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Blowup of solutions to an indirect chemotaxis system

By

Takasi Senba∗

Abstract

This manuscript summarizes results by Fujie and Senba (2017, 2019). In this manuscript,

we describe properties of solutions to an indirect chemotaxis system. The system is one of

chemotaxis systems, and has three unknown functions. These three functions correspond to

density of living thing and concentrations of two kinds of chemical substances, respectively.

When the dimension of the domain is less than four, our system does not have blowup solutions.

In four dimensional case, our system has blowup solutions. In this manuscript, I will describe

details of these results and sketch of these proofs.

§ 1. Introduction

This manuscript is based on the joint work with Kentarou Fujie (Tohoku Univer-

sity).

In this manuscript, we describe some properties of solutions to an indirect chemo-

taxis system, which is different from Keller-Segel system. However, the indirect chemo-

taxis system is related to the Keller-Segel system. Then, we begin with the explanation

of the Keller-Segel system.

The following system is the classical Keller-Segel system.

(KS)


ut = ∆u− χ∇ · (u∇v) in Ω× (0, T ),

τvt = ∆v − v + u in Ω× (0, T ),
∂u

∂ν
− χu

∂v

∂ν
= 0, v = 0 on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in Ω.
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Here, χ and τ are positive constants, Ω is a bounded domain Ω of Rn (n ≥ 1), the

boundary ∂Ω is smooth, initial conditions u0 and v0 are nonnegative smooth functions

and T is the maximal existence time of the classical solution.

In this manuscript, we treat only classical solutions.

The system (KS) describes the aggregation of bacteria. The function u represents

the density of bacteria, and the function v represents chemical concentration produced

by the bacteria, and the chemical substance is an attractant. Then, the bacteria move

towards higher concentration. We say this property of living things chemotaxis. In

this case, the relation between living things and chemoattractant is direct. Then, we

consider chemotaxis mentioned by Keller-Segel system as direct process.

The following are well known properties on solutions to Keller-Segel system:

The solutions satisfy that u ≥ 0 in Ω × (0, T ) and that ∥u(t)∥L1(Ω) = ∥u0∥L1(Ω)

(t ∈ (0, T )), where ∥ · ∥Lp(Ω) is the standard Lp norm for p ∈ [1,∞].

If n = 1 or if n = 2 and ∥u0∥L1(Ω) < 8π/χ, solutions exist globally in time, and are

bounded (see [4]).

If n ≥ 3 or if n = 2 and ∥u0∥L1(Ω) > 8π/χ, there exist solutions blowing up (see

[3, 5]).

Here, we say that a solution (u, v) blows up at a time T , if

lim sup
t→T

(∥u(t)∥L∞(Ω) + ∥v(t)∥L∞(Ω)) = ∞.

That is to say, two dimensional case is critical and the critical quantity is the L1

norm of solution u. Moreover, if a solution blows up at a finite time T , T is also the

maximal existence time of the classical solution.

In this manuscript, we consider classical solutions to the following system.

(P )



ut = ∆u− χ∇ · (u∇v) in Ω× (0, T ),

τ1vt = ∆v − v + w in Ω× (0, T ),

τ2wt = ∆w − w + u in Ω× (0, T ),
∂u

∂ν
− χu

∂v

∂ν
= 0, v = w = 0 on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0 in Ω.

Here, we assume the following:

χ, τ1 and τ2 are positive constants.

Ω ⊂ Rn (n ≥ 1) is bounded and the boundary ∂Ω is smooth.

u0, v0 and w0 are nonnegative and smooth functions.

This system is one of chemotaxis system. The function u represents density of living

thing, the function w represents chemical concentration and the chemical substance is
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produced by the living things, and the function v represents also concentration of other

chemical substance, the chemical substance is produced by chemical reaction of chemical

substance v, and the substance corresponding to v is attractant. Then, we regard the

chemotaxis mentioned by our system (P) as indirect process. Then, we regard this

system as one of indirect chemotaxis systems.

