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THE STRUCTURE AND MEASURE OF SINGULAR SETS
OF SOLUTIONS TO ELLIPTIC EQUATIONS

QING HAN

For a harmonic function in an open set in $\mathbb{R}^{2}$ , the subset of critical points
in the nodal set is exactly the singular part of the nodal set. For this reason,
this subset of critical points is called the singular set. It is well known that
the singular set of a 2-dimensional harmonic function is isolated. Around
each point in the singular set, the nodal set consists of finitely many analytic
curves intersecting at this point, forming equal angles. In fact, the number
of singular points can be estimated in terms of the growth of the harmonic
function. One way to do this is to identify $\mathbb{R}^{2}$ as $\mathbb{C}$ and then the singular
set can be identified as the zero set of some holomorphic function.

In this note, we shall study the critical nodal sets, or the singular sets,
of solutions to homogeneous elliptic equations of the second order. To be
specific, we shall study the structure and the size of the critical nodal sets.
Throughout the paper, we shall assume that $\mathrm{u}$ is at least a nonzero $C^{2}$

solution in $B_{1}\subset \mathbb{R}^{n}$ to the following elliptic equation

(0.1) $\mathcal{L}u$

$\equiv\sum_{i,j=1}^{n}a_{ij}(x)\partial_{ij}u+\sum_{i=1}^{n}b_{i}(x)\partial_{i}u+c(x)u=0,$

where the coefficients satisfy the following assumptions
$n$

$\mathrm{p}$ $aij(x)diju\geq\lambda|\xi|^{2}$ , for any $\xi\in \mathbb{R}^{n}$ , $x\in B_{1}$ ,
$:,j=1$

(0.2)
$n$ $n$

$\mathrm{p}$ $|a_{ij}(x)|+$ $1$ $|/\mathrm{t}i(x)$ $|+|c(x)$ $|\leq\kappa$ , for any $x\in B_{1}$ ,
$i,j=1$ $i=1$

and

(0.3)
$\dot{l}$ ,

$\sum_{j=1}^{n}|$($ij(x)-a_{ij}(y)$ $|\leq K|x-y|$ , for my $x$ , $y\in B_{1}$ ,

for some positive constants $\lambda$ , is and $K$ . The Lipschitz condition (0.3) for
the leading coefficients is essential. It implies the unique continuation for
the operator Z. In other words, if a solution $u$ to (0.1) vanishes to an infinite
order at a point in $B_{1}$ , then $u$ is identically zero. For details, see [7].
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Now we define the nodal set and the singular set by
$N(u)=\{p\in B_{1} ; u(p)=0\}$ ,
$S(u)=$ $\{p\in B_{1} ; \mathrm{O}(\mathrm{p})=|\mathrm{C}" \mathrm{t}(p)|=0\}$.

By the implicit function theorem, $N(u)\mathrm{z}$ $S(u)$ is an (yz –1)-dimensi0nal
hypersurface, at least locally. In this note, we shall study $S(u)$ . We shall
prove that $S(u)$ is $(n-2)$-dimensional and its $(n-2)$-dimensional measure
is bounded in terms of the frequency.

1. THE STRUCTURE OF SINGULAR SETS

We first begin with a simple case.

Lemma 1.1. Let $a_{\dot{l}j}$ , $b_{i}$ , $c$ be smooth in $B_{1}\subset \mathbb{R}^{n}$ and $u$ be a smooth solution
to (0.1) in $B_{1}$ . Then $S(u)$ is contained in a countable union of $(n-2)-$
dimensional smooth manifolds.
Proof. For any $p\in B_{1}$ , we set the vanishing order $O(p)$ of $u$ at $p$ as

$O(p)=O_{u}(p)=\{d;\partial^{\nu}u(p)=0$ for any $|\nu|<d,$

$\partial^{\nu_{0}}u(p)\neq 0$ for some $|1_{0}|=d$}.
Obviously, $O(p)\geq 2$ for $p\in$ $\mathrm{S}(\mathrm{u})$ . For any $d\geq 2,$ we set

$S_{d}(u)=\{p\in B_{1;}O(p)=d\}$ .
Then we have
(1.1)

$S(u)=\cup S_{d}(u)d\geq 2^{\cdot}$

This is a finite union by the unique continuation. We shall prove that each
$s_{d}(u)$ is $(n-2)$-dimensional for each fixed $d\geq 2.$

For any $p\in s_{d}(u)$ , there exists a $|$ fl$|=d-2$ such that $\partial^{2}v(p)\neq 0$ for
$v=\partial^{\beta}u$ . Now applying $\partial^{\beta}$ to (0.1) and evaluating at $p$ , we obtain

$n$

1 $a_{ij}(p)\partial_{ij}v\langle p)=0.$

$i,j=1$

First, the Hessian matrix $(\partial^{2}v(p))$ has a nonzero eigenvalue. Next, we may
diagonalize

$(\partial^{2}v(p))=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\lambda_{1}, \cdots , \lambda_{n})$ .
Then we have

$a_{1}(p)\lambda_{1}+\cdots+a_{n}(p)\lambda_{n}=0,$

for some positive constants $a_{1}(p)$ , $\cdots$ , $a_{n}(p)$ . By assuming $\lambda_{1}\neq 0,$ we have
another nonzero eigenvalue and hence we may assume $\lambda_{27^{4}}$ $0$ . Note

$\partial\partial_{1}v(p)=(\lambda_{1},0\cdot\cdot l , 0)$ , $\partial\partial_{2}v(p)=(0, \lambda_{2},0, \cdot\cdot’, 0)$ .
By applying the implicit function theorem to $\partial_{1}v$ and $\partial_{2}v$ , we conclude that
$\{\partial_{1}v=0, \partial_{2}v=0\}$ is an $(n-2)$-dimensional manifold in a neighborhood
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of $p$ . Obviously, this manifold contains $S_{d}(u)$ in a neighborhood of $p$ . This
finishes the proof. $\square$

Now we shall discuss nonsmooth solutions. First, we shall generalize the
notion of the vanishing order. Suppose $u$ is a solution to (0.1). By the
unique continuation, for any $p\in B_{1}$ there exists an integer $d$ such that

$\lim_{xarrow}\sup_{p},\frac{|u(x)|}{|x-p|^{d}}<$ $\mathrm{o}\mathrm{p}$ ,

$\lim \mathrm{s}xarrow$7 $\frac{|u(x)|}{|x-p|^{d+1}}=\infty$ .

