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Abstract '

We study non-compact solution sequence to the SU(3) Toda system
in non-abelian relativistic self-dual gauge theory, i.e., the quantization of
the total mass and classification of the singular limit.
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blow-up analysis; symmetrization.

1 Introduction

The SU(3) Toda system arises in non-abelian relativistic self-dual gauge theory
(11, 16]. In the simplest form without the vortex term, it is given by
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where (M, g) is a compact Riemannian surface with the volume |M|, and A1, Ap
are positive constants. If Ay = 0, we have

—Aguzz\(ﬁ%—‘—;}—o on M, /Muzo (2)

for v = 2u; and A = 2)\;. This is the simplest form of the mean field equation
studied in the contexts of the prescribing Gaussian curvature [14], statistical
mechanics of many vortex points in the perfect fluid [3], [4], [15], and self-dual
gauge theories [26]. See also the monographs [20], [25] for mean field equation,
and [27] for Toda systems. '

Equation (2) has a variational structure, and u = u(z) is a solution if and
only if it is a critical point of

I(v) = %/M |Vo|? - )\log/M e’ (3)

defined for v € H'(M) with f,, v = 0. If A = 8, this functional is bounded
from below by the Trudinger-Moser inequality, and it has a global minimizer
for A € [0, 8n). This functional is not bounded from below in case A > 8, but
Ding-Jost-Li-Wang [10] showed that there is a saddle type critical point if M
has genus g > 1 and 87 < A < 167, This critical point may be a trivial solution
u = 0 to (2), but we have u # 0in the Struwe-Tarantello [24] case, that is, M isa
flat torus with the fundamental cell domain [—1, 2] x [-3, ] and A € (8, 47?).
Discussing the general setting of the Riemannian surface, (2) has a non-trivial
mountain pass solution (Struwe-Tarantello solution) if A € (8, u1 |M|), where
141 denotes the principal eigenvalue of —A,. Then, Ding-Jost-Li-Wang solution
is non-tirival if A € (87, min{y; |M|,16x}). This solution is different even from
the mountain pass solution and we will have at least two non-trivial solutions
in this range.

In more detail, we have Chen-Lin’s formula [7] to (2) concerning the total
degree denoted by dy. If g denotes the genus of M, then we have d) =2g~1
for A € (8,167). This formula suggests that the Ding-Jost-Li-Wang solution
has Morse index 2 and is different from the Struwe-Tarantello solution of Morse
index 1, and furthermore, that the former’s non-triviality survives until the
second bifurcation from the trivial solution. For example, if g = 1, we expect five
and three solutions including the trivial solution for A € (8, min{y, |M|, 167})
and A € (u1 |M|, min{ug | M|,167}), respectively, where ug denotes the second
eigenvalue of —A,. Furthermore, such a multiplicity result will be valid even
for the equation with vortex terms.

Problem (1) has an analogous variational structure and (u1, u3) is a solution
if and only if it is a critical point of

1
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defined on E x E, where E denotes the Hilbert space

E:{veHl(M)]/Mvzo}

provided with the inner product (u,v) = f;, Vu- Vuv. Jost-Wang [12] showed
that this new functional is bounded from below in the case of A; = Ay = 4m,
and has a global minimizer if (A1, A2) € [0,47) x [0,47). On the other hand,
Lucia-Nolasco [19] obtained a mountain pass solution if (M, g) is a flat torus
with the fundamental cell domain [-3, 1] x [-3, 3], and if A, ) are in

4m < max(A1, Ag) < 8, min(Ay, Ag) # 4, (5)

(n-2) (- 22> () ©

Concerning the Ding-Jost-Li-Wang type solution we have the following.

Theorem 1. If M has genus > 1, the functional Jx, z, of (4) defined on ExXE
has a saddle type critical point for any (A1, \2) in (5) and

-2 e-2)(8). o

We refer to [5] for the precise definition of this mini-max value. The impor-
tant question of its non-triviality will be studied in a forthcoming paper. Note
that conditions (7) and (6) are equivalent to

2 -1\ 1 (x 0
(—1 2) ‘m(o A2)>0 ®)

2 —1\' 1 /X 0
(—1 2) "Z;Tz(o A2)>0’ ©)
respectively, and therefore, (6) implies (7). In [5], we did not eliminate the
residual set of (A1, A\2) completely. This is the problem of blowup analysis in
which the present paper is concerned. We employ the methods of symmetriza-
tion [22], [23] and rescaling [19] and settle down the problem. A more detailed
analysis will guarantee that the mass of non-compact solution sequence is in

(47N x R4) U (Ry X 47N). Our results obtained so far are complicated, and
we state them in the following section.

and
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2 Summary

We are concerned with the solution sequence {(41,n, %25, A1,n, A2,n)} of (1), that
is;
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/ ul,n = / u2,n - 0.
M M

In terms of (v, v2,n) defined by

Ul,n _ 2 -1 Vin
ugm J \ -1 2 van /'

it holds that
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namely, {(v1n,V2,n) A1,n, A2,n)} is a solution sequence to

6201-02 1
__Ag'v] p— Al (fM ezvl—'vﬂ - |M!)
e—v1+2vs 1

| / '01=/ vy = 0.
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Henceforth, i € {1,2} and j € {1, 2} \ {i} indicate the exponents. Letting

(10)

in M with

e2vi,n—‘uj,n eui,n
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we can assume the following relations without loss of generality, where
MM)=C(M)

denotes the set of measures on M:

Mim — i * weakly in M(M) and Ain(>0) = X > 0.
Given zo € M, we take the iso-thermal chart (¥, U) satisfying

U(zg) =0, ¥(z)=X, g=e(dX?+dX2),
and each function f(z) defined on M induces f o ¥~ denoted by
f(X) =1 (T X))

Furthermore, G = G(z, y) indicates the Green’s function:

1 .
-A,G(, y) = 0y — 'Im in M, /M G(,y)=0.

