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On the Chorin method for thermal convection

equations for viscous incompressible fluids

By

Yoshiyuki Kagei ∗

Abstract

Stability of stationary solutions of the Oberbeck Boussinesq system and the corresponding

artificial compressible system is considered. The former system is obtained by a singular limit

of zero artificial Mach number in the latter system. This paper overviews recent results on a

relation of the stability of stationary solutions between both systems from the viewpoint of the

singular perturbation.

§ 1. Introduction

In this paper we consider the stability of stationary solutions of thermal convection

equations, called the Oberbeck-Boussinesq equations,

divv = 0,(1.1)

Pr−1 (∂tv + v · ∇v)−∆v +∇p−
√
Ra θe3 = 0,(1.2)

∂tθ + v · ∇θ −∆θ −
√
Rav · e3 = 0,(1.3)

and the artificial compressible system for (1.1)–(1.3):

ε2∂tp+ divv = 0,(1.4)

Pr−1 (∂tv + v · ∇v)−∆v +∇p−
√
Ra θe3 = 0,(1.5)

∂tθ + v · ∇θ −∆θ −
√
Rav · e3 = 0.(1.6)
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Here v = ⊤(v1(x, t), v2(x, t), v3(x, t)), p = p(x, t) and θ = θ(x, t) denote the unknown

velocity field, pressure and temperature deviation from the motionless state, respec-

tively, at time t > 0 and position x ∈ R3; e3 = ⊤(0, 0, 1) ∈ R3; Pr > 0 and Ra > 0 are

non-dimensional parameters, called Prandtl and Rayleigh numbers, respectively; and

ε > 0 is a small parameter, called artificial Mach number. Here and in what follows,

the superscript ⊤ · stands for the transposition. The systems (1.1)–(1.3) and (1.4)–(1.6)

are considered in the infinite layer Ω:

Ω = {x = (x′, x3);x
′ = (x1, x2) ∈ R2, 0 < x3 < 1}.

If ε → 0 in the artificial compressible system (1.4)–(1.6), one obtains the incom-

pressible system (1.1)–(1.3). One could therefore expect that solutions of (1.1)–(1.3)

would be approximated by solutions of (1.4)–(1.6) when ε ≪ 1. But this is a singular

limit, and hence, it is not straightforward to conclude that the artificial compressible

system (1.4)–(1.6) gives a good approximation of the incompressible system (1.1)–(1.3).

In [12, 13] the question whether (1.4)–(1.6) gives a good approximation of (1.1)–(1.3)

was investigated from the viewpoint of the stability of stationary solutions. The purpose

of this paper is to give an overview of the results in [12, 13] and append some remarks

to [12, 13].

The Oberbeck-Boussinesq equations (1.1)–(1.3) are a system of equations for a

convection phenomena (Bénard convection) of viscous incompressible fluid occupying Ω

heated from below under the gravitational force. It is known (see, e.g., [1, 10, 11, 16])

that under the boundary condition

(1.7) v|x3=0,1 = 0, θ|x3=0,1 = 0,

there exists a critical number Rac > 0 such that when Ra < Rac, the motionless

state v = 0, θ = 0 is stable, while, when Ra > Rac, the motionless state is unstable

and spatially periodic convective stationary solutions, such as roll pattern, hexagonal

pattern and etc., bifurcate from the motionless state.

The artificial compressible system such as (1.4)–(1.6) was proposed by A. Chorin

([2, 3, 4]) for the purpose of finding stationary solutions of equations for viscous incom-

pressible fluid numerically. If a solution of the artificial compressible system (1.4)–(1.6)

converges to a function us = ⊤(ps,vs, θs) as t → ∞, then the limit function us is a

stationary solution of (1.4)–(1.6). Since the sets of stationary solutions of (1.1)–(1.3)

and (1.4)–(1.6) coincide, one consequently obtains a stationary solution of (1.1)–(1.3).

With this method, Chorin numerically obtained periodic convective stationary patterns

of (1.1)–(1.3).

The limit function us obtained by Chorin’s method is a large time limit of solution

of (1.4)–(1.6), and therefore, us is stable as a solution of (1.4)–(1.6). It is of interest to

consider the following questions:
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(i) whether us is stable as a solution of (1.1)–(1.3), in other words, whether us repre-

sents an observable stationary flow in the real world ?
(ii) conversely, what kind of stationary flows can be computed by the Chorin method ?

These questions were considered in [12, 13]. To address the stability questions

of stationary solutions, in [12, 13], the spectra of the linearized operators around a

stationary solution of (1.1)–(1.3) and (1.4)–(1.6) for 0 < ε ≪ 1 were considered under

the additional boundary condition

(1.8) p, v and θ are Q-periodic in (x1, x2),

where

Q = [−π/α1, π/α1)× [−π/α2, π/α2).

Here αj , j = 1, 2, are given positive constants. We will denote the basic period domain

by

Ωper = Q× (0, 1).