Bers [1] proved that there exists a nonzero homogeneous polynomial $P$ of
degree $d$ such that

$u(x)=P(x-p)+o(|x-p|^{d})$ .
Naturally the integer $d$ , the degree of the polynomial $P$ , is called the vanish-
ing order of $\mathrm{u}$ at $p$ , denoted by $O(p)$ or $O_{\mathrm{u}}(p)$ . For convenience we call the
nonzero homogeneous polynomial the leading polynomial of $u$ at $p$ . We have
following results concerning the vanishing order and the leading polynomial.

Lemma 1.2. Let $u$ be a $C^{2}$ solution of (0.1) with (0.2) and (0.3) and $P$

be the leading polynomial of $u$ at 0, with $d=$ degP. Then there hold for any
a $\in(0,1)$

$\sum_{i,j=0}^{n}a_{ij}(0)\partial_{ij}P=0$ in $\mathbb{R}^{n}$ ,

$|P$ ($x\mathrm{l}\leq C||u||_{L^{2}(B_{1})}|x|^{d}$ in $B_{1}$ ,

$|u(x)-P(x)|\leq C||u||L^{2}(B1)$ $|x|^{d+}$’ in $B_{1,2},(0)$ ,

and

$\sum_{i=1}^{2}r^{i}||D^{i}(u-P)||_{L^{2}(B,)}.\leq C||u||_{L^{2}(B_{1})}r^{d+\alpha+\frac{n}{2}}$ for any $r \leq\frac{1}{2}$ ,

where $C$ is a constant depending only on $n$ , $d$ , $\lambda$ , $\alpha$ , $\kappa$ and $K$ .

Lemma 1.3. Suppose that $\{\mathcal{L}_{k}\}_{k=0}^{\infty}$ is a family of elliptic operators in $B_{1}$

of the form (0.1) satisfying (0.2) and (0.3) and that $u_{k}$ is a $C^{2}$ solution of
$\mathcal{L}_{k}u_{k}$ $=0$ in $B_{1}$ for $k=0,1,2$, $\cdots l$ Suppose that $1:_{k}arrow l$: in the sense
that the corresponding coefficients converge uniformly and that $\mathrm{i}\mathrm{J}karrow u0$ in
$L^{\infty}(B_{1})$ . Then there holds

(1.2) $\lim_{karrow}\sup_{\infty}O_{\mathrm{u}_{k}}(0)\leq O_{u_{0}}(0)$ .

If, in addition, $O_{u_{k}}(\mathrm{O})=d$ and $P_{k}$ is the leading polynomial of $uk$ at 0 for
$k=1,2$ , $\cdots$ , then the following conclusions hold:
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(i) if $O_{u\mathrm{o}}(\mathrm{O})>d,$ then
$/’ 7,$ $arrow 0$ uniform $ly$ in $B_{1}$ as $karrow\infty$ ;

(ii) if $O_{u0}(\mathrm{O})=d,$ then

$P_{k}arrow P0$ uniformly in $B_{1}(0)$ as $karrow\infty$ ,

where $P_{0}$ is the leading polynomial of $u_{0}$ at 0.

The proof is quite complicated. In [9], we first proved Lemma 1.2 and
Lemma 1.3 by using the monotonicity of the frequency function [7]. Such
a method is limited to elliptic equations of the second order. Later on, we
proved Lemma 1.2 and Lemma 1.3 by using the singular integrals. In fact,
we proved these results for elliptic equations of the arbitrary order. For
$\det$ails, see [10].

Now we state the main result in this section. It is taken bom [9].

Theorem 1.4. Let u be a $C^{2}$ solution to (0.1) with (0.2) and (0.3). Then
there exists the following decomposition

$5(\mathrm{t}\mathrm{z})$ $=\cup \mathrm{S}^{\mathrm{j}}(u)n-2j=0$ ’

where each $S^{j}(u)$ is on a countable union of $j$ -dimensional $C^{1}$ graphs, $j=$

$0,1$ , $\cdots,n-2,$

Proof. The proof consists of several steps. For each fixed $d\geq 2,$ we shall
study

$S_{d}(u)=\{p\in S(u);O(u)=d\}$ .
Step 1. We use Lemma 1.2 to study the local behavior at each point.
For each point $y\in B_{1,2},$

$\cap S_{d}(u)$ , set for any $r\in(0,-[perp] y\lrcorner)\underline{1}_{-2}$ ,

(1.3) $u_{y,r}(x)= \frac{u(y+rx)}{(+\partial B..(y)|u|^{2})^{\frac{1}{2}}}$ for any $x\in B_{2}$ .

Then by Lemma 1.2, we have

(1.4) $u_{y,r}arrow P$ in $L^{2}(B_{2})$ as $rarrow 0,$

where $P=P_{y}$ is a $d$-degree non-zero homogeneous polynomial satisfying

(1.5) $\sum na_{\mathrm{i}\mathrm{j}}(0)\partial_{ij}P=0.$

$i,j=1$

Moreover, $|1\mathrm{P}||_{L(\partial B_{1})}2=1.$ Note $P$ is the normalized leading polynomial of
tt at $y$ .

Since $P$ is a $d$-degree non-zero homogeneous polynomial, we have

$S_{d}(P)=$ { $x,\cdot \mathrm{d}\mathrm{v}\mathrm{P}$ { $\mathrm{x})=0$ , for any $|\mathrm{y}|\leq d-$ $1$ }.
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Obviously $0\in S_{d}(P)$ by the homogeneity of P. It is easy to see that $S_{d}(P)$

is a linear subspace and

(1.6) $P(x)=P(x+z)$ for any $x\in \mathbb{R}^{n}$ and $z\in S_{d}(P)$ .
Next, we observe that $\dim S_{d}(P)\leq$ n-2 for $d\geq 2.$ In fact, (1.6) implies
$P$ is a function of $n-\dim S_{d}(P)$ variables. If $\dim S_{d}(P)=n-1$ , $P$ would be
a $d$-degree monomial of one variable satisfying the equation (1.5). Hence
$d<2.$

Step 2. We define for each $j=0,1,2$ , $\ldots$ , $n-2$ ,
$S_{d}^{j}(u)=\{y\mathrm{g}S_{d}(u);\dim S_{d}(P_{y})=j\}$ .

We claim that $S_{d}^{j}(u)$ is on a countable union of $\mathrm{j}$ -dimensional $C^{1}$ graphs. In
fact, we shall prove that for any $y\in S_{d}^{j}(u)$ there exists an $r=r(y)$ such that
$S_{d}^{j}(u)\cap B_{r}(y)$ is contained in a (single piece of) $j$-dimensional $C^{1}$ graph.

