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A period-ring-valued gamma function and a

refinement of the reciprocity law on Stark units

By

Tomokazu Kashio∗

Abstract

This is an announcement of the results of the paper “On a common refinement of Stark

units and Gross-Stark units”. We study a relation between CM-periods, multiple gamma

functions, the rank one abelian Stark conjecture, and their p-adic analogues. The main results

are as follows. First we construct two kinds of period-ring valued functions under a slight

generalization of Hiroyuki Yoshida’s conjecture on “Absolute CM-periods”. Here the period

ring is in the sense of p-adic Hodge theory. Then we conjecture a reciprocity law on their

special values concerning the absolute Frobenius action on Fontaine’s period ring Bcris. We

show that our conjecture implies a part of Stark’s conjecture and a refinement of Gross’ p-adic

analogue simultaneously. We also provide some partial results for our conjecture.

§ 1. Introduction

First we recall some key words in order to explain the results in [10].

CM-periods. Let K be a CM-field, A an abelian variety defined over Q with CM

by K. Namely, we may identify

End(A)⊗Z Q = K.

We take its non-zero differential form ωσ of the second kind where End(A) ⊗Z Q = K

acts as σ(K) for each σ ∈ Hom(K,C). Then the integrated value∫
γ

ωσ ∈ C
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is called a CM-period for an arbitrary closed path γ whenever
∫
γ
ωσ ̸= 0. Roughly

speaking, Shimura’s period symbol [13]

pK(σ, σ′) ∈ C×/Q×
(σ, σ′ ∈ Hom(K,C))

provides “generators” of the group generated by all CM-periods of K mod Q×
. More

precisely, let Φ be the CM-type of A, that is, Φ := {σ ∈ Hom(K,C) | ωσ is holomorphic}.
Then we have

∏
σ′∈Φ

pK(σ, σ′) ≡

π−1
∫
γ
ωσ (σ ∈ Φ)∫

γ
ωσ (σ /∈ Φ)

mod Q×
.(1.1)

Stark units (with respect to real places). Let F be a totally real number field,

K its abelian extension where only one real place of F splits, excepting the case K/F =

Q/Q. We consider the partial zeta function

ζ(s, τ) :=
∑

(
K/F

a )=τ

Na−s (τ ∈ Gal(K/F ))

where a runs over all integral ideals of F whose images under the Artin symbol are τ .

Note that the assumption implies

ords=0ζ(s, τ) = 1.

Then “the rank one abelian Stark conjecture” [15] implies

exp(2ζ ′(0, τ)) ∈ K×,

which satisfies the reciprocity law:

τ ′(exp(2ζ ′(0, τ))) = exp(2ζ ′(0, τ ′τ)) (τ, τ ′ ∈ Gal(K/F )).

Strictly speaking, exp(2ζ ′(0, τ)) is a real number and Stark’s conjecture states that it

is in the image ι(K×) under a real place ι : K ↪→ R. Stark’s conjecture also states

exp(2ζ ′(0, τ)) ∈ O×
K in most cases, so exp(2ζ ′(0, τ)) is called a Stark unit.

The theme of the paper [10] is a “relation” between CM-periods and Stark units, in

terms of classical or p-adic multiple gamma functions. As an example, we shall introduce

an alternative (and partial) proof of Stark’s conjecture in the case F = Q, which was

obtained in a previous paper [7]. Let n ≥ 3, ζn := e
2πi
n . Concerning CM-periods, we

see that

• Q(ζn) is a CM-field.



A period-ring-valued function and the reciprocity law on Stark units 171

• (Each simple factor of) Jacobian variety J(Fn) of Fermat curve Fn : x
n + yn = 1

has CM by Q(ζn).

• ηr,s := xryn−s dxx (0 < r, s < n, r+ s ̸= n) are differential forms of the second kind.

Then Rohrlich’s formula in [4] expresses CM-periods of Q(ζn) explicitly, as∫
γ

ηr,s ≡ B
( r
n
,
s

n

)
:=

Γ( rn )Γ(
s
n )

Γ( r+sn )
mod Q(ζn)

×.