Then, we can show the following.

Theorem 2. Up to a subsequence, we have the following alternatives.
1. (compactness) We have (V1,m,V2,0) = (¥1,v2) in E X E and this
(vly va, )‘13 AQ)

is a solution to (10).

2. (half compactness) There is i € {1,2} such that v;, — v; in E and the

blowup set of {v;n} defined by
S; = {xo € M | there exists z,, — o such that v;,(z,) — +oo}

is finite and non-empty. This v; satisfies

AP (f:}{(j();)z:;”‘ - [Alﬂ) , /M'vi =0

Jor K;(z) = e 4" Zeoes; C®Z0) 1y polds that i = 4”"2::058,- 0z, and

Kjn — O locally uniformly in M\ S;. Each zq € S; is governed by

Vx {SWH@(X,.’DQ) + Z 8rG(X, z5) — v:i(X) +§(X)}

25€S;\{zo0} X=

where (¥,U) is the iso-thermal chart and

Hy(X,Y) = G(X,Y)+ = log|X ~ Y.

11
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8. (concentration) It holds that 81,8, # @ and 481,482 < +oo, where S;
and Sy denote the blowup sets of {vin} and {va}, respectively. For each
1=1,2, we have

Hi =Ti+ Z ™3 (20) 85,
2oES;

with m;(20) > 27 and r; € LY(M)NLE(M\ S;), and pijn — 15 in

loc

t (M\S;) for any t € [1,00). Here, the limit measure y; is specified

loc
more as follows.

(a) (mass gquantization)
Ifzo € 8\ (851 N 8Sy), then we have mi(zo) = 4w. In the case of
2o € 81 NSy, it holds that

my (20)? — my(zo)ma(zo) + ma (20)? = 4 {my(z0) + ma(z0)}

and max {mj (20), ma(z0)} > 8n. Consequently, we have mi(Zo) 2
47 for any zo € S;.

(b) (residual vanishing)
If8;\S; # 0, then r; = 0. .In the case of S; C S;, on the contrary,
r; = 0 follows if there is zo € S; such that 2m;(zo) — mj(z¢) > 4.
This condition is relared as 2mi(zo) — m;(xo) = 4w if r; = 0 is
known.

(c) (blowup set control) If S;\ S; # 0, in which case r; = 0 holds as is
described above, we have (12) at each zo € S;\ S;. If 11 =r2 =0,
then for each 2o € 8 NS,y we have

ml(:r:o) VX 8‘TFH\1:(X, zo) + Z 2m1 (xo)G(X, mg)
z5€S1\{zo0}

= Y my(e)G(X, o) +£<X>}

‘”6689\{20} X=0

+ma(z0) Vx {87qu,(X, zo) — Z mi (25)G(X, zg)
z5€51\{z0}

= 0. (14)

X=0

+ Y zmg(xac(x,memm}

5 €S\ {20}

Now, we shall give a few remarks on the above theorem. First, the blowup
sets introduced in the above theorem coincide with those for {(u1,n,%3n)}.
Therefore, we have

S; = {zo € M | there exists z, — o such that u;,(zn) — +00}



in each case. Next, possible limits of (A1, Az) for the non-compact solution
sequence {(u1n,u2ns)} are restricted as follows by the above theorem. To
begin with, in the half compactness case these values are contained in L =
(47N x R) U (R4 x 47N). Next, in the non-compact case without collision,
that is, 81,83 # @ and 8; NSy =, the residual vanishing is achieved and hence
they are contained in V' = 47N x 47N. The non-compact case with collision,
on the other hand, is complicated, and we put

& = {(m1, my) | max {my, my} > 8m, m2 +m2 — mymy = dr(my +mgq)}
& ={(m1,ma) € €| 2m; —my; <4m (i #35)}
& =E\(ELU&)

as illustrated in Figure 4 of [5]. In more detail, & U & U &, is a division of &,
and if zo € 81 NSy, then it holds that (m1(zo0), ma(z0)) € €. According to
(my(zo), me(z0)) is in &, &1, and &, we have ry=1ry =0, r; =0, and 7o = 0,
respectively. In any case, either r; or r; vanishes. If § (§; N S;) = n, then

( > ma(zo), Y mz(%))een»
2o ES1NS; 20ESL1 NS

where £7 is defined inductively by £! = £ and E?» =& 1+ € (n=2,---). In
this case, if 7; does not vanish, then

( Z m1(xo), Z mg(mo)) € g}‘
20ES1NS, ZoES1NS;
for j # i, where £} = &; and £} = EFl+ & (n=2,---).

In other words, the collision case S; NSy # @ is classified in accordance with
(a) S = Sa, (b) S; C 81 and S; \SQ 7& @, (C) 81 C & and 82\81 # @, and (d)
81\8;z # 0 and 85\ S; # 0. To state them in more detail, we put £ = U2, £",
EX =UR,EF, and M, ; = Zzoesms? mi(zp) fori =1,2.

L (81 = &3). It holds that (Mc1,Mc3) € £°. There is a possibility
that one of r; does not vanish, so that (A1, A2) € ({M,1} X [M,2,00)) U
([M,,1,00) x {M.2}), or equivalently, (A1, X2) € £ UA,, where

A= {(/\1, )\2) | there exists A1,0 < A1 such that (/\1,0, /\2) € £2°°}
U {(A1, A2) | there exists Ag g < Ag such that (A;, Ag0) € £5°}.

