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Stable transition layers in a balanced bistable equation with
degeneracy
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1 Introduction and Main Results

In this paper, we consider steady-state solutions for the following problem:

{ Uy — Ezuzz = f(x;u)> (z> t) € (01 1) X (0’ 00),
uz(0, t)= uz(1,t) =0, te€ (0, 00),
u(z,0) = ug(x), z € (0,1),

where ¢ is a positive number and f(z,u) is given by
f@,u) = —u(u — a(z))(u + a(z)).

Here o : [0,1] = R is a positive C! function and a C? function except for a finite number of points
on [0,1]. Such f(z,u) is a typical example of the so-called bistable nonlinearity and we note that
f(z,u) satisfies that

a(z)
/ f(z,u)du = 0.
~afz)
In this sense, we call the bistable function f to be balanced.

Since we are interested in the stationary problem, we consider the following problem:

_2zz=f ’ ) in 0!1)1
®{ ozt ™

It is easily shown that there exist stable solutions wlP, ul for (P¢) such that lim,,0 ul? (z) =
a(z), limep ug_)(a:) = —a(z) uniformly in z € [0,1] (see [7, Proposition 2.2]). The aim of this
paper is to find stable solutions u, with transition layers.

Nakashima [7] has studied the problem (P.) when « is smooth and nondegenerate, i.e. o’ #0
at each local minimum of a. In this paper we consider the case that o degenerates on an interval
I of positive measure where o takes its local minimum, that is, o’(z) = 0 on I. Nakashima
and Tanaka, [9] also have studied such a degenerate case and obtain solutions with a single layer
and multi-layers(clustering layers) by using a variational method. However the stability of these
solutions were not discussed. In this paper we obtain a stable solution with transition layers by a
sub-supersolution method of Brezis and Nirenberg type (see [2]) and precise profile of the solution
near the interval where o degenerates by using a blow up argument inspired by the arguments in
Dancer and Shusen Yan [3].

Now we state precise conditions on a.

Conditions . (C1) a is a positive function on [0,1] and a € C*[0,1].
(C2) There exist a finite number of points 1,3, -+, %2m € (0,1) (m 2 1) such that

(i) o'(z) =0o0n I; := [ggi—1, %3] for i = 1,---,m;
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(i) a € C?((zai, T2i41)) for each i =0,1,---,m, and there exist limits

Np . o —0) =l o' (x2i—1) — o (T2i-1 — h)
a"(zgi-1 — 0) = 1’}&} -
i ( + ) — o ()
" , T a\T2i-1 — o' (z9;
a'(z9i +0) = lhli% -

foreachi=1,---,m;
(iif) o' (z2i-1 — 0) > 0 and o' (z2: + 0)>0fori=1,---,m.
Hereafter we denote o (z2i_1), @ (2:) instead of o' (z2i—1 — 0), o' (z2i + 0).

Remark . The condition (i) of (C2) implies that a(z) = const. on I; and if x9;1 = xo; for
i=1,---,m, this is the case as in Nakashima [7.

We set L = {z1,%2," " ,Tam} and K = {I1,I5,"--,In}. We choose any subset K of K. We
denote K = {1, 5, -+, 1} with 1 <l <mand [; = [xh;_,,@h;] for each i = 1,---1 where we use
the notation zj = 0, %, = 1. We consider the following two cases:

(2] [252]

N = U (Zhir Taigr), Q2 = U (-’Ffu+2swfu+s)
i=0 i=0
(2] [25]

Im = U (Thit2r Thivs) Qo = U (Thir Tais1)
=0 i=0

and we set

Q! = {z € (0,1)|dist(z, 82:\{0,1}) > &}.

First, we construct a solution to (P.) that may have transition layers.

Theorem 1.1. Assume that (C1) and (C2) hold. Then for sufficiently small € > 0, there exists
a family of stable solutions {uc} of (Pe) such that

| — a(z) — ue(z)| < o in Qf,
|a(z) — u.(z)] < o in Qs,

where o = o(€) = 0:(1), § = () = 0(1).
Moreover u. is a local minimizer of the functional

1 82
7w = [ Shuel? - Flou)s

where F(z,u) = [y f(z,8)ds.

Next theorem describes the precise profile of u, near the intervals where o degenerates.
Theorem 1.2. Consider the case (I). Let u. be the solution of (P¢) obtained in Theorem 1.1.
Then u, has ezactly one layer in [zh;_; — 2677, 25+ 21*) for any small 0 < p < 1 and for each

i=1,2,---,l. That is for any smalln > 0, there exists €9 > 0, such that for any € € (0,¢&0), the
followings hold.



(1) For eachi=1,2,---,1, there exists the unique pair of numbers {te1,iste,2,:} such that x5, , —
2617P < te1i < tepi < Th; +2e17° and the followings hold.

(a) Ifi is odd number, the followings hold;

Ue < —T; + 1 on [Thi_y — 2617, t1.),
Ue(te,1,6) = —0 + 1,

Ue(le,2,4) = 05 — 1,

U > G; — T on (te,g,,-,z'z,- + 261—"].

(b) Ifi is even number, the followings hold;

Ue > T =1 on [Th_; —2617P 1 14),
Ue(te,14) =0 — 1,

ue(ts,z,s’) =—a;+7n,

ue < =T + 1 on (te2,i, Th; + 261 7°].

Here @; = a(.'l:z,'_.l) = a(z2;).

(2) If i is odd number, uc is increasing on (te,1,i,tc,2:) and if i is even number, u is decreasing
on (te,1,irte,2,i)-

(B) 0< R < feuz ‘:" Li < Ry, where Ry and Ry are two constants independent of € > 0.

Remark . If we take the case (II), the statement (a) of (1) holds if 1 is odd number and statement
(b) of (1) holds if ¢ is even number. And if i is odd number, u, is increasing on (¢,1,:,te,2,:) and
if 4 is even number, u, is decreasing on (¢ 1,i,te,2,i)-

Remark . Since {t1:}o<e<eo and {t,2i}o<e<e, are bounded sequences, from the part (3) of
Theorem 1.2, we may assume that there exists t; € [zh;_;, z5;] such that .1 i, %2, = ti as€ = 0.
But the exact location of ¢; is not yet known when z4; — zh;_; > 0 and this is an open problem.