The solutions to (P) satisfy that

w ≥ 0, w ≥ 0, w ≥ 0 in Ω× (0, T )

and that ∥u(t)∥L1(Ω) = ∥u0∥L1(Ω) (t ∈ (0, T )). There exists a unique time-local classical

solution (u, v, w) to (P).

Our aim is the investigation of conditions for blowup of solutions and properties

of the blowup solutions. We say that a solution (u, v, w) to (P) blows up at a time

T ∈ (0,∞], if

lim sup
t→T

(∥u(t)∥L∞(Ω) + ∥v(t)∥L∞(Ω) + ∥w(t)∥L∞(Ω)) = ∞.

The following system is a tumor invasion model.

(FIWY )



ut = ∆u− χ∇ · (u∇v) in Ω× (0,∞),

vt = ∆v + wz in Ω× (0,∞),

zt = −γwz in Ω× (0,∞),

wt = ∆w − w + u in Ω× (0,∞),

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0 on ∂Ω× (0, T ),

u(·, 0) = u0, v(·, 0) = v0,

w(·, 0) = w0, z(·, 0) = z0 in Ω.

Here, χ and γ are positive constants. u0, v0, w0 and z0 are nonnegative and smooth.

Ω ⊂ Rn (n ≥ 1) is bounded and the boundary ∂Ω is smooth.

Fujie, Ito, Winkler and Yokota [2016, DCDS] show that solutions to (FIWY) exist

globally in time and are bounded if n ≤ 3.

This system and the result motivate our research. Does the system (FIWY) have

blowup solutions in the high dimensional case ? However, we think that the ODE in

this system makes analysis of solutions difficult. If the constant γ is equal to 0 and

if the initial condition z0 is a positive constant in the domain, the system (FIWY) is

similar to our system (P). Then, we can regard our system (P) as a simplified system

of (FIWY) and we investigate solutions to (P).
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§ 2. Our results

As mentioned in the previous section, our aim is the investigate of conditions for

blowup of solutions to (P) and the one of properties of blowup solutions to (P). For this

problem, we get the following partial results.

Theorem 2.1 ([1, 2]).

(1) If Ω is a bounded domain of Rn and one of the following assumptions holds:

· n ≤ 3.

· n = 4 and ∥u0∥L1(Ω) < (8π)2/χ.

Then, solutions to our system (P) exist globally in time and are uniformly bounded in

time.

(2) If Ω is a bounded and convex domain of R4, then there exist blowup solutions to our

system (P) satisfying ∥u0∥L1(Ω) > (8π)2/χ.

This theorem says that our system (P) does not have any blowup solutions if

n ≤ 3. And, there exist blowup solutions in four dimensional case, and in the four

dimensional case the number (8π)2/χ is threshold. In this sense, the number (8π)2/χ

appearing in four dimensional our system corresponds to the number 8π/χ appearing

in two dimensional Keller-Segel system.

In (2) of Theorem 2.1, we can not judge whether the blowup time is finite or infinite.

The following theorem guarantees the existence of finite-time blowup solutions.

Theorem 2.2.

If Ω is a bounded ball of R4, there exist radial solutions blowing up at a finite time T .

Moreover, the solutions satisfy that

u(t) → m(0)δ0 + f as t → T,

where m(0) ≥ (8π)2/χ, f ∈ L1(Ω) and δ0 is the delta function whose support is the

origin.

Moreover, for radial blowup solutions to the following parabolic-elliptic system, the

weight of delta function is equal to the threshold number.

(PEE)



ut = ∆u− χ∇ · (u∇v) in Ω× (0, T ),

0 = ∆v − v + w in Ω× (0, T ),

0 = ∆w − w + u in Ω× (0, T ),
∂u

∂ν
− χu

∂v

∂ν
= 0, v = w = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.
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Theorem 2.3. Let Ω is a bounded domain of R4 and let u0 be nonnegative and

smooth. Then, there exist solutions to (PEE) blowing up at a finite time T .

