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Global existence and monotonicity formula for

volume preserving mean curvature flow

By

Keisuke Takasao∗

Abstract

In this note, the global existence of the weak solution for the volume preserving mean

curvature flow is considered. We compare two phase field methods for the volume preserving

mean curvature flow from the viewpoint of L2-estimate of the mean curvature, which is the

key estimate of the existence theorem. We also study the monotonicity formula for the volume

preserving mean curvature flow.

§ 1. Introduction

This note is a survey about the existence of weak solutions of the volume preserving

mean curvature flow. Let T > 0 and d ≥ 2 be an integer. For any t ∈ [0, T ), let Ut ⊂ Rd

be a bounded open set with a smooth boundary Mt. A family of the hypersurfaces

{Mt}t∈[0,T ) is called a volume preserving mean curvature flow if the normal velocity

vector v of Mt is given by

(1.1) v = h− ⟨h · ν⟩ν on Mt,

where h and ν are the mean curvature vector of Mt and the inner unit normal vector

of Mt respectively, and

⟨h · ν⟩ = 1

Hd−1(Mt)

∫
Mt

h · ν dHd−1.

Here Hd−1 is the (d− 1)-dimensional Hausdorff measure. If {Mt}t∈[0,T ) is the solution

of (1.1), then

(1.2)
d

dt
Ld(Ut) = −

∫
Mt

v · ν dHd−1 = 0, t ∈ (0, T ).
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Here Ld is the d-dimensional Lebesgue measure. The formula (1.2) is called the volume

preserving property. By (1.2) we have

d

dt
Hd−1(Mt) = −

∫
Mt

h · v dHd−1 = −
∫
Mt

(v + ⟨h · ν⟩ν) · v dHd−1

=−
∫
Mt

|v|2 dHd−1 − ⟨h · ν⟩
∫
Mt

v · ν dHd−1 = −
∫
Mt

|v|2 dHd−1.

(1.3)

In this note, we consider the global existence for the weak solution to (1.1) by using the

phase field method. The time global existence for the solution to (1.1) for convex U0

proved by Gage [9] (d = 2) and Huisken [11] (d ≥ 2). Escher and Simonett [6] showed

that if M0 is sufficiently close to a Euclidean sphere, then there exists a time global

solution to (1.1). For general initial data M0, Mugnai, Seis and Spadaro [16] proved

the time global existence for the weak solution to (1.1) via the variational approach.

Takasao [20] showed the time global existence for the weak solution to (1.1) for d = 2, 3

by using the phase field method.

§ 2. Phase field method

Let Ω := Td = (R/Z)d and U0 ⊂ Ω be an open set. We consider the following

Allen-Cahn equation:

(2.1)

εφε
t = ε∆φε − W ′(φε)

ε
, (x, t) ∈ Ω× (0,∞),

φε(x, 0) = φε
0(x), x ∈ Ω.

Here ε ∈ (0, 1) and W (s) =
(1− s2)2

2
. We set initial data φε

0 so that

φε
0(x) ≈

{
+1, x ∈ U0

−1, x ∈ Ω \ U0.

For sufficiently small ε > 0, Ω is divided into {x ∈ Ω : φε(x, t) ≈ 1} and {x ∈ Ω :

φε(x, t) ≈ −1}, and Mε
t := {x ∈ Ω : φε(x, t) = 0} converges to the solution to the mean

curvature flow as ε → 0 formally [7, 13]. Similarly, the phase field methods for (1.1)

by using (2.1) with non-local term are also well known [2, 4, 5, 10, 18]. Rubinstein and

Sternberg [18] considered the following Allen-Cahn equation with non-local term:

(2.2)

εφε
t = ε∆φε − W ′(φε)

ε
+ λε1, (x, t) ∈ Ω× (0,∞),

φε(x, 0) = φε
0(x), x ∈ Ω.
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Here λε1(t) :=
1

|Ω|

∫
Ω

W ′(φε(x, t))

ε
dx =

∫
[0,1)d

W ′(φε(x, t))

ε
dx. The solution φε of (2.2)

satisfies the volume preserving property, that is

(2.3)
d

dt

∫
Ω

φε(x, t) dx = 0 for any t ∈ (0,∞).

