
RIMS Kôkyûroku Bessatsu
B80 (2020), 1–9

Microlocal Scattering Theory for Discrete

Schrödinger Operators and Related Topics

By

Shu Nakamura∗

Abstract

We discuss several recent results on spectral and scattering theory for a model which generalizes

discrete and continuous Schrödinger operators with short-range and long-range perturbations.

Many of these were inspired by old papers by Isozaki and Kitada of 1980’s.

§ 1. Model

We first consider the discrete Schrödinger operator on Zd, d ≥ 1:

Hu[n] = −1

2

∑
|m−n|=1

u[m] + V [n]u[n], u[·] ∈ ℓ2(Zd),

where V [·] is a real-valued function on Zd. If V [·] is bounded, which we assume, thenH is

a bounded self-adjoint operator on ℓ2(Zd). This is also calledAnderson tight-binding

model, and widely used in solid state physics to describe electrons and phonons in crys-

tals. We denote the discrete Fourier transform (or the inverse Fourier series expansion)

by

Fu(ξ) = (2π)−d/2
∑
n∈Zd

u[n]e−in·ξ, ξ ∈ Td = (R/2πZ)d,

for u ∈ ℓ1(Zd). Note F is a unitary operator from ℓ2(Zd) to L2(Td). Formally, we can

write

Ĥ = FHF ∗ = −
d∑
j=1

cos(ξj) + V [−Dξ], on L2(Td),
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where V [−Dξ] is considered as a Fourier multiplier on Td, defined as V [−Dξ] = FV [·]F ∗.

We wish to consider V [−Dξ] as a pseudodifferential operator on T.
We denote the difference operator by ∂̃:

∂̃jφ[n] = φ[n+ ej ]− φ[n], n ∈ Zd, j = 1, . . . , d,

where {ej} is the standard basis on Rd.
Let µ ∈ R. If V [·] satisfies ∣∣∂̃αV [n]

∣∣ ≤ Cα⟨n⟩µ−|α|, n ∈ Zd,

for any multi-index α ∈ Zd+ with some Cα > 0, then we can show that there is Ṽ (x) ∈
C∞(Rd) such that ∣∣∂αx Ṽ (x)

∣∣ ≤ C ′
α⟨x⟩µ−|α|, x ∈ Rd

for any α ∈ Zd+ with some C ′
α > 0, and

Ṽ (n) = V [n] for n ∈ Zd.

Ṽ (x) may be quantized using pseudodifferential operator calculus: For φ ∈ C∞
0 (Td)

with the support in a local coordinate Kε = (−π + ε, π − ε)d ⋐ (−π, π)d ⊂ Td. Let

χ ∈ C∞
0 ((−π, π)d) such that χ(ξ) = 1 on Kε. Then we set

Ṽ (−Dξ)φ(ξ) = (2π)−d
∫∫

e−i(ξ−η)·xχ(η)Ṽ (x)φ(η)dηdx, ξ ∈ (−π, π)d ⊂ Td.

We can define Ṽ (−Dξ) for functions supported in other local coordinates similarly, and

we can define Ṽ (−Dξ) globally using a partition of unity.

The extension Ṽ (x) is not uniquely determined by V [n], and hence Ṽ (−Dξ) is not

unique either. We also note that it is not necessarily the same operator as V [−Dξ]. But

we can show

V [−Dξ]− Ṽ (−Dξ) = R, a smoothing operator on Td,

under the above conditions on V and Ṽ . Thus we learn Ĥ is equivalent to the operator:

p(−Dξ, ξ)φ(ξ) = (2π)−d
∫∫

e−i(ξ−η)·xp(x, η)φ(η)dηdx

for φ ∈ C∞
0 (Td) supported in such a local coordinate modulo smoothing operators,

where

p(x, ξ) = −
d∑
j=1

cos(ξj) + Ṽ (x).

This observation leads us to the following general model:
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General Model: Let M be a d-dimensional complete Riemannian manifold with a

positive density m, and let H = L2(M,m). Let

H = H0 + V

be a self-adjoint operator on H.

