)
= 0 .

The proof of this proposition is consisting of two main ingredients, as examined in

the first paragraph of [10, Section 3]: the macroscopic density of the system is described

by a hydrodynamic limit, and for any initial profile the solution of the hydrodynamic

equation converges to some stationary solution as time goes to infinity. Indeed, the

exclusion process with slow boundary and its hydrodynamic equation satisfy these two

properties for any θ ≥ 0. Invoking these properties, the proof of Proposition 3.1 is

completely same as the one of [10, Theorem 2.2] and thus is omitted.

Note that Eθ is a singleton for each θ ≤ 1: Eθ = {ρD(u)du} or {ρR(u)du}. Theorem
2.2 for θ ≤ 1 follows from Proposition 3.1 immediately.

Proof of Theorem 2.2 for θ ≤ 1. From Proposition 3.1 and the fact that Eθ is

a singleton for each θ ≤ 1, the empirical measure πN under µss
N converges to ρθ(u)du
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as N → ∞ in probability. Therefore, for any continuous function H : [0, 1] → R, the
random variable ⟨πN ,H⟩ under µss

N converges to ⟨ρθ,H⟩ as N → ∞ in probability,

which completes the proof of Theorem 2.2 for θ ≤ 1.

§ 4. The sub-diffusive time scale N1+θ

In the rest of this paper, we always treat with the case θ > 1. Since the solution

to the heat equation with 0-Neumann boundary conditions conserves the total mass,

the total number of particles in IN can not evolve under the diffusive time scale. This

is exactly caused by the presence of slow boundary. However, at the process level, we

can observe exchange of particles at a rate proportional to N−θ through the boundary.

Therefore, to observe the correct evolution of the total number of particles in IN , we

need to introduce another time scale, which should be longer than the diffusive time

scale. As understood in the computations below, the correct speeded up factor (or the

time scale) is given by N1+θ, which is in fact longer than the diffusive time scale in the

case θ > 1.

For the sake of the previous paragraph, let {ηNt : t ≥ 0} be the Markov process

generated by N1+θLN with the initial distribution µss
N . For each t ≥ 0, dente by mN

t

the averaged density defined by

mN
t =

1

N − 1

∑
x∈IN

ηNt (x) .

By the reason examined in the previous paragraph, mN
t does not evolve under the diffu-

sive time scale N2. On the other hand, as we will see later, mN
t evolves macroscopically

under the time scale N1+θ.

For each T > 0, let D([0, T ],R) be the set of all càdlàg trajectories m· : [0, T ] → R,
endowed with the Skorokhod topology. For each N ∈ N, let QN = QN,T be the

distribution of {mN
· } on D([0, T ],R).

Our approach to study the sequence {QN}N∈N is based on a standard machinery

used in the study of hydrodynamic limit. We first show the relative compactness of

the sequence {QN}N∈N and characterize its all limit points. This is the content of

Propositions 4.1, 4.4 below, respectively.

We start with the relative compactness of the sequence {QN}N∈N.

Proposition 4.1. The sequence {mN
· }N∈N is relatively compact in D([0, T ],R).

Proof. Fix T > 0. It is enough to show that the sequence {mN
· }N∈N is relatively

compact in D([0, T ],R). For this purpose, introduce the function GN (η) = G(η) =
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(N − 1)−1
∑

x∈IN
η(x) and the corresponding Dynkin’s martingale:

MN
t = G(ηNt )−G(ηN0 )−N1+θ

∫ t

0

(LNG)(ηNs )ds , t ≥ 0 .(4.1)

It follows from the definition of mN
t that G(ηNt ) = mN

t . Since the total number of

particles in IN is conserved by LN,0, we have LN,0G = 0. One the other hand, as Lα
N,b

and Lβ
N,b act only at the left and right boundary, respectively, we have

(Lα
N,b + Lβ

N,b)G(η) =
c

Nθ(N − 1)
{rα(η) [1− 2η(1)] + rβ(η) [1− 2η(N − 1)]}

=
c

Nθ(N − 1)
[α+ β − η(1)− η(N − 1)] .