We briefly summarize the main results of [12, 13]. It was shown in [12] that if a

stationary solution us = ⊤(ps,vs, θs) of (1.4)–(1.6) is asymptotically stable for suffi-

ciently small ε, then so is us as a stationary solution of (1.1)–(1.3). Furthermore, an

instability result was obtained; if us is unstable as a stationary solution of (1.1)–(1.3),

then so is us as a stationary solution of (1.4)–(1.6) for 0 < ε ≪ 1. This shows that un-

stable stationary solutions of (1.1)–(1.3) cannot be obtained by Chorin’s method with

0 < ε ≪ 1. As for the converse question, it was proved in [12] that if a stationary

solution us = ⊤(ps,vs, θs) of (1.1)–(1.3) is asymptotically stable, then so is us as a

stationary solution of (1.4)–(1.6) for 0 < ε ≪ 1, provided that

(1.9) infw∈(H1
0,per)

3,w ̸=0
Re (w · ∇vs,w)L2

∥∇w∥2L2

≥ −δ0

for some positive constant δ0. This gives a sufficient condition for us to be computed

by Chorin’s method with 0 < ε ≪ 1. We note that no condition for the temperature θs

of us is required. These results are applicable to stable bifurcating periodic convective

patterns such as roll pattern, hexagonal pattern and etc., when Ra ∼ Rac. In fact,

the velocity fields of bifurcating convective patterns are small when Ra ∼ Rac since

they bifurcate from v = 0, θ = 0 when Ra crosses Rac, and hence, the condition

(1.9) is satisfied. However, the condition (1.9) seems to be somewhat strong since most

of applications might be limited to stationary flows whose velocity fields vs are small

enough.

The condition (1.9) was later improved in [13]. It was proved in [13] that the

condition (1.9) can be replaced by

(1.10) infw∈(H1
0,per)

3,w ̸=0
Re (Qw · ∇vs,Qw)L2

∥∇Qw∥2L2

≥ −δ0.
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Here Q is the orthogonal projection from the space of L2 vector fields on Ωper to the

subspace {∇φ ∈ L2(Ωper)
3;φ ∈ H1

per(Ωper)}.
Due to this improvement, one can also consider the Taylor problem, namely, a flow

between two concentric infinite cylinders, whose inner cylinder rotates with a uniform

speed and outer one is at rest. As is the case of the Bénard convection problem,

the Taylor problem has also been widely studied as a good subject of the pattern

formation problem. When the rotation speed is sufficiently small, a laminar flow, called

the Couette flow, is stable. When the rotation speed increases, the Couette flow becomes

unstable beyond a certain value of the rotation speed, and a vortex pattern, called the

Taylor vortex, is observed. The Taylor vortex pattern is periodic in the direction of the

axis of the cylinders. Mathematically, this phenomenon is formulated as a bifurcation

problem for the incompressible system (see [5, 10, 11, 14, 21]). The velocity field near

the bifurcation point of the Taylor vortex is not necessarily small, but one can show that

the condition (1.10) is satisfied with vs being the Taylor vortex under axi-symmetric

perturbations (i.e., w in (1.10) are axi-symmetric). This implies that one can compute

the Taylor vortex by using Chorin’s method. (See [13, Section 5].)

We close this section with mentioning related results on the artificial compressible

system. The convergence of solutions as ε → 0 was discussed in [17, 18, 19] for the

artificial system with the additional stabilizing nonlinear term + 1
2 (divv)v:

ε2∂tp+ divv = 0,

∂tv − ν∆v + v · ∇v + 1
2 (divv)v +∇p= g

on a bounded domain. Here g is a given external force. It was shown that there exists

a weak solution ⊤(pε,vε) for each ε > 0 such that vε′ → v in L2(0, T ;L2(Ω)3) and

∇pε′ → ∇p weakly in H−1(Ω × (0, T )) for all T > 0 along a sequence ε′ → 0, where
⊤(p,v) is a weak solution of the corresponding incompressible Navier-Stokes equations:

divv = 0,

∂tv − ν∆v + v · ∇v +∇p= g.

We also mention the works by Donatelli [6, 7] and Donatelli and Marcati [8, 9] where

similar convergence results were obtained in the case of unbounded domains by using

the wave equation structure of the pressure and the dispersive estimates.

This paper is organized as follows. In section 2 we introduce notations used in

this paper. In section 3 we state the precise statement of the stability results in [12, 13]

mentioned above. In section 4 we list some properties of the null spaces of the linearized

operators. In section 5 we give an outline of a proof of the result that the condition

(1.10) is a sufficient condition for a stationary solution to be stable as a solution of the

artificial compressible system.
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§ 2. Preliminaries

In this section we introduce notation used in this paper. We denote by C∞
per the

space of restrictions of functions in C∞(Ω) which are Q-periodic in x′ = (x1, x2). We

also denote by C∞
0,per the space of restrictions of functions in C∞ which are Q-periodic

in x′ = (x1, x2) and vanish near x3 = 0, 1. For 1 ≤ r ≤ ∞ we denote by Lr(Ωper) the

usual Lebesgue space over Ωper, and its norm is denoted by ∥ · ∥r. The k th order L2

Sobolev space over Ωper is denoted by Hk(Ωper), and its norm is denoted by ∥ · ∥Hk .

We set

L2
per = the L2(Ωper)-closure of C∞

0,per,

Hk
per = the Hk(Ωper)-closure of C∞

per,

H1
0,per = the H1(Ωper)-closure of C∞

0,per.

