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equations in the complex plane of time
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Abstract

In the present article we consider a complex valued nonlinear heat equation. It is well-

known that solutions of a real valued nonlinear heat equation blow up in finite time. Our

aim of this study is to find out dynamics of blow-up phenomena with computer assistance.

We numerically prove that the solution has branching singularity and globally exists on the

real axis except the singular point. Such a computer-assisted proof is obtained using rigorous

numerics, which consists of careful blend of functional analysis, semigroup theory, numerical

analysis, fixed-point theory, the Lyapunov-Perron method and interval arithmetic. This result

generalizes the previous results of the complex valued nonlinear heat equation in terms of

considering the different boundary condition and without the assumption of initial data being

close to a constant.

§ 1. Introduction and main result

In this article, we consider a complex valued nonlinear heat equation in the complex

plane of time

uz = uxx + u2, x ∈ (0, 1), Re(z) ≥ 0,(1.1)

under the periodic boundary condition in x with a specific initial data u(0, x) = 50(1−
cos(2πx)) at the origin. The subscripts z and x denote the complex derivative with

respect to z and the real derivative with respect to x, respectively. Here, “Re” and

“Im” denote the real and imaginary part of complex values.
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If we consider the real valued nonlinear heat equation, i.e., t ≥ 0 denotes so called

time variable, it is well-known that solutions of the real valued nonlinear heat equation

blow up in finite time. More precisely, the L∞-norm of the solution tends to ∞ as t

goes to a certain tB < ∞. Such a tB is called the blow-up time and there are plenty

of related studies for blow-up phenomena of real valued nonlinear heat equations. One

can consult previous studies by [8, 3, 4, 14] and references therein for instance.

The typical setting of complex valued nonlinear heat equation is to consider the

complex u valued solution [5, 11, 6]. This setting is both t and x are real-valued. From

numerical point of view, in [18], Sulem et al. consider various evolution equations in

the complex x plane. Our setting in this article is the case of nonlinear heat equations

whose time variable is in the complex plane.

As a pioneering work of this setting, Masuda [9, 10] has considered the solution of

(1.1) under the Neumann boundary condition. If the initial data is close to a constant,

he has proved global existence of the solution in the shaded domain of Fig. 1 (a) and has

also shown that the solution is analytic in both the shaded domain and its mirror-image

about the real axis (see Fig. 1 (b)). Furthermore, if the solution agrees in the intersection

of above two domains, it is proved that the initial data is a constant. This implies that

a non-constant solution can be analytically continued into the complex plane but, in

such a case, is not a single-valued function in Re(z) > zB , where zB ≡ tB denotes the

blow-up point. Recently, we believe that Masuda’s results give a different point of view

of blow-up solutions, which come from a blend of complex analysis and modern PDE

theories. On the other hand, the Masuda’s study has few followers.
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Figure 1. (a) Masuda [9, 10] has proved global existence of the solution in the shaded

domain for 0 < θ < π/2. We denote by zB the blow-up point. Note that, in the

domain, the real singularity is bypassed and the domain extends to infinity. (b) We plot

the shaded domain (a) and its mirror-image about the real axis. Intersection of two

domains is drawn by dark gray color.
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Following Masuda’s study, Cho-Okamoto-Shōji [2] have presented numerical obser-

vations of the solution of (1.1) under the periodic boundary condition and presented

several conjectures to generalize the Masuda’s results. For example, they have presented

that the solution may converge to zero on a straight path Γθ := {z ∈ C : z = teiθ, t ≥
0} in the complex plane, where θ ∈

(
−π

2 ,
π
2

)
and i =

√
−1 denotes the imaginary unit.

They have also presented that the solution of (1.1) may have only one singularity on

the real axis, which branches the Riemann surface of analytic function. As a conclusion

of their paper, they have addressed the following two interesting conjectures:

Conjecture 1. The analytic function defined by the nonlinear heat equation (1.1) has

branching singularities and only branching singularities, unless it is constant in x.

Conjecture 2. Nonlinear Schrödinger equation, which is the case of θ = ±π/2, is

globally well-posed for any real initial data, small or large.

Cho et al.’s study and their concluding conjectures are regarded as generalization of Ma-

suda’s results in the sense that they consider the periodic boundary condition instead

of the Neumann boundary condition and that they consider the initial data without

assumption of closeness to a constant. These results were based on numerical observa-

tions and no mathematical proof was presented. This is our main motivation for this

study.

The main contribution of the present article is to give a computer-assisted proof

for the complex valued nonlinear heat equation (1.1), which is a partial answer for one

of Cho et al.’s conjectures; “the solution of (1.1) may have only one singularity on the

real axis”. Here, we firstly define the solution of (1.1) in this article.

Definition 1.1. Given ts, te such that 0 ≤ ts < te ≤ ∞, a path Γ in the complex

plane of time parameterized by t ∈ [ts, te] and a0 ∈ ℓ1 defined by a certain initial data,

we say that a function u(t, x) is a solution of (1.1) along the path Γ if the Fourier

coefficients of u, say a(t) = (ak(t))k∈Z, satisfy a ∈ C((ts, te); ℓ
1) and a(ts) = a0.

Our main theorem is given along a path1 Γ̃θ, which is shown in Fig. 2.

Theorem 1.2 (Global existence after a branching singularity). For the complex

valued nonlinear heat equation (1.1) under the periodic boundary condition with initial

data u(0, x) = 50(1− cos(2πx)), there exists a branching singularity at z ∈ (0, 0.0238).

Furthermore, the solution of (1.1) along the path Γ̃θ exits globally on the real axis for

z ≥ 0.0238 and converges to the zero function.