Therefore (4.1) can be rewritten as

mN
t = mN

0 +MN
t +

cN

N − 1

∫ t

0

[
α+ β − ηNs (1)− ηNs (N − 1)

]
ds(4.2)

= mN
0 +MN

t + c

∫ t

0

[
α+ β − ηNs (1)− ηNs (N − 1)

]
ds+O(N−1) ,

where big O notation stands for the Bachman-Landu notation.

Note that the sequence {mN
0 }N∈N is relatively compact since mN

0 takes values in

[0, 1] for any N ∈ N. On the other hand, in view of Aldous’s criterion, cf. [8, page

51, Proposition 4.1.6], we can obtain the relative compactness of the integral term in

the last line of (4.2). Therefore, to conclude the proof, it is enough to show that the

sequence {MN
· }N∈N is relatively compact in D([0, T ],R).

Indeed, it follows from a straightforward computation that the quadratic variation

of MN
t is given by

cN

(N − 1)2

∫ t

0

∣∣ηNs (1)− α
∣∣+ ∣∣ηNs (N − 1)− β

∣∣ ds = O(N−1) .(4.3)

This formula together with the standard argument as in the proof of [8, page 55, Theo-

rem 4.2.1] gives the relative compactness for the sequence {MN
· }N∈N, which completes

the proof of Proposition 4.1.

It follows from (4.3) that the martingale term MN
t vanishes in the limit N → ∞.

Therefore, if we can replace ηNs (1) + ηNs (N − 1) by 2mN
s in (4.2), we can obtain the

following integral equation in the limit:

mt = m0 + c

∫ t

0

[α+ β − 2ms] ds , t ≥ 0 .(4.4)

This replacement can not be achieved in the diffusive time scale since the relaxation

time, which is the inverse of the spectral gap, of the exclusion process inside a box with
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side length ℓ is of order ℓ2. However, such a replacement should be achieved in the time

scale N1+θ. This is the idea hidden in the proof of Lemma 4.2, so-called replacement

lemma.

Before starting the proof of the replacement lemma, we introduce some notation

and estimates, which will be used in the proof of the replacement lemma.

For two probability measures µ, ν on ΩN , let HN (µ|ν) be the relative entropy of µ

with respect to ν:

HN (µ|ν) = sup
f

{∫
ΩN

fdµ− log

∫
ΩN

efdν

}
,

where the supremum is carried over all functions f : ΩN → R. It is well known that

HN (µ|ν) =

∫
ΩN

dµ

dν
log

dµ

dν
dν ,

if µ is absolutely continuous with respect to ν, HN (µ|ν) = ∞, otherwise. Since there is

at most one particle per site, there exists a constant C0 = C0(α) > 0 such that

HN (µ|νNα ) ≤ C0N ,(4.5)

for any probability measure µ on ΩN .

A function f : ΩN → [0,∞) is said to be a density if
∫
fdνNα = 1. For any density

f , define the Dirichlet form with respect to νNα by

DN,0(f ; ν
N
a ) =

1

2

N−2∑
x=1

∫
ΩN

[√
f(ηx,x+1)−

√
f(η)

]2
dνNα .

It has been established in the proof of [1, Lemma 5.9] that there exists a constant

Cα,β > 0 such that

⟨LN

√
f,
√

f⟩α ≤ −DN,0(f ; ν
N
α ) +

Cα,β

Nθ
,(4.6)

for any density f , where ⟨·, ·⟩α stands for the L2-inner product with respect to νNα . Since

the actual value of the density of the reference measure is not important, we always fix

it to be α.

From the observation examined after the proof of Proposition 4.1, introduce the

function V = VN given by V (η) = η(1)+η(N−1)−2G(η), where G has been introduced

in the proof of Proposition 4.1.

We are ready to prove the replacement lemma.