We note that if f ∈ H1
0,per, then f |xj=−π/αj

= f |xj=π/αj
and f |x3=0,1 = 0. The inner

product of fj ∈ L2
per (j = 1, 2) is denoted by

(f1, f2) =

∫
Ωper

f1(x)f2(x) dx,

where z denotes the complex conjugate of z.

The mean value of a function ϕ(x) over Ωper is denoted by ⟨ϕ⟩:

⟨ϕ⟩ = 1

|Ωper|

∫
Ωper

ϕ(x) dx.

The set of all ϕ ∈ L2
per with ⟨ϕ⟩ = 0 is denoted by L2

per,∗, i.e.,

L2
per,∗ = {ϕ ∈ L2

per : ⟨ϕ⟩ = 0}.

Furthermore, we set

Hk
per,∗ = Hk

per ∩ L2
per,∗.

We denote by C∞
0,per,σ the set of all vector fields v in (C∞

0,per)
3 with divv = 0. We

set

L2
per,σ = the L2(Ωper)

3-closure of C∞
0,per,σ.

It is known that (L2
per)

3 = L2
per,σ ⊕ G2

per, where G2
per = {∇p; p ∈ H1

per,∗} is the

orthogonal complement of L2
per,σ. The orthogonal projection P on L2

per,σ is called the

Helmholtz projection. We define the projection P from (L2
per)

3×L2
per onto L2

per,σ×L2
per

by

P =

(
P 0

0 I

)
.
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The orthogonal projection to G2
per is denoted by Q, i.e.,

Q = I − P.

For simplicity the set of all vector fields in (L2
per)

3 (resp. (H1
0,per)

3, (Hk
per)

3) are

frequently denoted by L2
per (resp. H1

0,per, H
k
per) if no confusion will occur.

We also use notation L2
per for the set of all u = ⊤(p,w, θ) with p ∈ L2

per, w =
⊤(w1, w2, w3) ∈ L2

per and θ ∈ L2
per if no confusion will occur.

Let ε be a positive number. We introduce an inner product ⟨⟨u1, u2⟩⟩ε for uj =
⊤(pj ,wj , θj) (j = 1, 2) defined by

⟨⟨u1, u2⟩⟩ε = ε2(p1, p2) + Pr−1(w1,w2) + (θ1, θ2).

We also define the inner product ⟨U1,U2⟩ for U j =
⊤(wj , θj) (j = 1, 2) by

⟨U1,U2⟩ = Pr−1(w1,w2) + (θ1, θ2).

We denote the resolvent set of a closed operator A by ρ(A) and the spectrum of

A by σ(A). The null space and the range of A are denoted by Ker (A) and R(A),

respectively.

§ 3. Stability Results

In this section we state the stability results obtained in [12, 13].

Suppose that us = ⊤(ps,vs, θs) is a stationary solution of (1.1)–(1.3) under the

boundary conditions (1.7) and (1.8) with vanishing mean value condition
∫
Ωper

ps(x) dx =

0. The linearized problem for the Oberbeck-Boussinesq system (1.1)–(1.3) around

us =
⊤(ps,vs, θs) is written as

divw= 0,(3.1)

Pr−1∂tw −∆w + Pr−1(vs · ∇w +w · ∇vs) +∇p−
√
Ra θe3 = 0,(3.2)

∂tθ −∆θ + vs · ∇θ +w · ∇θs −
√
Raw · e3 = 0(3.3)

under the boundary conditions

(3.4) w|x3=0,1 = 0, θ|x3=0,1 = 0,

and

(3.5) p, w and θ are Q-periodic in (x1, x2).
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The linearized problem for the artificial compressible system is written as

ε2∂tp+ divw= 0,(3.6)

Pr−1∂tw −∆w + Pr−1(vs · ∇w +w · ∇vs) +∇p−
√
Ra θe3 = 0,(3.7)

∂tθ −∆θ + vs · ∇θ +w · ∇θs −
√
Raw · e3 = 0(3.8)

with the boundary conditions (3.4) and (3.5).

Applying the projection P , we rewrite the problem (3.1)–(3.5) as

Pr−1∂tw − P∆w + Pr−1P(vs · ∇w +w · ∇vs)−
√
RaPθe3 = 0,(3.9)

∂tθ −∆θ + vs · ∇θ +w · ∇θs −
√
Raw · e3 = 0(3.10)

with the boundary conditions (3.4) and (3.5). We introduce the linearized operator

around U s =
⊤(vs, θs) associated with problem (3.9)–(3.10) under (3.4) and (3.5). We

define the operator L : L2
per,σ × L2

per → L2
per,σ × L2

per by

L =

(
−PrP∆+ P(vs · ∇+ ⊤(∇vs)) −Pr

√
RaPe3

⊤(∇θs)−
√
Ra⊤e3 −∆+ vs · ∇

)

with domain D(L) = [(H2
per ∩H1

0,per)
3 ∩ L2

per,σ]× [H2
per ∩H1

0,per].

We also introduce the linearized operator around us =
⊤(ps,ws, θs) associated with

(3.6)–(3.8) under (3.4) and (3.5). We define the operator Lε : H
1
per,∗× (L2

per)
3×L2

per →
H1

per,∗ × (L2
per)

3 × L2
per by

Lε =

 0 1
ε2 div 0

Pr∇ −Pr∆ + vs · ∇+ ⊤(∇vs) −Pr
√
Ra e3

0 ⊤(∇θs)−
√
Ra⊤e3 −∆+ vs · ∇


with domain D(Lε) = H1

per,∗ × [H2
per ∩H1

0,per]
3 × [H2

per ∩H1
0,per].