Furthermore, if Ω is a bounded ball in R4 and if a radial solution to (PEE) blows

up at a finite time T , the solution satisfies

u(·, t) → (8π)2

χ
δ0 + f as t → T,

Here, δ0 is the delta function at the origin, and f is a radial and nonnegative L1 function.

§ 3. Key properties of solutions to (P)

Here and henceforth, we assume τ = τ1 = τ2 = 1.

Because, the positivity of these constant is important. However, the quantity is

essentially independent of properties of solutions. In order to show our results, we use

the following properties.

We describe key properties of solutions to (P), and we use these properties for the

proofs of our results.

Conservation law. For solutions (u, v, w) to (P), the following equation holds.

d

dt
F(u(t), v(t)) +D(u(t), v(t)) = 0.

Here,

F(u, v) =

∫
Ω

(u log u− χuv)dx+
χ

2

∫
Ω

|vt|2dx+
χ

2

∫
Ω

|(−∆+ 1)v|2dx,

D(u, v) = 2χ

∫
Ω

(
|∇vt|2 + |vt|2

)
dx+

∫
Ω

u|∇(log u− χv)|2dx.

The function F is referred to as Lyapunov function. Since the function D is non-

negative, then the Lyapunov function F decreases with respect to time t.

Adams type inequality (Four dimensional case). Let Ω be a bounded domain of

R4. There exists some constant C > 0 such that for all v ∈ H1
0 (Ω) ∩H2(Ω),

log

(∫
Ω

ev(x) dx

)
≤ 1

2 · (8π)2
∥(−∆+ 1)v∥2L2(Ω) + C.

The threshold number appearing in (1) of Theorem 2.1 comes from the Adams type

inequality.
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Stationary solutions to (P). Stationary solutions to (P) satisfy the following system.

(SP )


0 = ∆u− χ∇ · (u∇v) in Ω,

0 = ∆v − v + w in Ω,

0 = ∆w − v + u in Ω,
∂u

∂ν
− χu

∂v

∂ν
= 0, v = w = 0 on ∂Ω× (0, T ).

The first equation can be rewritten as

0 = ∇ · u(∇ log u− χv) = ∇ · u∇ log
u

eχv
.

This and the boundary condition lead us to the relation ue−χv = C with some positive

constant C and the constant C can be rewritten as

C =
∥u∥L1(Ω)∫
Ω
eχvdx

.

From this and the second and third equations of (SP), we obtain that stationary solu-

tions (u, v, v) satisfy the following;

(SP2)

(−∆+ 1)2v = λ
eχv∫
Ω
eχv

in Ω,

v = ∆v = 0 on ∂Ω× (0, T ).

Here, λ = ∥u∥L1(Ω) > 0, w = (−∆+ 1)v and

u = λ
eχv∫
Ω
eχv

.

Stationary solutions satisfy the following property.

Lemma 3.1. Let {vk} be a sequence of solutions to (SP2) with a positive con-

stant λ. If limk→∞ ∥vn∥L∞(Ω) = ∞, then there exist an positive integer J and a set of

points {Qj}Jj=1 ⊂ Ω such that

λ =
(8π)2

χ
J

and

uk = λ
eχvk∫
Ω
eχvk

→
J∑

j=1

(8π)2

χ
δQj

in M(Ω) as k → ∞.

The threshold number appearing in (2) of Theorem 2.1 comes from Lemma 3.1.



Blowup of solutions to an indirect chemotaxis system 7

Proof. Let {(uk, vk, wk)} be a sequence of stationary solutions satisfying

lim
k→∞

∥vk∥L∞(Ω) = ∞.

Using the moving plane method, we can find positive constants d∗ and C such that

uk(x), vk(x), wk(x) ≤ Cλ for k ≥ 1 and x ∈ Ω with d(x, ∂Ω) < d∗.

Here,

d(x, ∂Ω) = min
y∈∂Ω

|x− y|.