1We may take θ ≈ 0. However, in this case, the solution is near the singularity and it is difficult to
prove our main result. We require a sufficiently large angle θ.
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Re z

Im z

O zB ≈ 0.0119

zA

zC

θ = π/4

Figure 2. We take a path Γ̃θ := {z : [0,∞] → C : z(t) = teiθ (0 ≤ t ≤ 0.0168, O →
zA), z = zA + (t − 0.0168)e−iθ (0.0168 ≤ t ≤ 0.0336, zA → zC), z = zC + (t −
0.0336) (0.0336 ≤ t, zC → ∞), θ = π/4}, where zA = 0.0119+0.0119 i and zC = 0.0238.

Our computer-assisted result shows that there exists a branching singularity and

after that the solution exists globally on the real axis. Furthermore, such a solution goes

to zero. We remark that the analyticity of the solution with respect to the z variable

is not proved in this result. The problem for proving analyticity still remains. We also

note that the author and his collaborator have shown the global existence of the solution

of (1.1) in [19]. This result agrees with Masuda’s work for the case of periodic boundary

condition without assumption of closeness to a constant.

Theorem 1.3 ([19, Theorem 1.2]). For θ = π/3, π/4, π/6 and π/12, setting

a straight path Γθ : z = teiθ (t ≥ 0) in the complex plane of time, the solution of the

complex valued nonlinear heat equation (1.1) under the periodic boundary condition with

initial data u(0, x) = 50(1 − cos(2πx)) exists globally along the path Γθ and converges

to zero as t → ∞.

The proofs of these results are obtained using rigorous numerics, which is given

by careful blend of functional analysis, semigroup theory, numerical analysis, fixed-

point theory, the Lyapunov-Perron method and interval arithmetic. For the details of

technical procedures, we refer to the paper [19]. We directly use the method provided

in this paper. We regard the main contribution of this article as a slightly new result for

the complex valued nonlinear heat equation (1.1), which is shown in our main theorem

(Theorem 1.2).

The organization of this article is as follows: Using the Fourier expansion of un-

known function, we derive a fixed-point form in Section 2. This form corresponds to

the simplified Newton operator of an operator equation, which is defined by the original

complex valued nonlinear heat equation. In Section 3 we show mathematical theorems
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which is used for our rigorous numerics. Combining these theorems, we put an algo-

rithm of our rigorous integrator and proof of the global existence. The proof of our

main theorem (Theorem 1.2) is shown in Section 4. First, we show there exists a point

in the complex plane at which the branching singularity of solution appears. Second,

after the blow-up point, we prove the global existence of the solution on the real axis.

Concluding remark shows some remarks and discusses a future direction of this study.

§ 2. Fixed-point formulation for the complex valued nonlinear heat

equation

In this section, we set up a fixed-point formulation to provide a rigorous enclosure

of the solution of the Cauchy problem (1.1). This fixed-point operator is a foundation of

our rigorous numerics procedure. To analytically continue the solution from the origin,

we take a straight path Γθ := {z ∈ C : z = teiθ, t ≥ 0} for θ ∈ (−π/2, π/2). The

complex valued nonlinear heat equation (1.1) is transformed into the following PDE:

ut = eiθ
(
uxx + u2

)
, x ∈ (0, 1), t ≥ 0(2.1)

under the periodic boundary condition with the given initial data u(0, x) = 50(1 −
cos(2πx)). We expand the unknown function by using the Fourier series

u(t, x) =
∑
k∈Z

ak(t)e
ikωx, ω = 2π.(2.2)

Plugging (2.2) in the initial-boundary value problem (2.1), we have the following infinite-

dimensional system of ODEs:

d

dt
ak(t) = eiθ

[
−k2ω2ak(t) + (a (t) ∗ a (t))k

]
(k ∈ Z), a(0) = a0,(2.3)

where “∗” denotes the discrete convolution product defined by

(b ∗ c)k :=
∑
m∈Z

bk−mcm (k ∈ Z)

for bi-infinite sequences b = (bk)k∈Z and c = (ck)k∈Z, and a0 is defined by

(2.4) (a0)k :=


−25, k = ±1

50, k = 0

0, otherwise.

For a fixed time h > 0 called step size, let us define J := (0, h) and the Banach

space

X := C(J ; ℓ1), ∥a∥X := sup
t∈J

∥a(t)∥ℓ1 ,
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where ℓ1 :=
{
a = (ak)k∈Z :

∑
k∈Z |ak| < ∞, ak ∈ C

}
with the norm ∥a∥ℓ1 :=

∑
k∈Z |ak|.

Our task of rigorous numerics is to determine the Fourier coefficients (ak(t))k∈Z

of the solution of the Cauchy problem (2.3). By using Fourier spectral method, one

can easily have an approximate solution2 (āk(t))|k|≤N . More precisely, we have an

approximation of the Fourier coefficients with maximal wave number N . Let ā(t) :=

(. . . , 0, 0, ā−N (t), . . . , āN (t), 0, 0, . . . ) be an approximation of a(t) in ℓ1. On the basis of

this approximate solution, we rigorously enclose the Fourier coefficients in the closed

ball

(2.5) BJ(ā, ϱ) := {a ∈ X : ∥a− ā∥X ≤ ϱ, a(0) = a0} .

Define the Laplacian operator L acting on a sequence of Fourier coefficients as

Lb :=
(
−k2ω2bk

)
k∈Z , b = (bk)k∈Z.

The domain of the operator L is defined by

D(L) :=

{
a = (ak)k∈Z :

∑
k∈Z

k2|ak| < ∞

}
⊂ ℓ1.

