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1 Introduction

Let $G=$ ( $e_{1}$ , e2, $\ldots$ , $e_{n}$ ) be a conneted graph such that the degree of its vertices are
all 3 except for the end points. In other words, $G$ is a network with triple junctions.
For a given region $\mathrm{n}\subset \mathbb{R}^{2}$ , a set of line segment $\Gamma_{G}$ is called admissible for $G$ if $\Gamma_{G}$ is
isomorphic to $G$ and all the end points of $\Gamma_{G}$ are on an.

Figure 1: An example of $\Gamma_{G}$ .

We assign a positive number $\sigma_{i}$ to each edge $e_{i}$ , which represents “surface energy.”
Denote by $Yi$ $(i=1,2, \ldots, n)$ component segments of $\Gamma_{i}$ which correspond to $e_{i}$ . In
this study we are concerned with the following problem:
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Problem P. Find an admissible $\Gamma_{G}$ for $G$ that minimizes

(1) $E[ \Gamma_{G}]=\sum_{i=1}^{n}\sigma_{i}|\gamma_{i}|$ ,

where $|\gamma_{i}|$ denote the lengths of ) $i$ .
This problem arises in grain boundary motions of anealing pure metal. Critical

points of $E[\Gamma_{G}]$ represent stationary states of a curvature-driven motion, which models

the grain boundary motions. A curvature-driven motion with a triple junction has

been introduced by Mullins [6]. Later, the motion was derived formally by Bronsard

and Reitich [1] as the singular limit of a vector-valued Allen-Cahn equation. Bronsard

and Reitich [1] also showed short-time existence of the motion. Let $\Gamma_{i}(t)(i=1,2,3)$

represent curves at time $t$ $>0$ contained in a tw0-dimensional bounded region $\Omega$ with
smooth boundary an. Suppose $\Gamma_{i}(t)(i=1,2,3)$ meet at one point $m(t)$ . The evolving

interface that we consider is subject to the following laws:

(M1) The normal velocity of the interface is given by its curvature.

(M2) At the triple junction $m(t)$ , the contact angle $\theta_{k}$ between $\Gamma_{i}(t)$ and $\Gamma_{j}(t)$ is given

by Young’s law, where $(i,j, k)=$ (1,2, 3), (2, 3, 1), (3, 1, 2). That is, for positive

constants $\sigma_{1}$ , $\sigma_{2}$ , $\sigma_{3}$ ,
$\frac{\sin\theta_{1}}{\sigma_{1}}=\frac{\sin\theta_{2}}{\sigma_{2}}=\frac{\sin\theta_{3}}{\sigma_{3}}$,

where $0<\theta_{k}<\pi$ and $\theta_{1}+\theta_{2}+\theta_{3}=2\pi.$

(M3) At the other end of each curve, $\Gamma_{i}(t)$ touches an at the right angle.

The interfaces have Energy $E(t)$ , which decreases as time goes:

$E(t)=\sigma_{1}|\Gamma_{1}(t)|+\sigma_{2}|\Gamma_{2}(t)|+\sigma_{3}|\Gamma_{3}(t)|$ ,

where $|$ Ti (t) $|(i=1,2, 3)$ mean the lengths of curves $\Gamma_{i}(t)$ . Stationary interfaces of the

motion can be viewed as critical points of the energy. In this connection Sternberg and

Ziemer [7] have proved the existence of local minimizers of the energy in clover-like

regions. Here we remark that stationary interfaces consist of straight line segments.

On the other hand, Ikota and Yanagida [4] have studied stabilities of stationary

interfaces of the motion (M1) (M3) by linearizing corresponding equations around the

stationary interfaces. They linearized the equations formally and analyzed the result-

ing elliptic operator rigorously. Later they have extended their results to stationary

interfaces of binary-tree type with more than one triple junctions[5]. The results are
stated as follows.



133

Theorem 1.1. Let $\Gamma=\{\gamma_{i}\}$ be a stationary interface that is homeomorphic to a binary
tree. Denote by $L_{i}$ the length of $\mathrm{y}_{i}$ . Define a characteristic index D by

$D= \sum_{\gamma_{i}\in\Gamma}\sigma_{i}L_{i}\cross\prod_{\gamma_{i}\in B}h_{i}+\sum_{\gamma_{i}\in B}\{\sigma_{i}\prod_{\gamma_{j}\in B\backslash \{\gamma_{i}\}}h_{j}\}$ ,

where $h_{i}$ denotes the curvature of an at the point of contact with $\gamma_{i}\in B$ . (Note that
$h_{i}$ is taken to be nonpositive if $\Omega$ is convex.)

(i) The unstable dimension $N_{\mathrm{u}}$ is given by

$N_{\mathrm{U}}=\{$

$m-$ $1$ for $(-1)^{m}D<0,$

$m$ for $(-1)^{m}D>0,$

where $m=\#\{h_{i}<0\}$ .

(ii) The stationary interface is degenerate ($\mathrm{i}.\mathrm{e}.$ , there exists a zero eigenvalue) if and
only if $D=0.$

We remark that the index $D$ is independent of the topology of $\Gamma$

Although Ikota and Yanagida have established a stability criterion assuming the
the existence of stationary interfaces, it has not been known whether given regions have
stationary interfaces in general. The existence problem can be regarded as a variation
of the Fermat-Steiner problem[2].

In [4] and [5], stabilities of stationary states have been studied on the assumption
of the existence of stationary states.

In the present study we show that stationary states do exisit for convex Q. Our
problem can be regarded as a variant of the Fermat-Steiner problem, though the treat-
ments are quite different.