Since we have the translation invariance in x1 and x2 variables, 0 is an eigenvalue of

−Lε if ∂x1
us ̸= 0 or ∂x2

us ̸= 0. If this is the case, then nonzero ∂xj
us are eigenfunctions

for the eigenvalue 0. Similarly, 0 is an eigenvalue of −L if ∂x1
U s ̸= 0 or ∂x2

U s ̸= 0.

For definiteness we consider the case ∂xj
us ̸= 0 (and hence ∂xj

U s ̸= 0) for j = 1, 2.

Theorem 3.1. ([12]) Let ∂xj
us ̸= 0 for j = 1, 2. If there exists a positive number

b0 such that ρ(−Lεn) ⊃ {λ ∈ C; Reλ ≥ −b0} \ {0} for some sequence εn → 0 as n → ∞
and 0 is a semisimple eigenvalue of −Lεn with Ker (−Lεn) = span {∂x1

us, ∂x2
us}, then

there exists a constant b1 > 0 such that ρ(−L) ⊃ {λ ∈ C; Reλ ≥ −b1} \ {0} and 0 is a

semisimple eigenvalue of −L with Ker (−L) = span {∂x1U s, ∂x2U s}.
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Theorem 3.1 implies that if us is obtained by Chorin’s method with 0 < ε ≪ 1,

then it represents an observable flow in the real world. Furthermore, we also have the

following instability result.

Theorem 3.2. ([12]) Let ∂xj
us ̸= 0 for j = 1, 2. If σ(−L) ∩ {λ ∈ C; Reλ >

0} ̸= ∅, then σ(−Lε) ∩ {λ ∈ C; Reλ > 0} ̸= ∅ for sufficiently small ε.

Theorem 3.2 implies that unstable stationary flow cannot be obtained by Chorin’s

method with 0 < ε ≪ 1.

We next consider the converse question.

Theorem 3.3. ([13]) Let ∂xj
U s ≠ 0 for j = 1, 2. Suppose that ρ(−L) ⊃ {λ ∈

C; Reλ ≥ −b0} \ {0} for some constant b0 > 0 and 0 is a semisimple eigenvalue of −L

with Ker (−L) = span {∂x1
U s, ∂x2

U s}. Then there exist constants ε0 > 0, δ0 > 0 and

b1 > 0 such that if

(3.11) infw∈H1
per,0,w ̸=0

Re (Qw · ∇vs,Qw)

∥∇Qw∥22
≥ −δ0,

then ρ(−Lε) ⊃ {λ ∈ C; Reλ ≥ −b1} \ {0} for all 0 < ε ≤ ε0 and 0 is a semisimple

eigenvalue of −Lε with Ker (−Lε) = span {∂x1us, ∂x2us}. Here δ0 does not depend on

b0.

This gives a sufficient condition for us to be computed by Chorin’s method with

0 < ε ≪ 1. We note that the condition (3.11) in Theorem 3.3 depends only on vs and

w but not on θs and θ.

Remark 1. Theorem 3.3 was proved in [13] for the incompressible Navier-Stokes

equations on smooth bounded domains but not for the Oberbeck-Boussinesq equations.

One can easily verify that Theorem 3.3 holds for the case of the Oberbeck-Boussinesq

equations under the spatially periodic setting.

Remark 2. It is known that −L is sectorial. Furthermore, −Lε is also sectorial

for each ε > 0. (See Proposition 5.1 below.)

Remark 3. The constant ε0 in Theorem 3.3 in general depends on b0 and ε0 → 0

as b0 → 0, in other words, if σ(−L) approaches to the imaginary axis, then the range

of ε in Theorem 3.3 shrinks, and vanishes when σ(−L) touches the imaginary axis.

This is inconvenient to consider the stability of bifurcating stationary solutions near the

bifurcation point where the spectra of the linearized operators approaches the origin.

Recently, it was proved in [20] that if a stationary bifurcation from a simple eigenvalue

occurs, then the range of ε does not shrink near the bifurcation point and can be taken

uniformly.
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The velocity fields of periodic stationary convective patterns bifurcating from the

motionless state are small near the bifurcation point. Therefore, from Theorem 3.3, one

can conclude the following

Corollary 3.4. If us is a stable convective pattern of (1.1)–(1.3) bifurcating

from the motionless state, then it is also stable as a solution of (1.4)–(1.6) for 0 < ε ≪ 1

when Ra ∼ Rac.

Remark 4. Theorems 3.1–3.3 also hold for stationary solutions of the incompress-

ible Navier-Stokes equations (or the Oberbeck-Boussinesq system) on smooth bounded

domains under nonhomogeneous boundary conditions. For example, one can apply

Theorem 3.3 to the Taylor problem to conclude the stability of the Taylor vortex as

a solution of the artificial compressible system, in other words, one can compute the

Taylor vortex by Chorin’s method. See [13] for the details.

In the remaining of this paper we will give an outline of the proof of Theorem 3.3.

