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On local symbols and the reciprocity law for foliated

dynamical systems on 3-manifolds: research

announcement

By

Masanori Morishita∗

Abstract

This is a research announcement of the joint work with Jyunheong Kim, Takeo Noda

and Yuji Terashima [KMNT]. It is motivated by the question, posed by Deninger, on finding

out analogies for 3-manifolds of the Hilbert reciprocity law for number fields along the line

of arithmetic topology. We introduce local symbols and show the reciprocity law for a 3-

dimensional foliated dynamical system.

1. 3-dimensional foliated dynamical systems

We introduce the notion of a 3-dimensional foliated dynamical system and recall

some related notions and facts, following [D1] ∼ [D7] and [Ko1], [Ko2].

Definition 1.1. We define a 3-dimensional foliated dynamical system, called an FDS

for short, by a triple S = (M,F , ϕ), where

(1) M is a connected, closed, smooth 3-manifold,

(2) F is a complex foliation by Riemann surfaces on M ,

(3) ϕ is a smooth dynamical system on M ,

and these data must satisfy the following conditions:

(i) there are finite number of compact leaves L1, . . . , Lr such that ϕt(Li) = Li for any

i and t, and any orbit of the flow ϕ is transverse to leaves in M \ ∪r
i=1Li.
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(ii) each diffeomorphism ϕt of M maps any leaf to a leaf.

We denote by PS the set of closed orbits and by P∞
S the set of non-transverse compact

leaves L1, . . . , Lr. We also write γ∞
i for Li. We set PS := PS ⊔ P∞

S .

Remark 1.2. A foliated dynamical system S = (M,F , ϕ) may be regarded as a geo-

metric analogue of Spec(Ok) = Spec(Ok)∪ {infinite primes} for the ring Ok of integers

of a number field k. Here the set PS of closed orbits corresponds to the set of finite

primes and the set of compact non-transversal leaves γ∞
1 , . . . , γ∞

r corresponds to the set

of infinite primes. So the analogy is closer if PS is a countably infinite set. We give

such examples in Section 2.

Let S = (M,F , ϕ) be an FDS and let M0 := M \ ∪r
i=1γ

∞
i . Let TF denote the subbun-

dle of the tangent bundle TM0 whose total space is the union of the tangent spaces of

leaves. Let ϕ̇t = d
dtϕ

t be the vector field on M0 which generates the flow ϕ.

Definition-Proposition 1.3. Notations being as above, there exists uniquely the

smooth 1-form ωS on M0 satisfying

ωS|TF = 0, ωS(ϕ̇t) = 1 and dωS = 0.

We call ωS the canonical 1-form of S.

Definition 1.4. Let S = (M,F , ϕ) be an FDS. The de Rham cohomology class of the

canonical 1-form [ωS] ∈ H1(M0;R) = Hom(H1(M0;Z),R) defines the period homomor-

phism

[ωS] : H1(M0;Z) −→ R; [ℓ] 7→
∫
ℓ

ωS.

We define the period group of S, denoted by ΛS, to be the image of [ωS].

Definition 1.5. Let S = (M,F , ϕ) be a FDS and let M0 := M \ P∞
S . An FDS-

meromorphic function on M is defined to be a smooth map f : M0 → P1(C) = C∪{∞}
satisfying the following conditions:

(1) f restricted to any leaf is a meromorphic function,

(2) the zeros and poles of f lie along finitely many closed orbits.

2. Examples of FDS’s

Example 2.1 (Surface bundle over S1 and Anosov flow). Let Σ be a closed Riemann

surface of genus ≥ 1 and let φ be an automorphism of Σ of pseudo-Anosov type. Let
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M(Σ;φ) be the mapping torus define by

M(Σ;φ) = (Σ× R)/(z, θ + 1) ∼ (φ(z), θ)

and let

ϖ : M → S1 = {w ∈ C ; |w| = 1}; ϖ([z, θ]) := exp(2πiθ)

be the fibration. Let F := {ϖ−1(w)}w∈S1 and let ϕ be the suspension flow defined by

ϕt([z, θ]) := [z, θ + t].

Then S := (M(Σ;φ),F , ϕ) is an FDS. The pseudo-Anosov property implies that PS is

a countable infinite set.

Remark 2.1.1. An FDS of surface bundle over S1 may be regarded as an analogue

of a projective smooth curve C over a finite field Fq, where the 2-dimensional foliation

corresponds to the geometric fiber C ⊗ Fq and the monodromy φ corresponds to the

Frobenius automorphism in Gal(Fq/Fq).

Example 2.2 (Reeb foliation on S3 and the horse-shoe flow). Let S3 = V1 ∪ V2 be the

Heegaard splitting of genus one, where Vi is the solid torus D2×S1. Consider the Reeb

foliation on each Vi so that we obtain the foliation F on S3 ([CC; 1.1], [Ta; §16]). We

define the dynamical system ϕ as follows:

(i) First, we consider a flow on S3 whose orbits are transverse to any leaf of the Reeb

foliation. Then there is the only one closed orbit γi = {0}×S1 in each Reeb component

Vi. We note that around γi, the flow is the suspension flow of the contraction map

z 7→ az (0 < a < 1).