By (2.3), the volume of Uε
t := {x ∈ Ω : φε(x, t) ≈ 1} is almost constant. Chen, Hilhorst

and Logak [5] proved that if {Mt}t∈[0,T ) is the classical solution for (1.1), then there

exists a family of the solution {φε}ε∈(0,1) such that Mε
t := {x ∈ Ω : φε(x, t) = 0}

converges to Mt as ε → 0. Let φε be a solution for (2.2). By (2.3) and the integration

by parts, we have

d

dt

∫
Ω

ε|∇φε|2

2
+
W (φε)

ε
dx =

∫
Ω

(
ε∇φε · ∇φε

t +
W ′(φε)

ε
φε
t

)
dx

=

∫
Ω

ε
(
−∆φε +

W ′(φε)

ε2

)
φε
t dx =

∫
Ω

ε
(
− φε

t +
λε1
ε

)
φε
t dx

=−
∫
Ω

ε(φε
t )

2 dx+ λε1

∫
Ω

φε
t dx = −

∫
Ω

ε(φε
t )

2 dx.

(2.4)

We remark that (2.4) corresponds to (1.3). Define

E(φε) :=

∫
Ω

ε|∇φε|2

2
+
W (φε)

ε
dx and F (φε) :=

∫
Ω

φε dx.

The values of E(φε) and F (φε) correspond to Hd−1(Mε
t ) and 2Ld(Uε

t )−1, respectively.

Set α ∈ (0, 1). If φε is the minimizer of E subject to F = α, then we have

(2.5) 0 = δE − λδF = −ε∆φε +
W ′(φε)

ε
− λ

for some λ. Therefore we can regard (2.2) as a gradient flow of E subject to F = α.

Ilmanen proved the global existence of the weak solution for the mean curvature flow

via the phase field method [13]. However, the existence theorem for the weak solution

for (1.1) via (2.2) is not known. The reason is the difficulty of the estimates of λε1 (see

Remark 2 below). Next, we consider the following Allen-Cahn equation with non-local

term studied by Golovaty [10]:

(2.6)

εφε
t = ε∆φε − W ′(φε)

ε
+ λε

√
2W (φε), (x, t) ∈ Ω× (0,∞),

φε(x, 0) = φε
0(x), x ∈ Ω.

Here

λε(t) :=
−
∫
Ω

√
2W (φε)

(
ε∆φε − W ′(φε)

ε

)
dx

2
∫
Ω
W (φε) dx.

(2.7)
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Define k(s) :=
∫ s

0

√
2W (τ)dτ = s− 1

3s
3. By the definition of λε we obtain

(2.8)
d

dt

∫
Ω

k(φε) dx =

∫
Ω

√
2W (φε)φε

t dx = 0.

Note that if φε ≈ ±1, then we have k(φε) ≈ 2
3φ

ε. Thus we can regard (2.8) as the

volume preserving property. By (2.8) we obtain

d

dt

∫
Ω

ε|∇φε|2

2
+
W (φε)

ε
dx =

∫
Ω

(
ε∇φε · ∇φε

t +
W ′(φε)

ε
φε
t

)
dx

=

∫
Ω

ε
(
−∆φε +

W ′(φε)

ε2

)
φε
t dx =

∫
Ω

ε
(
− φε

t + λε
√

2W (φε)

ε

)
φε
t dx

=−
∫
Ω

ε(φε
t )

2 dx+ λε
∫
Ω

φε
t

√
2W (φε) dx = −

∫
Ω

ε(φε
t )

2 dx.

(2.9)

Hence (2.9) also corresponds to (1.3). Set

F̃ (φε) :=

∫
Ω

k(φε) dx.

By an argument similar to (2.5), if φε is the minimizer of E subject to F̃ = α ∈ (0, 23 ),

then we have

0 = δE − λδF̃ = −ε∆φε +
W ′(φε)

ε
− λ

√
2W (φε)

for some λ. Therefore we can regard (2.6) as a gradient flow of E subject to F̃ = α.

For the solution φε of (2.6), we define a Radon measure µε
t on Ω by

(2.10) µε
t (ϕ) :=

1

σ

∫
Ω

ϕ
(ε|∇φε(x, t)|2

2
+
W (φε(x, t))

ε

)
dx for any ϕ ∈ Cc(Ω).