In section 4 we list properties of the null spaces of L and Lε. The proof of Theorem 3.3

will be outlined in section 5. The proof of Theorems 3.1 and 3.2 are omitted here since

there are no changes from [12] and no remarks to be appended there.

§ 4. The null spaces of L and Lε

In this section we list some properties of the null spaces of L and Lε which were

given in [12, Section 4].

We introduce the adjoint operator L∗ : L2
per,σ × L2

per → L2
per,σ × L2

per of L:

L∗ =

(
−PrP∆+ P(−vs · ∇+ (∇vs)) PrP((∇θs)−

√
Ra e3)

−
√
Ra⊤e3 −∆− vs · ∇

)
with domain D(L∗) = [(H2

per ∩H1
0,per)

3 ∩ L2
per,σ]× [H2

per ∩H1
0,per].

From now on we suppose that 0 is a semisimple eigenvalue of −L and the corre-

sponding eigenspace Ker (−L) is spanned by ∂x1
U s and ∂x2

U s.

As is well known, −L is a sectorial operator with compact resolvent and 0 is a

semisimple eigenvalue of −L. We thus have the following results on the spectrum of

−L.

Proposition 4.1. Set U
(0)
j = ∂xj

U s for j = 1, 2. Then the following assertions

hold.

(i) There exist U∗
j = ⊤(w∗

j , θ
∗
j ) ∈ D(L∗) such that L∗U∗

j = 0 and ⟨U (0)
j ,U∗

k⟩ = δjk

for j, k = 1, 2. Furthermore,

L2
per,σ × L2

per = X0 ⊕X1,
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where X0 = Ker (−L) and

X1 = R(−L) = {U ∈ L2
per,σ × L2

per; ⟨U ,U∗
j ⟩ = 0, j = 1, 2}.

The eigenprojection Π0 for the eigenvalue 0 of −L is given by

Π0U = ⟨U ,U∗
1⟩U

(0)
1 + ⟨U ,U∗

2⟩U
(0)
2 .

(ii) Set Πc
0 = I −Π0. There exist constants a0 > 0 and c0 ∈ R such that

Σ \ {0} ⊂ ρ(−L),

where

Σ := {λ ∈ C; Reλ ≥ −a0|Imλ|2 + c0},

and the estimates

∥(λ+ L)−1F ∥2 ≤ C

{
1

|λ|
∥Π0F ∥2 +

1

|λ|+ 1
∥Πc

0F ∥2
}
,

∥∂2
x(λ+ L)−1F ∥2 ≤ C

{
1

|λ|
∥Π0F ∥2 + ∥Πc

0F ∥2
}

hold uniformly for λ ∈ Σ \ {0}. Furthermore, if Π0F = 0, then Π0(λ+L)−1F = 0 and

the above estimates hold for any λ ∈ Σ.

We set

Y = H1
per,∗ × (L2

per)
3 × L2

per.

We define an operator L ε,λ : Y → Y by

D(L ε,λ) = H1
per,∗ × [H2

per ∩H1
0,per]

3 × [H2
per ∩H1

0,per],

L ε,λ =

 0 1
ε2 div 0

Pr∇ λ− Pr∆ + vs · ∇+ ⊤(∇vs) −Pr
√
Ra e3

0 ⊤(∇θs)−
√
Ra⊤e3 λ−∆+ vs · ∇

 ,

and its adjoint L ∗
ε,λ : Y → Y by

D(L ∗
ε,λ) = H1

per,∗ × [H2
per ∩H1

0,per]
3 × [H2

per ∩H1
0,per],

L ∗
ε,λ =

 0 − 1
ε2 div 0

−Pr∇ λ− Pr∆− vs · ∇+ (∇vs) Pr(∇θs)− Pr
√
Ra e3

0 −
√
Ra⊤e3 λ−∆− vs · ∇

 .

Note that

L ε,0 = Lε.
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We also set

Aλ =

(
Pr∇ λ− Pr∆ + vs · ∇+ ⊤(∇vs) −Pr

√
Ra e3

0 ⊤(∇θs)−
√
Ra⊤e3 λ−∆+ vs · ∇

)
.

We have the following characterization of the null space of Lε which were proved

in [12].

Proposition 4.2. ([12]) Let ε > 0. The following assertions hold.

(i) Let u
(0)
j = ∂xjus (j = 1, 2). Then

Ker (L ε,0) = Ker (Lε) = span {u(0)
1 , u

(0)
2 }.

(ii) For each j = 1, 2, there exists a unique p∗j ∈ H1
per,∗ such that L ∗

ε,0u
∗
j = 0,

u∗
j = ⊤(p∗j ,w

∗
j , θ

∗
j ), where

⊤(w∗
j , θ

∗
j ) (j = 1, 2) are the functions given in Proposition

4.1 (i). Furthermore,

R(L ε,0) = R(Lε) = {u ∈ Y ; ⟨⟨u, u∗
j ⟩⟩ε = 0, j = 1, 2}.

(iii) There exists a positive constant ε1 such that if 0 < ε ≤ ε1, then

Y = Ker (Lε)⊕R(Lε).

Therefore, 0 is a semisimple eigenvalue of Lε. Furthermore, if F = ⊤(f, g, h) ∈ R(Lε),

then there exists a unique solution u = ⊤(p,w, θ) ∈ D(Lε) ∩ R(Lε) of Lεu = F and u

satisfies

∥u∥H1×H2×H2 ≤ C{ε2∥f∥H1 + ∥F ∥2},

where F = ⊤(g, h).

