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THE STRUCTURE AND MEASURE OF SINGULAR SETS
OF SOLUTIONS TO ELLIPTIC EQUATIONS

QING HAN

For a harmonic function in an open set in R2, the subset of critical points
in the nodal set is exactly the singular part of the nodal set. For this reason,
this subset of critical points is called the singular set. It is well known that
the singular set of a 2-dimensional harmonic function is isolated. Around
each point in the singular set, the nodal set consists of finitely many analytic
curves intersecting at this point, forming equal angles. In fact, the number
of singular points can be estimated in terms of the growth of the harmonic
function. One way to do this is to identify R? as C and then the singular
set can be identified as the zero set of some holomorphic function.

In this note, we shall study the critical nodal sets, or the singular sets,
of solutions to homogeneous elliptic equations of the second order. To be
specific, we shall study the structure and the size of the critical nodal sets.
Throughout the paper, we shall assume that u is at least a nonzero C?
solution in B; C R” to the following elliptic equation

n

(0.1) Lu= Z aij(z)0;u + Z bi(z)u + c(z)u = 0,

i,j=1 i=1
where the coefficients satisfy the following assumptions

n

Z aij(z)€:€; > M¢?, for any £ €R", z € By,

(02) i,jnzl n
Z laij(z)| + Z Ibi(z)| + |e(z)| < &, forany z € B,
and

(0.3) ) laij(@) - ay(w)| < K

1,j=1

z —y|, foranyuz,ye€ B,

for some positive constants \,x and K. The Lipschitz condition (0.3) for
the leading coefficients is essential. It implies the unique continuation for
the operator £. In other words, if a solution u to (0.1) vanishes to an infinite
order at a point in Bj, then u is identically zero. For details, see [7].

The author is partially supported by an NSF grant.
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Now we define the nodal set and the singular set by
N(u) = {p € By;u(p) =0},
S(u) = {p € B1;u(p) = |8u(p)| = 0}.
By the implicit function theorem, N (u) \ S(u) is an (n — 1)-dimensional
hypersurface, at least locally. In this note, we shall study S(u). We shall

prove that S(u) is (n — 2)-dimensional and its (n — 2)-dimensional measure
is bounded in terms of the frequency.

1. THE STRUCTURE OF SINGULAR SETS
We first begin with a simple case.

Lemma 1.1. Let a;j, b;, ¢ be smooth in By C R™ and u be a smooth solution
to (0.1) in By. Then S(u) is contained in a countable union of (n — 2)-
dimensional smooth manifolds.

Proof. For any p € B, we set the vanishing order O(p) of u at p as
O(p) = Ou(p) = {d; 8"u(p) =0 for any [v| <d,
0"°u(p) # 0 for some |vp| = d}.

Obviously, O(p) > 2 for p € S(u). For any d > 2, we set

Si(u) = {p € B1; O(p) = d}.
Then we have
(1.1) S(w) = | J Sa(w).

d>2
This is a finite union by the unique continuation. We shall prove that each
S4(u) is (n — 2)-dimensional for each fixed d > 2.
For any p € S4(u), there exists a |3| = d — 2 such that 8%v(p) # 0 for
v = 8Pu. Now applying 8% to (0.1) and evaluating at p, we obtain
n
Y aij(p)dijv(p) = 0.
i,j=1

First, the Hessian matrix (8%v(p)) has a nonzero eigenvalue. Next, we may
diagonalize

(8%u(p)) = diag(A1, -+ , An).
Then we have

a1(P)A1 4+ + an(p)Mn =0,
for some positive constants a;(p),-- - ,a,(p). By assuming \; # 0, we have
another nonzero eigenvalue and hence we may assume )y # 0. Note

aalv(p) = (’\lao’ *t aO)a a%v(p) = (01 )\2,0, ree 70)

By applying the implicit function theorem to dyv and O2v, we conclude that
{61v = 0,0v = 0} is an (n — 2)-dimensional manifold in a neighborhood
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of p. Obviously, this manifold contains Sg(u) in a neighborhood of p. This
finishes the proof. O

Now, we shall discuss nonsmooth solutions. First, we shall generalize the
notion of the vanishing order. Suppose u is a solution to (0.1). By the
unique continuation, for any p € B; there exists an integer d such that

limsup —lﬂ?)—id < oo,
z—p  |T =Pl

lim sup
z—p [T —
Bers [1] proved that there exists a nonzero homogeneous polynomial P of
degree d such that
u(z) = P& - p) + ollz — p|*).