Here σ :=
∫ 1

−1

√
2W (s) ds. Formally, µε

t is an approximation of Hd−1⌊Mt
, where Mt :=

{x ∈ Rd : φε(x, t) = 0}. For d = 2, 3, Takasao [20] proved the global existence of the

weak solution for (1.1) via (2.6). In the proof, the following estimate is important:

Lemma 2.1 ([20]). Let d ≥ 2. Assume that there exist ω > 0 and D > 0

such that µε
0(Ω) ≤ D and

∣∣∣ ∫Ω k(φε
0) dx

∣∣∣ ≤ 2
3 − ω for any ε ∈ (0, 1). Then there exist

c1 = c1(d, ω,D) > 0 and ϵ1 = ϵ1(d, ω,D) ∈ (0, 1) such that

(2.11) sup
ε∈(0,ϵ1)

∫ t2

t1

|λε(t)|2 dt ≤ c1(1 + t2 − t1)

for any 0 ≤ t1 < t2.

Remark. Let U0 ⊂ Ω be an open set and M0 := ∂U0. If µ
ε
0 ≈ Hd−1⌊M0

, then the

assumptions µε
0(Ω) ≤ D and

∣∣∣ ∫Ω k(φε
0) dx

∣∣∣ ≤ 2
3 − ω correspond to Hd−1(M0) ≤ D and

||U0| − |Ω \ U0|| ≤ 1− 3
2ω, respectively. Moreover, if U0 = ∅, then by |Ω| = 1, we have

||U0| − |Ω \ U0|| = 1. Thus, the assumptions are natural.
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Remark. To obtain the weak solution for the volume preserving mean curvature

flow, the L2-estimates of the mean curvature is important (see [14, 15]). For the solution

of (2.6), we can obtain the estimate via Lemma 2.1. Let Mt ≈ {x ∈ Ω : φε(x, t) = 0}
and h be the mean curvature vector of Mt, then we have∫ T

0

∫
Mt

|h|2 dHd−1dt ≈ 1

σ

∫ T

0

∫
Ω

ε
(
∆φε − W ′(φε)

ε2

)2

dxdt.

From (2.9), we have

µε
T (Ω) +

∫ T

0

∫
Ω

ε(φε
t )

2 dxdt ≤ µε
0(Ω) ≤ D and sup

t∈[0,T ]

∫
Ω

2W (φε(x, t))

ε
dx ≤ 2σD

for any T > 0. Thus∫ T

0

∫
Ω

ε
(
∆φε − W ′(φε)

ε2

)2

dxdt

≤2

∫ T

0

∫
Ω

ε(φε
t )

2 dxdt+ 2

∫ T

0

∫
Ω

ε
(
λε

√
2W (φε)

ε

)2

dxdt

≤2σD + 2

∫ T

0

(λε)2
∫
Ω

2W (φε)

ε
dxdt ≤ 2σD + 4σD

∫ T

0

(λε)2dt

≤2σD(1 + 2c1(1 + T )).

(2.12)

Hence
∫ T

0

∫
Mt

|h|2 dHd−1dt is bounded, formally. For the solution of (2.2), the bounded-

ness of supε
∫
|λε1(t)|2 dt is also known [2]. However, in order to obtain the L2-estimate

of the mean curvature by using an argument similar to (2.12), the boundedness of

supε
∫
|λε1(t)|2 dt is not enough.

§ 3. Existence of the weak solution

The main results of this note are the partial extension of the results of [20] for d ≥ 2.

To state the main results, we recall several definitions from the geometric measure theory

and refer to [1, 8, 19] for more details. We define Br(x) := {y ∈ Rd : |x − y| < r} for

r > 0 and x ∈ Rd. For a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) ∈ Rd, we write

a⊗ b := (aibj). For A = (aij), B = (bij) ∈ Rd×d, we denote A : B :=
∑d

i,j=1 aijbij . We

write the Grassmann manifold of unoriented k-dimensional subspaces in Rd by Gk(Rd).

For S ∈ Gk(Rd), we also use S to define the d by d matrix representing the orthogonal

projection Rd → S. We remark that if k = d− 1 then the projection for S ∈ Gd−1(Rd)

is given by S = I−ν⊗ν, where I is the identity matrix and ν is the unit normal vector

of S. For a subset A ⊂ Rd, we write the reduced boundary of A by ∂∗A.
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Definition 3.1. A set M ⊂ Rd is called countably k-rectifiable set if M is

Hk-measurable and there exists a family of C1 k-dimensional embedded submanifolds

{Mi}∞i=1 such that Hk(M \ ∪∞
i=1 Mi) = 0.