To show this, we let $\ell_{y}$, be the $j$-dimensional linear subspace $s_{d}(P_{y})$ for
any $y\in S_{d}^{j}(u)$ . For any $\{y_{k}\}\subset S_{d}^{j}(u)$ with $ykarrow y,$ we first prove

(1.7) Angle $<yyk$ , $\ell_{\psi}>arrow 0.$

To prove (1.7), we may assume $!/=0$ and $p_{k}=\ovalbox{\tt\small REJECT}_{k}|y\overline{|}arrow\xi\in \mathrm{S}^{n-1}$ . Note
$p_{k}\in S_{d}(u_{0,|y_{k}|)}$ for

$u_{0,|y_{k}|}(x)= \frac{u(|y_{k}|x_{d})}{(+\partial B_{1v_{k}1}(0)^{u^{2)^{\frac{1}{2}}}}}$
.

See (1.3) for notations. We may show by an elementary calculation that

$\mathcal{L}_{k}u_{0,|y_{k}|}.=0,$

where $\mathcal{L}_{k}$ is some second order elliptic operator with a similar structure as
$\mathcal{L}$ . Moreover, for $\mathcal{L}$ as in (0.1), we have

$(:_{k} arrow \mathcal{L}_{0}\equiv\sum_{i,j=1}^{n}a_{ij}(0)\partial_{ij}$ ,

in the sense that corresponding coefficients converge uniformly. Then by
applying Lemma 1.3, we obtain that $P_{y}$ vanishes at 4 with an order at least
$d$ , i.e.,

$O_{P_{y}}(\xi)\geq d.$

Since $P_{y}$ is a $d$-degree homogeneous polynomial, then $O_{P_{y}}(\xi)=d$ and $\xi$ $\in\ell_{y}$ .
This implies (1.7).

By (1.7), we obtain that for any $y\in S_{d}^{j}(u)$ and small $\epsilon$ $>0$ there exists
an $r=r(y,\epsilon)$ such that

(1.8) $S_{d}^{j}(u)\cap B,(y)\subset B_{r}(y)\cap C_{\epsilon}(\ell_{y})$ ,

where
$C_{\epsilon}(\ell_{y},)=$ { $z\in \mathbb{R}^{n}$ ; dist(z, $\ell_{y},)\leq\epsilon|z|$ }.
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Let $P_{k}$ and $P$ be leading polynomials of $u$ at $y_{k}$ and $y=0,$ respectively. By
Lemma 1.3 we have

$P_{k}arrow P$ uniformly in $C^{d}(B_{1})$ .

This implies
$\ell_{yk},arrow\ell_{y}$, as $karrow\infty$ ,

as subspaces in $\mathbb{R}^{n}$ . By an argument similar as proving (1.7), we may prove
that the constant $r$ in (1.8) can be chosen uniformly for any point $z\in$ $\mathcal{L}\mathrm{p}(\mathrm{t}\mathrm{z})$

in a neighborhood of $y$ . In other words, for any $y\in S_{d}^{j}(u)$ and any small
$\epsilon$ $>0$ there exists an $r=r(\epsilon,y)$ such that

$S_{d}^{j}(u)\cap B_{r}(z)\subset B_{\Gamma}(z)\cap C_{\epsilon}(\ell_{z},)$ for any $z\in S_{d}^{j}(u)\cap B_{r}(y)$ .

For $\epsilon>0$ small enough, this clearly implies that $S_{d}^{j}(u)\cap B_{r}(y)$ is contained
in a $\mathrm{y}$ -dimensionaJ Lipschitz graph. By (1.7) this graph is $C^{1}$ . $\square$

Remark 1.5. In fact, we can prove $S^{n-2}(u)$ is on a countable union of $(n-2)-$
dimension $C^{1,\beta}$ manifolds, for some $0<\beta<1.$

Now we write a corollary of Theorem 1.4.

Corollary 1.6. Let $u$ be a solution as in Theorem 1.4. Then there holds
$5(\mathrm{u})$ $=$ $\mathrm{S}*(\mathrm{t}\mathrm{z})$ $\cap$ $5”(u)$ ,

where the Hausdorff dimension of $S^{*}(u)$ is at most $n-$ $3$ , and for any $p\in$

$S_{*}(u)$ the leading polynomial of $\mathrm{u}$ at $p$ is a polynomial of two variables after
some rotation of coordinates.

To conclude the present section, we illustrate by an example that in $\mathbb{R}^{3}$

the singular set can be any closed subset in a line segment.

2. THE MEASURE OF SINGULAR SETS
In this section, we shall discuss the geometric measure of singular sets.
We begin with a simple example. Consider a homogenous harmonic poly-

nomial of degree $d$ in $\mathbb{R}^{2}$ . By using the polar coordinate $x_{1}=r$ cos& and
z2 $=r$ sin& in $\mathbb{R}^{2}=\{(x_{1}, x_{2})\}$ , we may assume $P(x)=r^{d}\cos d\theta$ . A direct
calculation shows that

$\partial_{1}P=dr^{d-1}\cos(d-1)\theta$, $\partial_{2}P=-dr^{d-1}\sin(d-1)$ &.
Therefore both $\partial_{1}P$ and $\partial_{2}P$ are products of $d-1$ different homogeneous
linear functions. Now assume tz is a smooth perturbation of $P$ in $B_{1}$ . Then
it is not hard to imagine that the critical set of tz has at most $(d-1)^{2}$ points
in $B_{1}$ . As we shall see, this is quite difficult to prove.

This simple observation illustrates that the size of singular sets of har-
monic polynomials depend on the degree. In order to obtain a measure
estimate of singular sets of solutions to general elliptic equations, we first
need to introduce a quantity to measure the growth of solutions.
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Suppose that $\mathcal{L}$ is an elliptic operator of the form (0.1) satisfying (0.2)
and (0.3) and that $u$ is a $C^{2}$ solution of $Cu$ $=0$ in $B_{1}$ . Set

(2.1) $N= \frac{\int_{1}|\partial u|^{2}}{\int\int_{\partial B_{1}u^{2}}}$ .

It is proved in [7] that tt satisfies

$f_{B_{2},.(p)}u^{2}(x)dx\leq 4^{c\mathrm{o}N}f_{B,.(x\mathrm{o})}u^{2}(x)dx$ , for any $x_{0}\in B_{\frac{1}{2}}$ , $r<r_{0}$ ,

where $c_{0}$ and $r_{0}<1/3$ are positive constants depending only on $\lambda$ , $\kappa$ , $K$ and
$n$ . Here, we denote

$t_{B_{\rho}(x\mathrm{o})}$ $\mathrm{z}^{2}(x)dx\equiv\rho^{-n}.\{\begin{array}{l}u^{2}(x)dxB_{\rho}(x\mathrm{o})\end{array}$

We then conclude that the vanishing order of $u$ at any point $p\mathrm{E}$ $B_{1/2}$ does
not exceed $\mathrm{c}\mathrm{q}\mathrm{N}$ .