Concerning Stark units, we see that

• Q(ζn + ζ−1
n ) has a real place, so the unique real place of Q splits.

• Let σ±a ∈ Gal(Q(ζn + ζ−1
n )/Q) be defined by σ±a(ζn + ζ−1

n ) := ζan + ζ−an for

0 < a < n, (a, n) = 1. Then we have

ζ(s, σ±a) = ζ(s, n, a) + ζ(s, n, n− a),

where ζ(s, n, a) :=
∑∞
k=0(a+ nk)−s denotes the Hurwitz zeta function.

Therefore, by Lerch’s formula (2.1), we obtain

exp(2ζ ′(0, σ±a)) =

(
Γ( an )Γ(

n−a
n )

2π

)2

.

By Euler’s formulas, we further see that exp(2ζ ′(0, σ±a)) =
1

2− ζan − ζ−an
, which is

essentially a cyclotomic unit. This is the usual proof of Stark’s conjecture in this case.

On the other hand, in [7], we obtained a “relation” between CM-periods of Q(ζn) and

Stark units of Q(ζn + ζ−1
n )/Q via the Gamma function, as follows.

• Rohrlich’s formula and the cup product H1(Fn) × H1(Fn) → H2(Fn) = Q(−1)

induce “monomial relations”

B
( r
n
,
s

n

)
B

(
n− r

n
,
n− s

n

)
≡
∫
γ

ηr,s

∫
γ′
ηn−r,n−s ≡ 2πi mod Q×

since the period of the Lefschetz motive Q(−1) is 2πi. Moreover, noting that

Γ( rn )
n = Γ(r)

∏n−1
k=1 B( rn ,

kr
n ), we obtain

Γ
(a
n

)
Γ

(
n− a

n

)
∈ 2πi ·Q×

.

It follows that exp(2ζ ′(0, σ±a)) ∈ Q×
by Lerch’s formula, without Euler’s formulas.



172 Tomokazu Kashio

• Furthermore, we showed that Coleman’s formula in [2] on the absolute Frobe-

nius action on Fn implies σ̃±b

(
Γ(
a
n )Γ(

n−a
n )

2π

)
≡ Γ(

ab
n )Γ(

n−ab
n )

2π , at least modulo

the group µ∞ of all roots of unity. Here σ̃±b ∈ Gal(Q/Q) is an arbitrary lift of

σ±b ∈ Gal(Q(ζn + ζ−1
n )/Q).

Summarizing the above, we provided an alternative proof of a part of Stark’s conjecture

when F = Q, by using Rohrlich’s formula on CM-periods of Q(ζn) and Coleman’s

formula on the absolute Frobenius action on Fermat curves.

In [10], we formulated some conjectures which are generalizations of Rohrlich’s for-

mula and Coleman’s formula, from F = Q to general totally real fields F . Furthermore,

we clarified the relation to Stark’s conjecture and Gross’ p-adic analogue. In this pa-

per we shall survey these results as follows. In §2, we introduce Conjecture 2.1 which

is a generalization of Rohrlich’s formula. This concerns a relation between monomial

relations of CM-periods and the algebraicity of Stark units. In §3, we introduce Conjec-
tures 3.1, 3.2 which are generalizations of Coleman’s formula. In §4, we see that these

concern a relation between the absolute Frobenius actions on p-adic CM-periods and

the reciprocity law on Stark units. Some partial results are also provided. We note that

these conjectures are (at least Conjecture 2.1 is) generalizations of Hiyoruki Yoshida’s

conjecture on “absolute CM-periods” in [17].

§ 2. Yoshida’s conjecture and its refinement

§ 2.1. Multiple gamma functions

Recall Lerch’s formula:

Γ(x)√
2π

= exp

(
d

ds

[ ∞∑
m=0

(x+m)−s

]
s=0

)
.(2.1)

For a “good” countable subset Z ⊂ R, we put

Γmult(Z) := exp

(
d

ds

[∑
z∈Z

z−s

]
s=0

)
.