2. (52 C 81 and S, \ S; # 0). This case gives r; = 0 and hence \; €
{M.,1}+47N. Therefore, it holds that (A1, Ag) € AL (C A, + 47N x {0}),
where

Ai = {()\1,')\2) l there exists /\2,0 <XandneN
such that (A; — 47n, Ay o) € E5°}.
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3. (851 C 8 #0and S, \ Sp). Similarly, we have (A1, Ag) € A2(C A+ {0} x
47N), where

AZ = {(A1, A2) | there exists A\; g < A; and ne N
such that (A1,0, A2 — 47n) € £°}.

4. (81\ Sy # 0 and S; \ S; # 0). In this case, we have r; = r9 = 0, and
hence (A1, Ag) € £% + V (= £ + (47N x 47N)).

Consequently, the residual set of the collision case 8; NSy # @ is contained
in

EXUA:+ (471'No x 4wNp)

for No = {0} UN, and we obtain the following.

Theorem 3. A solution sequence {(U1n,U2,n, A1,n, A2,n)} Of (1) is compact in
E X E if (A1, A2) 18 not in the residual set L U (E®° UA,+ (47Np x 47Np)),
where A\jp, — A; fori=1,2.

Some estimates necessary for the proof of the above theorem are obtained
just by regarding (1) as a mean field equation. This is done in the following
section, and then we apply the method of symmetrization [22, 23] in §4, which
makes the blowup mechanism clearer. The proof of Theorem 2 is completed
in §5 by the rescaling argument [17], whereby Lemma 5.8 of [19] is justified,
namely, max {m(2o), ma(z0)} = 87 holds for each 25 € S N Sa. This enables
us to eliminate all the redidual points in Theorem 1.

Recently, C.-S. Lin [18] informed us that

(m1(zo), ma(zo)) € {(4r, 8), (87, 4m), (81r,l81r)}

holds for any z € 81 NS,. In this case, each solution sequence to (1) is compact
in E x E except for (A1, A7) € (47N x R;)U (R4 x 47N), althogh the residual
vanishing may not occur for (mq(2o), ma(zo)) = (4, 87), (8, 4~).

3 Preliminaries

Writing Up = 205, Kp(z) = €77, and A, = 2);,,, we get

anon () a0

from (10), where i = 1,2 and j € {1,2}\ {¢}. This is the mean field equation
with the inhomogeneous coefficient and we can apply [23] to control the solution
sequence.

In fact, from the elliptic L' estimate we have lim sup ||vin [ly1q(ary < +00

for g € [1,2) and hence, passing to a subsequence, v; , — v; follows in L*(M)




for t € [1,00) and for a.e. z € M. On the other hand, by [1] thereis A € R
satisfying G(z,y) > —A, and hence we have

eui,n(y)
Vi = /\i,n/ G(,y) —dgy > —Ain4,
M fM e I, n

namely, there is C > 0 independent of n such that
Vin >-C. (16)

This implies lim sup [|e~¥4"|| , < +o0, and hence
e vn — e7Vi in L*M)

for any ¢t € [1,00) and a.e. = € M. Therefore, Theorem 2.1 of [23] is applicable
and we obtain the following.

Lemma 1. Under the assumptions and notations of Theorem 2, we have the
following alternatives up to a subsequence.

1. (compactness) It holds that (vin,van) — (v1,v2) in E X E and this
(v1,v2, A1, A3) is a solution to (10).

2. (half compactness) It holds that v;, — v; in E and the blowup set S; of
{vjn} is finite and non-empty, wherei € {1,2} and j € {1,2} \ {s}. This
v; satisfies (11) for K; = e ¥ = ¢~ Troes; ™E)C(hm0) - pite u; takes the
form pj =3, cs, Mi(%0)0z, with mj(zo) 2 2.

3. (concentration) For each i = 1,2, the blowup set S; of {vin} 18 finite and
non-empty. We have

pi=rit+ Y mi(20)da0
Zo€S;

with m;i(zo) > 27 and r; € LY (M) NLE(M\ 8i) and pin — 15 in

loc

L*(M\ S;) for any t € [1,00). Furthermore, r; =0 if 5;\ S; #90.

Let us recall that S; denotes the blowup set of {vin}. Now, we show that it
coincides with the blowup set of {u; .}, denoted by S.,.

Lemma 2. It holds that Sy, = S;.

Proof: We have u;n = 2v; , — v;, and the half compactness case is obvious.
In the concentration case, we have u;, < 2v;, — C by (16), and it holds that

Su; C S;. Therefore, we have only to show S; C S, in the concentration case.
In fact, the blowup set S; coincides with the singular support of u;, and

i g p—v
eut,n e vin—Vi,n
Pin = Nip 70— (“ A ——————-—-)

i, fM Ui = Ni,n fM e2Vt,n—Vim
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is L un-bounded around zy € S;. Therefore, we may suppose

lim sup (u,-,n —-log/ e”"'") = +00
77 B(z0,m0) M

for any 7o > 0. Then, we obtain 7o > 0 and z,, € B(zo, ro) satsifying B(zo, 7o) N
S-; = {.’EQ} and '

Ui,n(Zn) -log/ e¥n = max _ (u,-.n(a:) —log/ e“"»") (— +o00),
M z€ B(zo,70) M

respectively. On the other hand, we have

1 1
— Yin } > __ —
log (|M| fMe ) 2 M) fM“ 0

by Jensen’s inequality, and hence u; (2,) — +oo follows from

win(zn) — log /M e¥in < u; () — log | M]. (17)

‘Therefore, if 2, — zg is proven, then we have zg € Sy;.