The Fermar-Steiner problem is described as follows: for a given triangle AABC,
find a point $P$ that minimizes the sum of lengths

$|PA|+|PB|+|PC|$ .

This problem was proposed by Fermat to Torricelli. Afterwards Steiner considered the
same problem and gave a systematic solution. In [2] Gueron and Tessler solved the
weighted Fermat-Steiner problem. They also gave an interesting historical survey of
the problem.

Now we are in a position to state our result.
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Theorem 1.2. Suppose $\Omega$ is convex. Let $n$ be a positive integer and $G$ a binary tree

with $n$ triple junctions. Then there eists at least one critical interface of $E$ which is

admissible for $G$ .

2 Outline of Proof

Before proceeding with Problem $\mathrm{P}$, we consider the two phase separation problem with

no triple junctions as an illustration. Let $\Omega$ be a convex domain in $\mathbb{R}^{2}$ . Suppose two
points $P_{1}$ and $P_{2}$ are on the boundary an. We seek a critical interface of $E(P_{1}P_{2})=$

$|P_{1}P21$ the length of a line segment $P_{1}P_{2}$ .
A simple calculation shows that $P_{1}P_{2}$ is critical if and only if $P_{1}P_{2}$ intersects with

an at the right angle. Thus all we have to do is to find $P_{1}P_{2}$ such that $P_{1}P_{2}$ are
orthogonal to an at both $P_{1}$ and $P_{2}$ .

We parameterize $\partial\Omega$ by an arc length parameter $s:s\mapsto P(s)=(x(s), y(s))\in\partial\Omega$ .
By $\tau(s)$ we denote the tangential vector to OC at $P(s)$ , that is $\tau(s)=(\partial/\partial s)(x(s), y(s))$ .
For any point $P_{1}=P_{1}(s_{1})\in$ an , we can choose $s=s_{2}$ so that $\tau(s_{2})$ is parallel to
$\tau(s_{1})$ .

Figure 2: Lines $l_{1}$ and 12 are rotated along an.
Then we move $s_{1}$ and observe variations of the distance $d(l_{1}, l_{2})$ , where $l_{\mathrm{i}}$ are tan-

gential lines to an at $P(s_{i})(i=1,2)$ . We can easily see that the distance $d(l_{1}, l_{2})$

is critical if and only if $P_{1}P_{2}$ intersects with an orthogonally. Since $d(l_{1}, l_{2})$ has a
maximum (and a minimum), the energy $E(P_{1}P_{2})$ has a critical interface.

Now we turn our attention to Problem P. We consider the case where $G$ has a single
triple junction; for more triple junctions we can show the existence of critical interfaces
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by induction. We can easily verify that $\Gamma_{G}=(\gamma_{1}, )_{2},$ $\gamma_{3})$ is critical if and only if the
following two conditions are satisfied:

1. $\angle("/i, r_{j})$ $=\theta_{k}$ $(i,j, k)=(1,2, 3)$ , (2, 3, 1), (3, 1, 2).

2. $\gamma_{i}[perp]\partial\Omega$ $(i=1,2,3)$ .

Let $\nu(s_{i})$ be the unit normal to ac at $P(s_{i})$ pointing inside Q. Likewise in the analysis
of the two phase problem, we can choose $s_{2}$ and $s_{3}$ for $s_{1}$ such that

$\angle(\nu(s_{i}), \mathrm{v}(8\mathrm{j}))$ $=\theta_{k}$ , $(i,\dot{\mathrm{y}}, k)=(1,2,3)$ , (2, 3, 1), (3, 1, 2).

Figure 3: Lines $n_{1}$ , $n_{2}$ , $n_{3}$ are rotated.

Let $\mathcal{T}$ be the triangle composed of $l_{1}$ , $l_{2}$ , $l_{3}$ , where $l_{i}$ are again the tangential lines
at $P_{i}=P(s_{i})$ , and $T(s)$ the area of $\mathcal{T}$ Denote by $n_{i}$ the normal line to ac at $P_{i}$ . Then
we can prove that ni, $n_{2}$ , $n_{3}$ meet at one point if and only if $dT/ds$ $=0.$ This indicates
that the $n_{i}$ $(i= 1,2, 3)$ make a critical $\Gamma_{G}$ .

3 Concluding Remarks

If $\Omega$ is not convex, the approach we took in the previous section does not work in
general. We illustrate it in the two phase problem.

Let $a$ , $b$ be positive constants. We introduce two graphs in $\mathbb{R}^{2}$ :

$y=g_{1}(x)=(x-a)^{3}$ ,

$y=g_{2}(x)=x^{3}+b.$
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Suppose an is represented by $g_{1}(x)$ and $\mathrm{g}2(x)$ locally. We parameterize the two parts

as $(\xi, (\xi-a)^{3})$ and $(-\xi_{\mathrm{I}}-4^{3}+b)$ respectively. Here 4 runs over some interval $(-\delta, \delta)$ .

Then the distance between $l_{1}$ and $l_{2}$ are given by

$d(l_{1}, l_{2})=(4\xi^{3}+3a\xi^{2}+b)/\sqrt{9\xi^{4}+1}$.

Straightforward calculation shows that

$\mathrm{z}$ $1(l_{1}, l_{2})|_{\xi=0}=0.$

However the two normal lines at $4=0$ do not coincide.

$y$ $=g_{2}(x)$

$-a)^{3}$

Figure 4: The critical lines of the distance $d(l_{1}, l_{2})$ do not coincide.
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