Naturally the integer d, the degree of the polynomial P, is called the vanish-
ing order of u at p, denoted by O(p) or Oy(p). For convenience we call the
nonzero -homogeneous polynomial the leading polynomial of u at p. We have
following results concerning the vanishing order and the leading polynomial.

Lemma 1.2. Let u be a C? solution of (0.1) with (0.2) andv(0.3) and P
be the leading polynomial of u at 0, with d =degP. Then there hold for any
a € (0,1)

Z a,-j(O)BijP =0 1in Rn,

4,j=0

|P(z)| < Cllull2ylel®  in By,

lu(z) — P()| < Cllullzz(zylzl™™  in By (0),

and

b

N =

2
> D (u - P)llzz(s,) < Cllul|z2yrttets  for anyr <
i=1

where C is a constant depending only on n,d, A, o, £ and K.

Lemma 1.3. Suppose that {Ly}3, is a family of elliptic operators in B;
of the form (0.1) satisfying (0.2) and (0.8) and that uy is a C?* solution of
Liur = 0 in By for Kk = 0,1,2,---. Suppose that Ly — Lo in the sense
that the corresponding coefficients converge uniformly and that ux — ug in
L°(B;). Then there holds

(1.2) lim sup O, (0) < Oy, (0).

k—oo
If, in addition, Oy, (0) = d and Py is the leading polynomial of uy at 0 for
k=1,2,---, then the following conclusions hold:
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(1) if Ouy(0) > d, then
P, — 0 uniformly in By as k — oo;
(i) if Oy, (0) = d, then
P, — Py uniformly in B1(0) as k — oo,
where Py is the leading polynomial of vy at 0.

The proof is quite complicated. In [9], we first proved Lemma 1.2 and
Lemma 1.3 by using the monotonicity of the frequency function [7]. Such
a method is limited to elliptic equations of the second order. Later on, we
proved Lemma 1.2 and Lemma 1.3 by using the singular integrals. In fact,
we proved these results for elliptic equations of the arbitrary order. For
details, see [10].

Now we state the main result in this section. It is taken from [9].

Theorem 1.4. Let u be a C? solution to (0.1) with (0.2) and (0.3). Then
there exists the following decomposition

n—2

S(u) = | §(w),

J=0
where each S7(u) is on a countable union of j-dimensional C! graphs, j =
0,1,--- ,n—2.

Proof. The proof consists of several steps. For each fixed d > 2, we shall
study

Sa(u) = {p € S(u); O(u) = d}.
Step 1. We use Lemma, 1.2 to study the local behavior at each point.
For each point y € B% N Sgq(u), set for any r € (0, l;'ilﬂl),

u(y + rz)

1
Then by Lemma 1.2, we have

(1.4) uyr — P in L?(By) asr—0,

(1.3) Uy r(z) = for any = € Bs.

where P = P, is a d-degree non-zero homogeneous polynomial satisfying

n

(1.5) ) Z a,-j(O)ai,-P =0.

1,7=1

Moreover, ||P||;2(3p,) = 1. Note P is the normalized leading polynomial of
u at y.
Since P is a d-degree non-zero homogeneous polynomial, we have

S4(P) = {z;0"P(z) =0, for any |v| < d—1}.
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Obviously 0 € S3(P) by the homogeneity of P. It is easy to see that S;(P)
is a linear subspace and

(1.6) P(z) = P(z +2) for any z € R" and z € S4(P).

Next, we observe that dimSz(P) < n — 2 for d > 2. In fact, (1.6) implies
P is a function of n-dimS;(P) variables. If dimSy(P) =n — 1, P would be
a d-degree monomial of one variable satisfying the equation (1.5). Hence
d<2.

Step 2. We define for each j =0,1,2,...,n — 2,

Si(u) = {y € Sa(u); dimS(P,) = j}-

We claim that S;’i'(u) is on a countable union of j-dimensional C? graphs. In

fact, we shall prove that for any y € S7(u) there exists an r = r(y) such that

S} (u) N Br(y) is contained in a (single piece of) j-dimensional C! graph.
To show this, we let £, be the j-dimensional linear subspace Sa(Py) for

any y € S)(u). For any {yx} C §j(u) with yx — y, we first prove

(1.7) ‘ Angle <yyg, & >— 0.