Remark 5. To prove Propositions 4.1 and 4.2, we do not use any particular form

of the eigenfunctions ∂x1
us and ∂x2

us but only use the fact that 0 is a semisimple

eigenvalue of −L. Therefore, Propositions 4.1 and 4.2 hold if 0 is a semisimple eigenvalue

of −L no matter what the eigenspace is; and if 0 is a semisimple eigenvalue of −L, one

can restate Propositions 4.1 and 4.2 in terms of eigenfunctions forming the basis of the

eigenspace for the eigenvalue 0.

§ 5. Proof of Theorem 3.3

In this section we give an outline of a proof of Theorem 3.3 following the arguments

in [12, 13].



106 Yoshiyuki Kagei

Let us consider the resolvent problem for −Lε:

(5.1) λu+ Lεu = F,

where u = ⊤(p,w, θ) ∈ D(Lε) and F = ⊤(f, g, h) ∈ Y . Problem (5.1) is written as

(5.2) ε2λp+ divw = ε2f,

(5.3) Pr−1λw −∆w + Pr−1(vs · ∇w +w · ∇vs) +∇p−
√
Ra θe3 = Pr−1g,

(5.4) λθ −∆θ + vs · ∇θ +w · ∇θs −
√
Raw · e3 = h,

and u = ⊤(p,w, θ) satisfies the boundary conditions (3.4) and (3.5).

Proposition 5.1. There exist constants a1 > 0 and b1 > 0 as ε → 0 such that

{λ ∈ C; Reλ ≥ −a1ε
2|Imλ|2 + b1} ⊂ ρ(−Lε) for all 0 < ε ≤ 1.

This proposition can be proved by the Matsumura-Nishida energy method ([15]).

See [12] for the details.

We next show that the spectrum of −Lε in a disc with radius O(ε−1) can be viewed

as a perturbation of the one of −L. Under the assumption of Theorem 3.3, we see that

the constant c0 in Proposition 4.1 (ii) can be taken in such a way that c0 < 0 by changing

a0 > 0 suitably. In what follows we fix these a0 > 0 and c0 < 0. Since 0 is a semisimple

eigenvalue of −L, we have the following estimates for L−1
ε,λ. We set

Y1,ε = R(Lε) = {u ∈ Y ; ⟨⟨u, u∗
j ⟩⟩ε = 0, j = 1, 2}.

Proposition 5.2. Let ε > 0. If λ ∈ Σ \ {0}, then L ε,λ has a bounded inverse

L−1
ε,λ and ⊤(p,v, θ) = L−1

ε,λF for F = ⊤(f, g, h) ∈ Y satisfies

∥U∥2 ≤ C

|λ|

2∑
j=1

∣∣⟨⟨F, u∗
j ⟩⟩ε

∣∣+ C

{
ε2∥f∥H1 +

1

|λ|+ 1
∥F ∥2

}
,

∥∂2
xU∥2 + ∥∂xp∥2 ≤ C

|λ|

2∑
j=1

∣∣⟨⟨F, u∗
j ⟩⟩ε

∣∣+ C
{
ε2(|λ|+ 1)∥f∥H1 + ∥F ∥2

}
,

where U = ⊤(w, θ) and F = ⊤(g, h). Furthermore, if F ∈ Y1,ε, then
⊤(p,v, θ) = L−1

ε,λF

exists uniquely in Y1,ε and the above estimates hold with λ = 0 and ⟨⟨F, u∗
j ⟩⟩ε = 0

(j = 1, 2).

See [12, Section 6] for a proof of Proposition 5.2.
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Proposition 5.3. There exist positive numbers ε1 and a2 such that

Σ ∩ {λ ∈ C; 0 < |λ| ≤ a2ε
−1} ⊂ ρ(−Lε)

and the following estimates

∥(λ+ Lε)
−1F∥H1×L2×L2 ≤ C

1

|λ|
{
ε2∥f∥H1 + ∥g∥2 + ∥h∥2

}
,

∥(λ+ Lε)
−1F∥H1×H2×H2 ≤ C

(
1

|λ|
+ 1

){
ε2∥f∥H1 + ∥g∥2 + ∥h∥2

}
hold for all λ ∈ Σ ∩ {λ ∈ C; 0 < |λ| ≤ a2ε

−1} and 0 < ε ≤ ε1. Furthermore,

Σ ∩ {λ ∈ C; |λ| ≤ a2ε
−1} ⊂ ρ(−Lε|Y1,ε).

Remark 6. In general, the constant ε1 depends on b0 and ε1 → 0 as b0 → 0,

in other words, if σ(−L) approaches to the imaginary axis, then the range of ε in

Proposition 5.2 shrinks, and vanishes when σ(−L) touches the imaginary axis.

Proof of Proposition 5.3. Proposition 5.3 can be proved similarly to the proof of

[12, Proposition 6.3], but we here give a proof since a small correction is needed there.