The quantity $N$ in (2.1) is called the frequency of $u$ in $B_{1}$ . It controls
the vanishing order of $u$ . If $\mathrm{u}$ is a homogeneous harmonic polynomial, the
$\mathrm{b}\mathrm{e}\mathrm{q}_{11}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{y}$ is exactly the degree. See [7] for a discussion of the frequency and
related topics. In [16], Lin conjectured that

$\mathcal{H}^{n-2}$ ($S(u)$ rl $B_{1,2},$ ) $\leq cN^{2}$ ,

where $c$ is a positive constant depending only on the elliptic operator Z.
The main result is the following theorem. It is taken fiiom [12].

Theorem 2.1. Suppose that C is an elliptic operator of the form (0.1)
satisfying (0.2) and (0.3) and that u is a $C^{2}$ solution of Cu $=0$ in $B_{1}$ with

$\frac{\int_{B_{1}}|\partial u|^{2}}{\int_{\partial B_{1}u^{2}}}\leq N_{0}$ ,

for sorne positive constant $N_{0}$ . Then there exists a positive integer $M$ , de-
pending on $/\mathrm{S}_{0}$ , $\lambda$ , $\kappa$ and $K$ , such that if, in addition, $a_{ij}$ , $b_{i}$ , $c\in C^{\mathrm{A}\mathrm{f}}(B_{1})$ ,
there holds

$ll^{n-2}(S(u) " B_{1,2},)\leq C,$

where $C$ is a positive constant depending on Nq, )$S$ , $\kappa$ , $K$ and the $C^{\mathrm{A}\mathrm{f}}$ -no $rms$

of the coefficients $a_{ij},$
$b_{i}$ and $c$ .

The key result is the following lemma for functions in $\mathbb{R}^{2}$ .
Lemma 2.2. Let $P$ be a homogeneous $ha$ rmonic polynomial of degree $d\geq 2$

in $\mathbb{R}^{2}$ . Then there exist positive constants $\delta$ and $r$ , tiepencling on $P$ , such
that for any $u\in C^{2d^{2}}(B_{1})$ with

$|u-P|_{C^{2d^{2}}(B_{1})}<\delta$ ,

there holds
$\#(|Du|^{-1}\{0\}\cap B_{1,2},)\leq c(d-1)^{2}$ ,
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where $c$ is a universal constant

The proof of Lemma 2.2 is based on the Weierstrass-Malgrange Prepara-
tion Theorem for finitely differentiate functions. See [12] for details.

Now we describe the proof of Theorem 2.1.

Proof of Theorem 2.1. The proof consists of several steps.
Step 1. Set

$\mathrm{S}\mathrm{S}(\mathrm{u})$ $=\{p\in S(u)$ ; the leading polynomial of $u$ at $p$ is
a polynomial of two variables by an appropriate rotation}.

By Corollary 1.6, we have

$H^{n-2}(S(u)\mathrm{S} 5_{*}(u))=0.$

Then for any $\epsilon>0,$ there exist at most count many balls $B_{r_{\mathrm{i}}}(x_{i})$ with
$r_{i}\leq\epsilon$ and $xi\in 5(u)$

$\mathrm{z}$

$5_{*}(\mathrm{t}\mathrm{t})$ such that

(2.2) 5 $(u)\backslash \mathrm{S}_{*}(u)$

$\subset\bigcup_{i}B_{r_{i}}(x_{i})$
,

and

(2.3) $\sum r_{i}^{n-2}\leq)(\epsilon, u)$ ,

where $\gamma(\epsilon, u)arrow 0$ as $\epsilonarrow 0.$

We claim for any $y\mathrm{E}$ $S_{*}(u)\cap B_{3/4}$ , there exist $R=$ c(y, $u$ ), $r=r(y, u)$
and $c=c(y, u)$ , with $r<R,$ such

(2.4) $H^{n-2}\{B_{r}(y)\cap S(u)\}\leq cr^{n-2}$ .

The proof of (2.4) is based on Lemma 2.2 and the fact that the degree of the
leading polynomial at any $p\in 5_{*}(u)$ is at most $c_{0}N$ . We omit the details.

It is obvious that the collection of {Br.(xi)} and $\{B_{r(y)}(y)\}$ : $y\in S_{*}(u)$ ,
covers $\mathrm{S}(\mathrm{u})$ . By the compactness of $S(u)$ , there exist $x_{i}\in 5(u)^{\mathrm{s}}5_{*}(\mathrm{v}\mathrm{z})$ ,
$i=1$ , $\cdots$ , $k=k(\epsilon, u)$ , and $j_{j}$ E- $S_{*}(u)$ , $7=1$ , $\cdot$ $\cdot 1$ , $l=l(\epsilon, u)$ , such that

(2.5) $S(u) \cap B_{3/4}\subset(\cup^{k}i=1B_{r}(:x_{i},))\cup(\bigcup_{j=1}^{l}B_{s_{j}}(y_{j}))$ ,

with $r_{i}\leq\epsilon$ , $i=1$ , $\cdots$ , $k$ , and $s_{j}\leq\epsilon$ , $j=1$ , $\cdot$ . , 1.
Step 2. In Step 1, The constant $\mathrm{y}$ in (2.3) and $c$ in (2.4) depend on $u$ . To

improve the results established in Step 1, we should work in a compact class
of elliptic operators satisfying (0.1)-(0.3) and in a compact class of solutions
with controlled frequency. Then by a compactness argument, we conclude
the following result. Let $u$ be as given in Theorem 2.1. For any $\epsilon>0$ there
exist positive constants $\mathrm{C}(\mathrm{e})$ and $\gamma(\epsilon)$ , depending also on $N_{0}$ , as well as
$\lambda$ , $\kappa$ , $K$ and $n$ , with $\gamma(\epsilon)arrow 0$ as $\epsilonarrow 0,$ such that there exists a collection of
balls $\{B_{r}(:x_{i})\}$ with $r_{i}\leq\epsilon$ and $x_{i}\in 5(u)$ such that

$\mathcal{H}^{n-2}(S(u)\cap B_{1/2}\backslash \cup B_{r}(:x_{i}))\leq C(\epsilon)$,
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and
$\sum r_{i}^{n-2}\leq\gamma o)$ .