To prove (1.7), we may assume y = 0 and p = ﬁjﬁ — £ € S™1. Note

Pk € Sa(ug,|y,|) for

o,y (@) = u(|yx|z) .

(f 33[%1(0)“2) i

See (1.3) for notations. We may show by an elementary calculation that

LkuO,'vkl = 0,
where L}, is some second order elliptic operator with a similar structure as
L. Moreover, for £ as in (0.1), we have

n

L — Lo= ) a;;(0)dy,
i,7=1
in the sense that corresponding coefficients converge uniformly. Then by
applying Lemma 1.3, we obtain that P, vanishes at £ with an order at least
d,ie.,
Op,(§) = d.

Since P, is a d-degree homogeneous polynomial, then Op,(§) = d and £ € £,,.
This implies (1.7). _

By (1.7), we obtain that for any y € Sé(u) and small £ > 0 there exists
an r = r(y,e) such that

(1.8) S)(u) N By(y) € Br(y) N Ce(8y),

where
Ce(ty) = {z € R™;dist(z,£y) < €|z}
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Let Py and P be leading polynomials of u at y; and y = 0, respectively. By
Lemma 1.3, we have

P, — P uniformly in Cd(Bl).
This implies
by, — by as k— oo,
as subspaces in R™. By an argument similar as proving (1.7), we may prove
that the constant 7 in (1.8) can be chosen uniformly for any point z € £7(u)

in a neighborhood of y. In other words, for any y € Sj(u) and any small
€ > 0 there exists an r = r(g,y) such that

Sj(u) N Br(2) C Br(2) N Ce(€;) for any z € 8%(u) N By (y).

For € > 0 small enough, this clearly implies that Sg (u) N Br(y) is contained
in a j-dimensional Lipschitz graph. By (1.7) this graph is C1. O

Remark 1.5. In fact, we can prove S™2(u) is on a countable union of (n—2)-
dimensional C# manifolds, for some 0 < B<1.

Now we write a corollary of Theorem 1.4.

Corollary 1.6. Let u be a solution as in Theorem 1.4. Then there holds
S(u) = Se(u) [ S*(u),

where the Hausdorff dimension of S*(u) is at most n — 3, and for any p €

S«(u) the leading polynomial of u at p is a polynomial of two variables after
some rotation of coordinates.

To conclude the present section, we illustrate by an example that in R3
the singular set can be any closed subset in a line segment.

2. THE MEASURE OF SINGULAR SETS

In this section, we shall discuss the geometric measure of singular sets.

We begin with a simple example. Consider a homogenous harmonic poly-
nomial of degree d in R2. By using the polar coordinate z; = rcosf and
z2 = rsinf in R? = {(z1,2)}, we may assume P(z) = r%cosdf. A direct
calculation shows that

P = dr*cos(d — 1), 8P = —dr® !sin(d - 1)8.

Therefore both 6, P and ;P are products of d — 1 different homogeneous
linear functions. Now assume u is a smooth perturbation of P in B;. Then
it is not hard to imagine that the critical set of u has at most (d — 1)? points
in B;. As we shall see, this is quite difficult to prove.

This simple observation illustrates that the size of singular sets of har-
monic polynomials depend on the degree. In order to obtain a measure
estimate of singular sets of solutions to general elliptic equations, we first
need to introduce a quantity to measure the growth of solutions.
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Suppose that £ is an elliptic operator of the form (0.1) satisfying (0.2)
and (0.3) and that u is a C? solution of Lu =0 in Bj. Set

IB, [Oul?

2.1 N =
( ) f831u2

It is proved in [7] that u satisfies
][ uz(m)dm < 4N ][ uz(m) dz, for any zg € B, r <7y,
Bz (p) B (z0) 2

where cg and 79 < 1/3 are positive constants depending only on A, k, K and
n. Here, we denote

7[ u(z)dz = p™" / u?(x)dz.
J By(za) J/ Bp(o)

We then conclude that the vanishing order of u at any point p € By /3 does
not exceed coN.

The quantity N in (2.1) is called the frequency of u in B;. It controls
the vanishing order of u. If u is a homogeneous harmonic polynomial, the
frequency is exactly the degree. See [7] for a discussion of the frequency and
related topics. In [16], Lin conjectured that

H2(S(u) N B%) < cN?,

where c is a positive constant depending only on the elliptic operator L.
The main result is the following theorem. It is taken from [12].