Here we say Z is “good” if
∑
z∈Z z

−s converges for ℜ(s) >> 0, has a meromorphic

continuation, is analytic at s = 0. (We use this notation only in this paper, in order to

provide a rough idea.) In particular, for x, ω1, . . . , ωr > 0, we see that

Lx,(ω1,...,ωr) := {x+m1ω1 + · · ·+mrωr | 0 ≤ m1, . . . ,mr ∈ Z}

is “good” and Γmult(Lx,(ω1,...,ωr)) is called Barnes’ multiple gamma function.
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§ 2.2. Shintani’s formula and Yoshida’s class invariants

Let F be a totally real field, f an integral ideal of F , Cf the narrow ray class group

modulo f. Let D be Shintani’s fundamental domain of F+/O×
F,+. Here + denotes their

totally positive parts: in particular, O×
F,+ denotes the group of all totally positive units.

For each c ∈ Cf, we take a representative integral ideal a of c ∈ C(1) satisfying f | a (c

denotes the image under the natural projection Cf → C(1)). We consider a subset

Zc := {z ∈ D ∩ a−1 | za ∈ c} ⊂ F+.

Then Yoshida [17] defined a class invariant for c ∈ Cf, ι ∈ Hom(F,R)

exp(X(c, ι)) := exp(X(c, ι;D, a)) := Γmult(ι(Zc))×
∏
i

ι(ai)
ι(bi)

for suitable ai, bi ∈ F . When we fix D, a, we drop them from the symbol. Although

Zc, ai, bi depend on the choices of D, a, we have

• Shintani’s formula in [14] states that exp(ζ ′(0, c)) =
∏
ι∈Hom(F,R) exp(X(c, ι)).

• exp(X(c, ι)) mod ι(O×
F,+)

Q does not depend on D, a ([17, Chap. III], [8, Lemma

3.11]). That is, there exist ϵ ∈ O×
F,+, N ∈ N satisfying

exp(X(c, ι;D, a))/ exp(X(c, ι;D′, a′)) = ι(ϵ)
1
N .

We fix id: F ↪→ R and put exp(X(c)) := exp(X(c, id)).

Remark. Strictly speaking, Shintani provided a fundamental domain D of (F ⊗Q

R)+/O×
F,+. He expressed D as a finite disjoint union of cones and provided an ex-

pression Zc =
⨿k
i=1 Lxi,ωi

with xi ∈ F+, ωi ∈ F ri+ , ri ∈ N. In particular ι(Zc) is

“good” and Γmult(ι(Zc)) is a finite product of Barnes’ multiple gamma functions for

any ι ∈ Hom(F,R). Shintani’s formula in [14] expresses exp(ζ ′(0, c)) as a finite prod-

uct of Barnes’ multiple gamma functions and some elementary terms. Yoshida found a

“canonical decomposition” of this product and defined the above invariant exp(X(c, ι)).

§ 2.3. Shimura’s period symbol (a restatement)

Let K be a CM-field, σ, τ ∈ Hom(K,C). We take an algebraic Hecke character χ

of Kτ whose infinite type is l · (τ−1 − ρ ◦ τ−1). Here we consider K as a subfield of C,
so τ−1 ∈ Hom(Kτ ,C) has a meaning. By taking l large enough, we may assume that χ

takes values in K. We consider the associated motive M(χ): M(χ) is a motive defined

over Kτ , with coefficients in K of rank 1, whose L-function is equal to that of χ. We

define P (χ) ∈ (K ⊗Q C)× by the de Rham isomorphism

HB(M(χ))⊗Q C ∼= HdR(M(χ))⊗Kτ C,
P (χ)(cB ⊗ 1) 7→ cdR ⊗ 1,
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where cB is a K-basis of HB(M(χ)), cdR is a K⊗QK
τ -basis of HdR(M(χ)). We further

decompose it as

K ⊗Q C ∼=
⊕

σ∈Hom(K,C) C,
P (χ) 7→ (P (σ, χ))σ∈Hom(K,C).

Then we have [10, Proposition 2-(ii)]

pK(σ, τ) ≡ (2πi)−
δστ
2 P (σ, χ)

1
2l mod Q×

,(2.2)

where we put δστ := 1,−1, 0 if σ = τ, ρ ◦ τ , otherwise, respectively.

