<table>
<thead>
<tr>
<th>Title</th>
<th>On Drinfeld modules with Rasmussen-Tamagawa type conditions: a resume (Algebraic Number Theory and Related Topics 2017)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okumura, Yoshiaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2020), B83: 243-251</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2020-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/260703</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On Drinfeld modules with Rasmussen-Tamagawa type conditions: a resume

By

Yoshiaki OKUMURA*

Abstract

This is an announcement of the author’s results [7] on a non-existence problem of Drinfeld modules defined over global function fields with some arithmetic constraints. The motivation is a conjecture of Christopher Rasmussen and Akio Tamagawa related with abelian varieties over number fields with constrained ℓ-power torsion points. In this paper, considering the arithmetic similarity between Drinfeld modules and elliptic curves, we show that a Drinfeld module analogue of the Rasmussen-Tamagawa conjecture holds in some cases. We also see that there is a counter-example of the Drinfeld module analogue of the conjecture in a special case.

§ 1. Introduction

Let k be a finite extension of \mathbb{Q} and g a positive integer. For a prime number ℓ, denote by \tilde{k}_ℓ the maximal pro-ℓ extension of $k(\mu_\ell)$ which is unramified outside ℓ, where $\mu_\ell = \mu_\ell(k)$ is the set of ℓ-th roots of unity in k. For an abelian variety X over k, write $k(X^{[\ell\infty]}) := k(\bigcup_{n \geq 1} X^{[\ell^n]})$ for the field generated by all ℓ-power torsion points of X. Define $\mathcal{A}(k, g, \ell)$ to be the set of isomorphism classes $[X]$ of g-dimensional abelian varieties over k which satisfy the following equivalent conditions:

- $k(X^{[\ell\infty]}) \subseteq \tilde{k}_\ell$,
- X has good reduction at any finite place of k not lying above ℓ and $k(X^{[\ell]})/k(\mu_\ell)$ is an ℓ-extension,
X has good reduction at any finite place of \(k \) not lying above \(\ell \) and the mod \(\ell \) representation \(\bar{\rho}_{X,\ell} : G_k \to \text{Aut}_{\mathbb{F}_\ell}(X[\ell]) \simeq \text{GL}_{2g}(\mathbb{F}_\ell) \) is of the form
\[
\begin{pmatrix}
\chi_\ell^{i_1} & * & \cdots & * \\
* & \chi_\ell^{i_2} & \cdots & \\
\vdots & \vdots & \ddots & \\
* & \cdots & \cdots & \chi_\ell^{i_{2g}}
\end{pmatrix},
\]
where \(\chi_\ell \) is the mod \(\ell \) cyclotomic character and \(i_1, \ldots, i_{2g} \) are positive integers.

The equivalence of these conditions follows from the Néron-Ogg-Shafarevich criterion and some group theoretic lemma. According to the Shafarevich conjecture proved by Faltings, the set \(\mathcal{A}(k, g, \ell) \) is always finite. Rasmussen and Tamagawa conjectured the following.

Conjecture 1.1 ([10, Conjecture 1]). The set \(\mathcal{A}(k, g, \ell) \) is empty if \(\ell \) is large enough.

For example, the following cases are known:

- \(k = \mathbb{Q} \) and \(g = 1 \) [10, Theorem 2],
- \(k = \mathbb{Q} \) and \(g = 2, 3 \) [11, Theorem 7.1 and Theorem 7.2],
- for abelian varieties with everywhere semistable reduction [8, Corollary 4.5] if \(k/\mathbb{Q} \) has odd degree or the discriminant of \(K \) is not divisible by \(\ell \), and [11, Theorem 3.6] in the general case,
- for abelian varieties with abelian Galois representations [9, Corollary 1.3],
- for QM abelian surfaces over certain imaginary quadratic fields [1, Theorem 9.3].

We notice that, under the assumption of the Generalized Riemann Hypothesis (GRH) for Dedekind zeta functions of number fields, the conjecture is true in general [11, Theorem 5.1]. The key tool of this proof is the effective version of the Chebotarev density theorem for number fields, which holds under GRH.