This paper is organized as follows. To prove Theorem 1.1 and 1.2, we take a sub-supersolution
method of Brezis and Nirenberg Type ([2]). Hence in section 2, we prepare the sub-supersolution
method. In section 3 we construct a subsolution and a supersolution and prove Theorem 1.1. In
section 4 we prove Theorem 1.2.

2 Preliminaries

In this section we prepare the sub-supersolution method of Brezis and Nirenberg type under
the Neumann boundary condition. In [2], Brezis and Nirenberg developed such method under
the Dirichlet boundary condition. Nacimento [6] pointed out their method also works under the
Neumann boundary condition without a precise proof. Now we give the definition of a subsolution
and a supersolution in the form suitable for our problem.

Consider the following problem:

Uge +9(2,u) =0, 0<z <],
{ uz(0) =i,,(1) =0, (2.1)

where g(z, 8) is a C! function with respect to (z, 3) and we assume the following growth condition

lg(z,5)| < C(1 +[s”)
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for some 1 < p < +co and for some C > 0. Moreover we assume that for some k > 0 the function
g(z, s) + ks is nondecreasing in s for each z. We remark that g(z, s) := g(z, s) + s also satisfies

[g(z,s)] < C@Q+[sl’) +|s]
ca+sp)+ o L 1

p g
< C'(1+sf)

AN

for some C' > 0. We define the subsolution and the supersolution for (2.1) as follows.

Definition 2.1. Let u*(resp. u.) : [0,1] = R be a continuous function. The function u* (resp. Ux)
is called a supersolution(resp. subsolution) of (2.1) if

(S1) there exists §o > O such that u*(resp. u,) € C2((0,8) U (1 — 8o, 1)) N C*([0,80) U (1 — o, 1]),
(S2) for all p € C§°(0,1) with ¢ > 0, we have

1
[0 (—u*¢as — 9z, u")p)dz > 0

(resp. Al(‘ut%z — g(z, us)p)dz < 0) ’ (2.2)

(S3) u%(0) < 0 and uf(1) > 0 (resp. u..(0) 2 0 and u.;(1) <0).

Before we state the existence of a solution to (2.1), we have to define the energy functional I
of (2.1):

1 u
16 = [ 3ual? ~ Gawide, Gl = [ gla,o)ds
0 0
Note that if we define N
G(z,u) = / g(z, s)ds
0

the energy functional I can be written as follows
11 .1, =
I(u) =/ =luc|® + zu?® — G(z,u)dz.
0 2 2
The next proposition is the existence result of a solution to (2.1) between a subsolution and a

supersolution for the Neumann boundary condition.

Proposition 2.2. If there exists a supersolution u* to (2.1) and a subsolution u. to (2.1) with
Uy < u* and neither u, nor u* is a solution of (2.1). Then there ezists a solution uq to (2.1) such
that u, < ug < u* and ug is_a local minimizer of I on H*(0,1). Moreover ug is a global minimizer
of the following functional I :

Iw) = /01 %]u,iz - G(z,u)dz, G(z,u) = f: g(z,8)ds
where
{ g(m,u,(m)), 8 < u.(z),
g(z,8) =< 9(z,9), u,(z) < 8 < u*(2),

g(z,u*(x)), u*(z)<s.
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We need some lemmas to prove Proposition 2.2.

Lemma 2.3. (cf.[2, Theorem 1]) Assume that uo € H'(0,1) is a local minimizer of I in the C?
topology; this means that there ezists some r > 0 such that

I(uo) € I(ug +v) forve CY0,1] with |jv|lex <7. (2.3)
Then ug is a local minimizer of I in the H' topology; i.e. there ezists €q > O such that
I(uo) < I(ug +v) forve H(0,1) with |jv|lm < eo.

Proof. The proof is divided in 2 steps.
Step 1. We claim that ug € C*7[0,1] forall 0 < v < 1.
Recall that ug is a weak solution of

{ —uf = g(z,uo), in (0,1),
u(0) = up(1) =0,

where ! denote the derivative in z. First by the Sobolev imbedding we have ug € C[0, 1] and hence
ug € LP(0,1) for any 1 < p < 00. Next by the standard regularity result, we have up € W>?(0,1)
for any 1 < p < 0o. Again by the Sobolev imbedding, we have ug € C17[0,1] for any 0 < v < 1.
Step 2. Without loss of generality we may now assume that up = 0. Suppose that the
conclusion does not hold. Then for every & > 0, there exists v, € B.(0) := {w € H*(0,1)|||lwllm <
€} such that
I{ve) < I(0). (2.4)

By a standard lower semicontinuity argument ming, I is attained at some point which we may
still denote by v.. We shall prove that v, — 0 in C* and this contradict to (2.3) and (2.4). The
corresponding Euler equation for v, involves a Lagrange multiplier e < 0, namely, v, satisfies

(DI('Us)aC)(Hl)‘,Hl = I-lae('Ue,C)Hl for C € H1(01 1)
ie. X .
/ vl + vl — Gz, ve)(dz = pE/ v.¢' +veCdz for ¢ € H'(0,1),
0 0

where DI(v,) denotes the Freéhet derivative of I at v.. This means

1
v + Ve = -4 9(z,ve). (2.5)
e

Using (2.5) together with the remark |g(z,u)| < C(1 + |u|?) and the essential fact p. < 0, one
may obtain from the bound vz < C to ||v|lc1+ < C by the bootstrap argument as in step
1(independent of £ > 0). Since v, — 0 in H', v, — 0 in C*. The proof is completed. O

Next lemma is due to [2].

Lemma 2.4. ([2, Theorem 2]) Let u € L} .(0,1) and assume that for some k > 0, u satisfies

—u" +ku>0 in D'(0,1),
u>0 in (0,1).

