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On the derivation of the mean field equation

of the Gibbs distribution function

for equilibrium vortices in an external field

By
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Abstract

Motivated by several experimental facts, we are interested in the linear response of equi-

librium vortices. In order to study the phenomenon, here we investigate the mean field limit of

equilibrium vortices perturbed by an external field and derive the mean field equation of the

Gibbs distribution function. Similar limits for classical point particles with bounded interac-

tions were studied by Messer-Spohn [14] and later the results were extended to the system of

vortices, which interact via the singular logarithmic potential, by Caglioti et al [2] and Kiessling

[10] . In this paper, we start with the review of these results in some detail and extend their

arguments to the case for vortices perturbed by an external field.

§ 1. Introduction

In this paper, we are interested in the (canonical) Gibbs distribution function for

equilibrium of a large number of vortices confined in a bounded container Λ ⊂ R2 in

an external field. To simplify the presentation, we assume that Λ is simply connected

and with a smooth boundary throughout this paper unless we mention otherwise.

The study of Gibbs distribution function for physical systems seems to be a central

topic of statistical physics, see [5] for example. Concerning the vortices in two dimen-

sional incompressible non-viscous fluid, the importance of the study of the distribution

function seems to be realized when Onsager pointed out the possibility of negative tem-

perature states of equilibrium vortices, which are introduced to explain the reason why
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the large scale structures, such as the great red spot on the surface of Jupiter, often

maintain in two dimensional fluid [15].

This kind of self-organization phenomenon attracted many researchers and they

try to derive so-called the mean field equation that describe the distribution function

for infinitely many vortices, see [8, 9, 17, 18] for example. Recently, it was found that

Onsager himself also derived the equation, see [3].

These results, however, are obtained by rather heuristically. Later mathematically

rigorous derivation of the mean field equation is developed by Caglioti, Lions, Marchioro,

Pulvirenti[2] and Kiessling [10], see also [13, 12]. They used and improved the argument

established by Messer-Spohn [14] for system of classical point particles with bounded

interactions, which does not cover the logarithmic interaction of vortices.

The purpose of this paper is to derive mathematically rigorously the mean field

equation of equilibrium vortices perturbed by an external field. To this purpose, we

review the theory of vortices, the Messer-Spohn argument, and it’s improvement by

Caglioti et al. and Kiessling in detail for the readers convenience. Then we derive the

mean field equation (5.3) for the system described by the Hamiltonian with an external

field, which might not be completely new but seems not to be mentioned previously to

the author’s knowledge. Our motivation for this study is to study the linear response of

equilibrium vortices, which is our on going project with several physicists, see [16] for

our progress so far.

§ 2. Dynamics of vortices

We assumed that Λ ⊂ R2 is a simply connected bounded domain with smooth

boundary ∂Λ. Then the motion of non-viscous incompressible fluid in Λ is described by

the equation of the vorticity field ω = curlv := ∂v2

∂x1
− ∂v1

∂x2
:

(2.1)
∂ω

∂t
+ (v · ∇)ω = 0.

Here v = (v1(x, t), v2(x, t)) is the velocity field determined by the vorticity field ω from

the incompressible condition and the usual slip boundary condition:

div v :=
∂v1
∂x1

+
∂v2
∂x2

= 0, v · ν = 0 on ∂Λ.

In fact, using the solution ψ of the Poisson equation

−∆ψ = ω in Λ, ψ = 0 on ∂Λ,

we are able to recover the velocity field v from the vorticity field:

v = ∇⊥ψ =

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
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since Λ is simply connected. The function ψ is called the stream function of the velocity

field v and is uniquely determined by ω under appropriate assumptions.

The N -points vortices are the set {(xj(t),Ωj)}j=1,··· ,N ⊂ Λ×R that composes the

vorticity field ω(x, t) =
∑N

j=1 Ωjδxj(t) satisfying the vorticity equation (2.1), where δp

is the Dirac measure supported at p ∈ Λ. We call Ωj the intensity of j-th vortex. From

Kelvin’s circulation law, the intensity Ωj and the form
∑N

j=1 Ωjδxj
are considered to

be preserved during the time evolution. However, it still seems to exist a problem how

to recognize the vortices as a solution of vorticity equation (2.1) since the singularity of

vorticity field like
∑N

j=1 Ωjδxj is too strong to assume ω(x, t) =
∑N

j=1 Ωjδxj(t) to be a

solution of (2.1) even in a weak sense.

Nevertheless, vortices are considered to obey the following system of ordinary dif-

ferential equations, see [1, 6, 13] for example:

(2.2) Ωj
dxj
dt

= ∇⊥
j H

N,Ω(x1, · · · , xN )

(
:=

(
∂HN,Ω

∂xj,2
,−∂H

N,Ω

∂xj,1

))
.