We write the resolvent problem

(λ+ Lε)u = F

on Y as

(5.5) L ε,λu+ λJu = F,

where F = ⊤(f, g, h) ∈ Y . If λ ∈ Σ\{0}, then it follows from Proposition 5.2 that (5.5)

is written as

L ε,λ(I + λL−1
ε,λJ)u = F,

and, furthermore, we have

∥L−1
ε,λJF∥H1×H2×H2 ≤ ε2C1

(
|λ|+ 1

|λ|

)
∥f∥H1

for all F = ⊤(f, g, h) ∈ Y . It then follows that there exists ε1 > 0 such that if λ ∈ Σ\{0}
and |λ| ≤ 1/(4

√
C1ε), then L−1

ε,λJF ∈ D(L ε,λ) = D(Lε) and ∥λL−1
ε,λJF∥H1×H2×H2 ≤

1
2∥F∥H1×L2×L2 for 0 < ε ≤ ε1. Therefore, (I + λL−1

ε,λJ) is boundedly invertible both

on Y and D(Lε) with estimates

∥(I + λL−1
ε,λJ)

−1F∥H1×L2×L2 ≤ 2∥F∥H1×L2×L2
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for F ∈ Y and

∥(I + λL−1
ε,λJ)

−1F∥H1×H2×H2 ≤ 2∥F∥H1×H2×H2

for F ∈ D(Lε). With this, together with Proposition 5.2, we find that λ + Lε =

L ε,λ + λJ has a bounded inverse (λ+ Lε)
−1 = (L ε,λ + ε2λJ)−1 on Y which satisfies

(λ+ Lε)
−1 = L−1

ε,λ − λL−1
ε,λJ

∞∑
N=0

(−λ)N (L−1
ε,λJ)

NL−1
ε,λ

and the desired estimates. This shows the first assertion.

As for the second assertion, we see from Proposition 4.2 that 0 ∈ ρ(−Lε|Y1,ε) and

∥(−Lε|Y1,ε
)−1F∥H1×H2×H2 ≤ C∥F∥H1×L2×L2 uniformly for 0 < ε ≤ 1. The desired

result is now obtained by a standard perturbation argument. This completes the proof.

□

Theorem 3.3 follows from Propositions 4.2, 5.1 and 5.3 if
√

b1/a1 < a2 for 0 < ε ≪
1. If

√
b1/a1 ≥ a2, we still need to show that some range of λ near the imaginary axis

with |Imλ| = O(ε−1) belongs to ρ(−Lε).

In the remaining we consider the case
√

b1/a1 ≥ a2. We first show that the θ-

component is of order O(ε) if Imλ = O(ε−1). Recall that the Poincaré inequality

∥∇θ∥2 ≥ β∥θ∥2

holds for θ ∈ H1
0,per with some positive constant β.

Proposition 5.4. Let ⊤(p,w, θ) ∈ D(Lε) satisfy (5.2)–(5.4). If Reλ ≥ −β2

2 ,

then the following estimate holds:

∥θ∥2 ≤ 1

|Imλ|

(
1 +

2∥vs∥∞
β

){
(∥∇θs∥∞ +

√
Ra)∥w∥2 + ∥h∥2

}
.

This estimate can be obtained by a standard energy method. See [12] for a proof.

The idea is that −∆ with zero-Dirichlet boundary condition is self-adjoint, and hence,

∥(λ−∆)−1∥ = O(|Imλ|−1) as |Imλ| → ∞.

Combining Proposition 5.4 and the argument in [13, Section 3], one can prove the

following estimate of the velocity componentw of a solution u = ⊤(p,w, θ) of (5.2)–(5.4)

for λ near the imaginary axis with Imλ = O(ε−1). .

Proposition 5.5. Let λ = µ + iηε with µ, η ∈ R. Suppose that u = ⊤(p,w, θ)

is a solution of (5.2)–(5.4). For given positive numbers µ1 and η∗ there exist positive

constants δ1 and C ′ = C ′(∥vs∥C1 , ∥θs∥C1 , β,Ω) such that if

inf
{

Re (∇φ·∇vs,∇φ)
∥∆φ∥2

2
;φ ∈ H2

∗ (Ω), φ ̸= 0, ∂φ
∂n |∂Ω = 0

}
≥ −δ1
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and

−c1β
2 ≤ µ ≤ µ1, η∗ ≤ η ≤ C ′ε−1,

then

(η3 + β2η)∥w∥22 + η∥∇w∥22 ≤ Cη

{
ε2∥f∥2H1 + ∥g∥22 + ∥h∥22

}
for all 0 < ε ≤ C ′ min{1, η∗,

√
η∗
µ∗

, η∗
µ∗

, η∗µ
− 2

3
∗ ,

√
1
µ∗

} with µ∗ = max{c1β2, µ1}. Here c1

is a positive constant depending on Pr and Ra.

The proof of Theorem 3.3 is now complete if we take η∗ in Proposition 5.5 in such

a way that η∗ = a2

2 .

We outline a proof of Proposition 5.5. The details of the following argument can

be found in [13, Section 3].

We see from (5.2) that

(5.6) p = − 1

ε2λ
divw +

1

λ
f.

Substituting (5.6) into (5.3), we have

(5.7)
ε2λ2

Pr
w − ε2λ∆w −∇divw +

ε2λ

Pr
(vs · ∇w +w · ∇vs)− ε2λ

√
Ra θe3 = ε2Gλ,

where Gλ = λ
Prg −∇f .