Let G be the Green function of (∆ − 1)2 in Ω with · = ∆· = 0 on ∂Ω, and let Ge =

(8π2)−1 log(R/|x− y|), where R = sup{|x− y| : x, y ∈ Ω}. Then, 0 < G ≤ Ge in Ω×Ω.

Let Q be a blowup point of {vk}. Then, Q ∈ Ω. We choose δ > 0 such that

B(2δ) = {x ∈ Ω; |x−Q| < 2δ} ⊂ Ω. Let p > 1.∫
B(δ)

|(∆− 1)2vk|pdx =

∫
B(δ)

|fk|pdx

≤ λp

|Ω|p

∫
B(δ)

exp

(∫
Ω

G(x, y)pχfk dy
)

dx

≤Cδ

∫
B(δ)

exp

(∫
B(δ)

∥fk∥L1(B(2δ))
pχ

8π2
dx

(
log

R

|x− y|

)
fk

∥fk∥L1(B(δ))
dy

)
dx

≤Cδ

∫
B(δ)

(∫
B(2δ)

(
R

|x− y|

)Ak fk
∥fk∥L1(B(2δ))

dy

)
dx.

Here,

fk = λ
eχvk∫
Ω
eχvk

and

Ak =
pχ

8π2
∥fk∥L1(B(2δ)).

Then, lim infk→∞ Ak ≥ 4, since W 4,p(B(δ)) ⊂ L∞(B(δ)). This means that

lim inf
k→∞

∫
B(2δ)

λ
eχvk∫
Ω
eχvk

≥ 4 · (8π2)

χ

for any sufficiently small δ > 0.

Moreover, we see that

lim inf
k→∞

eχvk ≥ O(1)

|x−Q|4
near Q,

since

lim inf
k→∞

χvk ≥ χ · 4 · (8π
2)

χ
· 1

8π2
log

R

|x−Q|
+O(1) near Q.
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Then,

lim inf
k→∞

∫
Ω

eχvk = ∞

and there exists a subsequence {vk′} ⊂ {vk} satisfying

lim
k′→∞

λ
eχvk′∫
Ω
eχvk′

=

J∑
j=1

mjδQj

with some positive integer J and mj ≥ 4·(8π2)
χ .Then, λ =

∑J
j=1 mj .

Moreover, the Pohozaev’s identity∫
B(δ)

(∆− 1)2vk(x) (x · ∇vk(x)) dx =

∫
B(δ)

λ
eχvk(x)∫
Ω
eχvk

(x · ∇vk(x)) dx

leads us to mj =
(8π)2

χ . Then, λ ∈ (8π)2

χ N . The proof is complete.

§ 4. Sketch of Proof of Theorem 2.1

In this section, we describe sketch of proof of Theorem 2.1. First, we describe the

proof of (1) of Theorem 2.1. Since the statement in the case of n ≤ 3 can be shown by

the standard energy method, then we describe only the proof in the case where n = 4.

Sketch of Proof of (1) of Theorem 2.1 in the case where n = 4. By the Jensen inequality,

for α > 0 we have that∫
Ω

u(αv − log u) =

∫
Ω

u log
eαv

u
dx

= ∥u0∥L1(Ω)

∫
Ω

(
log

eαv

u

)
·
(

u

∥u0∥L1(Ω)

)
dx

≤ ∥u0∥L1(Ω) log

(∫
Ω

eαv

u
· u

∥u0∥L1(Ω)
dx

)
= ∥u0∥L1(Ω) log

(∫
Ω

eαvdx

)
−
(
∥u0∥L1(Ω)

)
log
(
∥u0∥L1(Ω)

)
≤ ∥u0∥L1(Ω) log

(∫
Ω

eαvdx

)
+

1

e
.