Suppose the contrary, 2, — T # zo. This means T ¢ S;, and hence
lim sup ; (%) < +o00. Then, it holds that

lim sup (ui,n(xn) — log f e“"") < limsupu; n(zs) — log | M|
M
< lim sup 2v; n(zn) — log | M| + C < 400,
a contradiction.

Lemma 12 of [5] concerning the residual vanishing is stated as follows.

Lemma 3. In the concentration case of Lemma 1, r; = 0 is obtained if S; C S;
and there exists zg € 8; N S; such that 2m;(zo) — mj(zo) > 4w. The last
condition is relazed as 2m;(zo) — m;(zo) > 4w if r; = 0 is known.

The last statement of the above lemma is a direct consequence of Theorem
2.1 of [28], while the lack of summability of r; # 0 around z; is compensated
by the strict inequality, 2m;(zo) — m;(zo) > 47.

We can also apply Theorem 2.2 of [23], and obtain the following.

Lemma 4. In the half compactness case of Lemma 1, we have m;(zo) = 4w and
(12) for each xo € S;. This is also true in the concentration case of o € S;\Si.
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4 Symmetrization

In this section we apply the method of symmetrization [22, 23] to (1) regarded
as a system of equations. In fact, letting

eZ’ui,n—'ujm

fin = /\i,nW

for 4,7 = 1,2 with i # j, we have

vfi,n = fi,nv (2'01',11 - 'vj,n)
Afi,n =V. (fz',nv (Z'Ui,n - vj,n)) ’

and hence it holds that
- / Finlp =2 / / VaC(2,1) - V(@) fin (@) fim(v)
M MJIM
- / / VaG(2,v) - V(@) fjm(2) Fim(¥)
MJ/M
for any ¥ € C%(M). Adding those equalities for (4,7) = (1,2), (2,1), we have
_ / (fin + fon) At
M
=2 [ [ V.6(,3) V(@) (10 @fin) + fan(@)fin®)
MJIM :
- / [ V.C(2,5) - V(&) fum () fam (3)
MJM
[ [ V.66 V@) an@finls)
MJM
where the last term is equal to
/ / VyG(2,9) - V@) fin (@) fan(y)
MJIM
by G(z,y) = G(y, z). The first term is also symmetrized, and we have
- / (Fim + fam) AW
M .
=2 / [ 232 %) {Fin (@) Frn () = Frn(@) fan(@) + fon (@) fon (@)}
MJM

where
pu(2,) = 5 (VaGl(z,1) - V(&) + V,C(a,3) - VH()).

All the results in this section are obtained by this relation. First, we note
the following. , '
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Lemma 5. Let } C R? be a bounded domain containing the origin with smooth
boundary 8Q, and {g1}, {g2,n} be sequences in Wh () satisfying

Vg',;,n - Gi n L°°(Q)2
with G1,Ge € C(Q)2. Let {v1,n} and {va,n} be sequences in H(Q) satisfying
—Av;p = 2VenTUn T n ()
Vin =0 on 00
fori,j =1,2 with i # j, and suppose that
e2Vin—vintgin mibo + ’I‘i(.’t) * weakly in M(ﬁ)
e2v¢,n—vj,n+g¢,n - in It (_Q\{O})

loc

fori=1,2, where r; € L*(Q) and m; > 0. Then, we have

m2 + m3 — mymy = 4mw(m; + my). (18)
If ry =79 =0, furthermore, it holds that
m1G1(0) + maG2(0) .
= —8 0 , 19
m1 + ma 7rV“"H’Q(x’ )Iz:O ( )

where
1
Hq(z,y) = Ga(z,y) + o log |z — y|

with Gq = Gq(z,y) standing for the Green’s function of —A in 1 under the
Dirichlet boundary condition.

Proof: Letting f; n = e?in—vin+%n we have
Afi,n =V. ft’,nv (Zvi,n —Vjn+ gi,n) »
similarly. Therefore, it holds that

- [(n+ o)~ [ [ (Varn- 9 fin+ (Va2 V) o)
Q QJQ
= 2/ / pu(@Y) {f1.n(2) frn(¥) — frn(@) f2n () + fam(2)f2n ()}
QIO

where 1 € C2(Q). We take ¥(z) = |z — a|? p(z) for ¢ € C3(R) with p(z) =1
near 0 and a € R2. In this case we have

- Vy(z) = 2(z — a), Ay =4 near 0,

and hence

/ (fim + fam) &Y —  4(my +mg)+ / (r1 +r2) A%

Q 0 |

/(Vgi,n V) fin — =2m4a- Gi(O) - 2/ ((x - a) . V¢) i
Q Q
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from the assumption. Furthermore,

pul(e.) = 3 {V2Galz,y) - Vi(z) + V,Calz,) - V()
__1 (=-y) {Vé(=) - Veu)}

4 |z — y|?
+3 (VaHa(s,9) - V(@) + VyHa(z,9) - V¥)}

= —-217‘- + {(:B - a) . V,;Hg(x,y) + (y - a) . V‘yHQ(x’ y)}

holds near (z,y) = (0, 0), and therefore, we have

m2
LLP¢(xv y)fi,n(x)fi,n(y) - _Z:' + mg(_a') : VSHQ(O’ 0)
+m2(—a) - VyHa(0,0) + m; / Py (0, ¥)ri(y) +my / py(2,0)ri(z)
Q Q
m2
+ [ [ pol@uri@nt) = - ~ 2mia- V. Ha(0,0

+2m; /Q po@ 0@+ [ [ ool pn@n®
and

LLP«»(@Mhm (z)fan(y) — —-?%—1?3 — mymga - V,Hq(0,0)