Define an operator acting on a ∈ C1(J ;D(L)) as

(F (a))(t) :=
d

dt
a(t)− eiθ (La(t) + a (t) ∗ a (t)) .

Hence, considering the operator equation F (a) = 0, we define the following simplified

Newton operator:

(T (a))(t) := Aa(0)

[
eiθ (a(t) ∗ a(t)− 2ā(t) ∗ a(t))

]
, T : X → X.(2.6)

It is expected that the simplified Newton operator has a fixed point ã ∈ BJ(ā, ϱ) such

that ã = T (ã). Here, Aa(0) is called the solution map operator in [19], which is defined by

the solution representation of the following inhomogeneous linearized Cauchy problem

in ℓ1:

d

dt
bk(t) + eiθ

[
k2ω2bk(t)− 2 (ā (t) ∗ b(t))k

]
= gk(t) (k ∈ Z)(2.7)

with any ℓ1 initial sequence bk(s) = ϕk (0 ≤ s ≤ t), where (gk(t))k∈Z ∈ ℓ1 is an arbitrary

forcing term. More precisely, we define the solution map operator as

(2.8) Aϕg := U(t, s)ϕ+

∫ t

s

U(t, r)g(r)dr,

2Throughout this article, we note that ā represents an approximation of a, not the complex conju-
gate.
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where {U(t, s)}0≤s≤t≤h is the evolution operator of (2.7) without the forcing term.

This is nothing but the solution representation via the variation of constants formula

for (2.7). Furthermore, Aϕ0 = U(t, s)ϕ holds.

To use the solution map operator for our rigorous numerics, we require the explicit

value of a positive constant Wh > 0 satisfying

(2.9) sup
0≤s≤t≤h

∥U(t, s)ϕ∥ℓ1 ≤ Wh∥ϕ∥ℓ1 , ∀ϕ ∈ ℓ1,

which is based on generation theory (cf. [12]) of the evolution operator on Banach space

ℓ1. We show the explicit value of Wh in the next section.

Remark. Suppose ā ∈ C1(J ;D(L)), we take A †
ϕ as the Fréchet derivative of

F : C1(J ;D(L)) → X at ā, say A †
ϕ = DF [ā]. We obtain that the solution map operator

Aϕ satisfies AϕA †
ϕ a = a if a ∈ C1(J ;D(L)) with the initial data a(s) = ϕ (0 ≤ s ≤ t).

Furthermore, Aϕ1
g1 + Aϕ2

g2 = Aϕ1+ϕ2
(g1 + g2) holds for ϕ1, ϕ2 ∈ ℓ1, g1, g2 ∈ X.

Then, if a ∈ C1(J ;D(L)) with a(0) = ϕ, the simplified Newton operator satisfies

T (a) = Aϕ

[
eiθ (a ∗ a− 2ā ∗ a)

]
= Aϕ

[
d

dt
a− eiθ (La+ 2ā ∗ a)− d

dt
a+ eiθ (La+ a ∗ a)

]
= Aϕ

(
A †

ϕ a− F (a)
)
= a− A0F (a).

We note that this form a − A0F (a) is defined only on C1(J ;D(L)) but the simplified

Newton operator (2.6) can be defined on X. Moreover, from the bootstrap property of

the solution map operator Aϕ : X → C1(J ;D(L)) ⊂ X [19, Remark 3.4], the fixed point

ã of T satisfies ã ∈ C1(J ;D(L)) if such a fixed point is obtained.

§ 3. Tools of rigorous numerics

This section displays technical theorems for our rigorous numerics. We note that

each hypothesis of these theorems can be rigorously checked by numerical computations

based on interval arithmetic (cf., e.g., [16]). For the proofs of these theorems, let us

refer to [19].

§ 3.1. A uniform bound of the evolution operator

As previously mentioned, given a step size h > 0, our task to use the solution map

operator for rigorous numerics is to show the existence of the evolution operator U(t, s)

by computing a constant Wh satisfying (2.9). To achieve this task we separate the
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equations (2.7) by considering yet another homogeneous Cauchy problem with respect

to the sequence c(t) = (ck(t))k∈Z

d

dt
ck(t) + eiθ

[
k2ω2ck(t)− 2

(
ā (t) ∗ c(m)(t)

)
k

]
= 0 (|k| ≤ m)(3.1)

d

dt
ck(t) + eiθ

[
k2ω2ck(t)− 2

(
ā (t) ∗ c(∞)(t)

)
k

]
= 0 (|k| > m),(3.2)

where c(m)(t) and c(∞)(t) are defined by c(m)(t) := (. . . , 0, c−m(t), . . . , cm(t), 0, . . . )

and c(∞)(t) := (. . . , c−m−1(t), 0, . . . , 0, cm+1(t), . . . ), respectively. This new decoupled

formulation, while not being equivalent to (2.7), will be used to control the evolution

operator associated to (2.7). Denote by C(m)(t, s) and C(∞)(t, s) the evolution operators

of the (2m+ 1)-dimensional equation (3.1) and the infinite dimensional equation (3.2),

respectively. We extend the action of the operator C(m)(t, s) (resp. C(∞)(t, s)) on ℓ1 by

introducing the operator Ū (m)(t, s) (resp. Ū (∞)(t, s)) as follows. Given ϕ ∈ ℓ1, define

Ū (m)(t, s) : ℓ1 → ℓ1 and Ū (∞)(t, s) : ℓ1 → ℓ1 by(
Ū (m)(t, s)ϕ

)
k
=


(
C(m)(t, s)(ϕk)|k|≤m

)
k
, |k| ≤ m

0, |k| > m

(
Ū (∞)(t, s)ϕ

)
k
=

0, |k| ≤ m(
C(∞)(t, s)(ϕk)|k|>m

)
k
, |k| > m.