§ 2.4. A refinement of Yoshida’s conjecture

Yoshida formulated a conjecture which expresses Shimura’s period symbol pK (§2.3)
as a finite product of rational powers of Yoshida’s class invariant exp(X(c)) (§2.2).
Here we introduce a “reverse version” [10, Conjecture 3]: note that this is not just a

restatement but a refinement in the sense of Remark (ii) below. Recall that F is a

totally real field and Cf is the narrow ray class group modulo f.

Conjecture 2.1. Assume that the narrow ray class field Hf modulo f contains

a CM-field. Let K be the maximal CM-subfield of Hf. Then we have

exp(X(c)) ≡ πζ(0,c)
∏
c′∈Cf

pK(c, c′)
ζ(0,c′)
[Hf:K] mod Q×

(c ∈ Cf).

Here c, c′ in pK( ) denotes their images under the Artin map Art: Cf → Gal(K/F ).

Remark.

(i) When F = Q, this conjecture holds true by Rohrlich’s formula.

(ii) The original conjecture [17, Chap. III, Conjecture 3.9] is equivalent to

∏
c∈Art−1(σ)

exp(X(c)) ≡
∏

c∈Art−1(σ)

πζ(0,c) ∏
c′∈Cf

pK(c, c′)
ζ(0,c′)
[Hf:K]

 mod Q×
.

for σ ∈ Gal(K/F ).

(iii) We focus on the algebraicity of Stark units:

“exp(ζ ′(0, σ)) ∈ Q×
for σ ∈ Gal(H/F ) if F is a totally real field,

H has a real place, H/F is abelian, except for H/F = Q/Q.”

Then Conjecture 2.1 states that this algebraicity follows from the monomial relation

pK(σ, σ′)pK(σ, ρ ◦ σ′) ≡ 1 mod Q×
. Moreover, we can show that
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(a) Conjecture 2.1 implies this algebraicity.

(b) “The original conjecture in [17] + this algebraicity” implies Conjecture 2.1.

For details, see [8].

§ 2.5. A numerical example [10, Examples 1, 2]

Let K := Q(
√

2
√
5− 26), [σ :

√
2
√
5− 26 7→ −

√
−2

√
5− 26] ∈ Hom(K,C), ρ the

complex conjugation. Then Hom(K,C) = {id, ρ, σ, ρ ◦ σ}. Let

C : y2 = 7+
√
41

2 x6 + (−10− 2
√
41)x5 + 10x4 + 41+

√
41

2 x3 + (3− 2
√
41)x2 + 7−

√
41

2 x+ 1.

Then J(C) has CM, of CM-type (K, {id, σ}) [1, Table 2B, DAB = [5, 13, 41], DABr =

[41, 11, 20]]. In fact, ωid = 2dx
y + (

√
5−1)xdx
y , ωσ = (−

√
5+

√
41)xdx

y are holomorphic dif-

ferential forms where K acts via id, σ respectively. Numerically we have (by Maple’s

command periodmatrix)∫
ωid = −0.4929421793 . . .− 0.8116152991 . . . i,∫
ωσ = −0.1395619319 . . .+ 0.1323795194 . . . i.

Similarly, we define C ′ where J(C ′) has CM, of CM-type (K, {id, ρ ◦ σ}), by replacing√
41 with −

√
41. Then we have∫

ω′
id = −0.4443866005 . . .− 0.3099403507 . . . i,∫

ω′
ρ◦σ = −2.0247186165 . . .+ 0.4533729269 . . . i,

where ω′
id := 2dx

y + (
√
5−1)xdx
y , ω′

ρ◦σ := (−
√
5+

√
41)xdx

y are holomorphic differential forms

on C ′. By definition (1.1) and monomial relations of Shimura’s period symbol, we see

that

πpK(id, id)pK(id, ρ)−1 ≡ πpK(id, id)pK(id, σ)pK(id, id)pK(id, ρ ◦ σ)

≡ π−1

∫
ωid

∫
ω′
id mod Q×

.