Then either u = 0, or there ezxists € > 0 such that

u(z) > edist(z, 8(0,1)).
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Proof. See [2]. a
Next lemma is the strong maximum principle for a subharmonic function in the distribution sense.

Lemma 2.5. Let a < b and u € Cla,b] be a subharmonic function, i.e.

b
/ —up'dz <0

for ¢ € C5°(a,b) with ¢ > 0. Then if u is not a constant function, the mazimum of u over [a,d]
is attained ot £ = a or ¢ = b. Moreover we have

u(z) < I[I;a,;:]cu = max{u(a),u(d)} forz € (a,b).

Proof. See for example [4]. a
Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Let uo be a minimizer of I on H'(0,1), it is easily seen the minimum is
achieved and satisfies
_ug = g(zaUO) in (Ov 1)'

By the bootstrap argument, we have that uo € C'7[0,1]. We claim that u, < up < u*. We will
just prove the u, < uo. Set A = {z € (0,1)]uo(z) < us(z)} and we will show A = @. First we
have

~(u« — u0)" < g(z, u) — §(2,uo) (2.6)
and in particular

—(us — ug)" <0 in D'(A).
First we assume that u. — ug < 0 at £ = 0,1. Then A C (0,1) and since u, —uo < 0 on 8A, it
follows from Lemma, 2.5 that u, —ug < 0 in A. Hence we can conclude A = §. Next we prove that
u, — ug < 0 at z = 0,1. Let us assume that u,(0) — up(0) > 0 and u(1) — uo(1) < 0. Similarly
w = U, — Uo satisfies
-w"” <0 in D'(4)
and w attain its strict maximum on z = 0 by Lemma 2.5. Note that since u. is not solution for
(2.1), w is not constant. Indeed if w is constant, i.e., ux — up = C for some constant C > 0, then
u, satisfies that
—u! = —ug§ = §(z,u. — C) = g(z,u.)

and this contradict to the assumption that u, is not a solution to (2.2). Since

—ug = g(z, us(2))

and u, is C2 near z = 0 and g is C!, we have up € C? and w = u. —uo is C? near z = 0. Moreover
w satisfies

~w" <0 for z > 0 small,
w(0) > w(z) for z > 0 small.

Hence by Hopf’s Lemma we have w'(0) = u,(0) — u}(0) < 0 and this contradict to the (S3) in the
Definition 2.1. Similarly we can obtain the contradiction if we assume that u. (0) — uo(0) > 0 and
us(1) — ug(1) > 0 or u.(0) — uo(0) < 0 and u.(1) — up(1) > 0.
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Returning to (2.6) we have
-—(q. —up)" + k(uw — up) < (g9(z,us) + ku.) — (9(2, uo) + kuo) < 0.
Since u, is not a solution, it follows from Proposition 2.4 that there is some & > 0 such that
u,(z) — ug(z) < —edist(z,8(0,1)) for z € (0,1).
Similarly for u* we have
u(z) + edist(z, 8(0,1)) < up(z) < u*(z) — edist(z,8(0,1)) forz € 0,1).
It follows that if u € C*[0,1] and ||u — uoljct < € then
uy <u <u* in (0,1).

By the remark following this proof, I(u) — I(u) is constant for |ju—ugllc: < e. Hence uo is a local
minimizer for I in the C* topology (since it is global minimizer for I). Now, we invoke Proposition
2.3 to claim that ug is also a local minimizer of I in the H 1 topology. This completes the proof
of Proposition 2.2. O

Remark . If we take a function u € H1(0, 1) satisfies u, < u < u*, we have
. u
Gy = f iz, 5)ds
ou. Us
= / g(z,8)ds + / g(z, s)ds
u, 0

/u gz, s)ds + /u. gz, 8)ds
Us 0
= G(z,u) — G(z,u.(x)) + G(z,u.(z)).

Thus the functional I is

fw) = /0 1%|uzi2—é(m,u)dz

1
/ %luﬂ2 — G(z,u)dz + const.
0

and we can replace I by I for the function u € H 1(0,1) satisfies u, < u < u*.

Next we give the sufficient condition for functions becoming subsolutions and supersolutions.
This condition is due to Nakashima [7]. First we state a notation.

Let u : [0,1] — R be a continuous function and u € C([0,85) U (1 — &o,1]) for some do > 0
such that for a finite number of points a;,a2,+--,ax € (0,1)

(i) »:[0,1] = R is class C? in (ao,a1) U (@1,82) U---U (ak,ak+1) With ap = 0, ax+1 = 1.
(ii) There exists 1—1;15?4.0“’ (z), zilg?_ouz(z) for each i = 1,2, k.
We denote P(ay,as,+,ax) the set of function u satisfies (i) and (ii).

Proposition 2.6. Let u* € P(a1,az, - ,ak) satisfies the following conditions:
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(S1)' For eachi=0,1,---,k
_u:m - g($=U*) 20 in (CL,’,G:i-&-l)-
(S2)' For eachi=1,2,---k
lim ui(z) < lim wu;(z).
z—a;+0 z—)a.—o

(S3)" u%(0) < 0 and uZ(1) > 0.

Then u* is a supersolution for (2.1). Ifu. € P(a1,az, -, ax) satisfies (S1)', (52)" and (S3)" which
reversed the inequality sign, then u, is a subsolution for (2.1).

Proof. Tt suffices to show that

1
/0 (=t 2z — 9z, u")p)dz 2 0

for any ¢ € C°(0,1), with ¢ > 0. Indeed, using the integration by parts, we have
1
[ (" pzs — gz, u)p)dz

Z / M W ae ~ 9(a, 070

1—0
= Z[ 2 (aig1 — 0)p(ait1) — uz(a: + 0)p(as)]
=0
k a1
+30 [ (ute @ v s
i=0 v ai
k
= [ul(D)e(l) — us(0)e(0)] + Y _[us(a: - 0) — uz(ai + 0)lw(a:)
=1
o3 / 1 — g(o,u"))pds > 0.
=0
Here we have used the assumption (S1)’, (S2)' and (S3)’ and ao = 0 and ak41 = 1. |

Finally, we consider an auxiliary problem for each positive number 7:
sz + u(y — u)(y + u) = 0,u(—00) = —7,u(+00) = 7. (2.7)
By the phase plane method we can obtain some properties of the solution for (2.7).