(3.3)

The proof of existence of the evolution operator U(t, s) of the original linearized

problem (2.7) is presented in the following theorem by showing the explicit bound Wh

satisfying (2.9).

Theorem 3.1 ([19, Theorem 3.2]). Let s, t ∈ J = (0, h) satisfying 0 ≤ s ≤ t ≤
h. Assume that there exists a constant Wm > 0 such that

(3.4) sup
0≤s≤t≤h

∥∥∥Ū (m)(t, s)
∥∥∥
B(ℓ1)

≤ Wm.

Assume that C(∞)(t, s) exists and that Ū (∞)(t, s) defined in (3.3) satisfies∥∥∥Ū (∞)(t, s)
∥∥∥
B(ℓ1)

≤ W (∞)(t, s) := e−µm+1(t−s)+2
∫ t
s
∥ā(τ)∥ℓ1dτ ,

where µm+1 := (m+ 1)2ω2 cos θ. Define the constants W∞ ≥ 0, W̄∞ ≥ 0, W sup
∞ > 0 as

W∞ :=
e(2∥ā∥X−µm+1)h − 1

2∥ā∥X − µm+1

W̄∞ :=
W∞ − h

2∥ā∥X − µm+1

W sup
∞ :=

1, µm+1 ≥ 2∥ā∥X
e(µm+1−2∥ā∥X)h, µm+1 < 2∥ā∥X ,
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respectively. Define ā(s)(t) ∈ ℓ1 component-wisely by

ā
(s)
k (t) =


0, |k| ≤ N and k = 0

āk(t), |k| ≤ N and k ̸= 0

0, |k| > N.

If

κ := 1− 4WmW̄∞∥ā(s)∥2X > 0,

then the evolution operator U(t, s) exists and the following estimate holds

sup
0≤s≤t≤h

∥U(t, s)ϕ∥ℓ1 ≤ Wh∥ϕ∥ℓ1 , ∀ϕ ∈ ℓ1,

where Wh > 0 is defined by the following 1-norm of 2× 2 matrix:

(3.5) Wh :=

∥∥∥∥∥
[

Wmκ−1 2WmW∞∥ā(s)∥Xκ−1

2WmW∞∥ā(s)∥Xκ−1 W sup
∞ + 4WmW 2

∞∥ā(s)∥2Xκ−1

]∥∥∥∥∥
1

.

§ 3.2. Rigorous enclosure of solution in short time

The following theorem guarantees the existence of the solution of (2.3), which is

equivalent to the original complex valued nonlinear heat equation (1.1) on the straight

line Γθ, in the neighborhood of numerically computed solution BJ(ā, ϱ) defined in (2.5).

The proof of this theorem is based on the Banach fixed point theorem.

Theorem 3.2 ([19, Theorem 4.1]). For a given initial sequence a(0) and its ap-

proximation ā(0), assume that there exists ε ≥ 0 such that ∥a(0)− ā(0)∥ℓ1 ≤ ε. Assume

also that ā ∈ C1(J ;D(L)) and any a ∈ BJ (ā, ϱ) satisfies

sup
t∈J

∑
k∈Z

|(T (a)(t)− ā(t))k| ≤ fε (ϱ) ,

where fε(ϱ) is defined by

fε (ϱ) := Wh

[
ε+ h

(
2ϱ2 + δ

)]
.

Here, Wh > 0 and δ > 0 satisfy sup0≤s≤t≤h ∥U(t, s)∥B(ℓ1) ≤ Wh and ∥F (ā)∥X ≤ δ,

respectively. If fε (ϱ) ≤ ϱ holds, then the Fourier coefficients ã of the solution of (2.1)

are rigorously included in BJ (ā, ϱ) and are unique in BJ (ā, ϱ).

To check the hypothesis of Theorem 3.2, let us put a sketch of the proof. For the

complete proof and details how we obtain the bounds ε and δ, we refer to [19, Section

4].
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Firstly, for a sequence a ∈ BJ(ā, ϱ) , we have using (2.6)

T (a)− ā = T (a)− T (ā) + T (ā)− ā(3.6)

= Aa(0)−ā(0)

[
eiθ(a ∗ a− ā ∗ ā− 2ā ∗ (a− ā))

]
− A0F (ā)

= Az(0)

[
2eiθ

∫ 1

0

ηdη(z ∗ z)
]
− A0F (ā) ,

where we denote z := a− ā. Thus, (3.6) is represented by

T (a)− ā = Az(0)

(
2eiθ

∫ 1

0

ηdη(z ∗ z)k − Fk(ā)

)
k∈Z

,

where Az(0) is the solution map operator defined in (2.8) and

Fk(ā) =


d
dt āk − eiθ ((Lā)k + (ā ∗ ā)k) , |k| ≤ N

−eiθ(ā ∗ ā)k, |k| > N.