In a similar manner to the proof of [12, Proposition 6.5], one can show the following

estimate by applying an energy method to (5.7) and using Proposition 5.4.

Proposition 5.6. Let µ1 and η∗ be given positive numbers. Suppose that u =
⊤(p,w, θ) ∈ D(Lε) is a solution of (5.2)–(5.4) with λ = µ+ iηε , µ, η ∈ R. There exists

a positive constant C ′ = C ′(∥vs∥C1 , ∥θs∥C1β,Ω) such that if

ε ≤ C ′ min{1, η∗,
η∗
µ∗

,
1

√
µ1

}, −c1β
2 ≤ µ ≤ µ1, η∗ ≤ η ≤ 1

4ε

with µ∗ = max{c1β2, µ1}, then

(η3 + 2β2η)∥w∥22 + η∥∇w∥22

≤−64ηRe (w · ∇vs,w) + Cη

{
ε2∥f∥2H1 + ∥g∥22 + ∥h∥22

}
.

We need to replace w in Re (w · ∇vs,w) on the right-hand side of the estimate in

Proposition 5.6 by Qw. To this end, we use the following estimate of the incompressible

part of w.
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Proposition 5.7. Let µ0, µ1 and η∗ be given positive numbers. Suppose that

u = ⊤(p,w, θ) ∈ D(Lε) is a solution of (5.2)–(5.4) with λ = µ + iηε , −µ0 ≤ µ ≤ µ1,

η ≥ η∗. If w = v +∇φ is the Helmholtz decomposition of w, then

∥v∥22 ≤C

{
ε

1
2

η
1
2

∥∇φ∥2H1 +
ε2

η2
∥∇φ∥2H2 +

ε2

η2
∥g∥22

+
ε2

η2
∥∇w∥22 +

ε2

η2
∥w∥22

}
,

∥v∥2H2 ≤ C

{
η

3
2

ε
3
2

∥∇φ∥2H1 + ∥∇φ∥2H2 + ∥g∥22 + ∥∇w∥22 + ∥w∥22

}
.

Proposition 5.7 is proved by the following estimate for the Stokes system with

nonhomogeneous boundary data.

Lemma 5.8. Suppose that ⊤(p,v) ∈ H1
∗ (Ω)×H2(Ω) is a solution of

(5.8)


div v = 0,

λv −∆v +∇p= g,

v|∂Ω =ψ,

with λ ∈ {λ ∈ C; |argλ| ≤ π − ω} for some 0 < ω < π
2 , g ∈ L2(Ω) and ψ ∈ H

3
2 (∂Ω)

satisfying ψ · n|∂Ω = 0. Then there exists a positive constant C = C(ω,Ω) such that

|λ|∥v∥2 + ∥v∥H2 + ∥p∥H1 ≤ C{∥g∥2 + |λ| 34 ∥ψ∥L2(∂Ω) + ∥ψ∥
H

3
2 (∂Ω)

}.

See [13, Section 4] for a proof of Lemma 5.8.

If u = ⊤(p,w, θ) ∈ D(Lε) is a solution of (5.2)–(5.4) and w = v + ∇φ is the

Helmholtz decomposition of w, then
divv = 0,

λv − Pr∆v +∇q = g − (vs · ∇w +w · ∇vs − Pr
√
Ra θe3),

v|∂Ω = −∇φ|∂Ω .

Here

q = λφ− Pr∆φ+ p.

Applying Lemma 5.8, we obtain the estimates in Proposition 5.7.

We further need to estimate the irrotational flow part∇φ. Noting that divw = ∆φ,

one can see from (5.7) that φ satisfies the following estimates.
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Proposition 5.9. If w = v + ∇φ is the Helmholtz decomposition of w as in

Proposition 5.7, then there exists a positive constant C ′ = C ′(∥vs∥C1 , ∥θs∥C1) such that

for 0 < ε ≤ C ′ min{1, η∗
µ∗

, η∗} with µ∗ = max{µ0, µ1}, the following estimates hold

true:

∥∆φ∥22 ≤ C
{
η2∥w∥22 + εη∥∇w∥22

}
+ Cηε

2
{
ε2∥f∥2H1 + ∥g∥22 + ∥h∥22

}
,

1

η2
∥∇∆φ∥22 ≤ C

{
η2∥w∥22 + εη∥∇w∥22 + ε2∥∆v∥22

}
+ Cηε

2
{
ε2∥f∥2H1 + ∥g∥22 + ∥h∥22

}
.

Combining Propositions 5.6, 5.7 and 5.9, one can obtain the estimate in Proposition

5.5. See [13, Section 3] for the details.
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méthode des pas fractionnaires. I, Arch. Rational Mech. Anal., 32 (1969), 135–153.

[18] Témam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la

méthode des pas fractionnaires. II, Arch. Rational Mech. Anal., 33 (1969), 377–385.

[19] Temam, R., Navier-Stokes equations. Theory and numerical analysis, reprint of the 1984

edition, AMS Chelsea Publishing, Providence, RI, 2001.

[20] Teramoto, Y., Stability of bifurcating stationary solutions of the artificial compressible

system, J. Math. Fluid Mech., 20 (2018), 1213–1228.

[21] Velte, W., Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gle-
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