Here Ω = (Ω1, · · · ,ΩN ) ∈ RN and HN,Ω is the following function on ΛN ⊂ R2N :

HN,Ω(x1, · · · , xN ) :=
1

2

N∑
k=1

Ω2
kK(xk, xk) +

1

2

∑
1≤k,l≤N, k ̸=l

ΩkΩlG(xk, xl),(2.3)

where G(x, y) is the Green function of −∆ with the Dirichlet boundary condition, i.e.,

G(·, y) satisfies
−∆G(·, y) = δy in Λ, G(·, y) = 0 on ∂Λ,

and K(x, y) is it’s regular part defined as

G(x, y) =
1

2π
log |x− y|−1 +K(x, y).

In this article, we do not take care of the validity of the theory of the vortices and we

start with the system (2.2).

The function HN,Ω is usually called the Kirchhoff-Routh path function and the

value of HN,Ω is constant along the solution of the vortex system (2.2) as long as

it exists. Therefore, we are able to assume that the system of vortices (2.2) forms

a Hamiltonian system with the Hamiltonian HN,Ω and consequently we are able to

develop the statistical mechanics for equilibrium vortices.

Here we introduce the (canonical) Gibbs distribution function

µN,Ω(x1, · · · , xN ) :=
e−βNHN,Ω(x1,··· ,xN )∫

ΛN e−βNHN,Ω(x1,··· ,xN )
,

where βN ∈ R is a parameter called the inverse temperature. We are interested in the

negative temperature case βN < 0 according to the Onsager’s observation [15]. We note
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that

ZβN (N) :=

∫
ΛN

e−βNHN,Ω(x1,··· ,xN )

is called the partition function at βN .

In the standard equilibrium statistical mechanics, the Gibbs distribution function

represents the probability density function of finding the N vortices in the position

x1, · · · , xN in the equilibrium state with the inverse of temperature of the system is βN ,

see [5, 11] for example. We note that the meaning(definition) of equilibrium might need

some discussion, but we start here, that is, we assume that the equilibrium is something

determined by µN,Ω and we consider the limit of µN,Ω as N −→ ∞.

From µN,Ω, we are able to get a family of probability measures on Λj for N ≥ j as

follows:

PN,Ω
j (x1, · · · , xj) :=

∫
ΛN−j

µN,Ω(x1, · · · , xj , xj+1, · · · , xN )dxj+1 · · · dxN ,

which is called the j-body distribution function that represents the probability density

function of finding the first j vortices in the position x1, · · · , xj . Since Λ
j ⊂ R2j is

compact for each j ∈ N, we may extract a subsequence of {PN,Ω
j }∞N=j that converges

weakly ∗ in M(Λ
j
) = C (Λ

j
)∗. Using the diagonal argument, we are able to reach the

following fact:

Proposition 2.1. There exists a family {PΩ
j }j∈N and a subsequence {µNk,Ω} ⊂

{µN,Ω} such that

PNk,Ω
j −→ PΩ

j weakly ∗ in M(Λ
j
)

for each j ∈ N.

In this situation, Caglioti et al. proved a structure theorem of PΩ
j based on the

argument of Messer-Spohn [14]. We note that the most important assumption to do

that is

Ω1 = Ω2 = · · · = ΩN ,

that is, every vortex has the same intensity. Then the Hamiltonian is reduces to

HN,Ω(x1, · · · , xN ) = Ω2
1

1

2

N∑
k=1

K(xk, xk) +
1

2

∑
1≤k,l≤N, k ̸=l

G(xk, xl)


and is symmetric with respect to the permutation of x1, · · · , xN . In this case, we omit

Ω in HN,Ω, PN,Ω
j , etc. to simplify the presentation. In this case, we usually choose

Ω1 =
1

N
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in order to normalize the total vorticity of the system to 1.

Here we may assume that there exists a measure µ on the infinitely many direct

sum space Λ
∞

of compact space Λ and Pj = µ|Λj . We say that a measure ξ on Λ∞

is symmetric if ξ|Λj is symmetric with respect to the permutation of x1, · · · , xj for

each j ∈ N. In this sense, µ is symmetric and we are able to use the Hewitt-Savage

representation theorem for symmetric measures on Λ
∞
, see [7] for the precise definition

of symmetric measures and the details of the theory. The conclusion arranged for our

purpose is as follows:

Proposition 2.2 (cf. [14, Lemma 3]). Let Λ ⊂ Rd be a bounded domain,

PN (x1, · · · , xN ) ∈ L1
(
ΛN
)
⊂ M(Λ

N
) be symmetric with respect to the permutation

of x1, · · · , xN . Suppose further that there exists Pj ∈ M(Λ
j
) such that

PNk
j :=

∫
ΛNk−j

PNkdxj+1 · · · dxNk
−→ Pj(2.4)

weakly ∗ in M(Λ
j
) for each j ∈ N. Then there exists a probability measure ν on M(Λ)

independent of j ∈ N such that

Pj =

∫
M(Λ)

ν(dρ)ρ(dx1)⊗ · · · ⊗ ρ(dxj)

(
=:

∫
M(Λ)

ν(dρ)ρ⊗j

)

for every j ∈ N.