We emphasize that $C(\epsilon)$ and $\gamma(\epsilon)$ are independent of $\mathrm{u}$ .
Step 3. We use the standard iteration process to prove Theorem 2.1. To

begin with, define
$\phi_{0}=\{B_{1/2}(0)\}$

Fix an $\epsilon>0.$ We claim that we may find $\mathrm{E}$), $\mathrm{E}_{2}$ , $\cdots$ , each of which consists
of a collection of balls, such that for any $\ell,$ $\geq 1$

rad(fi) $\leq\frac{(2\epsilon)^{\ell}}{2}$ for any $B\in\phi\ell$ ,

$\sum[\mathrm{r}\mathrm{a}\mathrm{d}(B)]^{n-2}\leq\gamma(\epsilon)^{t}$ ,
$B\in\phi\ell$

and

$H^{n-2}$ ( $5(\mathrm{t}\mathrm{i})$ $\cap\cup B\backslash \cup B$)$B\in\phi_{\ell-1}B\in\phi p\leq C(\epsilon)[\gamma(\epsilon)]^{\ell-1}$
,

where $C(\epsilon)$ and $\gamma(\epsilon)$ are given in Step 2. Observe that

$S(u) \cap B_{1/2}(0)\subset\bigcup_{\ell=1}^{\infty}(\mathrm{S}(\mathrm{t}\mathrm{Z})$ $\cap(\cup BB\in\phi_{\ell-1}\backslash B\in\phi p\cup B))$

$\cup\cap\ell=0\infty(S(u)\cap\cup\cup B)j=\mathit{1}B\in\phi_{j}\infty$

Hence we have

$Lt^{n-2}(S(u) \cap B_{1/2}(0))\leq C(\epsilon)\{\sum_{\ell\geq 1}[\gamma(\epsilon)]^{\ell-1}+\inf_{\ell\geq 1}\sum_{j=t}^{\infty}[\gamma(\epsilon)]^{j}\}$

$\leq 2C(\epsilon)$ ,

provided we take $\epsilon$ small such that $\gamma(\epsilon)\leq 1/2$ .
To prove the claim we construct $\{\phi\ell\}$ by an induction. Note $’ 0=\{B_{1/2}\}$ ,

independent of $\epsilon$ . Suppose $\phi_{0}$ , $\phi_{1}$ , $\ldots$ , $\phi_{\ell-1}$ are already defined for some
$\ell,$ $\geq 1.$ To construct $/\ell$ , we take $B=B_{r}(y)\in$ $1\ell-1$ , with $r\leq 1/2$ . Consider
the transformation $x\mapsto yf2rx$ . Then, via ISu $=0$ in $B_{2r}(y)$ , we have

ti $=0$ in $B_{1}(0)$ ,
where

$\tilde{\mathcal{L}}=\sum_{i,j=1}^{n}a_{ij}(y+2rx)\partial_{xx_{j}}:+\sum_{i=1}^{n}2rb_{i}(y+2rx)\partial_{x}:+(2r)^{2}c(y+2rx)$,

and
$\tilde{u}(x)$ $=u(y42rx)$ .
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Note Step 2 can be applied to $\overline{\mathcal{L}}$ and $\tilde{u}$ . Hence we obtain a collection of balls
$\{B_{s_{i}}(z_{\iota})\}$ with $s_{i}\leq\epsilon$ and $z_{i}\in S(\overline{u})$ such that

$H^{n-2}(S(\overline{u})\cap B_{1/2}\backslash \cup B_{s:}(z_{i}))\leq C(\epsilon)$ ,

and
$\sum s_{i}^{n-2}\leq\gamma(\epsilon)$ .

Now transform $B_{1/2}$ back to $Br(y)$ by $x$ $\mapsto(x -y)/2r$ . We obtain that for
$B=B_{f}(y)\in$ $\mathrm{O}/-\mathrm{i}$ , there exist finitely many balls {Bri (xi)} in Br(y), with
$ri\leq 2\epsilon r,$ such that

$H^{n-2}$ ($S(u)$
”

$B_{r}(y) \backslash \bigcup_{i}B_{r}.\cdot(x_{i}))\leq C(\epsilon)r^{n-2}$ ,

and
$\sum_{i}r_{i}^{n-2}\leq r^{n-2}$’ $(\epsilon)$ .

Then we set
$\phi_{\ell}^{B}=\bigcup_{i}\{B_{i}(x_{i})\}$

,

and
$\phi_{\ell}=$ $\cup$ $\phi_{\ell}^{B}$ .

$B\in\phi_{\ell-1}$

Hence we obtain

$H^{n-2}$ ($S(u) \cap\bigcup_{B\in\phi p-1}$
$/117\backslash \cup B$)$B \in\phi_{\ell}\leq C(\epsilon)(_{B,(x.)\in\phi p-1}.\cdot\sum_{i}r_{i}^{n-2})$ ,

and by an induction

$r_{i} \leq\frac{(2\epsilon)^{\mathit{1}}}{2}$ , $\sum$ $r_{\dot{1}}^{n-2}\leq[\gamma(\epsilon)]^{f}$ ,
$B_{f}.(x:)\in\phi p$

for each $\ell,$ $\geq 1.$ This concludes the proof. $\square$

3. COMPLEX SINGULAR POINTS OF PLANAR HARMONIC FUNCTIONS

In the previous section, we derived a uniform estimate in terms of the
frequency for the measure of singular sets to homogenous elliptic equation.
Up to now, no explicit estimates are known even for harmonic functions.
In this section, we shall derive an explicit estimate for planar harmonic
functions.

Suppose $u$ is a harmonic function defined in the unit ball in $\mathbb{R}^{2}$ . Then
$u$ can be extended to a holomorphic function in some ball in $\mathbb{C}^{2}$ . To see
this, we simply consider the Taylor expansion of $u=u(x)$ at the origin and
replace $x\in \mathbb{R}^{2}$ by $z\in \mathbb{C}^{2}$ . With the estimate of the derivatives of harmonic
functions, the new complex series converges for $|z|<R,$ with $R\in(0,1)$

to be a universal constant. In the following, we always denote by $\overline{u}$ the
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complexification of $u$ . We shall also use $B_{r}(x)$ and $D_{r}(z)$ to denote open
balls of radius $r$ centered at $x$ and $z$ in $\mathbb{R}^{2}$ and $\mathbb{C}^{2}$ , respectively. When the
center is the origin, we will simply write $B_{r}$ and $D_{r}$ . The singular sets of $u$

and $’\tilde{l\lambda}$ are defined as
$\mathrm{S}(u)$ $=\{x\in B_{1;}u(x)=\partial_{x_{1}}u(x)=\partial_{x_{2}}u(x)=0\}$ ,
$5(\tilde{u})$ $=\{z\in D_{R;}\overline{u}(z)=\partial_{z_{1}}\tilde{u}(z)=\partial_{z_{2}}\overline{u}(z)=0\}$ .

The main result in this section is the following theorem from [11].