We call a Radon measure on Rd ×Gk(Rd) a general k-varifold in Rd. We write the

set of all general k-varifolds by Vk(Rd). For V ∈ Vk(Rd), we denote a mass measure

of V by

∥V ∥(A) := V ((Rd ∩A)×Gk(Rd))

for any Borel set A ⊂ Rd. We also define

∥V ∥(ϕ) :=
∫
Rd×Gk(Rd)

ϕ(x) dV (x, S) for ϕ ∈ Cc(Rd).

The first variation δV : C1
c (Rd;Rd) → R of V ∈ Vk(Rd) is denoted by

δV (g) :=

∫
Rd×Gk(Rd)

∇g(x) : S dV (x, S) for g ∈ C1
c (Rd;Rd).

We define a total variation ∥δV ∥ by

∥δV ∥(G) := sup{δV (g) : g ∈ C1
c (G;Rd), |g| ≤ 1}

for any open set G ⊂ Rd. If ∥δV ∥ is locally bounded and absolutely continuous with

respect to ∥V ∥, then by the Radon-Nikodym theorem, there exists a ∥V ∥-measurable

function h(x) : spt ∥V ∥ → Rd such that

δV (g) = −
∫
Rd

h(x) · g(x) d∥V ∥(x) for g ∈ Cc(Rd;Rd).

Moreover h is called the generalized mean curvature vector of V . We call a Radon

measure µ k-rectifiable if µ is given by µ = θHk⌊M , that is, there exist a countably k-

rectifiable set M and θ ∈ L1
loc(Hk⌊M ;R≥0) such that µ(ϕ) :=

∫
Rd ϕdµ =

∫
M
ϕθ dHk for

any ϕ ∈ Cc(Rd). Moreover if θ is integer-valued Hk-a.e. onM then we call µ k-integral.

For a k-rectifiable Radon measure µ = θHk⌊M we define a unique rectifiable k-varifold

V by∫
Rd×Gk(Rd)

ϕ(x, S) dV (x, S) :=

∫
Rd

ϕ(x, TxM)θ(x) dHk(x) for ϕ ∈ Cc(Rd×Gk(Rd)),

where TxM is the approximate tangent space of M at x. We remark that TxM exists

Hk-a.e. on M and µ = ∥V ∥ in this case.

The following definition is similar to the formulation of Brakke’s mean curvature

flow [3]:
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Definition 3.2. Let T > 0 and {µt}t∈(0,T ) be a family of Radon measures on

Ω. Set dµ := dµtdt. We call {µt}t∈(0,T ) rectifiable L
2-flow with the generalized velocity

vector v if the following hold:

1. v ∈ L2(0, T ; (L2(µt))
d) and µt is (d − 1)-rectifiable and has a generalized mean

curvature vector h ∈ L2(µt;Rd) a.e. t ∈ (0, T ).

2. v and µt satisfy

(3.1) v(x, t) ⊥ Txµt for µ-a.e. (x, t) ∈ Ω× (0, T ).

Here Txµt is the approximate tangent space of µt at x.

3. There exists CT > 0 such that

(3.2)
∣∣∣ ∫ T

0

∫
Ω

(ηt +∇η · v) dµtdt
∣∣∣ ≤ CT ∥η∥C0(Ω×(0,T ))

for any η ∈ C1
c (Ω× (0, T )).

Remark. In [14], the original definition of L2-flow requires that µt is integral a.e.

t ∈ (0, T ), in addition.

The main results of this note are following:

Theorem 3.3. Let d ≥ 2 and U0 ⊂ Ω be an open set with C1 boundary M0.

Then there exist a positive sequence {εi}∞i=1 with εi → 0 and {φεi
0 }∞i=1 such that the

following hold:

(a) Let φεi be a solution of (2.6) with the initial data φεi
0 . Then there exists ψ ∈

BVloc(Ω× [0,∞)) ∩ C
1
2

loc([0,∞);L1(Ω)) such that

(a1) ψ(·, 0) = χU0
a.e. on Ω and φεi → 2ψ − 1 in L1

loc(Ω× [0,∞)).