Let F := Q(
√
5), f := ( 13−

√
5

2 ). We easily see that Cf = {c1 := [(1)], c2 := [(3)]} ∼=
Gal(K/F ), c1 ↔ id, c2 ↔ ρ, ζ(0, c1) = 1, ζ(0, c2) = −1. Here [(∗)] denotes the ideal

class in Cf of the principal ideal (∗). Then we obtain numerically

π−1

∫
ωid

∫
ω′
id = exp(X(c1))(

√
5−1
2 )

14
41

√
−8

√
5+20+(

√
5+15)

√
2
√
5−26

80 .(2.3)
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Remark. We explain the above example in terms of §2.3. Let F0 := Q(
√
41), χ

an algebraic Hecke character of K whose infinity type is l · (id− ρ). Then we see that

M(χ)×K KF0 = (H1(C ×F0
KF0)⊗H1(C ′ ×F0

KF0)⊗Q(1))⊗l.

Hence we have

P (id, χ) ≡
(
(2πi)−1

∫
ωid

∫
ω′
id

)l
mod K×,

which is consistent with (2.2). We note that ωid⊗ω′
id is defined over K, i.e., ωid⊗ω′

id ∈
HdR(M(χ)), although each ωid, ω

′
id is defined only over KF0. In particular, we see that

(2.3) is a supporting evidence of [10, assumption (35)].

§ 3. p-adic analogues

Let F be a totally real field, f an integral ideal, Cf the narrow ray class group modulo

f, and µ∞ the group of all roots of unity, as in the previous sections. In this section,

we introduce Conjectures 3.1, 3.2 which provide a generalization of Coleman’s formula.

Note that the p-adic analogue expp(Xp(c)) of Yoshida’s class invariant associated with

c ∈ Cf can be defined only when the prime ideal p corresponding to the p-adic topology

on F divides f. Therefore we formulate conjectures in the case p | f or p ∤ f, separately.

§ 3.1. A p-adic analogue of Yoshida’s class invariant

Assume that

the prime ideal p corresponding to a fixed embedding F ↪→ Cp divides f.

We need this assumption for the p-adic interpolation of the series
∑
z∈Zc

z−s defined in

§2.1, §2.2. We define

expp(Xp(c)) := Γmult,p(Zc)×
∏
i

expp(bi logp ai)

for the same Zc ⊂ F , ai, bi ∈ F as those in the definition of exp(X(c)). Here we put

Γmult,p(Z) := expp

(
d

ds

[
p-adic interpolation of

∑
z∈Z

z−s

]
s=0

)
.

When we do not fix a Shintani’s fundamental domain D or a representative ideal a, we

add them to the symbol: expp(Xp(c;D, a)). Then we see that

(i) We obtained a p-adic analogue of Shintani’s formula in [6].
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(ii) expp(Xp(c)) mod (O×
F,+)

Q does not depend on the choices of D, a [9, Lemma 4].

(iii) The “ratio” [exp(X(c)) : expp(Xp(c))] mod µ∞ does not depend on a, D [9, Corol-

lary 1-(i)]. That is, we have

exp(X(c;D, a))/ exp(X(c;D′, a′))

≡ expp(Xp(c;D, a))/ expp(Xp(c;D
′, a′)) mod µ∞.

§ 3.2. p-adic analogue of Shimura’s period symbol

Let BdR, Bcris be Fontaine’s p-adic period rings: note that Bcris (resp. Qp) is a

subring (resp. subfield) of BdR. In [10, §5.1], we define

pK,p(σ, τ) ∈ B×
dR

by replacing the de Rham isomorphism in §2.3 with comparison isomorphisms of p-adic

Hodge theory. We also replace 2πi with the p-adic period (2πi)p of the Lefschetz motive.

Since abelian varieties with CM have potentially good reductions, we see that

pK,p(σ, τ) ∈ (BcrisQp)Q := {x ∈ BdR | there exists n ∈ N satisfying xn ∈ BcrisQp}.

Moreover the “ratio”

[pK(σ, τ) : pK,p(σ, τ)] mod µ∞

is well-defined when we take the same basis cB , cdR of cohomology groups for pK , pK,p.