—mymga - VyHq(0,0) + my ]Q Py (0,9)ra(y) + ma /Q py(z,0)r1(z)
mime

+‘/Q/Qp¢(z,y)r1(m)rg(y) =——- — 2mymea - V,Hq(0,0)

+m1/9p¢(x, 0)ra(z) + mg /QM(-’E,O)H(G?)+L/{zp¢($ay)7‘l($)?2(y)'

In this way, we obtain

—4(my + mg) — /Q(Tl + r9)A% + 2a - [m1G1(0) + maGa(0))]

42 [ [(@-) Vil +r2) =~ (md o+ ] = muma)
—4(m? + mi — mymg)a - V. Hq(0,0)
+2 ((2m1 — mg) /s; py(z,0)r1(z) + (2mg — my) /‘;p,p (z, 0)1-2(:::))

+2 /Q /n oy (@,9) {r1(@)r1 () — r1 (2)rs (0) + r2(@)ra(@)}

and therefore, can apply the argument in the proof of Lemma 4.1 of [23].
Namely, first, we put a = 0 and shrink the diameter of the support of 4. This



implies
—4(my +my) = ——%(mi + m2 — mymy),
or equivalently, (18). Next, from the arbitrariness of a we get
m1G1(0) + maG2(0) = ~2(m2 +m3 — mym2) V. Ha(0, 0)
in the case of r; = r3 = 0, which is equivalent to (19).

Now, we show the following.

Lemma 6. In the concentration case of Lemma 1, we have (13) for each z; €
81 NSy. Furthermore, if r1 =19 = 0, then (14) holds true.

Proof: Given zg € S8; NSy, we take the iso-thermal chart (¥, U) satisfying
U(zo) = 0, TN (S1US) = {zo}, g = €f (dX? +dX3?) for X = ¥(z), and 60
smooth for Q = ¥(U). Then, vin(X) = v n 0 ¥1(X) is a solution to

A \ e2Vi,n—vj,n 1 ¢
—QUn = Ain fM eNVin—Vin IMl ev.

Taking h; n, he by
Ahi,n =0 inQ h,',n =V, On o0
Ahg=¢* inQ)  he=0 ondQ, (20)
we put ¥y, =Vin — hin — f‘j\‘-ﬁhe. Then, it holds that
— A‘ﬁi,n = e2Vin—Pintgin  in O
Vi =0 on 91,

where

in=N .
2_/\_’_1'_‘1‘7___&}&5 + 5 + log Ai,n _ 1og/ e2vi,n—‘vg.n
|M| M

Gin =2hin — hjn +

belongs to W1:°°(Q)). Furthermore, the elliptic regularity guarantees

2hin — Aj
V.q'i,n =V <2hi,n - hj,n + _’TM'lézﬁhe + ‘E)

AYEDY
|M]|

- V (Zh,- —h; ~ he + 5) in L®()

by U N (S; US;) = {zo}, where h; is a solution to

Ah; =0 in Q, h; =v; on 0.



87

It is obvious that
20— A
| M|

and Lemma 5 is applicable. Therefore, (13) holds true.
If r; = r9 = 0, then we get (19). In this case we have

Cu= Y mi(a)G(, o)

2L, €S;

v (Zh,- — h; — he + 5) € C(Q)?,

from the assumption, and therefore, the relation
2XMin — Aj 2Xin — A4
A (2h._h.+_1uh ) =2Zun__In€ in 0
UMD e [M]
2Xim = Ajn

2hi—h'+
’ |M|

hg = Zvi — Yy on 60

implies
200 — Ajn
hi = hy+ SEEEIR =2 7 mi(ah)G(, 2

zHLES;
— Y m(ap)G (-, 25) — {2mi(zo) — mj(20)} Ga(X, 0).
) TLES;
The right-hand side is equal to
{2mi(zo) — mj(z0)} Hu(X,z0) +2 Y ma(25)G(- zp)
z$€S:\{zo}
- ) m(ab)G(,xh) — (2ms(zo) — my(z0)) Ha(X,0),
z5€S5\{zo}

and hence it holds that

m1 (20)G1(0) + ma(z0)G2(0)
= Vx {[m1(z0)(2m1(z0) — ma(z0)) + ma(zo)(—ma(z0) + 2ma(z0))]
{Hg(X,z0) — Ha(X,0)}

+@m(20) - ma(ze) Y. ma(ah)G(,zh)
zH€S1\{z0}

+H=ma(zo) +2ma(za)) D,  ma(xg)G(,x0)
zH€S2\{zo}
+ (ma(20) + ma(20))6(X)}Hx—o -

Since we have

my (o) (2m1 (o) — ma(20)) + ma(20) (—m1 (z0) + 2ma(z0))
= 8m (m1(z0) + ma(20)),



relation (19) is equivalent to

Vx |87Hg (X, o) + ZTZI((:O“));;‘;&")) Y maleh)G(X, zh)

zH€S1\{20}
—m1(zo) + 2ma(Zo) / /
- Y ma(zh)G(X,z5) +£(X) =0.
mi (zo) + ma(zo) che (2o} Yo
This means (14) and the proof is complete.
5 Rescaling
Given zo € 81 NSy, we have (13) and
min {m1 (.’Eo), mo (20)} > 2w (21)
by the results obtained so far. In this section, we refine (21) to
min {m; (zq), ma(zo)} 2 4. (22)

This implies max {m1(zo), ma(z0)} = 8n by (18), i.e., the inequality asserted in
Lemma 5.8 of [19], and then Theorem 2 follows.