Then the problem reduces to know the structure of ν. We note that even for j = 1,

the conclusion says that P1 =
∫
M(Λ)

ν(dρ)ρ(dx1). We also note that if

(2.5) ν is supported on L1(Λ) ⊂ M(Λ),

then Pj ∈ L1
(
Λj
)
and

PN
j −→ Pj weakly in L1

(
Λj
)
.

The most part of the efforts of Messer-Spohn, Caglioti et al., and Kiessling are devoted

to establish (2.5) or, in other words, the absolutely continuity of Pj with respect to the

Lebesgue measure. Actually they even show that Pj ∈ L∞ (Λj
)
and

(2.6) PN
j −→ Pj weakly in Lp

(
Λj
)

for every p ∈ (1,∞), see Proposition 3.3 and Proposition 4.3.

We end this section with some comments on our assumption of symmetry. One may

feel that it seems too restrictive to assume that all the intensities are same. Indeed, they

do not necessarily identical in a classical fluid. However, the intensities of vortices are

quantized in a quantum fluid and it is natural to assume that they are identical, which
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is mentioned by Onsager [15]. We also note that the vortex system naturally appears

in the theory of plasma confinement. In this case, the intensities are determined by the

charges and masses of the particles in plasma. Therefore the same intensities occurs

when a plasma consists of same particles. The non-neutral plasma represented by the

pure electron plasma is an example of the case, see [4] for example.

§ 3. Messer-Spohn theory, revisited

Here we review the mean field theory of Messer-Spohn, which is the basic tool for

Caglioti et al. and Kiessling. In this section, Λ is a bounded domain of Rd (d ∈ N).

Messer-Spohn considered the canonical distribution of N classical point particles

in Λ. The particles are assumed to follow the Hamiltonian

HN (x1, · · · , xN ) =
1

2N2

∑
1≤k,l≤N, k≠l

V (xk, xl),

where V is a function on Λ× Λ satisfying the following properties:

Condition (V1) (symmetric) V (x, y) = V (y, x),

Condition (V2) (Lipschitz continuous) there exists L > 0 such that

|V (x, y)− V (x′, y′)| ≤ L(|x− x′|+ |y − y′|) for all x, x′, y, y′ ∈ Λ.

Since Λ is bounded, V is bounded on Λ× Λ from the above property 2.

Here we note again that HN is symmetric with respect to the permutation of

x1, · · · , xN , which is the essential assumption in the Messer-Spohn theory. They con-

sider the limit of the Gibbs distribution function for this HN as N −→ ∞ tak-

ing the inverse temperature bN = N .1 We may assume µN
j weakly ∗ converges to

Pj =
∫
M(Λ)

ν(dρ)ρ⊗j ∈ M(Λ
j
) from Proposition 2.2. We study the structure of the

probability measure ν on M(Λ).

In order to do this, we recall the variational principle for the Gibbs distribution

function. Let us define the function space

PL logL(Λ
N ) :=

{
µ ∈ L1

(
ΛN
)
| µ ≥ 0 a.e.,

∫
ΛN

µ = 1,

∫
ΛN

µ logµ <∞
}

2

and the quantities

U :=

∫
ΛN

HNµ, , S := −
∫
ΛN

µ logµ,

1In the Messer-Spohn paper [14], HN (x1, · · · , xN ) = 1
2N

∑
1≤j,k≤N, j ̸=k V (xj , xk) and βN = 1. We

slightly change the setting to suit the case of vortices.
2In this paper, we set 0 log 0 = 0 and assume that the function t log t is defined for t ≥ 0.
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and

FN
βN (µ) := U − TS =

∫
ΛN

HNµ+
1

βN

∫
ΛN

µ logµ

which are called the inertial energy, the entropy, and the Helmholtz free energy of the

state µ. We recall that βN is the inverse of the temperature T . Since V is bounded,

the functionals U , S, and FN
βN are well defined over PL logL(Λ

N ).

We note that FN (µ) is bounded below and convex, we are able to see the following

fact from the standard argument of calculus of variations:

Proposition 3.1. The variational problem

(3.1) inf
µ∈PL log L(ΛN )

FN
βN (µ),

is attained by the Gibbs distribution function

(3.2) µN (x1, · · · , xN ) :=
e−βNHN (x1,··· ,xN )∫

ΛN e−βNHN (x1,··· ,xN )
.

Here we assume (2.4) and the conclusion of Hewitt-Savage representation theorem

(Proposition 2.2) for a while.

From the symmetry of HN and µN , it holds that

U(µN ) =

∫
ΛN

HNµN =
N − 1

2N

∫
Λ×Λ

V (x1, x2)P
N
2 (x1, x2)dx1dx2

and consequently

lim
N−→∞

U(µN ) =
1

2

∫
Λ×Λ

V (x1, x2)P2(dx1 ⊗ dx2)

=

∫
M(Λ)

ν(dρ) <
1

2
V (x1, x2), ρ(dx1)⊗ ρ(dx2) >

=: u(ν) (the mean inertial energy)

since V is bounded and Lipschitz continuous in Λ× Λ.