(ii) Next, we replace the contraction map in (i) by Smale’s horse-shoe map ([Sm]) φ

and replace the flow around γi by the suspension of φ. Let ϕ be the resulting flow on

all of S3.

Thus we have an FDS S = (S3,F , ϕ) with the only one non-transverse leaf ∂Vi. The

property of the horse-shoe map implies that PS is a countable infinite set ([KH; Cor.

2.5.1]).

Example 2.3 (Open book decomposition). Let M be a closed 3-manifold. It is known

that M contains a fibered link L, namely, there is a fibration ϖ : M \ V (L)o → S1,

where V (L)o is an open tubular neighborhood of L. We have the foliation on M \V (L)o

given by fibers of ϖ (leaves are transverse to the boundary ∂V (L)). The structure this

induces on M is called an open book decomposition ([Ca]). We fill in V (L) with the

Reeb component and tubularize (spin) the foliation on M \ V (L)o around ∂V (L) to

obtain the foliation F on all of M . We define the flow on M \ V (L)o by the suspension
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of the monodromy φ of the fibration ϖ. Here we suppose that φ is pseudo-Anosov

(e.g., L is a hyperbolic knot). The flow on V (L)o is defined to be the one transverse to

any leaf of the Reeb foliation. Thus we have an FDS S = (M,F , ϕ) with the only one

non-transverse leaf ∂V (L) and countably infinite PS.

3. Smooth Deligne cohomology

We recall smooth Deligne cohomology groups. A basic reference is [Br].

Let S = (M,F , ϕ) be an FDS. Let X be a submanifold of M obtained by removing

P∞
S and finitely many closed orbits. Let Ai denote the sheaf of C-valued smooth i-forms

on X. Let Λ be a subgroup of the additive group R. For n ∈ Z and n ≥ 0, we set

Λ(n) := (2π
√
−1)nΛ.

Definition 3.1. We define the smooth Deligne complex Λ(n)D on X by

Λ(n)D : Λ(n) → A0 d→ A1 d→ · · · d→ An−1,

where Λ(n) is put in degree 0 and d denotes the differential. The smooth Deligne

cohomology groups are defined to be the hypercohomology groups of Λ(n)D , denoted by

Hq
D(M ; Λ(n)) for q ≥ 0:

Hq
D(X; Λ(n)) := Hq(X; Λ(n)D).

In particular, when Λ is the period group ΛS, we call Hq
D(X; ΛS(n)) the FDS-Deligne

cohomology groups of S.

We compute the smooth Deligne cohomology groups as Čech hypercohomology groups

of an open covering U = {Ua}a∈I of X with coefficients in Λ(n)D

Hq
D(M ; Λ(n)) = Hq(U ; Λ(n)D),

where the open covering U is taken so that all non-empty intersections Ua0···aj
:= Ua0

∩
· · · ∩ Uaj

are contractible. So a Čech cocycle representing an element of Hn
D(M ; Λ(n))

is of the form

(λa0...an , θ
0
a0...an−1

, . . . , θn−1
a0

) ∈ Čn(U ,Λ(n))⊕ Čn−1(U ,A0)⊕ · · · ⊕ Č0(U ,An−1)

which satisfies the cocycle condition

δ(θ0a0...an−1
) + (−1)nλa0...an = 0, δ(θia0...an−1−i

) + (−1)n−idθi−1
a0...an−i

= 0 (i ≥ 1),

where δ is the Čech differential with respect to the open covering U .
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Example 3.2. Let f be an FDS-meromorphic function on M whose zeros and poles

are lying along closed orbits γ1, . . . , γN . Let X := M0 \ ∪N
i=1γi. Let loga f denote a

branch of log f on Ua. Then the Čech cocycle

(na0a1
, loga0

f), na0a1
= (δ log f)a0a1

= loga1
f − loga0

f ∈ Z(1)

determines the cohomology class of H1
D(X;Z(1)), by which we denote c(f).

Example 3.3. Fix a base point p0 ∈ X. For each Ua(a ∈ I), we choose a point pa ∈ Ua

and a path γa from p0 to pa. For p ∈ Ua, we set

fωS,a(p) := 2π
√
−1

∫
γp·γa

ωS,

where γp is a path from pa to p inside Ua. Then the Čech cocycle

(λa0a1 , fωS,a0), λa0a1 = (δfωS
)a0a1 ∈ ΛS(1)

defines the cohomology class of H1
D(X; ΛS(1)), by which we denote c(ωS).

Definition 3.4. Let 0 < n ≤ 3. We define the n-curvature homomorphim

Ω : Hn
D(X; Λ(n)) −→ An(X)

by

Ω(c)|Ua
:= dθn−1

a

for c = [(λa0...an , . . . , θ
n−1
a0

)].