Lemma 2.7. For each v > 0, there exists a unique solution U(z; v) of (2.7) with U(0;7) = 0.
Moreover, it has the following properties:

(1 ad;U(z,‘y) >0 forz€R.
(2) There exist positive constants Cy and C; independent of v such that

[U(z;9) — 7] < Cryexp(=Ca2y2) 220,
[U(2;7) + 7] < Cryexp(Cayz) 2<0.



(3) There exist positive constants C3 and C4 independent of v such that

[U'(2;7)| < Cs¥’ exp(—=Cylz|) z € R.

4) di:—z—U(z;'y) >0 for z<0 and %U(z;fy) <0 forz>0.
() U(z;7) =vU(vz1).

Although the following lemma is elementary, this is very important in our argument.
Lemma 2.8. Let v > 0 and 0 <7 < v be fized constants and v satisfies

-v,, =v(y? —v?) onR,
v(0) = -7 +m,

v(z) < —v+7 for 2 <0,
v 18 bounded on R.

Then v is a unique solution of

Uz = ,v(,y2 - 1)2) on R,

v(0) = -y +mn,
v'(2) >0 z €ER,
v(z) = v as z = +o0.

Proof. Since v is bounded, by using the phase plane analysis, v is a periodic solution or a unique
heteroclinic solution joining —+y and %. Since v(2) < —y + 1 < 0 for z < 0, we can conclude that
v is the unique heteroclinic solution joining —v and +. O

Making use of Lemma 2.7, we will construct a supersolution and a subsolution for (P.) and we
obtain a solution u. to (P.) by using Proposition 2.2 in the following sections.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Although the construction of a subsolution and a superso-
lution is almost same as in Nakashima, [7], we give the proof of Theorem 1.1 in details for reader’s
convenience. '

For the sake of simplicity, we first assume L = {z;,z2} and K = K = {I,}; so that &/(z) =0
for z € [21,22] and a”(z1) > 0, o/'(z2) > 0 and we set a(z1) = a(xz) = @. First we construct a
subsolution and a supersolution in the case when a'(0) > 0 and &'(1) > 0.

Proposition 3.1. Assume o'(0) > 0 and '(1) > 0. Let 0y and o3 be positive numbers satisfying
01 <1 and 0, < 03 < 201. For sufficiently small € > 0, there exist {1 = (1(€) and {2 = (2(¢)
such that —2e'~7* < (1 < —€'77! < (3 < 0 and the following function

—a(z) + €277, 0<z <z +(,
u(@) =4 U He—z)+e 0z —e™), 21+G<z<T1+(,
a(z) + &2, nn+G<z<l1

is a supersolution solution for (P.).

In the following proposition we give a subsolution for (P.). From the condition (S3)" of
Proposition 2.6 for subsolutions, we need slight modification near z = 0 and 1.

183
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Proposition 3.2. Assume that o'(0) > 0 and o/(1) > 0. Let 0y and o3 be the same numbers as
in Proposition 3.1 and let 03 and o4 be positive numbers satisfying 04 < 03 < 204 and o3 < 03.
For sufficiently small € > 0, there exist (3 = (3 (¢) and (s = C4(€) such that the following function
U, ¢ 15 6 subsolution for (Pe).

—a(z) — €272 — 73 (z — £74)?, 0<x<e™,
—a(x) - 62—”21 e*<z<z2t+ CSa

Un (@) = § Uz —22) — €7z +e'77)), 2+ (3 <z <z + (o
a(z) — 272, To+ (e <z <1-¢%,
o(z) — €272 —e % (z — 1 +€74)?, 1-eg+<z<1l

In Propositions 3.1 and 3.2 we should say that numbers (i, (2, (3 and (4 are chosen so that
ur € P(z; + (1,71 + (o) and u, . € P(22 + 63,22 + C.) satisfies the condition (S1)' and (S2)' of
Proposition 2.6. More precisely, (1 is determined from

¢ = min {¢ € (—z1,—€'""):

—a(zy + )+ =UE +e7 a2 - et~} (3.1)
and (; is a negative number satisfying (2 € (—e*~7,0) and
oG+ 1) +627° = U(e™ o + €77 a(z —€'77)) (3.2)
and (s is a positive number satisfying
—a(ma + Ga) + €272 = Ul (s — ez +6777)), (3.3)
and (4 is satisfying ¢4 € (€'77*,1 — z2) and
¢s =max{¢ € (""", 1—z2): (3.4)

oz +¢) — 22 = U™ — e alzz +€' 7))}
The following two lemmas assure the unique existence of such (1, ¢z, (3 and (4.
Lemma 3.3. For sufficiently smalle > 0, (1 and (4 are uniquely determined from (3.1) and (3.4).
Moreover, they satisfy;
(1) (1) _61+d1—a'3-—5(8) < Cl +5.1—0'1 < _€1+61—¢2+6(5),
(ii) €1+0'1-0'2—6(E) < C4 - 61—0'1 < 61-]—171—0‘9-0-5(6),
where 6 is a positive number such that § = 8(¢) = o0¢(1).

@) @) —a (G +m) 2 e Va2 + 677 ez —€177)).
(i) o (2 + C) S e We(e7 W~ 0z + el—o1)).

Proof. We only prove for (1. Set Fi(z) :=U(e™ (z —21) + €77 alz, —€e177)) +a(z) —€>72. It
follows from (4) of Lemma 2.7 that U(e ™! (z—21) +£~%; a(zy —€1~7)) is convex for & < 71 —¢' 77,
so that Fi(z) is also convex in (21 — 2¢1-71 g, — g1=91). Therefore, F1(z) has at most two zero-
points in (z; — 261771, 33 — €'77).