In this paper, we would like to consider a function field analogue of this conjecture. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements of characteristic \(p \). Let \(A = \mathbb{F}_q[t] \) be the ring of polynomials in indeterminate \(t \) and \(F = \mathbb{F}_q(t) \) the fraction field of \(A \). Instead of abelian varieties over number field, we consider Drinfeld modules defined over a finite extension \(K \) of \(F \). There are deep arithmetic similarity between Drinfeld modules and elliptic curves. Under these analogy, for any positive integer \(r \) and monic irreducible element \(\pi \in A \), we construct the set \(\mathcal{D}(K, r, \pi) \) of isomorphism classes of rank-\(r \) Drinfeld modules over \(K \) satisfying Rasmussen-Tamagawa type conditions (see Proposition 2.5). We shall not distinguish between monic irreducible elements of \(A \) and finite places of \(F \).
The followings are main results in this article.

Theorem 1.2. Suppose that \(r = p^\nu \) for some integer \(\nu > 0 \) and does not divide the inseparable degree \([K : F]\). Then the set \(\mathcal{D}(K, r, \pi) \) is empty for any \(\pi \) whose degree \(\deg(\pi) \) is large enough.

Theorem 1.3. Suppose that \(r = r_0p^\nu \), where \(r_0 > 1 \) is an integer prime to \(p \) and \(\nu \geq 0 \). Then the set \(\mathcal{D}(K, r, \pi) \) is empty for any \(\pi \) whose degree \(\deg(\pi) \) is large enough.

Therefore a Drinfeld module analogue of Conjecture 1.1 holds if \(r \) does not divide \([K : F]\). Conversely, if \(r \) divides \([K : F]\), then \(\mathcal{D}(K, r, \pi) \) is never empty for any monic irreducible \(\pi \) (see §4).

§2. Construction of \(\mathcal{D}(K, r, \pi) \)

First, we give a brief introduction of Drinfeld modules (see [3], [5] and [12] for details). Let \(K \) be a finite extension of \(F \). Denote by \(K\{\tau\} \) the non-commutative polynomial ring over \(K \) in variable \(\tau \) satisfying \(\tau c = c^q\tau \) for any \(c \in K \). Here \(K\{\tau\} \) is isomorphic to the ring \(\text{End}_{\mathbb{F}_q}(\mathbb{G}_{a/K}) \) of \(\mathbb{F}_q \)-linear endomorphisms of the additive group \(\mathbb{G}_{a/K} \) over \(K \). Let \(r \) be a positive integer.

Definition 2.1. A Drinfeld \(A \)-module (or Drinfeld module, for short) \(\phi \) of rank \(r \) over \(K \) is an \(\mathbb{F}_q \)-algebra homomorphism \(\phi : A \to K\{\tau\} ; a \mapsto \phi_a \) such that \(\phi_t = t + c_1\tau + \cdots + c_r\tau^r \in K\{\tau\} \) and \(c_r \neq 0 \).

Remark. In general, for any field \(\mathcal{F} \) equipped with an \(\mathbb{F}_q \)-algebra homomorphism \(\iota : A \to \mathcal{F} \), a rank-\(r \) Drinfeld module \(\phi \) over \(\mathcal{F} \) is defined to be an \(\mathbb{F}_q \)-algebra homomorphism \(\phi : A \to \mathcal{F}\{\tau\} \) such that \(\phi_t = \iota(t) + c_1\tau + \cdots + c_r\tau^r \) and \(c_r \neq 0 \).

Definition 2.2. A morphism \(\mu : \phi \to \psi \) between two Drinfeld modules over \(K \) is an element \(\mu \in K\{\tau\} \) such that \(\mu\phi_a = \psi_a\mu \) for any \(a \in A \). Namely \(\mu \) makes the following diagram commutative

\[
\begin{array}{ccc}
\mathbb{G}_{a/K} & \xrightarrow{\mu} & \mathbb{G}_{a/K} \\
\phi_a \downarrow & & \downarrow \psi_a \\
\mathbb{G}_{a/K} & \xrightarrow{\mu} & \mathbb{G}_{a/K}
\end{array}
\]

for any \(a \in A \). We say that \(\mu \) is an isomorphism if \(\mu \in K^\times \).