Theorem 2.1. Suppose.that L is an elliptic operator of the form (0.1)
satisfying (0.2) and (0.3) and that u is a C? solution of Lu = 0 in By with

f B, |Ou)?
faB1u2
for some positive constant Ny. Then there ezists a positive integer M, de-

pending on Ny, A\, k and K, such that if, in addition, a;;,b;,c € cM(B,),
there holds

< Ng,

H™2(S(u) N By <G,
where C is a positive constant depending on No, ), K, K and the CM-norms
of the coefficients a;;, b; and c.

The key result is the following lemma for functions in R2.

Lemma 2.2. Let P be a homogeneous harmonic polynomial of degree d > 2
in R2. Then there erist positive constants § and r, depending on P, such
that for any u € C%*(By) with

|'u, - PICQdZ(BI) < 6,

there holds
#(IDu|7 {0} N By) < o(d - 1)?,
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where ¢ 1s a universal constant.

The proof of Lemma 2.2 is based on the Weierstrass-Malgrange Prepara-
tion Theorem for finitely differentiable functions. See [12] for details.
Now we describe the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof consists of several steps.
Step 1. Set

S«(u) = {p €S(u); the leading polynomial of u at p is
a polynomial of two variables by an appropriate rotation}.
By Corollary 1.6, we have
H*2(S(u) \ Sa(u)) = 0.

Then for any € > 0, there exist at most countably many balls B, (z;) with
ri < € and z; € S(u) \ S«(u) such that

(2.2) S(u) \ S«(u) C U By, (z:),
and
(2.3) Y ot < q(e,u),

where y(e,u) — 0 as ¢ — 0.
We claim for any y € S.(u) N By4, there exist R = R(y,u), 7 = r(y,u)
and ¢ = ¢(y,u), with » < R, such

(2.4) H 2 {B,(y) N S(uw)} < er™ 2.

The proof of (2.4) is based on Lemma 2.2 and the fact that the degree of the
leading polynomial at any p € S.(u) is at most coN. We omit the details.
It is obvious that the collection of {B,,(z;)} and {B,)(y)}, ¥ € S.(u),
covers S(u). By the compactness of S(u), there exist z; € S(u)\S«(u),
i=1,---,k=k(g,u), and y; € S«(u), j =1,---,1 = l(e,u), such that

(2.5) 5(u) N Byja © (U Br(2:)) | (Wi By )

withr; <eg i=1,--- ,k,and s; <e,j=1,---,L

Step 2. In Step 1, The constant + in (2.3) and ¢ in (2.4) depend on u. To
improve the results established in Step 1, we should work in a compact class
of elliptic operators satisfying (0.1)-(0.3) and in a compact class of solutions
with controlled frequency. Then by a compactness argument, we conclude
the following result. Let u be as given in Theorem 2.1. For any € > 0 there
exist positive constants C(e¢) and (), depending also on Np, as well as
Ak, K and n, with y(e) — 0 as € — 0, such that there exists a collection of
balls {By,(z;)} with r; < ¢ and z; € S(u) such that

H™ % (S(u) N By /2 \ UBr, (i) < C(e),
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Z ’l"n_2 < v(g)-

We emphasize that C(e) and ~(¢) are independent of u.
Step 3. We use the standard iteration process to prove Theorem 2.1. To
begin with, define

and

¢o = {B1/2(0)} .
Fix an € > 0. We claim that we may find ¢1, ¢, - - -, each of which consists
of a collection of balls, such that for any £ > 1

) £
rad(B) < —(-;—)- for any B € ¢,

Y [rad(B)* % < 4(e)Y,
Begy
and

H2 (S(u)n U B\ U B) sC(e)[*r(s)i”“,

Begy-1 Begq
where C(g) and y(e) are given in Step 2. Observe that

S(u) N By 2(0) cU (S(u U B\UB )

=1 B€¢t 1 Beg

Uﬂ (S(u)ﬂ[] U B) .
£=0 =t BE®;

Hence we have

H™ (S(w) N By2(0)) < C(e) {Zh(e " + inf Zh }

£>1 = _7_
< 2C(e),

provided we take € small such that v(¢) < 1/2.