We will prove that a zero-point of Fi (z) indeed exists. Let k be any number such that
k < o9 — oy and |k| < 207 — 02 Setting zx = 71 — gl-o1 — gltni—oatk we get Fi(zk) =
U(-em1—o2%*; a2y — €'77Y)) + alzk) - ¢2-72, Using the Taylor expansion of o extended for
z >z, in C? at z; we obtain

1
z
alzy -7 = alz) - (2)e T + 2 (2 1) 2201 4 o(c2-271)

o' (z1)
2

= a+ 62—20'1 + 0(62_201).



If ¢ > 0 is sufficiently small, then €7:~?2+* becomes large; so that (2) and (5) of Lemma 2.7
implies

U(—g"'l —0'2+k; a($1 _ 61—-01))
= oz - ) U(~afz1 — gl=o1)gm1 -2tk 1)

= afz -7 (— (EH- a—"%sz’%‘ + 0(62"2")) gr1moatk, 1)

= a(z; —e'7) (=1 + o(e?)).
Hence we have

Fi(zi) = —a(z; — €179 + a(z; — 177 — ' t1=2th) 2792 1 o(e?).

Using the Taylor expansion of a at z = z; — ! ~! we can show

Fi(ze) = —a (31 — e~ )gbHor—omtk _ g2=03 | o(g2+201 ~203+2k)
Here we should note

—o'(zy — 61—0'1)61+0'1—o'g+k - all($1)€2——ag+k + 0(62—02+k)_
Therefore, in view of |k| < 201 — 02, one can deduce
Fi(zi) = 0" (z1)e272F — 2772 4 o(2~72%F).
Let k > 0 be fixed. Since &’'(z1) > 0, it is easy to see that
Fi(zx) <0 and Fi(z-) >0 (3.5)

with z_; < zx. Hence we can find ¢; such that Fi(z; + (1) =0and z, + (3 € (—k,zr)- From
(3.5),we can see that %F—l—(cl + ;) <0, which means that z; + (; is the smallest zero-point of F}
in (z1 — 2611,z — €!~71). Clearly (; satisfies (2). The proof of Lemma 3.3 is completed. [
Lemma 3.4. For sufficiently small ¢ > 0, there ezist a unique (2 € (—€'~71,0) and a unique
(s € (0,6179%) satisfying (3.2) and (3.3).

.Proof. We only prove for (a. Setting Fa(z) = a(z)+e2~"2 —U(e~ (z—21) +e™ " olmy —gl=oy),
we have only to show Fy(z1) < 0, Fa(z; —€!17°1) > 0 and 42 < 0 in (z; — €'77%,21) to get
conclusion. By (2) of Lemma 2.7,

Fy(z) = ale)+e27 -U(e™"0(z —€'™7))
= a(z) + 7% — a(z; — ' ) U(a(z; — € 7)e 1)
= a(z;) +€2772 — a(z; — ! 7%) + O(exp(—C3e™")) (3.6)

for some C} > 0if ¢ > 0 is sufficiently small. The Taylor expansion of a extended in C? for z; >0
at z; gives

Fy(z1) =€>77% — %a”(zl)e2‘2"‘ +0(e?"%1) <0
for sufficiently small & > 0 because 201 > 02 and o' (o) > 0. And we have

Fa(zy —€'™%) = afz; —€'™7) +e*7

"
o(z1) + g—(zil)-e2’2” 4+ +o(e?7%°1) > 0.

1
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Finally it follows from (1) of Lemma 2.7 that

%Fg(m) = —o/(z) — e (e (z — 7))+ a1 - e=71)) <0 (3.7)

for 0 < £ < ;. Thus the proof is completed. O

Proof of Proposition 3.1. First we will show that ug satisfies the condition (S1)' of Proposition
2.6 in each interval Ji := (0,{1 + 1), J2 := ({1 + 1,2 +z1), J3 := (G2 + 71,71), Ju = (T1,T2),
Js = (z2,1). We set &, (u)(x) := 2ug, + u(a(z)? — 4?). In J; we have

&, (u2)(z) = —€a"(z) — 2a(z)?€* "2 + O(e* ") <0

if ¢ > 0 is sufficiently small. The similar inequality holds in Js, J4 and Js. In the remaining
interval Jo we have

& (u) =U(e (& —21) + 700 — =) {a(z)? — a(z; — ' 77)%}. (3.8)
Here we observe

Ue ™z — z1) + £ a(z1 —€7°*)) >0 and a(z) < a(z, — 1),
ifzy —el™ M <z <21+ (2,

U(e Nz — 1) + 77 a(zy —€77)) <0 and a(z) > afz; - gl—o1),
fr+C <z <3 —€l™,

for sufficiently small ¢ > 0. Therefore, the right-hand side of (3.8) is negative, so that (S1)' is
verified in each J; (i = 1,2,3,4,5). By (2) of Lemma 3.3 and (3.7), it is easy to verify (S2)' at

"z =12;+( and T = z; + (2 from Lemmas 3.3 and 3.4 and at z = 7, and = = z, since a is ct

function. Finally, (S3)' comes from the assumption that a'(0) > 0 and /(1) > 0. Thus we have
proved that u} is a supersolution for (P¢). O

When « satisfies o/(0) < 0 or /(1) < 0, u} in Proposition 3.1 does not satisfy (S3) or (S3)".
Therefore, we have to modify u} near z = 0 or z = 1 as in Proposition 3.2. The following
proposition deals with typical case o/(0) < 0 and o/(1) < 0.

Proposition 3.5. Assume o'(0) < 0 and o/(1) < 0. Let 01 and o3 be the same numbers as in
Proposition 8.1 and let o3 and o4 be positive numbers satisfying 04 < 03 < 204 and 03 < 0. For
sufficiently small € > 0, the following function

~a(z) + €277 + 77 (z — £°4)?, 0< z<e%,

—a(z) + %72, e <z <z + (1,
w(z) =3 Uz —21)+e 0z - =), m+G<rlT+(

afz) + €272, 1+ <z <l—e%,

afz) + 2772 +e798(z — 1 +£%4)?, 1-eg’+<z<1

is a supersolution for (P¢). Here (1 and ¢y are the same constanis as in Proposition 3.1.