Example 2.3. The rank-one Drinfeld module \(C : A \to \mathcal{F}\{\tau\} \) determined by \(C_t = t + \tau \) is called the Carlitz module.
Let \(\phi \) be a rank-\(r \) Drinfeld module over \(K \) and \(K^{\text{sep}} \) the separable closure of \(K \). Then \(\phi \) endows \(K^{\text{sep}} \) with a new \(A \)-module structure defined by \(a \cdot \lambda := \phi_a(\lambda) \) for any \(a \in A \) and \(\lambda \in K^{\text{sep}} \). For a non-zero element \(a \in A \), the \(a \)-torsion points of \(\phi \) is \(\phi[a] = \{ \lambda \in K^{\text{sep}}; a \cdot \lambda = \phi_a(\lambda) = 0 \} \). It is a free \(A/aA \)-module of rank \(r \) on which the absolute Galois group \(G_K \) of \(K \) acts. Let \(\pi \) be a monic irreducible element of \(A \). Define \(F_\pi := A/\pi A \) and \(q_\pi := \#F_\pi = q^{\deg(\pi)} \). The action of \(G_K \) on \(\phi[\pi] \) defines an \(F_\pi \)-linear \(r \)-dimensional \(G_K \)-representation

\[
\tilde{\rho}_{\phi,\pi} : G_K \to \text{Aut}_{F_\pi}(\phi[\pi]) \simeq \text{GL}_r(F_\pi).
\]

The \(\pi \)-adic Tate module of \(\phi \) is \(T_\pi(\phi) := \varprojlim \phi[\pi^n] \), which is a free \(A_\pi := \varprojlim A/\pi^n A \)-module of rank \(r \) with continuous \(G_K \)-action.

Let \(v \) be a finite place of \(K \), that is, \(v \) is a place lying above a monic irreducible element \(\pi_0 \in A \). Denote by \(K_v, O_{K_v} \) and \(F_v \), the completion of \(K \) at \(v \), its ring of integers and its residue field, respectively. Suppose that there exists a rank-\(r \) Drinfeld module \(\psi \) over \(K_v \) such that \(\phi \) is isomorphic to \(\psi \) over \(K_v \) and \(\psi_\ell = t + c'_1t^1 + \cdots + c'_rt^r \) for some \(c'_1, \ldots, c'_r \in O_{K_v} \). Then we say that \(\phi \) has stable reduction at \(v \) if \(c'_{r_0} \in O_{K_v}^\times \) for some \(1 \leq r_0 \leq r \), and has good reduction at \(v \) if \(c'_r \in O_{K_v}^\times \). It is known that \(\phi \) has good reduction at \(v \) if and only if \(T_\pi(\phi) \) is unramified at \(v \) for any (in fact, for some) \(\pi \neq \pi_0 \), which is an analogue of the Néron-Ogg-Shafarevich criterion for abelian varieties.

\textbf{Example 2.4.} The action of \(G_F \) on the \(\pi \)-torsion points \(C[\pi] \) of the Carlitz module defines the character

\[
\chi_\pi : G_F \to F_\pi^\times,
\]

which is called the \textit{mod} \(\pi \) \textit{Carlitz character}. It is an analogue of the mod \(\ell \) cyclotomic character \(\chi_\ell : G_{Q_\ell} \to F_\ell^\times \). For instance, the extension \(F(C[\pi])/F \) is cyclic and its Galois group is isomorphic to \(F_\pi^\times \) via \(\chi_\pi \). Moreover, since \(C \) has good reduction at any finite place \(\pi_0 \) of \(F \), the action of Frobenius element \(\text{Frob}_{\pi_0} \) on \(C[\pi] \) is well-defined if \(\pi \neq \pi_0 \) and then we have \(\chi_\pi(\text{Frob}_{\pi_0}) \equiv \pi_0 \mod{\pi} \).