§ 3.3. Reciprocity laws concerning the absolute Frobenius action

Recall that p is the prime ideal corresponding to the p-adic topology on F . We

consider the completion Fp of F and put Wp ⊂ Gal(Fp/Fp) to be the Weil group. That

is, when τ ∈Wp, there exists degp τ ∈ Z satisfying

τ |Fur
p

= Fr
degp τ
p

where ∗ur denotes the maximal unramified extension and Frp denotes the Frobenius

automorphism at p. We consider a natural action Wp ↷ BcrisQp = Bcris ⊗Qur
p

Qp
defined by Φτ := (absolute Frobenius)deg p degp τ ⊗ τ . The class invariants exp(X(c)),

expp(Xp(c)) for c ∈ Cf are introduced in §2.2, §3.1. Strictly speaking, these values

depend on the choices of a Shintani’s fundamental domain D and a representative ideal

a.
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Conjecture 3.1 ([10, Conjecture 4-(ii)]). Assume that p | f. Under Conjecture

2.1, we define for c ∈ Cf

Γ(c) :=
exp(X(c))

(2πi)ζ(0,c)
∏
c′∈Cf

pK(c, c′)
ζ(0,c′)
[Hf:K]

(2πi)ζ(0,c)p

∏
c′∈Cf

pK,p(c, c
′)

ζ(0,c′)
[Hf:K]

expp(Xp(c))
∈ (BcrisQp)Q/µ∞,

which does not depend on the choices of D, a. Then we have for τ ∈Wp

Φτ (Γ(c)) ≡ Γ(cτ c) mod µ∞ (c ∈ Cf),

where cτ := Art−1(τ |Hf
) ∈ Cf.

Conjecture 3.2 ([10, Conjecture 4-(i)]). Assume that p ∤ f. Under Conjecture

2.1, we define for c ∈ Cf

Γ(c;D, a)

:=
exp(X(c;D, a))

(2πi)ζ(0,c)
∏
c′∈Cf

pK(c, c′)
ζ(0,c′)
[Hf:K]

(2πi)ζ(0,c)p

∏
c′∈Cf

pK,p(c, c
′)

ζ(0,c′)
[Hf:K] ∈ (BcrisQp)Q/µ∞.

Then we have for τ ∈Wp with degp τ = 1

Φτ (Γ(c;D, a)) ≡
π

ζ(0,[p]c)

h
+
F

p Γ([p]c;D, pa)∏
c̃∈Cfp

c̃ 7→[p]c∈Cf

expp(Xp(c̃;D, pa))
mod µ∞ (c ∈ Cf),

where h+F is the narrow class number, πp is a suitable generator of ph
+
F , and c̃ runs over

all narrow ideal classes modulo fp whose images under the natural projection are equal

to [p]c ∈ Cf. In particular, since c̃ ∈ Cfp, expp(Xp(c̃;D, pa)) in the right-hand side is

well-defined. Note that, although the definition of Γ(c;D, a) does depend on the choices

of D, a, the validity of the conjecture does not.

Remark.

(i) When Hf does not contain any CM-field, we see that ζ(0, c) = 0 [10, Proposition

3]. Hence we regard pK( ) = pK,p( ) = 1 in this case.

(ii) “ mod µ∞ ambiguity” occurs when we take rational powers of periods or consider

expp outside of the convergence region. These may be avoidable by “S, T -modified

version”.
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§ 4. Main results

Let F be a totally real field, p the prime ideal corresponding to the p-adic topology

on F , Cf the narrow ray class group modulo f. We defined two kinds of period-ring

valued Γ-functions Γ(c) (when p | f), Γ(c;D, a) (when p ∤ f) for c ∈ Cf in §3.3. Although
the proof is elementary, the following proposition seems to be interesting: the class

invariant Γ(c) becomes an “Euler system” which takes values in the p-adic period ring.

Proposition 4.1 ([10, Proposition 7-(ii)]). Let q be a prime ideal, ϕ : Cfq → Cf

the natural projection, and c ∈ Cf. For simplicity assume that p | f. Then we have

∏
c̃∈Cfq, ϕ(c̃)=c

Γ(c̃) ≡

Γ(c)Γ([q]c)−1 (q ∤ f)

Γ(c) (q | f)
mod µ∞.