For this purpose, we take the local chart (U,%) as in the proof of Lemma 6
and the function k¢ defined by (20). Then, putting

win(X) = upn (871(X)) ~ log /M €41m — (2A1n — Agn)he

’u)g,n(X) =U2,n (@—1(X)) - log/ e"‘"" -_ (—/\l,n + 2)\2,",)}?,5,
M

we obtain |
—-Awl,n = 2V1,n(.'n)e’”1'" _ %,new,,n
— AW = =Vin(2)e" + Vo n(a)e™ (23)
in  for
Vin = A pefT@Mn—an)h
Von = Ag ne€+(—xx,n+2xg,ﬂ)h
satisfying

0L V?l,n(X) <b, OSVZ,n(X) <bd (XGQ)
/ eWtn < ¢ / ewrn < ¢ (24)
Q Q



with some constants b, ¢ > 0 independent of n, and
Vip — Vi=X\ett@a—dake

Vorn — Vo= A265+(—»\1+2>\2)he (25)

?

uniformly on {l. By (21) we have only to consider- the case min(A;, A2) > 0,
that is, V1, V5 > 0. We have z; , — zg such that u; ,(z;,) = +oo for i =1,2.
This implies X; ,, = &(zi,n) — 0 and also

Uin(Tin) — IOg/ e*t™ — +oo
M

from the proof of Lemma 2, or equivalently, w;» — +00. This means 0 € 87,
where

8P = {Xo € 0 | there exists X,, — X; such that w; »(X,,) = +oc}.

We also obtain 82 C ¥(U N S;) similarly from the proof of Lemma 2.
By Lemma 1 we have

Vinet™  — mido+m
Vone¥?™r —  mady+re

in M(Q) with min(m;, ms) > 27, r1,re € LH{Q) N L2, (Q\ {0}), and
Vine“ss = in Li,,(0\ {0})

for any 1 < t < oo. These m; coincide with m;(zg) (i = 1,2). By Lemma 3 we
have 71 = 0 and ro = 0 in the cases of 2m; — mq > 47 and —m; + 2mg 2 4m,
respectively, and it holds that

m? + m2 — mymy = 4m(my + my) (26)

by Lemma 6. These relations guarantee

max(my, mg) < 4(1 + —?—)'n' =8.6188...x .

V3

We study (23), (24), and (25) in a bounded domain 2 C R?, taking z =
(z1,z2) to indicate the standard coordinate in R2. For this purpose, we apply
Theorem 4.2 of [19], which is regarded as Brezis-Merle’s theorem (2] to (1).

" Lemma 7. If {(w1,n,w2n)}, i a solution sequence to (23) and (24), then
there is a subsequence (denoted by the same symbol) satisfying the following
alternatives, where

8= {zo € Q1| there is z,, — z¢ such that w; ,(zn) — +00}

denotes the blowup set of {win},,.



1. Both {w1r}, and {wsy,}, are locally uniformly bounded in Q.

2. Thereisi € {1,2} such that {wiy}, is uniformly bounded in Q and w;,, —
—o0 locally uniformly in Q for j # 4. ‘

3. We have both wy , — —0c0 and wa, — —o0 locally uniformly in Q.

4. For the blowup sets SO, SY defined to this subsequence, we have SQUSY # @
and § (82 U 8J) < +o0. Furthermore, for eachi € {1,2}, either {w;,},, is
locally uniformly bounded in 3\ (Sf U 820) or w; p, — —oo locally uniformly
in 0\ (SPUS]). Finally, if S?\ (8YN8F) # 0, then w;, — —oo locally
uniformly in Q\ (S USY), and each zo € S) takes m(zq) > 27 such that

Vin(z)e¥im — E m;i(Zo) 0z, *-weakly in M(Q).
20ESY

If we perform the rescaling argument using the above lemma, then we will
arrive at one of the following:
1. (Toda system in R?)

—Aw; = 2% — "2, —Awy = —e¥' +2¢**  in R?

/ e < 400, / e¥? < +o0. (27
R? R?

2. (Liouville equation in R?)

-Aw=¢* inR? / e¥ < +oo (28)
R2

3. (singular Liouville equation in R?)

—Aw=¢" - Z m(z0)0z,, / e¥ < 400, (29)
Z20ES R3

where & C R? is a finite set and m(zy) > 27 for any zo € S.

For these problems we have [12, 8, 9];
Lemma 8. We have the following.
| 1. For the solution (w1, w3) to (27) we have
201 — g > 4w, —oq +2ag > 4w, oF +ad — arop = dn(an + ag),

where

) = e", Qg = e"?,
R3 R2

and in particular, min(cn, o) > 4(1 + 5 = 6.309... x .
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2. For the solution w to (28) we have [z, e* = 8.
3. For the solution w to (29) we have [g. € > 4m+ 3, s M(Z0).
In the first case of the above lemma, [13] asserted a; = ap = 8, although

we have not been able to justify it. On the other hand, we expect ng e¥ =
87 +23, cs™(Zo) in the third case. Now, we show the following.

Lemma 9. We have (21) for each zo € S1 N Ss.