On the other hand, the entropy functional satisfies the following sub-additivity

property34:

S(µ) ≤ S(µj) + S(µ,N−j),

where

µj(x1, · · · , xj) =
∫
ΛN−j

µ(x1, · · · , xN )dxj+1 · · · dxN ,

µ,N−j(xj+1, · · · , xN ) =

∫
Λj

µ(x1, · · · , xN )dx1 · · · dxj

3Use log t ≤ t− 1.
4We note that S(µ,N−j) = S(µN−j) holds from the symmetry of µ with respect to the permutation
of x1, · · · , xN and the notation µ,N−j might not be a standard one. The author, however, think
that it might be helpful for readers to distinguish µN−j and µ,N−j .
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for µ ∈ PL logL(Λ
N ), that is,

−
∫
ΛN

µ logµ ≤ −
∫
Λj

µj logµj −
∫
ΛN−j

µ,N−j logµ,N−j .

Especially for the Gibbs distribution function µN , we have

S(µN ) ≤ S(µN
1 ) + S(µN

,N−1) ≤ · · · ≤ S(µN
1 ) + · · ·+ S(µN

1 ) = NS(PN
1 )

from the symmetry of µN , where PN
1 (x1) ≡ µN

1 (x1) is the 1-body distribution function

for µN .

Here we define

s(ν) := lim sup
N−→∞

1

N
S(µN ) (the mean entropy)

and

f1(ν) := u(ν)− s(ν) = lim inf
N−→∞

FN
βN (µN ) (the mean free energy).5

We note that we assumed βN = N . Obviously we have the following estimate:

s(ν) ≤ lim sup
N−→∞

S(PN
1 )(≤ e|Λ|).

Here we further assume that (2.6) holds for some p > 1 and ν = δP1
. Then, since

S(ρ) is concave and weakly upper semi-continuous in Lp (Λ), we get

lim sup
N−→∞

S(PN
1 ) ≤ S(P1)

and

(3.3) f1(ν) ≥
1

2

∫
Λ×Λ

V (x1, x2)P1(x1)P1(x2)dx1dx2 +

∫
Λ

P1 logP1 =: F1(P1)

On the other hand, for every ρ̃ ∈ PL logL(Λ), the product ρ̃(x1) · · · ρ̃(xN ) belongs to

PL logL(Λ
N ) and we get, since βN = N ,

FN
βN (ρ̃(x1) · · · ρ̃(xN )) =

N − 1

2N

∫
Λ×Λ

V (x1, x2)ρ̃(x1)ρ̃(x2)dx1dx2 − S(ρ̃) ≥ FN
βN (µN )

from Proposition 3.1. Consequently we get

(3.4) F1(ρ̃) ≥ F1(P1) for every ρ̃ ∈ PL logL(Λ
N )

at the limit N −→ ∞. This means that P1 attains the variational problem

(3.5) inf
ρ∈PL log L(ΛN )

F1(ρ).

5The suffix 1 of f1 means that the corresponding inverse temperature is 1.
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If we assume only (2.6) holds for some p > 1, we get

f1(ν) ≥
∫
M(Λ)

F1(ρ)ν(dρ)

instead of (3.3) and

F1(ρ̃) =

∫
M(Λ)

F1(ρ̃)ν(dρ) ≥
∫
M(Λ)

F1(ρ)ν(dρ) for every ρ̃ ∈ PL logL(Λ
N ).

instead of (3.4). Consequently ν is supported on the solutions of (3.5).

Now we state the main conclusion of Messer-Spohn.

Theorem 3.2 ([14, Theorem 2]). The measure ν that appears in the limit of PN
j

as N −→ ∞ with βN = N is supported on the minimizer of (3.5).

As the Euler-Lagrange equation of the variational problem (3.5), we get the mean

field equation:

ρ(x) =
e−

∫
Λ
V (x,y)ρ(y)dy∫

Λ
e−

∫
Λ
V (x,y)ρ(y)dydx

.

We note that when the minimizer of (3.5) is unique, then ν is supported only on

the minimizer, but the weak limit P1 might be a mixture of minimizers, in general. The

uniqueness of the minimizer is also discussed in [14], see also [2].

The final task to get Theorem 3.2 is to show (2.5) for some p > 1. In order to do

so, the following fact is sufficient:

Proposition 3.3 ([14, Lemma 1]). Suppose βN = N . Then for each N ≥ 2 and

j ∈ {1, · · · , N − 1}, it holds that

0 ≤ PN
j (x1, · · · , xj) ≤ |Λ|−je2jMe−

j2

N Hj(x1,··· ,xj)

for every (x1, · · · , xj) ∈ ΛN , where M = supΛ×Λ |V (x, y)|.

Obviously this gives that {PN
j } is bounded in L∞ (Λ), from which (2.6) for any

p ∈ (1,∞) follows.