Under the above analogy, let us define the set \(\mathscr{D}(K, r, \pi) \). For a rank-\(r \) Drinfeld module \(\phi \) over \(K \) and a monic irreducible element \(\pi \in A \), set \(K(\phi[\pi^\infty]) := K(\cup_{n \geq 1} \phi[\pi^n]) \) and consider the subfield \(K_{\phi,\pi} := K(\phi[\pi]) \cap K(C[\pi]) \) of \(K(\phi[\pi]) \). Note that \(K(\phi[\pi]) \) may not contain \(K(C[\pi]) \). By similar arguments in the abelian variety case, we can prove the following.
Proposition 2.5. The following conditions are equivalent.

- $K(\phi[\pi^\infty])/K_{\phi, \pi}$ is a pro-p extension which is unramified at any finite place of $K_{\phi, \pi}$ not lying above π,
- ϕ has good reduction at any finite place of K not lying above π and $K(\phi[\pi])/K_{\phi, \pi}$ is a p-extension,
- ϕ has good reduction at any finite place of K not lying above π and the representation $\bar{\rho}_{\phi, \pi}$ is of the form

$$\bar{\rho}_{\phi, \pi} \simeq \begin{pmatrix}
\chi_{\pi}^{i_1} & \ast & \cdots & \ast \\
\chi_{\pi}^{i_2} & \ddots & & \\
& \ddots & \ast & \\
& & \chi_{\pi}^{i_r}
\end{pmatrix}.$$

Define $\mathcal{D}(K, r, \pi)$ to be the set of isomorphism classes $[\phi]$ of rank-r Drinfeld modules over K satisfying the above equivalent conditions, which is an analogue of $\mathcal{A}(k, g, \ell)$ in Section 1.

Remark. Although $\mathcal{A}(k, g, \ell)$ is always finite, the set $\mathcal{D}(K, r, \pi)$ may not be finite since the Drinfeld module analogue of the Shafarevich conjecture, which is a base of the finiteness of $\mathcal{A}(k, g, \ell)$, does not hold. For example, for any $a \in A$, consider the rank-two Drinfeld module $\phi^{(a)} : A \to F[\tau]$ defined by $\phi^{(a)}(t) = t + a \tau + \tau^2$. Then it is easily seen that $\phi^{(a)}$ has everywhere good reduction and the set $\{[\phi^{(a)}] ; a \in A\}$ of isomorphism classes is infinite [7, Example 5.11]. For this reason, the finiteness of $\mathcal{D}(K, r, \pi)$ is still unknown. In fact if $r \geq 2$ and $\pi = t$, then we can construct an infinite subset of $\mathcal{D}(K, r, t)$ [7, Proposition 5.15].

§ 3. Outline of proofs

Throughout this section, let ϕ be a rank-r Drinfeld module over K and suppose that $[\phi] \in \mathcal{D}(K, r, \pi)$ for a monic irreducible element $\pi \in A$. Using the strategy in [11] adapted to Drinfeld modules, we would like to show that there are some contradiction if $\deg(\pi)$ is sufficiently large.

§ 3.1. Sketch of the proof of Theorem 1.2

Suppose that $r = p^\nu$ for some positive integer $\nu > 0$ and r does not divide $[K : F]_i$. We may assume that $\deg(\pi) > 1$.

Let u be a finite place of K lying above π. Recall that there exists a separable extension (K', w) of (K, u) such that ϕ has stable reduction at w and $e_{w|u}$ divides
\(\prod_{s=1}^{r}(q^s - 1) \). Applying the Drinfeld-Tate uniformization [3] to \(\phi \) seen as a Drinfeld module over \(K'_w \), we obtain an exact sequence

\[
0 \rightarrow \psi[\pi] \rightarrow \phi[\pi] \rightarrow H_{\mathbb{F}_n} \rightarrow 0
\]

of \(\mathbb{F}_\pi[G_{K'_w}] \)-modules, where \(\psi \) is a Drinfeld module over \(K'_w \) with good reduction and \(H_{\mathbb{F}_n} \) is a finite \(\mathbb{F}_\pi \)-vector space which \(G_{K'_w} \) acts as a finite group. Denote by \(\tilde{\rho}_{\psi,\pi} \) and \(\tilde{\rho}_{H_{\mathbb{F}_n}} \) the \(G_{K'_w} \)-representations attached to \(\psi[\pi] \) and \(H_{\mathbb{F}_n} \), respectively. Then the sequence (3.1) means that the semisimplification \(\tilde{\rho}_{\phi,\pi}^{\text{ss}} \) of \(\tilde{\rho}_{\phi,\pi} \) is of the form \(\tilde{\rho}_{\phi,\pi}^{\text{ss}} = \tilde{\rho}_{\psi,\pi}^{\text{ss}} \oplus \tilde{\rho}_{H_{\mathbb{F}_n}}^{\text{ss}} \).