Proof: We have 8 = 8§ = {0}, and there are 21, — 0 and z3,, — 0 such
that

W1 (21 ) = SUPWL,5 — +00 and Wy n (T35 ) = SUP W3, — +00.
Q 9]
We take the rescaling of w; , around zj ,, by
1,k
wz,n (z) = wi,ﬂ(mlle,n + Ei,nm) - wk,‘n(xllc,n)’
where 4,k =1,2 and £} ,, = e~@kn(2k,n)/2 Then, it holds that
A 1L,k _ 2V; 1 1 wi’: Ve 1 1 w;'ﬁ
—RW , = l,ﬂ-(xk,n + Ek,nm)e A Qaﬂ(zk,n + ek,nx)e ’
) k 1,k 1,k
_Aw%:n = —V'l,"l(xi,n + Ellé,nx)ewl’n + 2‘/2,71- (x%:,n + E%:,nx)ewz'"
. . .
in QLF = {m e R?| Tikn I" 2 € Q} with fnl xeWim = [o e¥m < b. Without loss
of generality, we may suppose
1 1
El,n S Ez,n

for n = 1,2,---, ie, wia(zl,) > ws n($2 »). Then, we take the rescaled

solution around =1 ,,, ie., (wi’y, w3’). Since

1n(2) Swin(0) =
m%,n - .’E% n 1 1
Wy n(m) < w ""‘6_1'—"— < wan(23,,) — Win(z1,) <0
1,n _
holds on Q1'!, Lemma 7 assures the following alternatives:
1. Both {wi,ll} and {wé’i} are locally uniformly bounded in R2.

2. {w } is locally uniformly bounded in R?, while wy; — —oo locally
uniformly in R2.
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From the elliptic estimate, we may assume w;’, — w1 Lin CL%(R?) with

wit,wyt € CLY(R2) in the first alternative, and these w;? satisfy

~Awlt = 213 (0)e*i” — V3(0)e¥s"”
~Awlt = —V1(0)e¥1” +2V3(0)e™s”

in R? with [p, e¥” < +oo and fra e¥s”’ < +oo, where 0 < a < 1. Given
R > 0, we have r, — +oo satisfying lim sup'rns{,n < R, and in this case it
follows that

[ Ve / Vi netin = / Vin(al, + el z)e®
Br(0) Brnep (51n) Brn(0)

for large n. Making n — 400 and then R | 0, we have

— lim lim Vinetin > / Vi(0)e®i™,
RlOn—oo Br(0) R3
Using V;(0) > 0, we have min(m1, m3) > 4(1+ \/ig)‘rr by the first case of Lemma
8, and the proof for this alternative is done. (If we apply [13] and (26), then we
obtain (my, mp) = (8, 87) in this alternative.)
Therefore, henceforth, we consider the second alternative concerning this
rescaling around z},. Even in this case, we have a subsequence (denoted by

the same symbol) such that wi, — wl in CL%(R?) and this w)" satisfies
—Awt =2V, (O)e'”i’l, / el < 4oo.
R2

Therefore, from the second case of Lemma 8 we have m; > fR, Vi (O)e"’i’1 = 4.
Henceforth, we put w = —o0 for simplicity, and thereforfe, this alternative
is referred to as w'' € CLY(R?) and wy' = —oo.. Furthermore, we have
(m1, mg) > (4, 27r) na.mely, my > 4w and my > 2m.

Now, we use the rescaled solution (w1 o W3, 2'2) around 3 - In this case, we
have

wiA (@) < wyA(0) = 0

1 1
1,2 1,2 [ Tin — %3,
wl,n(x) S wl:ﬂ ( ,nE% ") = wl:’n(x%,n) - wz,ﬂ(x%,n) (30)
N

in Q2. In spite of w1 n(2,) — wan(z},) > 0, again by Lemma 7 we have the
following alternatives.

1. Both {w } and {w } are locally uniformly bounded in R?.



wé:i} is locally uniformly bounded, while wi :f, — —oo locally uniformly
in R2.
. There is a finite blowup set S;*? of {w1 n} such that m}?(zo) > 27 for
any zo € S and {wzn} is locally uniformly bounded in R? \S12

wi 2 —oo locally uniformly in R2\ 812, and V4 (23, + €5 nm)e"’l LR

Ez°esl 2 m1 (xo)ézo in M(R2?).

. There is a finite blowup set Sl 2 of {w } such that m (xo) > 2w for
any zo € S and wzl, i,w}i — —00 loca]ly uniformly in R? \S , and
‘/l,n ("”%,n + 8%,n$)6w1 il zxoes}’ ml (1:0)5@0 in M(Rz)

The first a.lternative may be referred to as w% 2 wi 'w2 € CL%*(R?), with the

loc

limit (w;?, w2 ?) satisfying the Toda system on R2. We shall show that this is
impossible in case wé’l = —o0, the second alternative of the rescaling around
], that we are considering. For this purpose, first we assume

iin

1
:I: _3:2
I Ln 2 = o0

lim sup .
2,n

Then, given R > 0, we have r, — +00 such that

n<‘ len m%,nl

: 1
3 I and limsuprné; , < R,
2,n

passing to a subsequence. Since €1, < e}, , we have

/ Vinetin > / Vi netin / Vi me
BR(O) Brng% n(zi,n) Brns% n(z%,n)

1,1 1,2
= Vi.ﬂ(xi,n + Sll.,nz)ewi’" + Vi,ﬂ(xé,n + gé,nx)ewi’" (31)
BV’n(O) B"n (0)

and therefore,

/ Vine¥on Zf Vi(O)ew‘l'l-t-/ Vi(O)e‘”*l'n.
Bgr(0) R? R?

Making R | 0, we obtain

ez [ Vet + [ vioet
R2 R2

for 1 = 1,2, and therefore,

(my, ma) 2> (47, 0) + (4(1 + \}_)'n 41+ \/_)w>

83
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which is impossible by (26).
Now, we proceed to the other case,

lim sup ————l:-—— < 4o0.
Then,
lim sup {w1 (2} ,,) — Wan (23 ,,)} = limsup {~2logei , +2log €5} < +00

holds by (30), because {wi:ﬁ} is locally uniformly bounded in R?. Passing to
a subsequence, we have

1

E2,n
22 021, (32)
in
and thzs implies w."?(z) = w;"(Cz) + 2log C, a contradiction to wy? = —o0

and wy’ € C’lo“(R?) Thus, we observe that the first alternative of the rescaling
around 3 ,, is impossible.