Let ε be a positive constant. Put α = χ+2ε. Since we assume that ∥u0∥L1(Ω) < (8π)2/χ,

for any sufficiently small ε > 0 Adams type inequality lead us to

(χ+ 2ε)

∫
Ω

u(t)v(t)dx ≤
∫
Ω

u(t) log u(t)dx+ ∥u0∥L1(Ω) log

(∫
Ω

eαv(t)dx

)
+

1

e

≤
∫
Ω

u(t) log u(t)dx+
{
∥u0∥L1(Ω)

α2

2 · (8π)2
}
∥(−∆+ 1)v∥2L2(Ω) + C

≤
∫
Ω

u(t) log u(t)dx+
χ

2
∥(−∆+ 1)v∥2L2(Ω) + C.
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Therefore, the following inequality holds.

χ

∫
Ω

u(t)v(t)dx ≤ χ

χ+ ε

∫
Ω

u(t) log u(t)dx

+
χ

χ+ ε

χ

2
∥(−∆+ 1)v∥2L2(Ω) −

εχ

χ+ ε

∫
Ω

u(t)v(t)dx+ C.

Combining this with Lyapunov function, we imply that

ε

χ+ ε

∫
Ω

(u log u+ χuv)dx+
χ

2

∫
Ω

(vt)
2dx+

εχ

2(χ+ ε)

∫
Ω

|(−∆+ 1)v|2dx− C

≤ F(u, v) =

∫
Ω

(u log u− χuv)dx+
χ

2

∫
Ω

(vt)
2dx+

χ

2

∫
Ω

|(−∆+ 1)v|2dx

≤ F(u0, v0).

This means that each term in the Lyapunov function F(u(t), v(t)) is bounded. Using

the boundedness and the standard energy argument, we get the boundedness of the

solution (u, v, w). Then, the proof is complete.

Next, we describe the sketch of proof of (2) of Theorem 2.1. The result essentially

comes from the following two lemmas.

Lemma 4.1. For λ > 0, put

Finf(λ) = inf
{
F(u, v) : (u, v, w) is a stationary solution with ∥u∥L1(Ω) = λ

}
.

If λ ̸∈ (8π)2

χ N, then Finf(λ) is bounded.

Lemma 4.2. If λ > (8π)2

χ and λ ̸∈ (8π)2

χ N, there exists a pair of nonnegative

and smooth functions (u0, v0, w0) satisfying ∥u0∥L1(Ω) = λ and F(u0, v0) < Finf(λ).

Lemma 4.1 comes from Lemma 3.1. Then, we describe the proof of Lemma 4.2.

Proof of Lemma 4.2. Put A = 27 · 3. Let µ > 0,

uµ(x) =
A

χ

µ4

(1 + µ2|x|2)4
,

vµ(x) =
4

χ
log

µA1/4

1 + µ2|x|2

and let

wµ(x) =
µ2

χ

16(2 + µ2|x|2)
(1 + µ2|x|2)2

.
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These functions satisfy that

∆2vµ = uµ in R4,

−∆vµ =wµ in R4,∫
R4

uµ =
(8π)2

χ
,

lim
µ→∞

uµ =
(8π)2

χ
δ0

and that

lim
µ→∞

F(auµ, avµ) = −∞ for a > 1.

Here, we regard vt as
1
τ1

(∆vµ − vµ + wµ). By using these functions, we can construct

a desired initial functions (u0, v0, w0). Then, the proof is complete. □

(2) of Theorem 2.1 comes from Lemmas 4.1 and 4.2.

Proof of (2) of Theorem 2.1. Let (u0, v0, w0) be the triple in Lemma 4.2 and let (u, v, w)

be the corresponding solutions to (P).

We assume that the solution exists globally in time and is uniformly bounded.

Then, there exists a sequence {tk} ⊂ (0,∞) such that (u(tk), v(tk), w(tk)) converges

to a stationary solution (u∞, v∞, w∞). Since the Lyapunov function decreases with

respect to t, then we see that F(u∞, v∞) < Finf(λ). It contradicts the definition of

Finf(λ). Then, T < ∞ or (u, v, w) is unbounded. This means that the solution blows

up. Then, the proof is complete. □
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