(a2) ∫
Ω

ψ(·, t) dx = Ld(U0) for any t ∈ [0,∞).

(b) There exists a family of (d − 1)-rectifiable Radon measures {µt}t∈[0,∞) such that

µ0 = Hd−1⌊M0 and µεi
t → µt as Radon measures on Ω for any t ∈ [0,∞).

(c) There exists a function λ ∈ L2
loc(0,∞) such that

λεi → λ weakly in L2(0, T ) for any T > 0.
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(d) There exists g ∈ L2
loc(0, T ; (L

2(µt))
d) such that {µt}t∈(0,∞) is rectifiable L2-flow

with a generalized velocity vector

v = h+ g,

and v satisfies

lim
i→∞

∫
{|∇φεi (·,t)|≠0}×(0,∞)

−φεi
t

|∇φεi |
∇φεi

|∇φεi |
· Φ dµεi

t dt =

∫
Ω×(0,∞)

v · Φ dµtdt

for any Φ ∈ Cc(Ω× [0,∞);Rd). Moreover there exists θ : ∂∗{(x, t) : ψ(x, t) = 1} →
(0,∞) such that

v = h− λ

θ
ν for Hd-a.e. on ∂∗{ψ = 1}.

Here ν = ν(x, t) is the inner unit normal vector of ∂∗{x : ψ(x, t) = 1}.

(e) ∫
Ω

v · ν d∥∇ψ(·, t)∥ = 0 for a.e. t ∈ (0,∞).

Here ∥∇ψ(·, t)∥ is the total variation measure of ∇ψ(·, t).

Remark. The author showed that if d = 2, 3, then {µt}t∈(0,∞) is L
2-flow, namely,

µt is (d− 1)-integral for a.e. t ≥ 0 and θ ∈ N for Hd-a.e. on ∂∗{ψ = 1} in addition (see

[20, Theorem 2.5]). Thus Theorem 3.3 is the partial extension of the results of [20] for

d ≥ 4. The integral property of µt for d ≥ 4 is an open problem.

§ 4. The monotonicity formula

The monotonicity formula for the mean curvature flow is proved by Huisken [12].

Ilmanen [13] proved the monotonicity formula for the Allen-Cahn equation which corre-

sponds to the mean curvature flow. In this section we consider the monotonicity formula

for (2.6). Define

ρy,s(x, t) :=
1

(4π(s− t))
d−1
2

e−
|x−y|2
4(s−t) , t < s, x, y ∈ Rd.

Let the measure µε
t be extended periodically to Rd. Then we have the following:

Proposition 4.1 (Monotonicity formula [20]). Let φε be a solution of (2.6) and

satisfy the assumptions of Lemma 2.1 and

|φε
0| < 1 and

ε|∇φε
0|2

2
≤ W (φε

0)

ε
on Ω.
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Then we have∫
Rn

ρy,s(x, t) dµ
ε
t

∣∣∣
t=t2

≤
∫
Rn

ρy,s(x, t) dµ
ε
t

∣∣∣
t=t1

exp
(c1
2
(1 + t2 − t1)

)
(4.1)

for any y ∈ Rd, 0 ≤ t1 < t2 < s and ε ∈ (0, ϵ1).

Proof. By an argument similar to that in [21, p.870], we have

d

dt

∫
Rd

ρ dµε
t ≤

1

2(s− t)

∫
Rd

ρ
(ε|∇φε|2

2
− W (φε)

ε

)
dx+

1

2
(λε)2

∫
Rd

ρ dµε
t(4.2)

for any t < s. By (2.6) and Lemma 4.2 which we show later, we obtain

(4.3)
ε|∇φε|2

2
≤ W (φε)

ε
in Rd × [0,∞).

Therefore, by (2.11), (4.2), (4.3) and Gronwall’s inequality we have (4.1).

Lemma 4.2. Let u = u(t) ∈ C1((0,∞)) and φε ∈ C2(Rd× (0,∞)) be a solution

of

(4.4) εφε
t = ε∆φε − W ′(φε)

ε
+ u

√
2W (φε).

Moreover we assume that

|φε|
∣∣∣
t=0

< 1 and
ε|∇φε|2

2
− W (φε)

ε

∣∣∣
t=0

≤ 0 on Rd.