Theorem 3.1. Let tz be $a$ (real) harmonic function in $B_{1}\mathrm{c}$: $\mathbb{R}^{2}$ . Then for
some universal constants $R_{0}\in(0,1)$ and $c>0$ there holds

$f$ $(S(\tilde{u})\cap D_{R\mathrm{o}})\leq cN^{2}$ ,

where $N$ is defined as in $(2,1)$ .
A significant aspect of Theorem 3.1 is that a property of the complixified

$\overline{u}$ is determined by its restriction on the real space $u=$ $4_{\mathrm{H}^{2}}$ . Here we make
an important remark about the complexification $\overline{u}$ . Since $u$ is a harmonic
function, the holomorphic function $\overline{u}$ satisfies

$\partial_{z_{1}z_{1}}\tilde{u}+\partial_{z_{2}z_{2}}\tilde{u}=0.$

Theorem 3.1 asserts that the singular set of $\tilde{u}$ is isolated and that the number
of singular points can be estimated in terms of the ffequency of the (real)
function $u$ . This result does not hold for general holomorphic functions $v$

satisfying

(3.1) $\partial_{z_{1}z_{1}}v+\partial_{z_{2}z_{2}}v=0.$

The following example is taken ffom [14].

Example 3.2. Let $v(z)$ $=(z_{1}-iz_{2})^{2}$ . Obviously $v$ satisfies (3.1). However,
the singular set of $v$ is not even isolated.

Hence in order to have an isolated singular set for a holomorphic function
$v=$ v(z) $z_{2})$ satisying (3.1), all the coefficients in the Taylor expansion of
$v$ have to be real.

Now we begin to prove Theorem 3.1.
We first consider the gradient of homogeneous harmonic polynomials. We

identify $\mathbb{R}^{2}=\mathbb{C}$ and use the complex coordinate $z=x_{1}+ix_{2}$ . Consider the
homogeneous polynomial

$\overline{z}^{d}=$ $(x_{1}-ix2)d=r^{d}\cos d\theta-ir^{d}\sin d\theta$ .

We use its real part and complex part to construct a homogeneous polyn0-
mial map $Q_{d}$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ as follows

$Q_{d}(x)=Q_{d}(x_{1}, x_{2})=(\begin{array}{ll}r^{d} \mathrm{c}\mathrm{o}\mathrm{s}d\theta-r^{d} \mathrm{s}\mathrm{i}\mathrm{n}d\theta\end{array})$ $=(_{(z-)}^{\frac{1}{\frac{2f}{2}}(+)}z_{d\overline{\frac{z}{z}}d}^{dd})$ ,
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or

(3.2) $Q_{d}(x)=(_{\frac{\frac{1}{2l}}{2}((x_{1}+ix_{2})^{d}-(x_{1}-ix_{2})^{d})}^{((x_{/1}+ix_{/2})^{d}+(x-ix_{2})^{d})},1\lrcorner)$

Each component is a homogeneous harmonic polynomial. In fact $Q_{d}$ is the
gradient of some homogeneous harmonic polynomial of degree $d+$ l. Now
we extend the map $Q_{d}$ : $\mathbb{C}^{2}arrow \mathbb{C}^{2}$ simply by replacing $x=(x_{1}, x_{2})$ by
$z=(z_{1}, z_{2})$ ,

(3.3) $Q_{d}(z)=Q_{d}(z_{1}, z_{2})=(_{((z_{1}+iz_{2})^{d}-(z_{1}-iz_{2})^{d})}^{\frac{1}{\frac{2l}{2}}((z_{1}+iz_{2})^{d}+(z_{1}-iz_{2})^{d})})$

We conclude easily

$|Q$ $\mathrm{z}(z)|^{2}=\frac{1}{2}(|z_{1}+iz_{2}|^{2d}+|z1 -iz_{2}|^{2d})$

$= \frac{1}{2}((|z_{1}|^{2}+|z_{2}|^{2}+2(y_{1}x_{2}-x_{1}y_{2}))^{d}$

$+(|z_{1}|^{2}+|z_{2}|^{2}-2(y_{1}x_{2}-x_{1}y_{2}))^{d})$

Notice that only the even power of $\mathrm{y}\mathrm{i}\mathrm{x}2-\mathrm{x}\mathrm{i}\mathrm{y}2$ appears in the right side.
Hence we get

(3.4) $|Q$ $\mathrm{z}(z)|\geq|z|’-$

Next we shall generalize (3.4) to nonhomogeneous harmonic polynomial
maps.

Lemma 3,3. Suppose $P$ is a harmonic polynomial of degree $d+$ l, with
$P(0)=0$ and $\mathrm{j}_{@}{}_{1}P^{2}\geq 1.$ The$n$ there exists an $r\in(1/2,1)$ such that

$|\partial 7$ $(z)|>\epsilon^{d}$ , for any $z\in\partial D_{r}$ ,

for some universal constant $\epsilon$ $\in(0,1)$ .

The proof is based on a straightforward calculation. We omit the details.
Now, by Bezout formula, Lemma 3.3 and the 2-dimensional version of the

Rouch\’e Theorem, we obtain the following estimate.

Lemma 3.4. Suppose that $P$ is a harmonic polynomial of degree $d11$ , with
$P(0)=0$ and $\int_{@}{}_{1}P^{2}\geq 1$ , and that $f$ : $D_{1}\subset \mathbb{C}^{2}arrow \mathbb{C}^{2}$ is holomorphic in
$D_{1}$ and continuous up to the boundary $\partial D_{1}$ . If for the universal $\epsilon$ $>0$ in
Lernrna 3.3 there holds

$|f(z_{1}, z_{2})$ $-\partial P(z_{1}, z_{2})|<\epsilon^{d}$ , for any $(z_{1}, z_{2})\in D_{1}\backslash D_{1/2}$ ,

then
$\#\{f^{-1}(0)\cap D_{1/2}\}\leq d^{2}$ .
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Next, we list some well known properties of harmonic functions. Suppose
$u$ is a harmonic function in $B_{1}\subset$ R. For any $p\in B_{1}$ , the frequency function
$N(p, \cdot)$ at $p$ is defined as

$N(p, r)= \frac{r\int_{B,.(p)}|\nabla u|^{2}}{\int_{\partial B,(p)}u^{2}}.\cdot$

The frequency $N$ in (2.1) is in fact $N(0,1)$ .
The following result is exactly Theorem 1.1 in [16].

Theorem 3.5. $N(p,$ r) is a monotone nondecreasing function of r $\in(0,$ 1-
$|p|)$ for any p $\in B_{1}$ .