Lemma 4.2 (Replacement lemma). For any t ≥ 0, we have

lim
N→∞

EN

[∣∣∣∣∫ t

0

V (ηNs )ds

∣∣∣∣] = 0 ,(4.7)

where EN stands for expectation with respect to the process ηN· .
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Proof. For any γ > 0, from the entropy inequality and (4.5), we have

EN

[∣∣∣∣∫ t

0

V (ηNs )ds

∣∣∣∣] ≤ C0

γ
+

1

γN
logEα

[
exp

{
γN

∣∣∣∣∫ t

0

V (ηNs )ds

∣∣∣∣}] ,(4.8)

where Eα stands for expectation with respect to the process starting from the product

measure νNα . One can get rid of the absolute value in the right-hand side of (4.8) by the

elementary inequality e|x| ≤ ex+e−x. Therefore, the estimate for the second term in the

right-hand side of (4.8) is reduced to the one without the absolute value. Furthermore,

from [1, Lemma 7.3], to conclude the proof, it is enough to show that the following

variational expression vanishes as N → ∞ and γ → ∞:

sup
f

{
γ−1Nθ⟨LN

√
f,
√

f⟩α + ⟨V, f⟩α
}

,(4.9)

where the supremum is carried over all densities f .

From (4.6) and Lemma 4.3 below, the supremum (4.9) is bounded above by

Cα,β

γ
+ sup

f

{
−γ−1NθDN,0(f ; ν

N
α ) + 4N1/2DN,0(f ; ν

N
α )1/2

}
.(4.10)

The previous supremum is easily computed and is bounded above by 4γN1−θ. Since θ

is larger than 1, the expression (4.10) vanishes as N → ∞ and γ → ∞, which completes

the proof of Lemma 4.2.

The following lemma in fact has been proved in the proof of [9, Lemma 3.1]. How-

ever, we give the proof for reader’s convenience.

Lemma 4.3 (Moving particle lemma). For any density f , we have

⟨V, f⟩α ≤ 4N1/2DN,0(f ; ν
N
α )1/2 .(4.11)

Proof. Fix a density f . The left-hand side in (4.11) can be written as

1

N − 1

∑
x∈IN

∫
ΩN

{[η(1)− η(x)] + [η(N − 1)− η(x)]} f(η)νNα (dη) .(4.12)

In the following argument, we give an estimate for the sum involving η(1) − η(x) only

since the other sum is similar.

For each x ∈ IN , by the change of variables η 7→ η1,x, the sum involving η(1)−η(x)

in (4.12) can be rewritten as

1

2(N − 1)

∑
x∈IN

∫
ΩN

[η(1)− η(x)]
[
f(η)− f(η1,x)

]
νNα (dη)

=
1

2(N − 1)

∑
x∈IN

∫
ΩN

[η(1)− η(x)]
[√

f(η) +
√

f(η1,x)
] [√

f(η)−
√

f(η1,x)
]
νNα (dη) .
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Since there is at most one particle per each site and f is a density, applying the Schwartz

inequality, the last expression is bounded above by

1

(N − 1)

∑
x∈IN

{∫
ΩN

[√
f(η)−

√
f(η1,x)

]2
νNα (dη)

}1/2

.(4.13)

For each x, y ∈ IN , consider the transformation σx,y on ΩN defined by σx,yη =

ηx,y, η ∈ ΩN . Clearly, σx,y is νNα -measure preserving and satisfies the relation

σ1,x = σ1,2 ◦ σ2,3 ◦ · · · ◦ σx−2,x−1 ◦ σx,x−1 ◦ σx−1,x−2 ◦ · · · ◦ σ3,2 ◦ σ2,1 ,

for any x ∈ IN , where the symbol ◦ stands for the composition of transformations. By

adding and subtracting the terms by this sequence into the brackets in (4.13), from the

Cauchy-Schwarz inequality, we have∫
ΩN

[√
f(η)−

√
f(η1,x)

]2
νNα (dη) ≤ 4NDN,0(f ; ν

N
α ) ,

which in turn implies the conclusion of Lemma 4.3. Note that the constant 4 in (4.11)

comes from the contribution of the sum involving η(N − 1)− η(x) in (4.12).