Proof. We divide the Hamiltonian HN into three parts:

HN =
1

2N2

∑
1≤k,l≤N, k≠l

V (xk, xl)

=
j2

N2
Hj(x1, · · · , xj) +

1

N2
W j,N−j(x1, · · · , xN ) +

(N − j)2

N2
HN−j(xj+1, · · · , xN ),
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where

W j,N−j(x1, · · · , xN ) =

j∑
k=1

N∑
l=j+1

V (xk, xl).

Then we get∫
ΛN−j

e−βNHN

dxj+1 · · · dxN =

∫
ΛN−j

e−
1

2N

∑
1≤k,l≤N, k ̸=l V (xk,xl)dxj+1 · · · dxN

≤ e−
j2

N Hj

e
j(N−j)

N M

∫
ΛN−j

e−
(N−j)2

N HN−j

dxj+1 · · · dxN

≤ e−
j2

N Hj

ejMZ (N−j)2

N

(N − j).

On the other hand, from the Jensen inequality, we get∫
ΛN e

−βNHN

dx1 · · · dxN
|Λ|jZ (N−j)2

N

(N − j)

≥ exp

{
−|Λ|−jZ (N−j)2

N

(N − j)−1

∫
ΛN

(
j2

N
Hj +

1

N
W j,N−j)e−

(N−j)2

N HN−j

}
≥ exp(−jM).

§ 4. On the case of vortices

Even if we assume that the all the intensities are equivalent, the Messer-Spohn

theory is not directly applicable to the Hamiltonian of vortices (2.3). Indeed, the Green

function G(x, y) is symmetric but has logarithmic singularity at x = y and there exist

a potential term
∑
K(xk, xk), which is also singular (divergent to −∞) as xk −→ ∂Λ.

We also note that we are interested in the negative temperature case βN < 0.

To simplify the presentation, we only review more complicated case βN < 0.

We have to start with the variational problem (3.1). Indeed, since HN has singu-

larity, it is not clear whether U and FβN is well defined on PL logL(Λ
N ).

We recall the elementary Young inequality

xy ≤ ex + y log y − y for x ∈ R and y ≥ 0.

(We set 0 log 0 = 0 in this paper.) Using this inequality, we get∫
ΛN

HNµ ≤
∫
ΛN

e−βNHN

− 1

βN

∫
ΛN

µ logµ+
log(−βN )

βN
+

1

βN
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for βN < 0, that is, the inertial energy U and the free energy FN
βN are well-defined if

the partition function ZβN (N) =
∫
ΛN e

−βNHN

is finite. Therefore we have to start with

the estimate of the partition function ZβN (N).

Proposition 4.1 ([2, Lemma 2.1],[10, Lemma 1]). Suppose that βN = βN and

β ∈ (−8π, 0). Then there exists a constant C = C(β,Λ) independent of N such that

ZβN (N) ≤ CN .

Proof. We know that K(x, y) is bounded from the above on Λ× Λ. It holds that

−βN · 1

N2

N∑
k=1

K(xk, xk) ≤ −β sup
(x,y)∈Λ×Λ

K(x, x) =: C0.

On the other hand, using the Hölder inequality, we get∫
ΛN

e−βNHN

≤ eC0

∫
ΛN

N∏
k=1

∏
l ̸=k

e−
β

2N G(xk,xl)dx1 · · · dxN

≤ eC0

N∏
k=1

∫
ΛN

∏
l ̸=k

e−
β
2 G(xk,xl)dx1 · · · dxN

 1
N

= eC0

∫
Λ

(∫
Λ

e−
β
2 G(x1,x2)dx2

)N−1

dx1 ≤ eC0N

∫
Λ

(∫
Λ

|x1 − x2|
β
4π dx2

)N−1

dx1.

Therefore the conclusion follows if β ∈ (−8π, 0).

Thanks to Proposition 4.1, we see that

(4.1) sup
µ∈PL log L

FN
βN (µ) <∞ if βN = βN for β ∈ (−8π, 0).6

Similar to Proposition 3.1, we get the following fact:

Proposition 4.2. The variational problem (4.1) for β ∈ (−8π, 0) is attained by

the Gibbs distribution function (3.2).

The another point that we have to take care is the definition of the mean inertial

energy. For the Hamiltonian of vortices, it holds that

U(µN ) =

∫
ΛN

HNµN

=
N − 1

2N

∫
Λ×Λ

G(x1, x2)P
N
2 (x1, x2)dx1dx2 +

1

2N

∫
Λ

K(x1, x1)P
N
1 (x1)dx1.

6It seems more natural to use the Massieu function Ψβ = S−βU = −βFβ . Indeed both variational
problems (3.1) and (4.1) become supΨβ . See [11], for example, for the Massieu function and other
thermodynamic functions.
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Since G(x, y) and K(x, x) have singularities, we are not able to handle this with the

weak convergence of measures. Here we note that the coefficient of the latter term tends

to 0 as N −→ ∞, which implies that K(x1, x1) might be negligible at the limit.

First we prepare the similar results of Proposition 3.3.