Remark . The same conclusion is valid with obvious modification in case o'(0) < 0 and a'(1) 20
or o/(0) >0 and a'(1) < 0.

Since for the subsolution, we can prove similarly, we omit the proof for the subsolution. Now
we are ready to prove Theorem 1.1.



Proof of Theorem 1.1. We begin with the proof for the case L = {z;,z2}, K = K= {L}. Let
Q1 = (0,71), Q2 = (z2,1) (Case(I)). By Proposition 3.1 and Proposition 3.5, we can show that
there exists a supersolution u} with the following properties.

{ a(z) < ul(z) < afz) +€° for z <z <1, (3.9)

—a(z) <ui(z) < —a(z)+e® for 0<z <z -2,

for sufficiently small £ > 0 with § = min{2 — 02, 204 — 03}. Similarly, Proposition 3.2 allows us to
find a subsolution u, . satisfying

.6 l—-0o
{ a(z) —€° <use(z) <alz)  for zp+2'"1 <z <1, (3.10)

—a(z) - <u,¢(z) < —a(z) for 0<z<m;.

Since Proposition 2.2 assures the existence of a solution . such that u, . < ue < ug, it follows
that u, satisfies
{ lue(z) - a(z)] <& for zo+2'"t1 <z <1, (3.11)

[ue(z) + a(z)] < ® for 0<z <Lz —2170,

Moreover u. is a local minimizer of the functional J. on H'(0,1). Thus the proof is completed
for the case (I).

For the case (II), we have only to consider (P,) with u and a replaced by v(z) := u(1 - z) and
B(z) := a(1 — z). Repeating the above procedure we see the existence of solution v for

{ 20,2 (z) + v(B(z)? —v?) =0 1in (0,1),
v7(0) = v:(1) =0,

such that v satisfies (3.11) with o, z; and z; replaced by §, 1 — z; and 1 — z5. Therefore
u(z) = v(1 — z) becomes the desired solution. Moreover u is a local minimizer of the functional
J. on H(0,1).

Finally we study the case when the number of elements of the set K is larger than or equal to
2. Set K = {I},I3,---,I}}, I! = [2};,%%;,1] and =, = 0 and z%,,, = 1. We prove for the case (I),
that is the case when

(5] [272]
= U (T4ir Thit1)s Q2= U (Thir2 Taita)-
i=0 i=0

The preceding arguments enable us to construct a suitable supersolution u; and a suitable sub-
solution u, .. For example, in (z},}), the supersolution u; is defined by u(z) = a(z) + g2-oa
and the subsolution u, . is defined by u. . = —a(z) — €272 and in (x5, z3) the supersolution ug
is defined by u?(z) = a(z) + €2-°2 and the subsolution u. . is defined by u.(z) = a(z) — 2~
in (zh + 261771, 24 — 261~71) with some g1 > 0 and o2 > 0. We observe that, if z lies in the
neighborhood of z4; (i > 1) and z}; ; (i > 0), then u; is defined with use of suitable dilation,
translation or reflection of the solution U of (2.7) and if z lies in a neighborhoods of zy;, and
Thivs (i > 0), us. is defined with use of suitable dilation, translation or reflection of solution U
of (2.7). Thus the proof is completed. d

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2.
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Proof of Theorem 1.2. For the sake of simplicity, we only prove for the case when K = K ={5L}
and ) = [271,:172] and O = (0, :171) (Case(I))

Let u. be the solution obtained by Theorem 1.1 and fix n > 0 sufficiently small. We put
& = a(z1) = o(z,). Since u (z) < —a(z) +&772 < —a+ g2-°2 for ¢ € [0,z — 261 7°1], for
sufficiently small € > 0 we have u.(z) < —@+nfor z € [0,z —2¢!=°1]. Similarly we have
ue(z) > @ — n for z € [z + 261, 1]. Hence we can define the followings

. = inf{z >z -2 " u.(z) = ~a+n},
F. = sup{z <z + 2" "uc(z) =a -7}

We may assume that Z. = T € [z1,%2] and Fe = F € [21,72). Now we let v (t) = ue(Te + €t).
Then we have

~v}! = v((F, +et)? —v?),
v.(0) = —-a+n.

Since {v,} are uniformly bounded in L% and T, = T € [z1,%2), it i8 easy to see that ve 2> v in
Cll(')c(R), and
~v" =v@ -v?) teR.

Since it is easily seen that for any t < 0, ue(Zc +&t) < —a+n for sufficiently small € > 0, we
can obtain v < —@ + 7 for t < 0. Hence by Lemma 2.8, v satisfies v'(t) > 0 and v(t) — *@
as t = +0o. As a result, we can find a R > 0 large, such that v(R) = @ — 1. Thus, there is
a R, € (R—1,R+ 1), such that v;(t) <0ift € [0, R:) and v¢(R.) = —& — 7. Indeed, since
v(R+1) >a—n,v(R-1)<@-n,v'(t) >0onR and v, to v in C1([R -1, R+1]), for sufficiently
smalle > 0, v, (R+1) >a@—1n, v.(R—1) <@-nand v, > 0on [R~1,R+ 1]. Hence there
exists the desired R, € (R — 1, R +1). We may assume that R, — R. Therefore, ul(z) > 0 if
z € [Ee,Fe + €Re] and ue(Te +R:) =T — 1.

Claim. 7. =T, + €R..