To prove the claim we construct {¢,} by an induction. Note ¢9p = {B1/2},
independent of €. Suppose ¢g, ¢1,...,0¢—1 are already defined for some
£ > 1. To construct ¢p, we take B = B,(y) € ¢4—1, with r < 1/2. Consider
the transformation z — y + 2rz. Then, via Lu = 0 in B2,(y), we have

£i=0 in B;(0),

where
n

L= Z aij(y + 2r2)0p,z; + Z 2rb;(y + 2rz)8;, + (2r)%c(y + 2rz),

i,j=1 i=1
and
(z) = u(y + 2rz).
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Note Step 2 can be applied to L and 7. Hence we obtain a collection of balls
{Bs;(z)} with s; < € and 2z; € §(4) such that

H™2 (S(@) N Byjs \ UBs,(z1) < C(e),

D sFE < A(e).
Now transform B, /3 back to B,(y) by z — (z — y)/2r. We obtain that for
B = B,(y) € ¢¢—1, there exist finitely many balls {B,,(z;)} in Ba,(y), with
r; < 2¢er, such that

H™2 (S(u) N B.(y) \U By, (:L',)) < C(e)r™ 2,

and

and

Z r?'z < r”'z'y(e).
i

Then we set

¢F = U{Bi(xi)}»

and
B
pe= |J 47
Be&gy—1
Hence we obtain

H 2 Sw)n |J B\ |J B| <Cle) > o,

Bepg-1 Beg, By (zi)€pe-1

and by an induction

2¢)¢ -
ri < (—2—) Y. < hEl
By, (z:)Ede
for each £ > 1. This concludes the proof. O

3. COMPLEX SINGULAR POINTS OF PLANAR HARMONIC FUNCTIONS

In the previous section, we derived a uniform estimate in terms of the
frequency for the measure of singular sets to homogenous elliptic equation.
Up to now, no explicit estimates are known even for harmonic functions.
In this section, we shall derive an explicit estimate for planar harmonic
functions.

Suppose u is a harmonic function defined in the unit ball in R2. Then
u can be extended to a holomorphic function in some ball in C2. To see
this, we simply consider the Taylor expansion of u = u(z) at the origin and
replace z € R? by z € C2. With the estimate of the derivatives of harmonic
functions, the new complex series converges for |z| < R, with R € (0,1)
to be a universal constant. In the following, we always denote by @ the

109



110

SINGULAR SETS

complexification of u. We shall also use Br(z) and Dr(z) to denote open
balls of radius r centered at z and z in R? and C?, respectively. When the
center is the origin, we will simply write B, and D,. The singular sets of u
and 7 are defined as

S(u) ={z € By;u(z) = 0z, u(z) = Og,u(z) = 0},
S(#) ={z € Dg;@(z) = 0,,4(z) = 0, u(z) = 0}.

The main result in this section is the following theorem from [11].

Theorem 3.1. Let u be a (real) harmonic function in By C R2. Then for
some universal constants Ry € (0,1) and ¢ > 0 there holds

# (S(@) N Dp,) < eN?,
where N is defined as in (2.1).

A significant aspect of Theorem 3.1 is that a property of the complixified
i is determined by its restriction on the real space u = it|g2. Here we make
an important remark about the complexification 4. Since u is a harmonic
function, the holomorphic function i satisfies

62111'& + azzzzﬁ - 0.

Theorem 3.1 asserts that the singular set of 1 is isolated and that the number
of singular points can be estimated in terms of the frequency of the (real)
function u. This result does not hold for general holomorphic functions v
satisfying

(3.1) azlzl'u + 622221) = 0.
The following example is taken from [14].

Example 3.2. Let v(z) = (21 —i2)2. Obviously v satisfies (3.1). However,
the singular set of v is not even isolated.

Hence in order to have an isolated singular set for a holomorphic function
v = v(21, 22) satisfying (3.1), all the coefficients in the Taylor expansion of
v have to be real.

Now we begin to prove Theorem 3.1.

We first consider the gradient of homogeneous harmonic polynomials. We
identify R? = C and use the complex coordinate z = 1 +izz. Consider the
homogeneous polynomial

d

7 = (z1 — iz2)? = r% cos df — ir?sin dé.