Proposition 4.3 ([2, Theorem 3.1],[10, Lemma 4], see also [12, Theorem 3.2]).

For each N ≥ 2, j ∈ {1, · · · , N − 1}, βN = βN for β ∈ (−8π, 0), there exists a

constant C = C(β,Λ, j) independent of N such that

0 ≤ PN
j (x1, · · · , xj) ≤ Ce−

j2

N Hj(x1,··· ,xj)

for every (x1, · · · , xj) ∈ ΛN .

Thanks to this estimate, we get Pj ∈ L∞ (Λj
)
and (2.6) for each p ∈ (1,∞)

because j2

NH
j −→ 0 almost everywhere. On the other hand, the singularities of G(x, y)

and K(x, x) are logarithmic and they belong to (Lp
(
Λ2
)∗

and Lp (Λ)
∗
respectively.

Consequently we are able to follow the argument of Messer-Spohn and finally we reach

the following conclusion:

Theorem 4.4 ([2, Theorem 2.1]). The measure ν that appears in the weak limit

of PN
j as N −→ ∞ with βN = Nβ for β ∈ (−8π, 0) is supported on the maximizer of

(4.2) sup
ρ∈P logP (Λ)

Fβ(ρ),

where

Fβ(ρ) =
1

2

∫
Λ×Λ

G(x1, x2)ρ(x1)ρ(x2)dx1dx2 +
1

β

∫
Λ

ρ log ρ.

We note that the potential K(x, x) does not affect on the limit N −→ ∞. We

also note that we get the mean field equation as the Euler-Lagrange equation of the

variational problem (4.2):

ρ(x) =
e−β

∫
Λ
G(x,y)ρ(y)dy∫

Λ
e−β

∫
Λ
G(x,y)ρ(y)dydx

.

Proof of Proposition 4.3. Similar to the proof of Proposition 3.3, we divide the

summation in the Hamiltonian HN into three parts.

HN =
j2

N2
Hj +

1

N2
W j,N−j +

(N − j)2

N2
HN−j .
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Then it holds that∫
ΛN−j

e−βNHN

dxj+1 · · · dxN(4.3)

≤ e−
j2β
N Hj

∫
ΛN−j

e−
β
N W j,N−j

e−
(N−j)2β

N HN−j

dxj+1 · · · dxN

≤ e−
j2β
N Hj

(∫
ΛN−j

e−
pβ
N W j,N−j

) 1
p
(∫

ΛN−j

e−
p′(N−j)2β

N HN−j

) 1
p′

(4.4)

for p, p′ ∈ (1,∞) satisfying 1
p + 1

p′ = 1, which we choose later.

Similar to Proposition 4.1, we get

∫
ΛN−j

e−
pβ
N W j,N−j

≤ e
pj(N−j)

N C0

∫
ΛN−j

j∏
k=1

N∏
l=j+1

|xk − xl|
pβ

2πN

≤ e
pj(N−j)

N C0

j∏
k=1

∫
ΛN−j

N∏
l=j+1

|xk − xl|
pβj
2πN

 1
j

= e
pj(N−j)

N C0

j∏
k=1

(∫
Λ

|xk − y|
pβj
2πN dy

)N−j
j

since β < 0. Here we choose

p :=
N

2j

for N > 2j. Then we have

pβj

2πN
=

β

4π
> −2

for β ∈ (−8π, 0) and consequently we get

(4.5)

∫
ΛN−j

e−
pβ
N W j,N−j

≤ CN−j

for some positive constant C = C(β,Λ).

On the other hand, when p = N
2j , it holds that p

′ = N
N−2j . Here we set

p′(N − j)2β

N
=

(N − j)

N − 2j
β(N − j) =: β′(N − j)

Then β′ ↑ β as N −→ ∞ and β′ ∈ (−8π, 0) for sufficiently large N . Therefore we get∫
ΛN−j

e−
p′(N−j)2β

N HN−j

= Zβ′(N−j)(N − j) <∞
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from Proposition 4.1. More precisely, since G(x, y) ≥ 0 and K(x, x) is not bounded

below, it holds that

Zβ′(N−j)(N − j)

∫
Λj

e−
β′

2(N−j)

∑j
k=1 K(xk,xk)dx1 · · · dxj

=

∫
ΛN

e−β′(N−j)HN−j(xj+1,··· ,xN )− β′
2(N−j)

∑j
k=1 K(xk,xk)dx1 · · · dxN

≤
∫
ΛN

e−
Nβ′
N−jNHN

dx1 · · · dxN = Zβ̃N (N),

where

β̃ :=
Nβ′

N − j
=

Nβ

N − 2j
= p′β,

that is,

(4.6) Zβ′(N−j)(N − j) ≤ CjZβ̃N (N)

for some C independent of N satisfying

(4.7)

∫
Λ

e−
β′

2(N−j)
K(x1,x1)dx1 =

∫
Λ

e−
β̃

2N K(x1,x1)dx1 ≥ C−1.

We note that this is possible because − β̃
2NK(x1, x1) −→ 0 locally uniformly in Λ as

N −→ ∞.