A corollary of this monotonicity is the doubling property, which we state
only for $p=0.$ There holds for any $r\in(0,1/2)$ ,

$\frac{1}{2r}\int_{\partial B}$

,
$r$

$u^{2}\leq 2^{2N(0,1)}$
$\frac{1}{r}\int_{\partial B_{r}}u^{2}$ .

In fact, there holds a more general result for $0<r_{1}<r_{2}\leq 1$

(3.5) $\frac{1}{r_{2}}\int_{\partial B_{r_{2}}}u^{2}\leq(\frac{r_{2}}{r_{1}})^{2N(0,1)})$
$\frac{1}{r_{1}}.\{\begin{array}{l}u^{2}\partial B,.1\end{array}$

For details, see [16].
We also need the following corollary of Theorem 3.5.

Corollary 3.6. There exists a universal constant $N_{0}<<1$ such that the
following holds. If $N(0,1)$ $\leq$ No, then $u$ does not vanish in $B_{1/2}$ . If
$N(0,1)\geq N_{0}$ , then there holds

$\mathrm{N}(\mathrm{p}, \frac{1}{4})$ $\leq CN(0,1)$ , for any $p\in B_{\frac{1}{2}}$ ,

where $C$ is a universal constant

The proof follows exactly the same argument in the proof of Proposition
1.2 in [16] and is skipped. In fact, both assertions are proved there explicitly.

The second property we need is the complexification. Again, suppose $u$

is a harmonic function in $B_{1}\subset \mathbb{R}^{2}$ . Then for some universal $R\in(0,1)$ , $u$

extends to a holomorphic function $\tilde{u}(z)$ in $D_{R}\subset \mathbb{C}^{2}$ . Moreover, there holds
for some universal constant $c>0$

(3.6)
$\sup_{D_{R}}|\mathrm{i}|$

$\leq c||u||_{L^{2}(\partial B_{1})}$ .

In the following, $R$ will be fixed such that the above extension property and
(3.6) hold. Hence, the constant $c$ is also fixed, independent of $u$ .

Now we begin to prove Theorem 3.1. We shall prove the following result.
The constant $N$ in Theorem 3.7 means different from that in (2.1).
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Theorem 3.7. There are two universal constants $M>1$ and $r\in(0,1)$

such that for a harmonic function $u$ in $B_{AI}$ $\subset \mathbb{R}^{2}$ , with $u(0)=0,$ satisfying

$\frac{NI\int_{B_{\mathrm{A}I}}|\nabla \mathrm{t}A|^{2}}{\int_{\partial B_{l1f}}u^{2}}\leq N,$

there holds
$\#\{z\in D_{r};\tilde{u}_{z_{1}}(z)=\tilde{u}_{z_{2}}(z)=0\}\leq 4N^{2}$ .

Proof. For simplicity, we shall use the same notation to denote harmonic
functions and their complexifications. Let $(r, \theta)$ denote polar coordinates in
$\mathbb{R}^{2}$ and we write $u$ in the following form

$u(r, \theta)=\sum_{m=1}^{\infty}a_{m}\Phi_{m}(r, \theta)$ , and $\Phi_{m}(r, \theta)=r^{m}\varphi_{m}(\theta)$ ,

where $\varphi_{m}(\theta)$ satisfies

$I_{\mathrm{S}^{1}}\mathrm{i}’ \mathrm{y}\mathrm{y}$ $(’)d\theta=1,$ and $\varphi_{m}^{r/}(\theta)+m^{2}\varphi_{m}(\theta)=0.$

Moreover, we may assume, without loss of generality, that

(3.7) $7_{B_{1}}u^{2}= \sum_{m=1}^{\infty}a_{m}^{2}=1.$

In the following, we set

$N_{*}= \inf\{n\in \mathbb{Z}_{+};n\geq N\}$ .

In other words, $N_{*}=N$ if $N$ is an integer and $N_{*}=[N]+1$ otherwise. Here
$[\mathrm{s}]$ is the integral part of $N$ . Obviously, we have

$N_{*}-1\leq N\leq N_{*}$ .

By (3.5), we get

$\frac{1}{l\vee I}\int_{\partial B_{M}}u^{2}\leq M^{2N(0,\mathrm{A}l)}7_{B_{1}}u^{2}=M^{2N(0,M)}$ ,

which implies

$\sum_{m=1}^{\infty}a_{m}^{2}M^{2m}\leq M^{2N(0,\mathrm{A}I)}$ .

By $N$ (0, Af) $\leq N\leq N_{*}$ , we have obviously

$\sum_{m=1}^{\infty}a_{m}^{2}M^{2m}\leq M^{2N_{*}}$ .

Therefore, we obtain

(3.8) $|4|\leq M^{N_{*}-m}$ , for any $m\geq 1.$
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Since $\{\varphi_{m}\}$ is orthonormal in $L^{2}(\mathrm{S}^{1})$ , there holds for some universal constant
$c>0$

$\int_{\partial B_{1}}|\sum_{m\geq 2N_{*}}a_{m}\Phi_{m}|^{2}=\sum_{m\geq 2N_{*}}|a_{m}|^{2}\leq\frac{c}{NI^{2N_{*}}}$.

We first choose $M$ large, independent of $N_{*}$ , such that

(3.9) $\sum_{m\geq 2N_{*}}^{\infty}|$ a$m|^{2} \leq\frac{1}{2}$ .

By (3.6), we get for some universal $R\in(0,1)$ ,

$\sup_{D_{R}}$

.
$| \sum_{m\geq 2N_{*}}a_{m}\Phi_{m}|\leq\frac{c}{NI^{N}}$. $\cdot$

Interior estimates for holomorphic functions imply

(3.10)
$\sup_{D_{R/2}}|$

a$( \sum_{m\geq 2N_{*}}a_{m}\Phi_{m})|\leq\frac{c}{R\mathrm{A}\ell^{N_{\mathrm{r}}}}$
.

Set

(3.10) $P_{*}= \sum_{m=1}^{2N_{*}-1}a_{m}\Phi_{m}$ , $R_{*}= \sum_{m\geq 2N_{*}}^{\infty}a_{m}\Phi_{m}$.

Then $u=P_{*}+R_{*}$ . Obviously, we have by (3.7) and (3.9)

$\sum_{m=1}^{2N_{*}-1}|a_{m}|^{2}\geq\frac{1}{2}$ .