The following theorems are the main results in [10].

Theorem 4.2 ([10, Theorem 1]). Conjectures 2.1, 3.1, and 3.2 imply the reci-

procity law on Stark’s units (§1) up to µ∞:

τ ′(exp(2ζ ′(0, τ))) ≡ exp(2ζ ′(0, τ ′τ)) mod µ∞ (τ, τ ′ ∈ Gal(K/F ))

for any abelian extension K of F having a real place.

Sketch of proof. Let H be the maximal subfield of the ray class field Hf where the

real place id : F ↪→ R splits. For simplicity, assume that p | f. Then we can show that∏
c 7→σ

Γ(c) ≡ exp(ζ ′(0, σ)) mod µ∞ (σ ∈ Gal(H/F )).

Since Φτ is τ -semilinear, we obtain τ(exp(ζ ′(0, σ))) ≡ exp(ζ ′(0, τ ◦ σ)) mod µ∞ for

τ ∈Wp. Then we vary p.

Gross formulated a p-adic analogue of Stark’s conjecture, which is called the rank

one abelian Gross-Stark conjecture [5]. Dasgupta-Darmon-Pollack [3] and Ventullo [16]

showed that this conjecture holds true. On the other hand, Yoshida and the author

formulated its refinements in [11, 12].

Theorem 4.3 ([10, Theorem 2]). Conjecture 3.2 implies refinements in [11, 12]

of the rank one abelian Gross-Stark conjecture under an assumption [10, assumption

(35)].

Sketch of proof. We consider the product∏
c7→σ

Γ(c) (σ ∈ Gal(H/F ))
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for the maximal subfield H of Hf where p splits completely, instead of H in the above

proof.

Theorem 4.4 ([10, Theorem 4-(iii)]). When Hf is abelian over Q and p ∤ 2,

Conjecture 3.1 holds true.

Sketch of proof. The case F = Q follows from Rohrlich’s formula and Coleman’s

formula [10, Theorem 3]. In this case, the assumption p ∤ 2 is needed for using Coleman’s

results. We reduce the problem to this case, by well-known formula on L-functions:

L(s, χ) =
∏

ψ∈Ĝ,ψ|H=χ

L(s, ψ) (χ ∈ Ĝ, G := Gal(Hf/Q) ⊃ H := Gal(Hf/F )).

By this, we can express exp(ζ ′(0, c))’s of F in terms of those of Q. However, Shintani’s

formula states that for c ∈ Cf of F

exp(ζ ′(0, c)) =
∏

ι∈Hom(F,R)

exp(X(c, ι))

and we need just exp(X(c, ι)), not their product. Recall the definition

Zc := {z ∈ D ∩ a−1 | za ∈ c},

exp(X(c, ι)) := Γmult(ι(Zc))×
∏
i

ι(ai)
ι(bi).

Then we see that, roughly speaking, exp(X(c, ι)) depends on ι(c), rather than on c.

When Hf/Q is abelian, ι(c) ∈ Cι(f) (and ι(F ), ι(f)) do not depend on ι ∈ Hom(F,R).
Hence, we obtain an expression like

exp(ζ ′(0, c)) = exp(X(c))[F : Q] × explicit correction terms

by Yoshida’s technique concerning the replacement of D, a. Since the same holds true

for expp(ζ
′
p(0, c)), we have

[exp(ζ ′(0, c)) : expp(ζ
′
p(0, c))] ≡ [exp(X(c))[F : Q] : expp(Xp(c))

[F : Q]] mod µ∞.

Then we obtain an explicit formula on the ratios [exp(X(c)) : expp(Xp(c))] of F in

terms of those of Q. A similar relation holds true for the “period part [pK( ) : pK,p( )]”

by a simpler argument.

By a similar argument, we can show the following theorem. In this case, we need

the assumption p ̸= 2 for technical reasons, in order to rewrite Coleman’s results in the

proof of [10, Theorem 3].
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Theorem 4.5 ([10, Theorem 4-(ii)]). When Hf is abelian over Q and p ̸= 2

remains prime in F , Conjecture 3.2 holds true.
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