Combing (4.4), (4.5), and (4.6), we get

PN
j (x1, · · · , xj) ≤ ZβN (N)−1e−

j2β
N Hj

C
N−j

p C
j
p′ Zβ̃N (N)

1
p′

≤ C3je−
j2β
N Hj

ZβN (N)−1Zp′βN (N)
1
p′ .

We note that

Zp′βN (N)
1
p′ = ∥e−βNHN

∥p′

and p′ = N
N−2j ↓ 1 as N −→ ∞. Therefore taking q > p′ independent of N , we get

Zp′βN (N)
1
p′ = ∥e−βNHN

∥Lp′ (ΛN ) ≤ ∥e−βNHN

∥1−θ
L1(ΛN )

∥e−βNHN

∥θLq(ΛN )

= ZβN (N)1−θZqβN (N)
θ
q

for θ satisfying 1− θ + θ
q = 1

p′ = 1− 2j
N , that is, θ = q

q−1 · 2j
N . Consequently we have

ZβN (N)−1Zp′βN (N)
1
p′ ≤ ZβN (N)−θZqβN (N)

θ
q = ZβN (N)−θZqβN (N)

2j
N(q−1) .

Since we are able to choose q > p′ > 1 sufficiently close to 1 such that qβ ∈ (−8π, 0),

we are able to use Proposition 4.1 and get

ZqβN (N)
1
N ≤ C
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for some constant C > 0 independent of N . On the other hand, since G(x, y) ≥ 0 and

β < 0, we get

ZβN (N) =

∫
ΛN

e−βNHN

≥
∫
ΛN

e−
β

2N

∑N
k=1 K(xk,xk) =

(∫
Λ

e−
β

2N K(x1,x1)dx1

)N

≥ CN ,

that is,

ZβN (N)−θ ≤ C−Nθ = C
2jq
q−1

for some constant C > 0 independent of N as in (4.7). Then the conclusion follows.

§ 5. On the case of vortices in an external field

In this final section, we confirm that the Messer-Spohn argument is applicable even

if we slightly perturbed the Hamiltonian of vortices as follows:

HN
c := HN +

c

N

N∑
k=1

φ(xk)

=
1

2N2


N∑

k=1

K(xk, xk) +
∑

1≤k,l≤N, k ̸=l

G(xk, xl)

+
c

N

N∑
k=1

φ(xk),

where φ ∈ C (Λ) represents the profile of the background field that every particle (vor-

tex) interacts with and c ∈ R is the perturbation parameter. We are interested in the

asymptotic behavior of the corresponding Gibbs distribution µN
c as c −→ 0 for large

N , which is the target of the linear response theory. The first step to establish the

theory is to know the mean field equation, which we want to do in this paper. Since the

perturbed Hamiltonian is also symmetric under the permutation of (x1, · · · , xN ), the

Messer-Spohn argument is applicable.

In the following, the perturbation of several concepts such as the Gibbs distribution

function, the partition functions, and the j-body distribution function will be expressed

with the suffix c such as µN
c , Zc,β(N), PN

c,j , etc.

We start from the following estimates:

Proposition 5.1 (cf. Proposition 4.1). For each φ ∈ C (Λ), c̄ > 0, βN = βN ,

and β ∈ (−8π, 0), there exists a constant C = C(β,Λ, ∥φ∥C (Λ), c̄) independent of N and

c ∈ [−c̄, c̄] such that

Zc,βN (N) ≤ CN .
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Proof. From the definition of HN
c , it holds that

Zc,βN (N) =

∫
ΛN

e−βNHN
c =

∫
ΛN

e−βNHN−βc
∑N

j=1 φ(xj)

≤ e−βc̄N∥φ∥C (Λ)ZβN (N).

Then the conclusion follows from Proposition 4.1.

Thanks to Proposition 5.1, it holds that

(5.1) sup
µ∈PL log L

FN
c,βN (µ) <∞ if βN = βN with β ∈ (−8π, 0)

and the following fact:

Proposition 5.2 (cf. Proposition 3.1). The variational problem (5.1) for βN =

βN with β ∈ (−8π, 0) is attained by the perturbed Gibbs distribution function

µN
c (x1, · · · , xN ) :=

e−βNHN
c (x1,··· ,xN )∫

ΛN e−βNHN
c (x1,··· ,xN )

.

For the perturbed Hamiltonian, it holds that

Uc(µ
N ) :=

∫
ΛN

HN
c µ

N

=
N − 1

2N

∫
Λ×Λ

G(x1, x2)P
N
2 (x1, x2)dx1dx2 +

1

2N

∫
Λ

K(x1, x1)P
N
1 (x1)dx1

+ c

∫
Λ

φ(x1)P
N
1 (x1)dx1,

from which we are able to see that φ would survive in the mean field limit N −→ ∞.