We summarize the previous computations as a single proposition, which plays a

fundamental role in the proof of Theorem 2.2. However, as the proof follows from the

formula (4.2) and Lemma 4.2 easily, we omit the proof.

Proposition 4.4. Let A be the set of all trajectories {mt : t ≥ 0} in D([0, T ],R)
satisfying the integral equation (4.4) with the initial value m0 in [0, 1]. Then, any limit

point Q∗ of the sequence {QN}N∈N is concentrated on A, namely, Q∗ (A) = 1.

The following lemma states that (α+β)/2 can be characterized as a unique attractor

of the integral equation (4.4).

Proposition 4.5. The solution of the integral equation (4.4) is given by

mt =
α+ β

2
+

(
m0 −

α+ β

2

)
e−2ct .

In particular, mt converges to (α+ β)/2 as t → ∞, uniformly in initial values in [0, 1].

The proof of this proposition is elementary, and left to the reader.

We have now all the ingredients to prove Theorem 2.2 for θ > 1.

Proof of Theorem 2.2 for θ > 1. Since M+ is compact, the sequence {PN}N∈N is

relatively compact. Let P∗, Q∗ be any limit point of the sequence {PN}N∈N, {QN}N∈N,

respectively. Take a subsequenceNk, if necessary, so that the sequences {PNk
}k∈N, {QNk

}k∈N
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converge to P∗, Q∗, respectively. Note that Proposition 3.1 shows that P∗(Eθ) = 1. Re-

call the definition of the function ρN : ρN (u) = (α + β)/2, u ∈ [0, 1]. To conclude the

proof, it is enough to show that

P∗ ({ρN (u)du}) = 1 .(4.14)

Fix δ > 0. Denote by Oδ the subset of [0, 1] given by

Oδ = [0, 1] \
[
α+ β

2
− δ,

α+ β

2
+ δ

]
,

and by Oδ the closure of Oδ. From the stationarity of µss
N , we have

PN (π : ⟨π,1⟩ ∈ Oδ) = µss
N (η : G(η) ∈ Oδ) = QN (m· : mt ∈ Oδ) ,(4.15)

for any t ≥ 0, where 1 stands for the constant function 1(u) = 1, u ∈ [0, 1].

Since the application π 7→ ⟨π,1⟩ is continuous with respect to the weak topology,

and PNk
, QNk

converge to P∗, Q∗ weakly, respectively, we have

P∗ (π : ⟨π,1⟩ ∈ O2δ) ≤ lim inf
k→∞

PNk
(π : ⟨π,1⟩ ∈ O2δ)

= lim inf
k→∞

QNk
(m· : mt ∈ O2δ)

≤ lim sup
k→∞

QNk

(
m· : mt ∈ Oδ

)
≤ Q∗

(
m· : mt ∈ Oδ

)
.

We used (4.15) to obtain the second equality and the monotonicity of QNk
the third

inequality. For the last inequality, one should pay an attention since the application

m· 7→ mt is not continuous with respect to the Skorokhod topology. However, one can

justify this inequality by the fact that Q∗ is concentrated on continuous trajectories,

see the proof of [10, Theorem 2.2] for a similar argument. Since Oδ does not contain

(α + β)/2, it follows from Propositions 4.4, 4.5 that Q∗
(
m· : mt ∈ Oδ

)
vanishes if t is

larger than −(2c)−1 log δ. Thus, (4.14) has been shown. This completes the proof of

Theorem 2.2 for θ > 1.
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[4] D. Erhard, T. Franco, P. Gonçalves, A. Neumann and M. Tavares: Non-equilibrium fluc-

tuations for the SSEP with a slow bond. To appear in Ann. Inst. H. Poincaré Probab.
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