Estimating the ramification of \(H_{\mathbb{F}_n} \), we can take a finite separable extension \(L \) of \(K'_w \) satisfying the followings:

- the action of the inertia subgroup \(I_L \) on \(H_{\mathbb{F}_n} \) is trivial,
- for the maximal tamely ramified extension \(L_0 \) of \(K'_w \) in \(L \), the ramification index \(e(L_0/K'_w) \) divides the integer \(\prod_{s=1}^{r}(q^s - 1) \).

Write \(e_{u,\phi} := e(L_0/F_\pi) \) for the absolute ramification index of \(L_0 \), so that it divides the integer \(M(K, r) := [K : F](q^r - 1)\prod_{s=1}^{r}(q^s - 1)^2 \) by construction. Note that \(M(K, r) \) is prime to \(p \).

Now we see that \(\tilde{\rho}_{\phi,\pi}^{\text{ss}} (= \tilde{\rho}_{\psi,\pi}^{\text{ss}} \oplus \tilde{\rho}_{H_{\mathbb{F}_n}}^{\text{ss}}) \) is an irreducible factor of \(\tilde{\rho}_{\phi,\pi}^{\text{ss}} \). If it comes from \(\tilde{\rho}_{\psi,\pi}^{\text{ss}} \), then by Theorem 2.14 of [4] there exists an integer \(j_s \in [0, e_{u,\phi}] \cap \mathbb{Z} \) such that

\[
\chi^s_{\pi}|_{I_{L_0}} = \omega^j_1,
\]

where \(\omega^j_1 : I_{L_0} \rightarrow \mathbb{F}_\pi^\times \) is the level-one fundamental character. On the other hand, if \(\chi^s_{\pi} \) is a factor of \(\tilde{\rho}_{H_{\mathbb{F}_n}}^{\text{ss}} \), then we can show that \(\chi^s_{\pi}|_{I_{L_0}} = \omega^j_1 = 1 \) by Theorem 2.14 of [4] and a little computation. Since the relation \(\chi_{\pi}|_{I_{L_0}} = \omega^e_{u,\phi} \) is also known [6, Proposition 9.4.3], for any \(1 \leq s \leq r \), we obtain

\[
(3.2) \quad i_se_{u,\phi} \equiv j_s \pmod{q^s - 1}
\]

for some integer \(j_s \in [0, e_{u,\phi}] \cap \mathbb{Z} \).

Let \(v \) be a finite place of \(K \) above \(t \). Since \(\phi \) has good reduction at \(v \), for any integer \(n \), the characteristic polynomial \(P_{v,n}(x) = \det(x - \text{Frob}_v^n|T_{\pi}(\phi)) \) of \(n \)-power of Frobenius element at \(v \) is well-defined and it has coefficients in \(A \). By the above relation (3.2), the congruence

\[
P_{v,e_{u,\phi}}(x) \equiv \prod_{s=1}^{r}(x - \chi_{\pi}(\text{Frob}_v)^{i_se_{u,\phi}}) \equiv \prod_{s=1}^{r}(x - \chi_{\pi}(\text{Frob}_v)^{j_s}) \equiv \prod_{s=1}^{r}(x - t^{f_v(i_j)}) \pmod{\pi}
\]
holds. We can check that the absolute values of all coefficients of $P_{v,e_{u,\phi}}(x)$ and $\prod_{s=1}^{r}(x-t_{i_{s}})$ are smaller than $q^{[K:F]M(K,r)}$. Assume that

$$(3.3)\quad \deg(\pi) > r[K:F]M(K,r).$$

Since the absolute value of π is $|\pi| = q^{\deg(\pi)}$, the above congruence implies $P_{v,e_{u,\phi}}(x) = \prod_{s=1}^{r}(x-t_{i_{s}})$. Comparing the absolute values of roots of $P_{v,e_{u,\phi}}(x)$ and $\prod_{s=1}^{r}(x-t_{i_{s}})$, we see that r divides $e_{u,\phi}$. In particular $r|M(K,r)$.