Taking ℓ1 norm of T (a)− ā, we have from (2.8)

∥T (a)− ā∥ℓ1 =
∑
k∈Z

|(T (a)− ā)k|(3.7)

=

∥∥∥∥U(t, 0)z(0) +

∫ t

0

U(t, s)g(s)ds

∥∥∥∥
ℓ1

≤ ∥U(t, 0)z(0)∥ℓ1 +
∫ t

0

∥U(t, s)g(s)∥ℓ1 ds,

where g(s) := 2eiθ
∫ 1

0
ηdη(z(s) ∗ z(s))− (F (ā)) (s). Taking ℓ1-norm of g, we have

∥g(s)∥ℓ1 ≤
∑
k∈Z

∣∣2eiθ(z(s) ∗ z(s))k∣∣+ ∥(F (ā)) (s)∥ℓ1 ≤ 2∥z(s)∥2ℓ1 + δ,

where δ satisfies sups∈J ∥(F (ā)) (s)∥ℓ1 ≤ δ. Since a ∈ BJ(ā, ϱ), ∥z∥X ≤ ϱ holds. Conse-

quently, (3.7) is bounded by using the uniform bound Wh (2.9) as

sup
t∈J

∑
k∈Z

|((T (a))(t)− ā(t))k| ≤ sup
t∈J

∥U(t, 0)z(0)∥ℓ1 + sup
t∈J

∫ t

0

∥U(t, s)g(s)∥ℓ1 ds

≤ Wh

[
ε+ h

(
2ϱ2 + δ

)]
= fε (ϱ) ,

where ε is the upper bound of the initial error such that ∥z(0)∥ℓ1 ≤ ε. From the

assumption fε(ϱ) ≤ ϱ, T (a) ∈ BJ(ā, ϱ) holds for any a ∈ BJ(ā, ϱ).

Secondly, for sequences a1, a2 ∈ BJ(ā, ϱ), we define the distance in BJ(ā, ϱ) as

d(a1, a2) := ∥a1 − a2∥X . The analogous discussion above yields d (T (a1), T (a2)) ≤
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(2Whhϱ)d(a1, a2). Taking κ = 2Whhϱ, it follows κ < fε(ϱ)/ϱ ≤ 1 from the assumption

of theorem. It is proved that the simplified Newton operator T becomes the contraction

mapping on BJ(ā, ϱ).

§ 3.3. Proof of global existence based on the Lyapunov-Perron method

After guaranteeing the local existence of the solution, we try to prove global exis-

tence in time of the solution by checking a hypothesis of the following theorem. That

corresponds to a calculation of a part of center-stable manifold. Starting from the PDE

(2.1), we consider the system of differential equations in ℓ1 given by (2.3). To show global

existence of the solution, we use the Lyapunov-Perron method to compute a foliation

of portion of the center-stable manifold of the equilibrium at a ≡ 0. A good reference

for this method in ODEs is [1], and for PDEs see [17]. In [20] this method is applied

to give computer assisted proofs of the stable manifold theorem in the Swift-Hohenberg

PDE.

Let us define subspaces

Xc := {a ∈ ℓ1|ak = 0 ∀k ≠ 0}, Xs := {a ∈ ℓ1|a0 = 0}.

We rewrite (2.3) into the following system:

ẋc = Nc(xc, xs)(3.8)

ẋs = Lxs +Ns(xc, xs),

where for a = (xc, xs) and we define

(La)k := −eiθk2ω2ak,

Nc(ac, as) := eiθ
∞∑
k=0

aka−k,

(Ns(ac, as))k := eiθ
∑

k1+k2=k
k1,k2∈Z

ak1ak2 .

Note that

∥eLt∥B(ℓ1) ≤ e−ω2 cos θ t,

|Nc(xc, xs)| ≤ |xc|2 + ∥xs∥2ℓ1 ,
∥Ns(xc, xs)∥ℓ1 ≤ 2|xc|∥xs∥ℓ1 + ∥xs∥2ℓ1

holds. Furthermore, let us define µ = ω2 cos θ.

For the equilibrium at zero, the center manifold is precisely Xc. Restricted to this

subspace Xc, we can solve (3.8) by

ẋc = eiθx2c ,(3.9)
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using the fact that the differential equation is separable. For an initial condition ϕ ∈ C,
the solution of (3.9) is given by

Φ(t, ϕ) :=
ϕ

1− ϕteiθ
.

For rc, rs ∈ R+, let us define the following sets

Bc(rc) := {xc ∈ Xc : |xc| ≤ rc,Re(e
iθxc) ≤ 0}

Bs(rs) := {xs ∈ Xs : ∥xs∥ℓ1 ≤ rs}.

Note that if ϕ ∈ Bc(rc) then Φ(t) ∈ Bc(rc) for all t ≥ 0, and additionally |Φ(t, ϕ)| ≤ rc

holds. For a fixed ρ ∈ R+, we define the following set of functions:

B = {α ∈ Lip (Bc(rc)×Bs(rs), Xc) : α(xc, 0) = xc, |α(xc, x1)− α(xc, x2)| ≤ ρ|x1 − x2|} .

Continuing with the Lyapunov-Perron method, for a fixed α ∈ B, ϕ ∈ Bc(rc), ξ ∈
Bs(rs), we define x(t, ϕ, ξ, α) as a solution of the following differential equation:

ẋs = Lxs +Ns (α(Φ(t, ϕ), xs), xs)

with initial conditions (ϕ, ξ).

Now we define the Lyapunov-Perron Operator for α ∈ B as follows:

Ψ[α](ϕ, ξ) = −
∫ ∞

0

Nc

(
α
(
Φ(t, ϕ), x(t, ϕ, ξ, α)

)
, x(t, ϕ, ξ, α)

)
dt.

It is shown [19, Proposition 6.10] that Ψ : B → B is a well defined operator. If Ψ[α] = α

holds, then the trajectory α(Φ(t, ϕ), x(t, ϕ, ξ, α)) satisfies (3.8) for all (ϕ, ξ) ∈ Bc × Bs.

This is because the Lyapunov-Perron operator is defined as the variation of constants

formula. Hence, it implies that (α(Φ(t, ϕ), x(t, ϕ, ξ, α)), x(t, ϕ, ξ, α)) satisfies our original

equation (2.3).