Assumption A. We suppose H0 = p0(ξ)· is a multiplication operator by a real-

valued smooth function p0(ξ), and V is a pseudodifferential operator with a symbol

V (x, ξ) ∈ S−µ
1,0 , i.e., V (x, ξ) satisfies for any α, β ∈ Zd+,∣∣∂αx ∂βξ V (x, ξ)

∣∣ ≤ Cαβ⟨x⟩−µ−|α|, ξ ∈M,x ∈ T ∗
ξM,

with some Cαβ > 0, where µ ∈ R. The quantization of V (x, ξ) is given by

V u(ξ) = V (−Dξ, ξ)u(ξ) = (2π)−d
∫∫

e−i(ξ−η)·xV (x, η)u(η)dηdx

in a local coordinate of M as above.

We call V is short-range type if µ > 1, and long-range type if µ ∈ (0, 1].

Example I. (1) If we set M = Td, p0(ξ) =
∑

cos(ξj) and V = V (x) be a smooth

extension of V [n], then we have the above discrete Schrödinger operator (under addi-

tional assumptions), and this model contains many models in solid state physics, e.g.,

the triangle lattice, etc., using different p0(ξ). We note, however, the hexagonal lattice,

or the graphene, needs a system of operators, and it will be addressed later.

(2) If we set M = Rd, and V (x) ∈ C∞(Rd), then we have the usual Schrödinger oper-

ators on Euclidean spaces. This model also includes higher order constant coefficient

PDOs with long-range perturbations, or fractional power operators (with small gener-

alizations).

§ 2. Spectral properties

We consider an energy interval I satisfying the following condition:

Assumption B. We suppose V is a long-range type perturbation (i.e., µ > 0 in

Assumption A), and consider the spectral properties of H in I ⋐ R such that

v(ξ) ≡ dp0(ξ) ̸= 0, if p0(ξ) ∈ I.

Example II.
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1. For the continuous Schrödinger operator case, 0 is the unique critical value of p0 =
1
2 |ξ|

2.

2. For the square lattice, σ(H0) = [−d, d], and v(ξ) = 0 only if p0(ξ) ∈ {−d,−d +

2, . . . , d}. −d and d are unique minimal/maximal value of p0, and other critical

values are saddle points.

3. For the 2D triangular lattice, σ(H0) = [0, 9/2] (with a suitable definition), and

v(ξ) = 0 only if p0(ξ) ∈ {0, 4, 9/2}. (4 is a saddle point of p0, and the maximal

value 9/2 has two maximal points. 0 is the unique minimum.)

Theorem 2.1. The point spectrum in I: σp(H)∩I is a finite set with finite multiplic-

ity, and the spectrum of H in I is absolutely continuous away from the point spectrum.

Moreover,

(H − λ∓ i0)−1 = lim
ε→+0

(H − λ∓ iε)−1, λ ∈ I \ σp(H),

exist as operators from Hs(M) to H−s(M) with s > 1/2, where Hp(M) denotes the

Sobolev space of order p ∈ R on M .

Such results for discrete Schrödinger operators goes back at least to Boutet de Monvel-

Sahbani [3] and Isozaki-Korotyaev [6].

The proof uses the standard Mourre theory, and we take the conjugate operator (for-

mally) as

A =
1

2
(iA0 − iA∗

0), A0 = χ(p0(ξ))
∑
j,k

gjk(ξ)
∂p0
∂ξk

(ξ)
∂

∂ξj
,

where χ ∈ C∞
0 (R) such that Supp[χ] ⊂ I, and it is 1 on I ′ ⋐ I, λ ∈ I ′, gij(ξ) is the

(co)metric on T ∗
ξM .

§ 3. Short-range scattering theory

If V is short-range type, i.e., µ > 1, then we can construct the time-dependent scattering

theory following the very standard procedure:

Theorem 3.1. The wave operators:

W I
± = s-lim

t→±∞
eitHe−itH0EI(H0)

exists and are compete: Ran[W I
±] = EI(H)Hac(H).

These imply the so-called asymptotically free propagation for the initial states in

the continuous spectrum: If u0 ∈ EI(H)Hc(H), then there are u± ∈ EI(H0)H such

that ∥∥e−itHu0 − e−itH0u±
∥∥ → 0 as t→ ±∞.
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The proof of the existence uses the Cook-Kuroda method. We note we can use the non-

stationary phase by the assumption: v(ξ) = dp0(ξ) ̸= 0 if p0(ξ) ∈ I. The completeness

follows from the limiting absorption priniciple, i.e., Theorem 2.1.

For more recent, general results on scattering theory, see, e.g., Ando-Isozaki-Morioka

[1], Bellissard-Shulz-Baldes [2], etc.