Naturally we define

Fc,β(ρ) =
1

2

∫
Λ×Λ

G(x1, x2)ρ(x1)ρ(x2)dx1dx2 + c

∫
Λ

φ(x1)ρ(x1)dx1 +
1

β

∫
Λ

ρ log ρ

and get the following conclusion:

Theorem 5.3 (cf. Theorem 3.2). For each φ ∈ C (Λ) and c ∈ R, the measure

ν that appears in the weak limit of PN
c,j as N −→ ∞ with βN = Nβ for β ∈ (−8π, 0) is

supported on the maximizer of

(5.2) sup
ρ∈P logP (Λ)

Fc,β(ρ).

From this fact, we reach our main purpose, the mean field equation, as the Euler-

Lagrange equation of the variational problem (5.2):

(5.3) ρ(x) =
e−β{

∫
Λ
G(x,y)ρ(y)dy+cφ(x)}∫

Λ
e−β{

∫
Λ
G(x,y)ρ(y)dy+cφ(x)}dx

.
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All what we have to do to prove Theorem 5.3 is to show the following similar estimate

to Proposition 4.3. Then we get (2.6) for PN
c,j and the Messer-Spohn argument works

as we observed in the previous sections.

Proposition 5.4 (cf. Proposition 4.3). For each N ≥ 2, j ∈ {1, · · · , N − 1},
βN = βN with β ∈ (−8π, 0), φ ∈ C (Λ), and c̄ > 0, there exists a constant C =

C(β,Λ, j, ∥φ∥C (Λ), c̄) independent of N and c ∈ [−c̄, c̄] such that

0 ≤ PN
c,j(x1, · · · , xj) ≤ Ce−

j2

N Hj
c (x1,··· ,xj)

for every (x1, · · · , xj) ∈ ΛN .

Proof. The proof is almost the same as Proposition 4.3 but we have to take care

for the coefficient of cφ(xj) in H
N
c is not 1

N2 but 1
N . Actually it holds that

HN
c =

j2

N2
Hj +

1

N2
W j,N−j +

(N − j)2

N2
HN−j +

c

N

N∑
k=1

φ(xk)

=
j2

N2
Hj

c +
1

N2
W j,N−j +

(N − j)2

N2
HN−j

c

+

(
c

N
− jc

N2

) j∑
k=1

φ(xk) +

(
c

N
− (N − j)c

N2

) N∑
k=j+1

φ(xk).

Let

−β∥φ∥C (Λ) =: C1.

Then we get∫
ΛN−j

e−βNHN
c dxj+1 · · · dxN(5.4)

≤ e2jc̄C1e−
j2β
N Hj

c

∫
ΛN−j

e−
β
N W j,N−j

e−
(N−j)2β

N HN−j
c dxj+1 · · · dxN

≤ e2jc̄C1e−
j2β
N Hj

c

(∫
ΛN−j

e−
pβ
N W j,N−j

) 1
p
(∫

ΛN−j

e−
p′(N−j)2β

N HN−j
c

) 1
p′

(5.5)

for p = N
2j and p′ = N

N−2j . We note that we are able to use (4.5).

Here we also set p′(N−j)2β
N =: β′(N − j) and get∫

ΛN−j

e−
p′(N−j)2β

N HN−j
c = Zc,β′(N−j)(N − j) <∞

from Proposition 5.1 since β′ ↑ β ∈ (−8π, 0) as N −→ ∞.
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Similar to the proof of Proposition 4.3, it holds that

Zc,β′(N−j)(N − j)

∫
Λj

e−
β′

2(N−j)

∑j
k=1 K(xk,xk)−β′c

∑j
k=1 φ(xk)dx1 · · · dxj

=

∫
ΛN

e−β′(N−j)HN−j
c (xj+1,··· ,xN )− β′

2(N−j)

∑j
k=1 K(xk,xk)−β′c

∑j
k=1 φ(xk)dx1 · · · dxN

≤
∫
ΛN

e−
Nβ′
N−jNHN−β′c

∑N
k=1 φ(xk)dx1 · · · dxN

=

∫
ΛN

e
− Nβ′

N−jNHN
c +

(
Nβ′
N−j−β′

)
c
∑N

k=1 φ(xk)dx1 · · · dxN

= e−
jN

N−j β
′c̄∥φ∥C (Λ)Zc,β̃N (N),

where β̃ = p′β as before and we are able to conclude (4.6) with a parameter c.

Consequently we get

PN
c,j(x1, · · · , xj) ≤ C3je−

j2β
N Hj

cZc,βN (N)−1Zc,p′βN (N)
1
p′

≤ Ce−
j2β
N Hj

cZc,βN (N)−θ

for some fixed q > p′ and θ = q
q−1 · 2j

N .

Finally we note that

Zc,βN (N) =

∫
ΛN

e−βNHN
c ≥

∫
ΛN

e−
β

2N

∑N
k=1 K(xk,xk)−βc

∑N
k=1 φ(xk)

=

(∫
Λ

e−
β

2N K(x1,x1)−βcφ(x1)dx1

)N

≥ CN

for some constant C > 0 independent of N . This guarantees the conclusion.
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