Since Φ(t, ϕ) limits to zero, such a fixed point α = Ψ[α] gives us a foliation of the

center stable manifold overBc(rc). Therefore, we obtain an explicit neighborhood within

which all points limit to the zero equilibrium. To prove the existence of a fixed point

to our Lyapunov-Perron operator, and obtain explicit bounds, we prove the following

theorem.

Theorem 3.3 ([19, Corollary 6.3]). Fix rc, rs, ρ > 0 and write Bc = Bc(rc)

and Bs = Bs(rs). Define the set U ⊆ Bc ×Bs as

U := {(xc, xs) ∈ Bc ×Bs : ρ∥xs∥ℓ1 < dist(xc, ∂Bc)},
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where ∂Bc denotes the boundary of Bc. Suppose the following constants

δ1 := 2rc + (1 + 2ρ)rs,

δ2 := 2rc + 2(1 + ρ)rs,

δ3 := 2(ρ(rc + ρrs) + rs),

δ4 := 2(rc + 2ρrs + rs),

λ :=
2(ρ(rc + ρrs) + rs)2rs

(µ− δ1)(µ− δ4)
+

2(rc + ρrs)

µ− δ1

satisfy

δ1, δ2, δ4 < µ,
δ3

µ− δ2
< ρ, λ < 1.(3.10)

If the initial data a0 ∈ ℓ1 satisfy

((a0)k=0, (a0)k ̸=0) ∈ U,

then the solution a(t) of (2.3) with the initial data a0 is globally defined and converges

to zero.

Remark. For practical implementation, in order to construct a trapping region U

in Theorem 3.3 which might contain a0, we fix mildly inflated radii constants

rs := ∥(a0)k ̸=0∥ℓ1 , rc := |(a0)k=0|+ 0.02rs.

Then we numerically check the condition of U by checking the inequality

ρrs < dist((a0)k=0, ∂Bc) < min
{
rc − |(a0)k=0|,−Re(eiθ · (a0)k=0)

}
.

If the hypothesis of Theorem 3.3 holds, then the explicit neighborhood U is con-

tained in the α-skew image of Bc × Bs, i.e., U ⊆ {(α(xc, xs), xs) : (xc, xs) ∈ Bc × Bs}.
Furthermore, if the initial data a0 ∈ U , then a0 is in the center stable manifold of the

zero equilibrium.

§ 3.4. Algorithm of rigorous integration and global existence

Summing up this section, we put an algorithm for proving local inclusion of the

solution of (2.1) and showing global existence on the straight path. Let 0 = t0 < t1 < . . .

be grid points of the time variable. We call Ji = (ti−1, ti) the i th time step and let

ti = ih (i = 1, 2, . . . ) with the stepsize h. Algorithm 1 shows our procedure of rigorous

integration and proof of global existence on the straight path, which is combination of

theorems introduced in this section.
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Algorithm 1 Rigorous integrator and proof of global existence.

Input: N (maximal wave number of Fourier in space), n (number of Chebyshev series

in time), h (step size), θ (angle of the path), m (truncation size of the linearized

Cauchy problem shown in Section 3.1), a0 (initial sequence defined in (2.4))

1: while i = 1, 2, . . . do

2: Set the time step J ≡ Ji = (ti−1, ti) with ti = ih.

3: Get ā using Chebyshev-Fourier spectral methods for (2.3) with |k| ≤ N .

4: Obtain δ ≥ 0 satisfying ∥F (ā)∥X ≤ δ and ε ≥ 0 such that ∥a(ti−1)− ā(ti−1)∥ℓ1 ≤
ε.

5: Obtain a uniform bound of finite dimensional evolution operator Wm > 0 satis-

fying (3.4) using the radii-polynomial approach [7].

6: if the hypothesis of Theorem 3.1 holds then

7: Theorem 3.1 guarantees the existence of the solution map operator Aϕ defined

in (2.8).

8: Compute Wh by (3.5).

9: else

10: return fail in getting uniform bound of the evolution operator.

11: end if

12: if the hypothesis of Theorem 3.2 holds then

13: Theorem 3.2 proves the existence of the solution of (2.3) in BJ(ā, ϱ) defined in

(2.5).

14: else

15: return fail in proving existence of the solution locally in time.

16: end if

17: if the hypothesis of Theorem 3.3 holds then

18: return succeed in proving the global existence of the solution of (2.1) via

Theorem 3.3.

19: end if

20: Update a0 = a(ti).

21: end while
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In practical implementation, to finish Algorithm 1, we check the hypothesis of

Theorem 3.3 after numerical verification of the local inclusion in time using Theorem

3.2. If we obtain the hypothesis is true, we prove the global existence of the solution of

(2.1) via Theorem 3.3. Otherwise, we continue our rigorous integration to the next time

step using Theorem 3.1 and Theorem 3.2. For this purpose the initial sequence in the

next time step is replaced by a sequence at the endpoint of the current time step (e.g.,

a0 = a(h) for the first time step). Replacing J = (h, 2h), we apply numerical verification

for the Cauchy problem on the next time step and repeat this process recursively.

§ 4. Proof of Theorem 1.2

In this section, we show our computer-assisted proof of Theorem 1.2. Our proof is

based on rigorous numerics. All computations were carried out on Windows 10, Intel(R)

Core(TM) i7-6700K CPU @ 4.00GHz, and MATLAB 2019a with INTLAB - INTerval

LABoratory [15] version 11 and Chebfun - numerical computing with functions [13]

version 5.7.0.

The proof consists of two steps. First, we prove the branching singularity, which is

proved in [19, Theorem 1.1]. For the first step, we follow the same proof in [19]. Second,

after proving the branching singularity, we prove the global existence on the real axis

beyond the blow-up point via Theorem 3.3.