§ 4. Long-range scattering theory

If V is long-range type, i.e., Assumption A with µ ∈ (0, 1], then the usual wave operators

do not exist in general, and we need to introduce modified wave operators, which is

constructed in terms of classical mechanics generated by the Hamiltonian p(x, ξ) =

p0(ξ) + V (x, ξ) on T ∗M . We refer, fore example, Yafaev [13] Chapter 10 for the case of

Schrödinger operators.

For the moment, we have results for the square lattice case, i.e., M = Td, V = V (x)

(potential perturbation), and we need additional assumptions on p0(ξ). We are currently

working on the general case.

Theorem 4.1 ([9]). There are solutions to the Hamilton-Jacobi equation:

∂tΦ±(t, ξ) = p(∂ξΦ±(t, ξ), ξ) for ξ: p0(ξ) ∈ I ±t ≥ 0,

such that the modified wave operators

W I
± = s-lim

t→±∞
eitHe−iΦ±(t,ξ)EI(H0)

exist.

For the proof of Theorem 3, we analyze long-time behaviors of solutions to the Hamilton

equation:
∂

∂t
x(t) =

∂p

∂ξ
(x(t), ξ(t)),

∂

∂t
ξ(t) = −∂p

∂x
(x(t), ξ(t))

for (x(t), ξ(t)) ∈ T ∗M , i.e., ξ(t) ∈M and x(t) ∈ T ∗
ξ(t)M , then construct global solutions

to the Hamilton-Jacobi equation.

For the completeness, Tadano recently proved it for the time-independent modifiers:

Theorem 4.2 (Tadano [12]). One can construct Fourier integral operators JI± such

that ∥JI±e−itH0EI(H0)u∥ → ∥EI(H0)u∥ as t→ ±∞, and

W̃ I
± = s-lim

t→±∞
eitHJI±e

−itH0EI(H0)

exist and are complete: Ran[W̃ I
±] = EI(H)Hac(H).
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We note that the time-independent modifiers JI± are constructed using suitable solutions

to the eikonal equation: p(∂ξΨ±(x, ξ), ξ) = E ∈ I. The asymptotic completeness

implies the property: If u0 ∈ EI(H)Hc(H), then there are u± ∈ EI(H0)H such that∥∥e−itHu0 − JI±e
−itH0u±

∥∥ → 0 as t→ ±∞.

§ 5. Microlocal resolvent estimates

Resolvent estimates with direction-dependent cut-off’s, or microlocal localizations, goes

back to at least E. Mourre, and Isozaki and Kitada [IK1] proved a so-called microlocal

resolvent estimates. Here we discuss a generalized and somewhat more precise version

of them.

We suppose V is long-range type. As we discussed in Section 2, for λ ∈ I \ σp(H),

the boundary value of the resolvent (H − λ ∓ i0)−1 exist as operators from Hs(M) to

H−s(M), s > 1/2. Let K±(λ) ∈ S′(M ×M) be their distribution kernels.

We write WF(T ) be the wave front set of a distribution T . We recall a (semiclassical)

definition of the wave front set. Let T ∈ S′(RN ), and let (x, ξ) ∈ T ∗RN = R2N , ξ ̸= 0.

Then (x, ξ) /∈ WF(T ) if there is a ∈ C∞
0 (R2N ) such that a(x, ξ) ̸= 0 and

∥a(x, hDx)T∥L2 = O(h∞), as h→ 0,

We now define Σ0,Σ±(λ),Σ
′
±(λ) ⊂ T ∗(M ×M) as follows:

Σ0 =
{
(x, ξ,−x, ξ)

∣∣ (x, ξ) ∈ T ∗M
}
,

Σ±(λ) =
{
(x+ tv(ξ), ξ,−x, ξ)

∣∣ (x, ξ) ∈ T ∗M,p0(ξ) = λ,±t ≥ 0
}
,

Σ′
±(λ) =

{
(tv(ξ), ξ)

∣∣ p0(ξ) = λ,±t ≥ 0
}
×

{
(−tv(ξ), ξ)

∣∣ p0(ξ) = λ,∓t ≥ 0
}

Theorem 5.1 ([11]). For λ ∈ I \ σp(H), WF(K±(λ)) ⊂ Σ0 ∪ Σ±(λ) ∪ Σ′
±(λ).

Σ0 corresponds to singularities of pseudodifferential operators, i.e., diagonal singulari-

ties.