Then we have

(4.5)
ε|∇φε|2

2
− W (φε)

ε
≤ 0 in Rd × [0,∞).

Proof. Set qε(r) := tanh(r/ε). We define r : Rd × [0,∞) → R by

φε(x, t) = qε(r(x, t)).

Then, by
ε|qεr |2

2
=
W (qε)

ε
we obtain

ε|∇φε|2/2
W (φε)/ε

≤ |∇r|2 on Rd × [0,∞).

If |∇r| ≤ 1 then by
ε|∇φε|2/2
W (φε)/ε

≤ 1 we obtain (4.5). Therefore we only need to prove

that |∇r| ≤ 1 on Rd × [0,∞).
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Define g(q) := k′(q) =
√

2W (q). By the property of qε we have

(4.6) qεr =
g(qε)

ε
and qεrr =

(g(qε))r
ε

=
gq(q

ε)

ε
qεr .

By (4.4) and (4.6) we obtain

qεrrt = qεr∆r + qεrr|∇r|2 − qεrr + uqεr

= qεr∆r + qεr
gq
ε
(|∇r|2 − 1) + uqεr .

Thus we have

rt = ∆r +
gq
ε
(|∇r|2 − 1) + u

and

(4.7) ∂t|∇r|2 = ∆|∇r|2 − 2|∇2r|2 + 2

ε
∇r · ∇gq(|∇r|2 − 1) +

2gq
ε

∇r · ∇|∇r|2,

where ∇u = 0 is used. By |∇r(·, 0)| ≤ 1 on Rd and applying the maximum principle to

(4.7), we obtain |∇r| ≤ 1 in Rd × [0,∞).

Remark. For the solution of (2.2), we can not obtain (4.5) by an argument similar

to that in the proof of Lemma 4.2. The estimate (4.5) is important to prove the existence

theorem.

Define dξεt (x) := σ−1
(

ε|∇φε(x,t)|2
2 − W (φε(x,t))

ε

)
dx. The signed measure ξεt is called

the discrepancy measure. By using the monotonicity formula and arguments similar to

that in [13, Section 8] and [21, Section 6.2], we obtain the following:

Proposition 4.3. Let {εi}∞i=1 be a positive sequence with εi → 0 as i → ∞.

Let φεi satisfy the assumptions of Lemma 2.1 and Proposition 4.1. Moreover let µεi
t

converge to µt as Radon measures for any t ≥ 0. Then there exists a subsequence

{εij}∞j=1 such that

(4.8) lim
j→∞

|ξ
εij
t | = 0 a.e. t ≥ 0.

Remark. (4.8) means the balance of the Dirichlet energy and the potential energy.

§ 5. Rectifiability of µt

In this section we study the rectifiability of µt. There are methods of Ilmanen [13]

and Röger and Schätzle [17] (d = 2, 3) as proof of the rectifiability of µt. First we

consider the method of [17].
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Theorem 5.1 ([17]). Let d = 2, 3 and U ⊂ Rd be an open set. For a function

φε ∈ C2(U), we define µε(ϕ) := 1
σ

∫
U
ϕ
(

ε|∇φε|2
2 + W (φε)

ε

)
dx. Assume that

sup
ε>0

µε(U) <∞, sup
ε>0

∫
U

ε
(
∆φε − W ′(φε)

ε2

)2

dx <∞

and

µε → µ as Radon measures.

Then µ is (d− 1)-rectifiable and integral. Moreover, for the generalized mean curvature

vector h of µ and the signed measure ξε(ϕ) := 1
σ

∫
U
ϕ
(

ε|∇φε|2
2 − W (φε)

ε

)
dx we have∫

U

|h|2 dµ ≤ 1

σ
lim inf
ε>0

∫
U

ε
(
∆φε − W ′(φε)

ε2

)2

dx and |ξε| → 0.

Takasao [20] proved the existence of L2-flow of (1.1) for d = 2, 3, by using Theorem

5.1. In order to obtain the rectifiability for any dimension, we consider the method of

[13]. The following theorem is important to obtain the rectifiability:

Theorem 5.2 (Allard’s rectifiability theorem [1]). Let k ≤ d− 1. Assume U ⊂
Rd is an open set. Suppose V ∈ Vk(U) and ∥δV ∥ is a Radon measure on U . In order

that V be rectifiable it is necessary and sufficient that there exist subsets A1, A2, . . . of

U such that Hk(Ai) <∞ for any i ∈ N and ∥V ∥(U \ ∪∞
i=1Ai) = 0.