§ 4.1. Proof of existence of branching singularity

Let us follow the proof of branching singularity given in [19, Section 7.1]. Because

it is obvious that the solution of (1.1) has a symmetry u(te−iθ, x) = u(teiθ, x) for a real

t, it is sufficient to prove that the imaginary part of u(z, x) becomes a non-zero function

at a certain point z ∈ R satisfying zB < z, where zB denotes the blow-up point of (1.1).

We took a path Γ̃θ for analytical continuation, which bypasses the blow-up point zB

as shown in Fig. 2. Here, Cho et al. [2] has shown zB ≈ 0.0119 under the periodic

boundary condition with the initial data u(0, x) = 50(1− cos(2πx)).

We divided each segment (O → zA and zA → zC in Fig. 2) into 16 steps and, by

using our rigorous integrator, analytically continued to the zC point in Fig. 2. From

O to zA, we set θ = π/4 in (2.1). After that, we changed the value of θ as θ = −π/4

from zA to zC . We set the approximate solution defining the maximal wave number

N = 15. Then, for each time stepping, we got a numerical solution ū by using Chebfun

[13] described by

ū(t, x) =
∑

|k|≤N

(
ā0,k + 2

n−1∑
ℓ=1

āℓ,kTℓ(t)

)
eikωx, ω = 2π
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with n = 13, where Tℓ(t) denotes the ℓ th order Chebyshev polynomial of first kind. We

also set m = 2 in Theorem 3.1, which decides the truncation size of linearized Cauchy

problem. The profiles of numerically computed Re(ū) and Im(ū) were plotted in Fig. 3.

(a) O → zA (b) zA → zC

Figure 3. Profiles of numerically computed solutions on each segment ((a) O → zA

and (b) zA → zC) were plotted. At the point zC , the imaginary part of ū(zC , x) became

obviously non-zero function.

Our task of the proof here is to show that the imaginary part of u(zC , x) is a

non-zero function. To prove this, we use the ℓ1 norm of the Fourier coefficients, say

∥v∥ := ∥c∥ℓ1 =
∑
k∈Z

|ck| for v(x) =
∑
k∈Z

cke
ikωx.

Let the solution of (1.1) at zC point and its numerically computed solution be denoted

by

u(zC , x) =
∑
k∈Z

azCk eikωx and ū(zC , x) =
∑

|k|≤N

āzCk eikωx,

respectively. Denote two bi-infinite complex valued sequences by azC = (azCk )k∈Z ∈
ℓ1 and āzC = (. . . , 0, āzC−N , . . . , āzCN , 0 . . . ) ∈ ℓ1, whose existence was proved by our

numerical verification via Theorem 3.2. The norm of imaginary part of the solution at

zC point follows

∥Im (u(zC , ·)) ∥ = ∥Im (ū(zC , ·)) + Im (u(zC , ·))− Im (ū(zC , ·)) ∥
≥ ∥Im (ū(zC , ·)) ∥ − ∥Im (u(zC , ·)− ū(zC , ·)) ∥
≥ ∥Im (ū(zC , ·)) ∥ − ∥azC − āzC∥ℓ1
≥ ∥Im (ū(zC , ·)) ∥ − εzC ,

where εzC is the rigorous error of the solution at the zC point, which is given by our

rigorous integrator. Hence our rigorous integrator gave the value εzC = 1.10236× 10−4.

Furthermore, the imaginary part of ū(zC , x) is presented by

(4.1) Im (ū(zC , x)) =
1

2

∑
|k|≤N

[
Im (āzCk ) + Im

(
āzC−k

)
− i
(
Re (āzCk )− Re

(
āzC−k

))]
eikωx.
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We rigorously computed the coefficients of (4.1) using interval arithmetic and obtained

the following inclusion:

∥Im (ū(zC , ·)) ∥ − εzC ∈ [126.9994, 126.9995],

where [·, ·] denotes the real interval. This implies ∥Im (u(zC , ·)) ∥ > 0.

Consequently, we prove that the imaginary part of u(zC , x) is the non-zero function.

Then, there exists at least one branching singularity on the real line at z ∈ (0, zC) with

zC = 0.0238. The results of analytical continuation is shown in Fig. 4.

(a) εi bounds at ti (b) ϱi bounds on Ji

Figure 4. For each time stepping Ji (i = 1, . . . , 32), we plotted results of analytical

continuation. (a) The rigorous error bound εi such that ∥a(ti) − ā(ti)∥ℓ1 ≤ εi for

i = 0, . . . , 32. (b) The radius of the neighborhood BJi
(ā, ϱi) in which the exact solution

of (2.3) is included for i = 1, . . . , 32.

§ 4.2. Proof of global existence beyond the blow-up point

Next, we show the global existence after the branching point via Theorem 3.3. From

the zC point, we took the value of θ as θ = 0 and continued our rigorous integrator on

the real axis. As shown in Fig. 5, profiles of the solution after the blow-up point was

no longer the real valued solution even if the path is set on the real axis. Nevertheless,

our rigorous integrator succeeded in analytically continuing on the real axis zC → ∞ in

Fig. 2.

To prove the global existence, we check the hypothesis of Theorem 3.3. More

precisely, at t = ti (after i th time stepping), we rigorously computed

rs = ∥ā(s)(ti)∥ℓ1 + εi, rc = |ā0(ti)|+ εi + 0.02rs,

where ā(s)(t) = (. . . , 0, ā−N (t), . . . , ā−1(t), 0, ā1(t), . . . , āN (t), 0, . . . ) ∈ ℓ1. Then, for

µ = ω2 cos θ, we tried to find the ρ in (3.10). If such ρ is not obtained, then the foliation

of center stable manifold is failed to validate by Theorem 3.3. In such a case, we consider

rigorous integration on the next time step, i.e. Ji+1.