Apply the same arguments to any place u of K lying above π and set $e_{\phi} := \gcd\{e_{u,\phi}; u|\pi\}$. Denote by K_{s} the separable closure of F in K. There are only finitely many ramified places of F in K_{s}, so that we may assume that π is unramified in K_{s}. Note that if $K \neq K_{s}$, then K/K_{s} is totally ramified at any places. Hence all $e_{u|\pi}$ must divide $[K:F]$. Since r is a p-power, we see that $r|[K:F]$. This is a contradiction.

§ 3.2. Sketch of the proof of Theorem 1.3

Next, we consider the case where r has a divisor $r_{0} \geq 2$ which is prime to p, so that $r = r_{0}p^{\nu}$ for some integer $\nu \geq 0$. We also define the index e_{ϕ} same as the previous subsection and assume (3.3).

Now let i_{1}, \ldots, i_{r} be positive integers satisfying $\phi_{\phi,\pi}^{\pi_{0}} \simeq \chi_{\pi}^{i_{1}} \oplus \cdots \oplus \chi_{\pi}^{i_{r}}$. For any r-tuple $s = (s_{1}, \ldots, s_{r})$ of integers $1 \leq s_{1}, \ldots, s_{r} \leq r$, set $\varepsilon_{s} := \chi_{\pi}^{i_{s_{1}}+\cdots+i_{s_{r}}-1}$ and define

$$\epsilon := (\varepsilon_{s}) : G_{F} \to (\mathbb{F}_{\pi}^{\times})^{\oplus r}.$$

Set $m_{\phi} := \#\epsilon(G_{F})$, which is the least common multiple of the orders of ε_{s}. Since ϵ factors through $\mathbb{F}_{\pi}^{\times}$, the integer m_{ϕ} divides $q_{\pi} - 1$. Using the assumption (3.3), we can also prove that m_{ϕ} divides e_{ϕ}, and hence $m_{\phi}|M(K,r)$. By the consequence of the effective Chebotrev density theorem [2, Corollary 3.4], we can prove the following.

Proposition 3.1. For any positive integer m dividing $q_{\pi} - 1$, there exists a positive constant $C = C(K,m)$ depending only on K and m which satisfies the following: if $\deg(\pi) > C$, then there exist a monic irreducible element $\pi_{0} \in A$ distinct to π and a place v of K above π_{0} such that

- $\epsilon(Frob_{\pi_{0}}) = 1$,
- $\deg(\pi_{0}) < \deg(\pi)$,
- $f_{v|\pi_{0}} = 1$.

We also assume that $\deg(\pi) > \max\{C(K,m); m|M(K,r)\}$. Take π_{0} and v as in Proposition 3.1. Recall that r is of the form $r = r_{0}p^{\nu}$. Under the above assumptions, we can prove that the existence of $[\phi] \in \mathcal{D}(K,r,\pi)$ contradicts to properties of $v|\pi_{0}$ as follows. For the characteristic polynomial

$$P_{v,1}(x) = a_{r} + a_{r-1}x + \cdots + a_{p^{\nu}}x^{r-p^{\nu}} + \cdots + x^{r} \in A[x]$$
of \(\text{Frob}_v \), since \(\epsilon(\text{Frob}_v) = \epsilon(\text{Frob}_{\pi_0}) = 1 \), we can check that the \(r_0 \)-power \((a_{p^\nu})^{r_0} \) of the coefficient of \(x^{p^\nu} \) in \(P_{v,1}(x) \) satisfies

\[
(a_{p^\nu})^{r_0} \equiv (-1)^r \left(\frac{r}{p^\nu} \right)^{r_0} \pi_0 \pmod{\pi}.
\]

Since \(\left(\frac{r}{p^\nu} \right) \) is prime to \(p \), the right hand side of (3.4) is not zero. We see that \(j(a_{p^\nu})^{r_0} \) is prime to \(p \), the right hand side of (3.4) is not zero. We see that \(j = \deg(\pi_0) < \deg(\pi) \) imply that \((a_{p^\nu})^{r_0} = \alpha \pi_0 \) for some \(\alpha \in \mathbb{F}_q^* \), which contradicts to the assumption \(r_0 \geq 2 \).