The second alternative is indicated by wy’ C’1 2(R?) and wi? = —o0. The
former function satisfies the Liouville equamon on Ra and this implies mg > 4.
On the other hand, we have already m; > 47 from the former rescaling, that is,

' e C%(R?) and wy! = —oo. Therefore, it holds that (m1, mg) 2 (4, 4r).

In the third alternative, passing to a subsequence, we have w%’i — wy? in

CL%(R?\ 81?) and weakly in W2I(R?) for every q € [1,2) with wy” satisfying

loc

—Auwy? =— Z m? (20)0xo + 2Vz(0)e“’2’ in R?

1,3
QQGSI’

1,2
/ e < +oo,
R2

where m}"? (o) > 2 for each zo € 8. In particular, it holds that

/ Va(0)evs” >21r+— S mi?(ao)

ft()ESi"2

by the third case of Lemma 8, and therefore,

my 2 4w, m2>27r+— Z mi? (z).
:z:(;)ES"L 2

First, we consider the case

zl — gl |
lim supl—-l—'-n—sl—-z’f— = +00. (33)

2,n



85

Since S}’z # (), we have xin € Q such that

22—zl
lim sup '—1’-7‘—1——14 < +o0 (34)
2,n
1,2 w%,n - x% n 2 1
wl,"n el - = Wi,n (xl,n) - W2,n (9:2,77.) — 4. (35)
2,n .

The second relation implies w; (23 ,) — +o00 by won(z3,) — +00, and we
can consider the second rescaling around 3 .;

210N . 2 2 2
wz,,n (.'D) = Win (zl,n + El,nx) - wlyﬂ(zl,n)’
2
where €2 |, = e~wnn{#1,2)/2 _, 0. We have

(x) < wyn(0)

1 2

Ton — 27,

Wy, n(x) < w ( ’ngg n) = wg,n(xé,n) - wl,n(z%,n) - =00
n

z— mln

in 021 = {m € R?| —-;—*— € Q}, and therefore, Lemma 7 guarantees that

{wf ,11} is locally umformly bounded in R2. Of course we have w%’,ll — —00

loca.lly u.mformly in R?, and this case may be referred to as w le Cloc (R2)
and w = —o0, where wf satisfyies the Liouville equation in Rz. The relation
(35) 'unplies €3 . < €3, for large n, and therefore, (33) and (34) imply

Ix%'n mlnl lx% xan_ lx2n ml'n.l

3 > — +-00.
Eln : €3 m

From this condition, we can argue similarly to the first alternative in the previous
rescaling around z7i ,, that is, (31). The concentrations around z}, and z?,
are separated, and we obtain

my 2 47 + 47 = 8. (36)

2 _.1
We may suppose lim”’_lf}_“’_u = X? € 81 by (34) and (35). Since (35) guar-
2 R
antees lim %—“— =0, given R > 0, we have r, — +o0 such that
2

. €1
limsupr,—1™ < R.
62 K



Therefore, we have
1 1 wh? (z)
Vi,n(22,n + €3 n%) e 0m
B(X%,R)

1 n 1 1 1 2
Z/ ey, o Vin(@hpn + €5 n2)e?tn @antens) (e Yida
B(_}.\."}.I__a.’.‘., ﬂ_rz__)

€ 2,n

1 3 : 1
— / A Vi,n(ml,n + 52’n$)CWI'n(zl’"+€2’»"x)(€2,ﬂ)2d$
B(0,ry n) .

B"n (0) ’ ’
for large n. Making n — +o00 and R | 0, we obtain

x2) 2 / Vi(0)e¥t" = 4,
Rﬂ
and therefore, it follows that

mg > 21 + 1m1 (X2) > 4.

1,1
If (33) is not the case, we have ﬁﬂ;—;—ﬁﬁ — X}, passing to a subsequence.
In fact, we have ’

g [ Zin = T3n _ 1 1
12(z) Swid | REE0 ) = wy (ot L) - wan (23 ,)

EQ,n

in QL2, and the right-hand side is not bonded by 832 # @. Thus, we may
assume

wl,ﬂ(m%,n) - wQ,ﬂ-(x%,n) — +o00,

which implies X} € 8}** and b= E‘ 2 — 0. Then, similarly to the case of (33), we
obtain

mi(xd) 2 / ACEE
R2
which guarantees
1
mg > 2w+ Emiﬂ(Xll) 2 4m.

In particular, we have (my,mg) > (4, 4r) in this alternative.



Finally, the fourth alternative does not occur. In fact, we have w%,fl (0)=0,

and therefore, 0 € 8. We can choose R > 0 satisfying Br(0)N 812 = {0},
and define A;, (i = 1,2) by

~Ahipn = Vin(eh, +5 ,2)e%n  in Bg(0)
hin =0  on 8Bg(0).
Then,
hon = w3's — (2ham — h1n)
is a harmonic function satsifying

sup hon £ sup hgn — —oo.

Br(0) 8Br(0)
On the other hand, we have 0 < e¥an (@) <e’=1and e¥in(® 4 0 locally
uniformly in R? \ 8}, and therefore, e“2:n(® — 0 in I} (R?) for every
p € [1,00). This implies

hew — 0 in C**(Bg(0)),

while h; » is a non-negative function. Thus, we obtain

0= w371 (0) = ho,n(0) + 2h2,n(0) = h1,n(0) < ho,n(0) + 2h2,(0)
< sup hon +2|hn| e — —o0,
Br(0) 172,01l (520

a contradiction, and the proof is complete.
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