We use its real part and complex part to construct a homogeneous polyno-
mial map Qg : R2 — R? as follows

d.. . 1(,d 4 zdy\.
Qd(:r) = Qd($1,$2) = (IT;:lsnddBB) = (%EZdi;d;) ’
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or
(Y + iz2)? + (71 — iz2)9)
(32) Que) = (Jm T T T ims)

Each component is a homogeneous harmonic polynomial. In fact Qg4 is the
gradient of some homogeneous harmonic polynomial of degree d + 1. Now
we extend the map Qg : C?2 — C? simply by replacing z = (z1,z2) by
z = (21, 22),

(33)  Qu(2) = Qulz, ) = (55“ +iz) o+ (n - iz2)d)) |

(21 + z'zz)d — (21— i22)%)

We conclude easily

1 , .
|Qa(2)? =3 (Iz1 +i22|® + |21 — i22|*)

1

d
=§ ((|21|2 + lzzl2 + 2(y1z2 — $1y2))

+(lz? + |2z2f* - 2(122 ~ :r1yz))d) :

Notice that only the even power of y;z2 — z1y2 appears in the right side.
Hence we get

(3.4) 1Qa(2)| > ||

Next we shall generalize (3.4) to nonhomogeneous harmonic polynomial
maps.

Lemma 3.3. Suppose P is a harmonic polynomial of degree d + 1, with
P(0) =0 and [ P? > 1. Then there ezists an 1 € (1/2,1) such that

|0P(2)| > €2, for any z € 8D,
for some universal constant € € (0,1).

The proof is based on a straightforward calculation. We omit the details.
Now, by Bezout formula, Lemma 3.3 and the 2-dimensional version of the
Rouché Theorem, we obtain the following estimate.

Lemma 3.4. Suppose that P is a harmonic polynomial of degree d+ 1, with
P(0) = 0 and [ P? > 1, and that f : D; C C? — C? is holomorphic in
D and continuous up to the boundary 8D1. If for the universal e > 0 in
Lemma 8.8, there holds
|f(21,22) = OP(21,23)| < €%, for any (21,22) € D1\ Dy,
then
#{f7(0) N Dy} < d*.
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Next, we list some well known properties of harmonic functions. Suppose
u is a harmonic function in B; C R2. For any p € By, the frequency function
N(p,-) at p is defined as

T fB,.(p) |Vul?
faB,.(p) u?

The frequency N in (2.1) is in fact N(0,1).
The following result is exactly Theorem 1.1 in [16].

N(p,7) =

Theorem 3.5. N(p,r) is a monotone nondecreasing function of r € (0,1
Ip|) for any p € B;.

A corollary of this monotonicity is the doubling property, which we state
only for p = 0. There holds for any r € (0,1/2),

u? < 92NOD l/ 2.
9B,

5, &Bay T
In fact, there holds a more general result for 0 <7 <71 <1
1 o \2N0OD
(3.5) — u? < (—2) - —_ u.
T2J8B,, T T1.J9B,,

For details, see [16].
We also need the following corollary of Theorem 3.5.

Corollary 3.8. There ezists a universal constant No < 1 such that the
following holds. If N(0,1) < Np, then u does not vanish in Bys;. If
N(0,1) > Ny, then there holds .

1
N(p,7) <CN(0,1), for anyp € By,
where C is a universal constant.

The proof follows exactly the same argument in the proof of Proposition
1.2 in [16] and is skipped. In fact, both assertions are proved there explicitly.

The second property we need is the complexification. Again, suppose u
is a harmonic function in B; € R%2. Then for some universal R € (0,1), u
extends to a holomorphic function @(z) in D C C2. Moreover, there holds
for some universal constant ¢ > 0

(3.6) sup |4 < cllu|l L2(a8,)-
Dgr

In the following, R will be fixed such that the above extension property and
(3.6) hold. Hence, the constant c is also fixed, independent of u.

Now we begin to prove Theorem 3.1. We shall prove the following result.
The constant N in Theorem 3.7 means different from that in (2.1).
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Theorem 3.7. There are two universal constants M > 1 and r € (0,1)
such that for a harmonic function u in Bay C R2, with u(0) = 0, satisfying
MfBM |Vu|? <
faBM w7
there holds
#{z € Dy ity (2) = fizy(2) = 0} < 4N2.