Then $\partial P_{*}$ satisfies the assumptions in Lemma 3.3, with $d=2N_{*}-$ $2$ and
possibly a different normalization constant. By choosing A# large enough,
independent of $N_{*}$ , we conclude by (3.10)

$\sup_{D_{R/2}}|DR_{*}|<\epsilon^{2N_{*}-2}$ ,

where $\epsilon$ is the universal constant as in Corollary 3.4, or Lemma 3.3. This
implies

$|\partial \mathrm{t}\mathrm{z}(z)$ $-\partial P_{*}(z)|<\epsilon^{2N_{*}-2}$ , for any $z\in D_{R/2}$ .
By applying Corollary 3.4 to $\partial u$ in $D_{R/2}$ , we conclude that

$\#\{\mathrm{M})" u|^{-1}(0)") D_{R/4}\}\leq(2N_{*}-2)^{2}$ .

This finishes the proof, since $N_{*}-1\leq N.$ $\square$

Now we may prove Theorem 3.1.

Proof of Theorem 3.1. Recall $N$ is defined in (2.1).
$\mathrm{F}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}_{f}$ we consider the case that $N$ is small. Let $N_{0}$ be the constant

in Corollary 3.6. If $N\leq N_{0}$ , then $u$ is never zero in $B_{1/4}$ by Corollary
3.6. Harnack inequality and interior estimates for harmonic functions and
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holomorphic functions imply that $\overline{u}$ has no zeroes in $D_{R_{1}}$ , for some universal
$R_{1}<1.$ Therefore we have $S(\tilde{u})\cap D_{R_{1}}=\phi$ .

Next, we consider $N\geq N_{0}$ . By Corollary 3.6, there holds for any $p\in B_{1/4}$

$\frac{\int_{B(p)}|\nabla u|^{2}:}{4\int_{\partial B(p)}u^{2},:},$ $\leq CN,$

for some positive constant $C$ independent of $\mathrm{u}$ . For any 7 $\in B_{1/4}$ , with
$u(p)=0,$ by the scaled version of Theorem 3.7, we have

$\neq\{S(\tilde{u})\cap D_{R_{2}}(p)\}\leq cN^{2}$ ,

for some positive constants $R_{2}<1$ and $c$ , independent of $u$ and $p$ . To finish
the proof, we consider two cases. If $u$ is never zero in $B_{R_{2}/2}$ , then $\tilde{u}$ is
never zero in $D_{2R_{1}R_{2}}$ , as in the first part of the proof. This implies that
$S(\tilde{u})\cap D_{2R_{1}R_{2}}=\phi$ . If $u(p)=0$ for some $7\in B_{R_{2}/2}$ , then we have

$\#\{S(\tilde{u})\cap D_{R_{2}}(p)\}\leq cN^{2}$ ,

which implies

$\#\{S(\tilde{u})\cap D_{R_{2}/2}\}\leq cN^{2}$ .

This finishes the proof by taking $R_{0}= \min\{R_{1}, 2R_{1}R2, R_{2}/2\}$ .This finishes the proof by taking $R_{0}= \min${ $R_{1},2\mathrm{R}\mathrm{i}$ R2, $R_{2}/2$ }. 口

To finish this section, we give an example to show that the number of
complex singular points is indeed in the quadratic order of the frequency.
Hence the estimate in Theorem 3.1 is optimal.

Example 3.8. For any integer $d\geq 2$ and any small $\epsilon>0,$ consider the
harmonic polynomial tt in the polar coordinate

$u(x)= \epsilon r\cos\theta-\frac{1}{d+1}r^{d+1}\cos(d + 1)0$.

Then it is easy to see that

$\partial u(x)=(\begin{array}{ll}\epsilon-r^{d} \mathrm{c}\mathrm{o}\mathrm{s}d\theta r^{d} \mathrm{s}\mathrm{i}\mathrm{n}d\theta\end{array})$

By (3.3), we have

$\partial\tilde{u}(z)=(_{-\frac{i}{2}(z_{1}+iz_{2})^{d}-(z_{1}-iz_{2})^{d})}^{\epsilon-\frac{1}{2(}((z_{1}+iz_{2})^{d}+(z_{1}-iz_{2})^{d})})$

A simple calculation shows that Du(z) $=0$ has $7^{2}$ solutions close to the
origin. Obviously, the frequency of $u$ is in the order of $d$ .



118

SINGULAR SETS

REFERENCES
[1] L. Bers, Local behavior of solution of general linear elliptic equations, Comm. Pure

Appl. Math., 8, 1955, 473-496.
[2] L.A. Caffarelli, and A. Friedman. Partial regularity of the zerO-set of solutions of

linear and superlinear elliptic equations, J. Diff. Eq., 60, 1985, 420-433.
[3] R.-T. Dong, Nodal sets of eigenfunctions on Riemann surfaces.t J. Diff. Geom., 36,

1992, 493506.
[4] H. Donnelly, and C. Fefferman, Nodal sets of eigenfunctions on Riemannian mani-

folds, Invent. Math., 93, 1988, 161-183.
[5] H. Donnelly, and C. Fefferman, Nodal sets for eigenfunctions of the Laplacian on

surfaces, J. Amer. Math. Soc, 3, 1990, 333-353.
[6] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[7] N. Garofalo, and F.-H. Lin, Monotonicity properties of variational integ rals, $A_{p}$

weights and unique continuation, Indiana Univ. Math J., 35, 1986, 245-26,

[8] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Se cond Order,
Second Edition, Springer, Berlin, 1983.

[9] Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math J., 43,
1994, 983-1002.

[10] Q. Han, Schaerxler estimates for elliptic operators with applications to nodal sets, J.
Geom. Analysis, 1 $0_{i}$ 2000, 455-480.

[11 Q. Han, Singular sets of harmonic functions in $\mathrm{R}^{2}$ anti their compleifications in $\mathrm{p}^{2}$ ,
to appear in Indiana Univ. Math J.

[12 Q. Han, R. Hardt, and F.-H. Lin, Geomet ric measure of singular sets of elliptic
equations , Comm. Pure Appl. Math., 51, 1998, 14251983.

[13 R. Hardt, M. Hoff man-Ostenhof, T. Ho fiman-Ostenhof and N. Nadirashvili, $G\dot{\tau}tical$

sets of solutions to elliptic equations, J. Diff. Geom., 51, 1999., 359-373.
[14 M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and N. Nadirashvili, Critical sets of

smooth solutions to elliptic equations in dimension 3, Indiana Univ. Math J., 45,
1996. 1537.

[15] B. Levin, Distribution of Zeros of Entire Functions, Thanslations of Mathematical
Monographs, Vo1.5, AMS, 1964.

[16] F.-H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Comm. Pure
Appl. Math., 44, 1991, 287-308.

[17] G. Lupacciolu, A Rouche type theorem in several complex variables, Rend. Accad.
Naz. Sci. XL Mem. Mat., 5, 1985, 3341.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE Dong, NOTRE DAME, IN
46556

$E$-rnail address: qhanOnd . edu