Suppose that the claim is not true. Then we can find a t, > %, +£R., such that u.(z) > a@—n
for T € (T +€Re,te), ue(te) = a—n and ul(te) < 0. Note that lime—o0 e~ 1(t; — (T +€R.)) = +o0.
Indeed if it is not satisfied, there exist R. > 0 such that t, — (T +&R,) = eR. and sup, R; < +00.
We may assume that R, — R’ for some R' > 0. Since v > 0on R and v, = vin C1([0, R+R'+1)}),
for sufficiently small &€ > 0, v¢(R. + R;) = & — n and vg(R. + R.) > 0. Hence we have ug(t;) =
u! (%, +€(Re + RL)) = 7', (Re + R,) > 0. This contradict to u(t) < 0. Let 7. (t) = ue(te +¢t).
It is easy to check that T, — ¥ in Cl_(R) and ¥ satisfies

-7 =7(@® ~v) inR,

v(0)=a-n.
Let t < 0. Since lime—0 £~ (t: — (Bc +€Re)) = +00, te +6t > T + &R, for sufficiently small € > 0.
Hence we obtain 5(t) > @—nfort <0and ¥ Faast -+ +00 by Lemma 2.8. Hence there exists
R > 0 such that 5(R) = —~@+n. Thus, thereis R, € (R—1,R+1), such that 7'(t) < 0if t € [0, Re]
and O(R.) = —a + . Therefore, u;(z) <0ifz € [te, te + €Re] and uc(te + €Re) = —0+1. We
will analyze the energy of ue on [Z, Z.] to lead to a contradiction.

Since the energy functional correspond to the problem (P,;) is

Je(v) = /o 1 -E-;lu'P y (o) Zu) - 2" gy - /0 1 %)ﬁdx

and the term fol ﬂfﬁdw is independent of u, we can replace the energy functional J; by

Jo(w) = /0 1 f;lu’|2 + (i‘-(f)%'—“ﬁzdm.



Since by Proposition 2.2, we have
Je(ue) < Je(o)

for ¢ € H'(0,1) with u. . < ¢ < u}, for any y; > y1, u. is a minimizer of the following problem

inf{J. (u, (y1,¥2)) : u — ue € Hy(y1,%2), Une < u<ui},

where . 2 e
Jew ) = [ Cwp s QE VY,
M 2 4

(4.1)

for any open set M. Let m, 4, y, denote the minimum value of the problem (4.1). We will obtain
the lower bound and the upper bound for m, z, z,. At first we obtain the lower bound. First we

have
Js(uz’(fzx‘fe +5Re))
Te+€eR, 2 2 _.,2)2
— /_ (_E_z_lu;'2+ (a(z) I us) )d.’l:
R, = 2 _ ,2)2
—_ 5/ (1|’U;|2+ (a(zs +€t) 1)5) )dt
0 2 4
= (B+0(n) +oc(1))e
where

8= /_ t:o (—;—Iv'(t)!Q + @2—;1’-2—)3) dt.

Indeed, we have

R, r— 2 __ 2)2
/ llvél2 + (a(ms +5t) ve) dt
0

2 4
R 2 . 9\2
= lv’|2+55——-”—2—dt+os(1).
0 2 4

Next we remark that

R =2 212 R(n) =2 . w5)2)2
1 "2 (a "U) / 1 1. =\2 (a —U(t,a) )
—~ A dt= - : o dt
/.- 2|v: + ) dt o 2U (@) + 1 ,

where R(n) is the unique positive number satisfies U(R(n); @) = @ — 7. We claim that

' +o00 =2 . 7)2)2
lim L lU'(t;b?)2 + -(—O—I—M—)——)—dt < +00.
n—0 7 R(n) 2 4

By using L’Hospital’s rule, we only have to show is that for

+oo =2 _ T7(+ &)2)2

St = a% - %U’(t;az)2 + (a__gfﬁﬁ)_)_dt
! ] o2 - .5)2)2

-7 (U(R(g)’a)z + £ U(Iz(n)’a) : )lzn(n),

the following limit exists
lim S{(n) < +oo0.
n—0

(4.2)

(4.3)

(4.4)
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Multiplying the equation
-U"(t;@) = (@U8) - UL a)°)

by U'(t; @) and integrating over [R(n),+00) we have
U'(R(m);®)? _ @ - URm;&)?) _ n’(2@—n)’

2 4 4
Hence we obtain 1
U (R(n);@)| = 5nl2@ - 1. (4.5)
Next we remark that from U(R(n); @) = @ — 1 we have i
U'(R(n); @) Ry(n) = 1. (4.6)
From (4.4), (4.5) and (4.6) we obtain
20 _ )2
sl < TEZD ()
_ rP(2a-n)? 1
- 2 U (R(n); @)
_ rP2a-m)? 2
- 2 n|2a — 0|
= n|2a -7l

From (4.3) and above estimate we obtain (4.2).
Similarly we have L _ .
Je (ue, (tsyts +€eR.)) = (B+ O(n) + o:(1))e (4.7)

Hence from (4.2), (4.7), we obtain

Mez,,3. — Je(uea (Es,fe + ERe)) + J(Un (-fs + €R,, te))
+Je(u57 (te; te + Eﬁe)) + Je(ue; (ts + Eﬁe, Ee))
> 2(8+0(n) +oe(1))e.

Now we give the upper bound for m, z, z,. We define the following function %,

Ue(f) if € [Te, T + €Re],
u:@cteRete)=(@-n) (; — (7, +eR,)) + T -1,
Te(z) = if 7 € [T + eRe, Te +eRe +e),
uf(z)  if ¢ € [Fe+eRe +6,5e —£].
(a_ﬂz—zlgm—-e! (:c _ 55) 4+ u;(ﬁ; - e) ifze [EF - &, Ee]

We note that the function T, satisfies ue » < ue < U; and T +eR, > 21 ~gl=1 hold. We estimate
Je(@e, (Te, Te)). We only consider the most delicate case when %, + eR. + e < 21+ {2 < T, — €.
In other case, it can be estimated more easily. First we note that from (4.2) we have

Je(Uey (Zfs,-fs + ERe)) = Js(ue; (EEaES + ERE)) = e(ﬂ + 0("7) + 05(1))- (4~8)

Next we estimate J, (Tc, (Fe + €Re,Te + R, +¢€)). Since @ — n < ui (T, + eR, + ) < a(Z, +
¢R, +€) + €272, we have 0 < u}(Tc +eR. +&) - (@-n). <n+ O(e?~2°1) + €272, Hence




1m

— 2—-207 2—09
aL(z) = +O(e - )+e"""* Thus we have

Ze+eRe+e &2
/ Elﬁslzdﬂ? = O(en) +€0(€?721) + - 2772
Tet+eR.