Fig. 6 shows verified results of our rigorous integration on Γ̃θ. After 121 steps of the

rigorous integration (at t = 0.1273), the hypothesis of Theorem 3.3 held for rc = 9.8129,
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Figure 5. The (x, t, u)-plot of the numerically computed solution on the path Γ̃θ. After

the zC point, the solution gradually changed to be a constant and converged to zero.

rs = 0.0181, ρ = 0.0137 and λ = 0.9895. The execute time was 375 sec. Finally, we

succeeded in proving the global existence of the solution of (1.1) along the path Γ̃θ.

This completes the proof of Theorem 1.2. □

Figure 6. Results of rigorous integration on Γ̃θ: The value of X norm of ā was plotted

as piecewise constant on Ji (left). The rigorous error εi was plotted at each ti (right).

After 121 steps, the hypothesis of Theorem 3.3 held at t = 0.1273. The step size is

equidistantly taken as h = 1.0518 × 10−3. We remark that we set N = 15 (maximum

wave number of Fourier), n = 13 (number of Chebyshev basis) and m = 2.

Concluding remarks

In the present article we show a computer-assisted proof of the complex valued

nonlinear heat equation, which gives a mathematical proof of Cho et al.’s numerical

observation. It is shown that the solution of complex valued nonlinear heat equation

under the periodic boundary condition has at least one branching singularity. After

the singular point, there exists a certain zC ∈ R such that the solution has no singu-

larity from zC to infinity on the real axis. The proof is based on rigorous numerics

which numerically gives constructive proofs and provides explicit error bounds nearby

a numerically computed solution. The key idea is to show existence and local unique-

ness of a fixed point for the simplified Newton operator corresponding to the Cauchy
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problem, which requires explicit bounds of the evolution operator for the linearized

Cauchy problem. We introduce a method of rigorous integration of the complex val-

ued nonlinear heat equation and apply the provided rigorous integrator for proving our

computer-assisted proof on a path in the complex plane of time. Finally, using the

Lyapunov-Perron method to calculate part of a center-stable manifold, we introduce a

method of proving global existence of the solution which converges to the zero function.

Applying this method, our computer-assisted proof is completed, which is presented in

details in Section 4.

We conclude this paper by putting some remarks and future directions of study-

ing blow-up phenomena of nonlinear heat equations. Firstly, it is interesting that the

branching singularity appears at the blow-up point but the branched Riemann surface

after the blow-up point is close to zero. This indicates that the branched surface seems

to be glued at infinity. Secondly, changing the nonlinearity or/and dimension of the

space, one may characterize a different behavior of blow-up solution so called peaking

solution from a view point of complex analysis. Thirdly, as Cho et al.’s conjecture 2, the

global existence of the solution in the case of θ = π/2 (nonlinear Schödinger equation

under the periodic boundary condition) is challenging problem both numerically and

mathematically. Indeed, our rigorous integrator works for a few time steps for proving

local inclusion of the solution in the neighborhood of a numerical solution. On the other

hand, Theorem 3.3 cannot work in the case of calculating only center manifolds. We

will try to prove global existence of the nonlinear Schödinger equation using rigorous

numerics in future.
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[2] Cho, C.-H., Okamoto, H. and Shōji, M., A blow-up problem for a nonlinear heat equation

in the complex plane of time, Japan J. Indust. Appl. Math., 33 (2016), 145–166.

[3] Deng, K. and Levine, H. A., The role of critical exponents in blow-up theorems: The

sequel, J. Math. Anal. Appl., 243 (2000), 85 – 126.

[4] Fila, M. and Matano, H., Blow-up in nonlinear heat equations from the dynamical systems

point of view, Handbook of dynamical systems, vol. 2, North-Holland, Amsterdam, 2002,

pp. 723–758.



66 A. Takayasu

[5] Guo, J.-S., Ninomiya, H., Shimojo, M. and Yanagida, E., Convergence and blow-up of

solutions for a complex-valued heat equation with a quadratic nonlinearity, Trans. Amer.

Math. Soc., 365 (2013), 2447–2467.

[6] Harada, J., Blowup profile for a complex valued semilinear heat equation, J. Funct. Anal.,

270 (2016), 4213 – 4255.

[7] Lessard, J.-P. and Reinhardt, C., Rigorous Numerics for Nonlinear Differential Equations

Using Chebyshev Series, SIAM J. Numer. Anal., 52 (2014), 1–22.

[8] Levine, H. A., The role of critical exponents in blowup theorems, SIAM Rev., 32 (1990),

262–288.

[9] Masuda, K., Blow-up of solutions of some nonlinear diffusion equations, Nonlinear Partial

Differential Equations in Applied Science; Proceedings of The U.S.-Japan Seminar, Tokyo,

1982, North-Holland Mathematics Studies, North-Holland, 81 (1983), 119 – 131.

[10] Masuda, K., Analytic solutions of some nonlinear diffusion equations, Math. Z., 187

(1984), 61–73.

[11] Nouaili, N. and Zaag, H., Profile for a simultaneously blowing up solution to a complex

valued semilinear heat equation, Comm. Partial Differential Equations, 40 (2015), 1197–

1217.

[12] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Springer, 1983.

[13] Platte, R. B. and Trefethen, L. N., Chebfun: a new kind of numerical computing, Progress

in industrial mathematics at ECMI 2008, vol. 15, Springer, Heidelberg, 2010, pp. 69–87.

[14] Quittner, P. and Souplet, P., Superlinear parabolic problems. Blow-up, global existence

and steady states, Birkhäuser, 2007.
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