When Λ is a subring of R, the smooth Deligne cohomology groups are equipped with

the product on the smooth Deligne complexes

(3.5) Λ(n)D ⊗ Λ(n′)D −→ Λ(n+ n′)D

defined by

(3.6) x ∪ y =


xy deg(x) = 0,

x ∧ dy deg(x) > 0 and deg(y) = n′,

0 otherwise.

For our purpose, we extend the product (3.5) for the case where Λ is a subring of R and

Λ′ is a Λ-submodule of R as follows. Namely, by the same formula as in (3.6), we have

the product

Λ(n)D ⊗ Λ′(n′)D −→ Λ′(n+ n′)D



112 Masanori Morishita

which induces

(3.7) Hn
D(X; Λ(n))⊗Hn′

D (X; Λ′(n′)) −→ Hn+n′

D (X; Λ′(n+ n′)).

4. Holonomies of Deligne cocycles

We recall holonomy integrals of smooth Deligne cocycles, following [GT1], [GT2]

and [Te].

As in Section 3, let S = (M,F , ϕ) be an FDS and let X be a submanifold of M

obtained by removing PS and some finitely many closed orbits. For 1 ≤ n ≤ 3, let

c ∈ Hn
D(X; Λ(n)) and let Y be an (n − 1)-dimesnional closed submanifold of X. We

shall define a paring
∫
Y
c, which takes values in C mod Λ(n), as follows.

First, we fix an open covering U = {Ua}a∈I such that all non-empty intersections

Ua0···aj
:= Ua0

∩ · · · ∩ Uaj
are contractible and choose a Čech representative cocycle

(λa0...an
, θ0a0...an−1

, . . . , θn−1
a0

) of c. Second, we choose a smooth finite triangulation K =

{σ} of Y and an index map ι : K → I satisfying σ ⊂ Uι(σ). For i = 0, . . . , n − 1, we

define the set FK(i) of flags of simplices

FK(i) := {σ⃗ = (σn−1−i, . . . , σn−1) |σj ∈ K, dimσj = j, σn−1−i ⊂ · · · ⊂ σn−1}.

Then, we define∫
Y

c :=
n−1∑
i=0

∑
σ⃗∈FK(i)

∫
σn−1−i

θn−1−i
ι(σn−1)ι(σn−2)...ι(σn−1−i) mod Λ(n).

The following theorems were proved in [Te].

Theorem 4.1. This definition is independent of all choices.

Theorem 4.2. If there is an n-dimensional submanifold Z of X whose boundary is

∂Z = Y , we have ∫
Y

c =

∫
Z

Ω(c) mod Λ(n).

5. Hilbert type reciprocity law

Let S = (M,F , ϕ) be an FDS. Let f and g be FDS-meromorphic functions on M

whose zeros and poles lie along γ1, . . . , γN ∈ PS. We set X := M0\∪N
i=1γi. For γ ∈ PS,
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let V (γ) denote a tubular neighborhood of γ and we denote by T (γ) the boundary of

V (γ).

As in Examples 3.2, we have the smooth Deligne cohomology classes

c(f) = [(ma0a1 , loga0
f)], c(g) = [(na0a1 , loga0

g)] ∈ H1
D(X;Z(1))

and, as in Example 3.3, we have the FDS-Deligne cohomology class

c(ωS) = [(λa0a1
, fωS,a0

)] ∈ H1
D(X; ΛS(1)).

By the product in (3.7) applied to the case that Λ = Z and Λ′ = ΛS, we have the

FDS-Deligne cohomology class

c(f) ∪ c(g) ∪ c(ωS) ∈ H3
D(X; ΛS(3)).

Definition 5.1. We define the local symbol ⟨f, g⟩γ by

⟨f, g⟩γ :=

∫
T (γ)

c(f) ∪ c(g) ∪ c(ωS) mod ΛS(3).

We note that the integral of the r.h.s. is finite, since T (γ) is compact.

Theorem 5.2. (Hilbert type reciprocity law). We have∑
γ∈PS

⟨f, g⟩γ = 0 mod ΛS(3).

Theorem 5.2 follows from Theorem 4.2 (Z = X \ (∪r
i=1V (γ∞

i )o ∪ ∪N
i=1V (γi)

o), Y =

∪r
i=1T (γ

∞
i ) ∪ ∪N

i=1T (γi)) and that the 3-curvature Ω(c(f) ∪ c(g) ∪ c(ωS)) = 0.

Remark 5.3. (1) Definition 5.1 and Theorem 5.2 may be regarded as natural extensions

to a 3-dimensional foliated dynamical system of the reciprocity law for tame symbols

on a Riemann surface ([Bl], [BM], [Dl]).

(2) Stelzig ([St]) introduced local symbols and showed the reciprocity law for surface

bundles over S1. Our results generalize his results for FDS’s by means of holonomy

integrals of Deligne cohomology.
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