Proof. For simplicity, we shall use the same notation to denote harmonic
functions and their complexifications. Let (7, 8) denote polar coordinates in
R? and we write u in the following form

u(r,0) = Zam m(r,8), and D, (r,0) = 1Em(6),

m=1

where pr,(0) satisfies

/1301271(9)019—‘:1, and ¢ (8) + m2pm(6) = 0.
S

Moreover, we may assume, without loss of generality, that

(37) [ we=ya-
m=1

In the following, we set
Ne=inf{ne€Zy; n> N}

In other words, N. = N if N is an integer and N, = [N]+1 otherwise. Here
[N] is the integral part of N. Obviously, we have

N* - 1 __<_ N S N*.
By (3.5), we get

1 / u? < MENOM) w2 = MENOM),
M JaBy, 8B,

which implies
oo

Z aganm < MZN(O,AI).

m=1

By N(0,M) < N < N,, we have obviously

oo
m=1

Therefore, we obtain

(3.8) lam| < MN«~™ for any m > 1.
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Since {r,} is orthonormal in L?(S!), there holds for some universal constant

c>0
c
[ am® 12 = |’IMI2 < .
/631 m;:N.‘ e mZZZN.‘ A/IzN‘
We first choose M large, independent of N, such that
= 1
m>2N,

By (3.6), we get for some universal R € (0,1),
c
sup] Z am@m| S W
R m>2N.

Interior estimates for holomorphic functions imply

(3.10) sup |9( am®m)| < .
Dr/a mg\;m mem = RMN
Set
2N.-1 oo
(3.11) Pi= )" am®m, Re= ) 0m®m.
Then u = P, + R.. Obviously, we have by (3.7) and (3.9)
2N.~-1
3 feml?> .
2
m=1

Then 0P, satisfies the assumptions in Lemma 3.3, with d = 2N, — 2 and
possibly a different normalization constant. By choosing M large enough,
independent of N,, we conclude by (3.10)

sup |DR,| < e2N+2,

Dp/2
where ¢ is the universal constant as in Corollary 3.4, or Lemma 3.3. This
implies

|0u(z) — OPu(2)| < e2M¥*~2, for any z € Dgys-
By applying Corollary 3.4 to du in Dg/y, we conclude that
#{|6u|™1 (0) N Dpgya} < (2N, - 2)%.
This finishes the proof, since N, —1 < N. O
Now we may prove Theorem 3.1.

Proof of Theorem 3.1. Recall N is defined in (2.1).

First, we consider the case that N is small. Let Ny be the constant
in Corollary 3.6. If N < Ny, then u is never zero in B/ by Corollary
3.6. Harnack inequality and interior estimates for harmonic functions and
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holomorphic functions imply that @ has no zeroes in Dg,, for some universal
Ry < 1. Therefore we have S(2) N Dg, = ¢.
Next, we consider N > Np. By Corollary 3.6, there holds for any p € By 4

fBi (p) IVUI2

——5 < CN,
opy 0¥

for some positive constant C' independent of u. For any p € Bj4, with
u(p) = 0, by the scaled version of Theorem 3.7, we have

#{S(@) N Dp,(p)} < eN?,

for some positive constants Ry < 1 and ¢, independent of u and p. To finish
the proof, we consider two cases. If u is never zero in Bp, s, then 4 is
never zero in Dyg, Rr,, a8 in the first part of the proof. This implies that
S(4) N Dapyr, = ¢- If u(p) = 0 for some p € By, /2, then we have

#{S(@) N Dr,(p)} < eN?,
which implies
#{S(@) N Dy/3} < N2
This finishes the proof by taking Ry = min{R;,2R; Ry, R2/2}. O
- To finish this section, we give an example to show that the number of

complex singular points is indeed in the quadratic order of the frequency.
Hence the estimate in Theorem 3.1 is optimal.

Example 3.8. For any integer d > 2 and any small ¢ > 0, consider the
harmonic polynomial u in the polar coordinate

r4+1 cos(d + 1)6.

: 1
u(z) = ercosd —

(z) cosf — ==
Then it is easy to see that

€ — rcosdf
Fulz) = ( rd sin df )

By (3.3), we have

i(z) = [ € ",l((zl +i22)d + (21 — z'zz)d)
oule) = ( ’%2((7-1 +1429)% — (21 —izz)d) > .

A simple calculation shows that Di(z) = 0 has d? solutions close to the
origin. Obviously, the frequency of u is in the order of d.
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