§ 4. Construction of a Drinfeld module contained in \(\mathcal{O}(K, r, \pi) \)

Suppose that \(r \) divides \([K : F] \). Under this assumption, we can construct the rank-\(r \) Drinfeld module \(\Phi \) over \(K \) such that \([\Phi] \in \mathcal{O}(K, r, \pi) \) for any \(\pi \). If \(r = 1 \), then the Carlitz module \(\mathcal{C} \) satisfies the properties in Proposition 2.5. Hence we may assume that \(r > 1 \).

First, we prepare some notations. Since \(r \) is a \(p \)-power, the map \(A \to A; a \mapsto a^r \) is a ring homomorphism. For any element \(a = \sum_{i=0}^{n} x_i \in A \) with \(x_i \in \mathbb{F}_q \), set \(\hat{a} := \sum_{i=0}^{n} x_i^{1/r} \). Then \(A \to A; a \mapsto \hat{a} \) is a ring automorphism and the composite \(A \to A; a \mapsto \hat{a}^r \) is an \(\mathbb{F}_q \)-algebra homomorphism.

By the general theory on function fields, the separable closure \(K_s \) of \(F \) in \(K \) coincides with the field \(K^{[K:F]} \) of all \([K : F] \)-power elements of \(K \). Since \(r \) divides \([K : F] \), the \(r \)-power root \(\sqrt[r]{t} \) of \(t \in F \) is contained in \(K \). Now consider the \(\mathbb{F}_q \)-algebra homomorphism \(\iota : A \to K \) given by \(\iota(t) = \sqrt[r]{t} \) and define the rank-one Drinfeld module \(\mathcal{C}' \) over \((K, \iota) \) by \(\mathcal{C}' = \sqrt[r]{t} + \tau \). Then we can relate \(\mathcal{C}' \) with the Carlitz module \(\mathcal{C} \) as follows.

Lemma 4.1. For any element \(\lambda \in \mathcal{C}'[\pi] \), there exists a unique \(\delta \in \mathcal{C} [\pi] \) such that \(\lambda = \delta^{1/r} \).

Since \(\iota(\hat{a}^r) = a \) for any \(a \in A \) by construction, the composite

\[
\Phi : A \xrightarrow{(\hat{\cdot})} A \xrightarrow{(\cdot)^r} A \xrightarrow{\mathcal{C}'} K\{\tau\}
\]

is an \(\mathbb{F}_q \)-algebra homomorphism and

\[
\Phi_\iota = \mathcal{C}'_{\mathcal{O}^r} = (\sqrt[r]{t} + \tau)^r = t + \cdots + \tau^r.
\]

Therefore \(\Phi \) is a rank-\(r \) Drinfeld module over \(K \) and has good reduction at any finite place \(v \) of \(K \) since \(\sqrt[r]{t} \in \mathcal{O}_{K,v} \). Note that if \(r = 1 \), then \(\Phi \) is the Carlitz module \(\mathcal{C} \). Computing the \(G_K \)-action on \(\Phi[\pi] \) by using Lemma 4.1, we obtain the following.
Proposition 4.2. Let \(i \) be a positive integer satisfying \(ir \equiv 1 \pmod{q_\pi - 1} \). Suppose that \(r \) divides \([K : F]_1 \). Then the representation \(\bar{\rho}_{\Phi, \pi} \) is of the form

\[
\begin{pmatrix}
\chi^i \\
* \\
\ddots \\
\chi^i
\end{pmatrix}
\]

In particular \(\mathcal{D}(K, r, \pi) \) is never empty for any \(\pi \).

References