O(en) + ofe).
Since @ — n < T, < a(zr) +£27°2 on [T, + eR.,T. + R, + €], we have

(@ -1)? - a@)? < (@)’ - a(z)? < O(E*2),
—2na + n2 + 0(62—20'1) < Hg(l‘)z _ a(w)g < 0(82_”3),

Hence we have
(a(2)? — Te(@)?)? < O(e*22) + O(n) + O(e**")

and
O(en) + e(O(e*~22) + O(e?~271))
O(en) + ofe).

FHeRete (a(o)? — B (2))?
/ 7 dz

Z.+eR,

Thus we obtain
Je(Te, (Te + €Re,Te + €R: +€)) < O(en) + ofe). (4.9)

Next we estimate J, (@, , (Z: +eRe +¢&,%. —¢)). Since we assume T, + R, +& < 71 + (2 < T —¢,
we divide the interval (Z. + €R. + €,% — €) to (T + R +&,71 + {2) and (z1 + (2, %, —€). We
set V(z) =U(e Y (z — 1) + €77 : a(zy — €'77)). So we have
Js(ﬁsa (EE + ERE +&,z1 + 42))
Js(u;1 (Te + ERE +é&,71 + C2))
Je(V,(Tc +eR: + 6,21 + (2))
€1 211! 2 2 __ 2\2

[0 SVer, e overy,

. ) 4

€™ 1t _ ol=-01))2
[ st
0 2

e (alzy + et — er01)2 =~ U(t, a(zy —el77)?)?
+e/0. ) .dt
€ (g + oe(l)) . (4.10)

Last equality follows from (5) of Lemma 2.7 if 0 < 01 < 2, Indeed, first we note that from (5)
of Lemma 2.7 we have U(t, a(z; — €17°1)) = a(r; — e'~7)U(a(z; — €' ~")t, 1) and U'(¢, a(z: -
e1-o1))2 = a(z; — €1~ )4U' (a(z;, — €171)t,1). Similarly U'(t,@)? = @U'(at,1)2. Hence we

obtain

IA

1_51—-01

i

U'(t, a(zy —€))? - U'(t,@)?
= a(z — U (o(z — ), 1)? ~ U'(at, 1))
+(alzy — e'77)* — @)U (at, 1)%.
From (3) of Lemma 2.7, we have
U (e — £, 1) - U'(@t, 1)?] < Cexp(=C't)
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for some C,C' > 0 independent of ¢ > 0. Hence we obtain

e—°1 ' _ pleor\\2 oo ! a)?
/ U'(t,o(z1 — € ) dt — / _U_(z’_(ﬂ.dt as e — 0.
0 2 0 2

Next we estimate

/5"'1 (a(zs + et — € 7)2 — Ut o(z1 — €17 )?)?
, dz
0

First we note that

(a(zy + et —e'~7)?2 —U(t, o1 — el=7)2)2 — (@ - U(t,@)*)?
= a(#)* - 20(#)?U (o)) + U, )

—(@ - 28°U(t,@)® + U(t,@)*)
(a(#)* - @) ~ 20(#)2 (U, al))® - Ut 3)?)

—2(a(#)? -a)U 3 + (U al)* - Ut @)*),

where a(#) = a(z; + &t — ') and o(}) = a(z1 - g1=1), Since by (2) of Lemma 2.7, we only

have to estimate the term a(#)* — o*.

Since a(z; + et — ') =@+ O(e*~2"*) for t € [0, ], we have a(z, +et—el")t —at =
O(e?~291) and

e~ 71

/ |a(a:1 + et — 61—01)4 - —4|dt = 0(52—301)_
0 !

If we take 0 < 03 < %, we obtain

e~ 1
/ la(zy + et — ' 771)* — @|dt = o (1).
0
Hence we can conclude that

/E_,1 (a(s + et =1 =7)? — U(t,afzy — €' 7°1))? dt
2
0

- / *E@-vea) U‘ft’a)z)z dt + 0,(1)
0

and

/ U't,ale — )
0 2

N /‘ (a(zy + et — 1791)2 — U(t, a(zy — ' ~7)%)? g
0

4
= (g +o¢(1)) :

Next we estimate J.(%e, (€1 + (2,% — €)). We note that on (z1 + (o, Fe — €), Te(z) = ui(z) =
a(z) + €2-°% and o/ (z) = O(e?72°1). Hence we have

Je(ﬁs, (371 + G2, Te — 5))




= Jelala) +e277%, (21 + (2, B — €))
/2;——5 éa'(z)"’ + (a(m)2 — (afz) + £2792)2)2 s

1+¢2 2 4
- / " 0(e54) + 047 do
s1+¢2
— 0(66—401)+0(E4—209)
= o(e) (4.11)

for0 < o3 < % Finally we can estimate J.(%., (% — €, Z¢)) similarly as in J; (@, (. + €R. +€)),
that is we can obtain

Je(Te, (Te — €,%e)) < O(en) + o(€)- (412)
As a result, from (4.8), (4.9), (4.10), (4.11) and (4.12) we obtain
Moz, <o (645 ) +0lem +ofe) (413)

Combining (4.8) and (4.13), we are led to

26¢ + O(en) + ofe) < —gﬂs +0(en) + ole)

and B . Oen) . ofe)
en ofe
B, 22
2~ ey m+ €
Since O(en)/en is bounded, we can take 7 > 0 so small that
Oen) _B
en <3

This is a contradiction for € > 0 small. So we can conclude T.+cR. = Z, and we can set £, 1,1 = T¢
and tc 2,1 = Z.. In other case, it can be estimated more easily. Thus, the proof is completed. [
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