In this section, we suppose that d ≥ 2, φε is a solution of (2.6) and satisfies the

assumption of Proposition 4.1. Moreover we assume that there exists µt such that

µt = limε→0 µ
ε
t for any t ≥ 0 and

sup
x∈Rd,r∈(0,1)

µt(Br(x))

rd−1
≤ D for any t ≥ 0.

By using the monotonicity formula (4.1) and an argument similar to that in [13,

Corollary 6.3], we obtain

Lemma 5.3. There exists c1 = c1(d,D) > 0 such that

(5.1) Hd−1(sptµt) ≤ c1 lim inf
τ↑t

µτ (Ω) for t > 0.

Next we consider the first variation of the varifold which is naturally associated

with µε
t .

Definition 5.4. Let φε be a solution of (2.6). Define aε(x, t) := ∇φε(x,t)
|∇φε(x,t)| for

(x, t) with |∇φε(x, t)| ̸= 0. We consider the following varifold:

V ε
t (ϕ) =

∫
Ω∩{|∇φε|≠0}

ϕ(x, I − aε ⊗ aε) dµε
t , ϕ ∈ Cc(Ω×Gd−1(Rd)).
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The first variation of V ε
t is given by

δV ε
t (g) =

∫
Ω∩{|∇φε|≠0}

∇g · (I − aε ⊗ aε) dµε
t , g ∈ Cc(Ω;Rd).

By the integration by parts, we have

Proposition 5.5.

δV ε
t (g) =σ

−1

∫
Ω

(g · ∇φε)
(
ε∆φε − W ′(φε)

ε

)
dx+

∫
Ω∩{|∇φε|≠0}

∇g · (aε ⊗ aε) dξεt

− σ−1

∫
Ω∩{|∇φε|=0}

∇g · IW (φε)

ε
dx.

(5.2)

Finally we show the rectifiability of µt.

Proposition 5.6. µt is (d− 1)-rectifiable a.e. t ≥ 0.

Proof. Let {εi}∞i=1 be a positive sequence with εi → 0 as i→ ∞. By supi≥1 µ
εi
t (Ω) ≤

D, (2.12) and Fatou’s lemma, we have

(5.3) lim inf
i→∞

{∫
Ω

|∇φεi | · |εi∆φεi −W ′(φεi)/εi| dx
}
<∞ for a.e. t ≥ 0.

Fix t ≥ 0 such that (4.8) and (5.3) hold. By the compactness of Radon measures, there

exist a subsequence {V
εij
t }∞j=1 and a varifold Ṽt ∈ Vd−1(Ω) such that

(5.4) V
εij
t → Ṽt as varifolds.

By (4.8), (5.2) and (5.4), we have

δṼt(g) =

∫
∇g(x) : S dṼt(x, S)

= lim
j→∞

{∫
∇g : (I − aεij ⊗ aεij ) dµ

εij
t

+

∫
Ω∩{|∇φ

εij |̸=0}
∇g · (aεij ⊗ aεij ) dξ

εij
t

− σ−1

∫
Ω∩{|∇φ

εij |=0}
∇g · IW (φεij )

εij
dx

}
= lim

j→∞
σ−1

∫
Ω

g · ∇φεij (εij∆φ
εij −W ′(φεij )/εij ) dx

(5.5)

for any g ∈ (C1(Ω))d. By (5.3) and (5.5), there exists C1 > 0 such that

|δṼt(g)| ≤∥g∥∞ lim inf
j→∞

σ−1

∫
Ω

|∇φεij | · |εij∆φ
εij −W ′(φεij )/εij | dx

≤C1∥g∥∞
(5.6)
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for any g ∈ (C1(Ω))d. Thus |δṼt| is a Radon measure. Moreover, Hd−1(sptµt) <∞ by

(5.1). By Theorem 5.2, Ṽt is (d − 1)-rectifiable. Moreover, by ∥V
εij
t ∥ = µ

εij
t we have

∥Ṽt∥ = µt. Hence Ṽt is uniquely determined by µt. Thus µt is (d− 1)-rectifiable.
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