Σ±(λ) describe the singularities generated by the free motion. In fact, we can easily

show

WF(Ker[(H0 − λ∓ i0)−1]) = Σ0 ∪ Σ±(λ).

Σ±(λ) are the only singularities generated by the scattering phenomena. For the “+”

case, Σ+(λ) corresponds to classical trajectories (x(t), ξ(t)) with the energy λ such that

x(t) ∼ tv(ξ+), ξ(t) → ξ+ as t→ +∞.

Microlocal resolvent estimates of Isozaki-Kitada type follows easily from this result:

Suppose K ⋐ I \ σp(H), and suppose a±(x, ξ) ∈ S0
1,0 such that

Supp[a±] ⊂
{
(x, ξ) ∈ T ∗M

∣∣∣∣ ± x · v(ξ)
|x| |v(ξ)|

≥ ±γ±, p0(ξ) ∈ K

}
,
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where −1 < γ− < γ+ < 1. We set

A± = a±(−Dξ, ξ).

Theorem 5.2 (Two-sided microlocal resolvent estimates). A∓(H−λ∓ i0)−1A∗
± are

smoothing operators, i.e., they are bounded from H−N (M) to HN (M) with any N .

This result may be considered as a long-time propagation estimate, and actually it is

proved using an argument similar to the proof of the microlocal smoothing properties.

This estimate is useful in the analysis of the scattering matrix.

We note that we may ask the strength of singularities of the resolvents. Namely, what

are the Sobolev singularities of WF(K±(λ)) on Σ±(λ) and Σ′
±(λ), respectively? They

correspond to the strength of scattered waves, and it seems an interesting problem.

§ 6. Properties of scattering matrices

Here we suppose V is short-range type, and consider the scattering matrix. As we

noted in Section 3, wave operators W I
± exist and complete, and hence the scattering

operator:

SI = (W I
+)

∗W I
−: a unitary on EI(H0)H = L2({ξ ∈M | p0(ξ) ∈ I}).

By the intertwining property: HW I
± =W I

±H0, we also learn SI commutes with H0, i.e,

H0S
I = SIH0, and hence SI is decomposed to a family of operators

S(λ) ∈ L(L2(Λ(λ))), λ ∈ I, Λ(λ) =
{
ξ ∈M

∣∣ p0(ξ) = λ
}
.

S(λ) is called the scattering matrix. The scattering matrix S(λ) is a unitary operator

on the energy surface Λ(λ), λ ∈ I.

Under our assumption, we can show that S(λ) is a pseudodifferential operator on Λ(λ),

and we can compute the leading term.

Theorem 6.1 ([10]). For each λ ∈ I \ σp(H), S(λ) is a pseudodifferential operator

with its symbol in S0
1,0(Λ(λ)). Moreover,

Sym(S(λ)) = e−iψ(x,ξ) +R(x, ξ),

where Sym(A) denotes the symbol of A,

(6.1) ψ(x, ξ) =

∫ ∞

−∞
V (x+ tv(ξ), ξ)dt for ξ ∈ Λ(λ), x ∈ T ∗

ξ Λ(λ),

and R ∈ S−µ
1,0 (Λ(λ)).
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We note S(λ) is a pseudodifferential operator on a manifold Λ(λ) with the symbol in

S0
1,0, and hence the symbol is well-defined modulo S−1

1,0 , in general. But in our case, we

can easily show

ψ(x, ξ) ∈ S−µ+1
1,0 (Λ(λ)), and hence e−iψ(x,ξ) − 1 ∈ S−µ+1

1,0 (Λ(λ)).

Thus S(λ)−1 has a symbol in S−µ+1
1,0 , and the symbol is well-defined modulo S−µ

1,0 . The

main contribution ψ(x, ξ) is a generalization of the Borm approximation in the classical

quantum mechanics.

The proof of Theorem 7 employs an argument analogous to Isozaki-Kitada [IK2]. Namely,

• A construction of Isozaki-Kitada modifiers (which is, in fact, a parametrix of wave

operators).

• Microlocal resolvent estimates.

• Representation formula of scattering operators (due to Lippmann-Schwinger, . . . ,

Isozaki-Kitada, Yafaev, etc.).

Related results: It is known (under more general conditions) that S(λ) is an FIO due

to Melrose-Zworski [8], Ito-N [7], etc. Yafaev [14] used a similar technique to study high

energy asymptotics of scattering matrix.
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