A SUMMARY OF GLOBAL SMOOTHINGS OF NORMAL CROSSING COMPLEX SURFACES

NAOTO YOTSUTANI

1. Introduction

This note is based on our talk in Kinosaki Algebraic Geometry Symposium 2020. We prove that there exists a family of smoothings of a simple normal crossing compact complex surface X with triple points. Since our differential geometric proof also includes the case where X is neither Kählerian nor $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, this generalizes Friedman's result on degenerations of $K 3$ surfaces in algebraic geometry [Fr83]. As an application, we provide an example of a simple normal crossing surface with triple points which is smoothable to a quartic $K 3$ surface. We refer the reader to the forthcoming paper [DY21] for more details.

Throughout this note, $X=\bigcup_{i=1}^{N} X_{i}$ denotes a compact connected complex surface with normal crossings with $\operatorname{dim}_{\mathbb{C}} X_{i}=2$ for each i, unless otherwise specified. Furthermore we will assume that each X_{i} is smooth and X has no 4 -fold intersection, which means that $X_{i} \cap X_{j} \cap X_{k} \cap X_{\ell}=\emptyset$ for distinct i, j, k and ℓ. More precisely, let X be a compact complex analytic surface with irreducible components X_{1}, \ldots, X_{N}. Then we say that X is a simple normal crossing (SNC) complex surface if X is locally embedded in \mathbb{C}^{3} as $\left\{\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right) \in \mathbb{C}^{3} \mid \zeta_{1} \cdots \zeta_{\ell}=0\right\}$ for some $\ell \in\{1,2,3\}$ and each X_{i} is smooth. We call a SNC compact complex surface X is d-semistable if

$$
\begin{equation*}
\left(\bigotimes_{i} \mathcal{I}_{X_{i}} / \mathcal{I}_{X_{i}} \mathcal{I}_{D}\right)^{*} \cong \mathcal{O}_{D} \tag{1.1}
\end{equation*}
$$

for the singular locus D on X, where $\mathcal{I}_{X_{i}}$ and \mathcal{I}_{D} are the ideal sheaves of X_{i} and D in X respectively. Let $D_{i j}=X_{i} \cap X_{j}$ with $i \neq j$ be the set of double curves. We will also assume that each connected component of $D_{i j}$ defines a smooth irreducible divisor on both X_{i} and X_{j}. Let us denote $N_{i j}$ the holomorphic normal bundle $N_{D_{i j} / X_{i}}$ to $D_{i j}$ in X_{i}. When X is a SNC compact complex surface with at most double curves (i.e. no 3-fold intersection), then d-semistablity condition (1.1) is equivalent to

$$
\begin{equation*}
N_{i j} \otimes N_{j i} \cong \mathcal{O}_{D_{i j}} . \tag{1.2}
\end{equation*}
$$

Now we consider the case where $X=\bigcup_{i=1}^{N} X_{i}$ is a SNC compact complex surface with triple points. Let $T_{i j k}=X_{i} \cap X_{j} \cap X_{k}$ a set of triple points, $T_{i j}=\sum_{k(\neq i, j)} T_{i j k}$ a divisor on $D_{i j}$, and $T_{i}=\bigcup_{j \neq k} T_{i j k}$ the union of the set of triple points on X_{i}. For each $D_{i j}$, we consider

$$
\begin{equation*}
N_{i j} \otimes N_{j i} \otimes\left[T_{i j}\right] \cong \mathcal{O}_{D_{i j}} \tag{1.3}
\end{equation*}
$$

[^0]which is equivalent to the condition that X to be d-semistable (1.1). X is called a d smistable K3 surface if X is a d-semistable SNC Kähler surface with trivial canonical bundle and $H^{1}\left(X, \mathcal{O}_{X}\right)=0$. It is known that d-semistable $K 3$ surface are classified into Type I, II and III due to the works of Friedman [Fr83, FS86]. In particular, Friedman showed that any d-semistable $K 3$ surface has a family of smoothings $\varpi: \mathscr{X} \rightarrow \Delta \subset \mathbb{C}$ of X with $K_{\mathscr{X}}=\mathcal{O}_{\mathscr{X}}$, where \mathscr{X} is a 3 -dimensional complex manifold and ϖ is a holomorphic map between \mathscr{X} and a domain Δ in \mathbb{C} (see also [KN94], Corollary 2.5). We remark that if X is a d-semistable $K 3$ surface at most double curves, then X is either of Type I or of Type II. Meanwhile X is of Type III when a d-semistable $K 3$ surface X admits triple points [FS86]. In 2009, Doi generalized Friedman's result in the following sense. That is, even in the case where a SNC complex surface X with at most double curves is neither Kählerian nor $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, there still exists a family of smoothings $\varpi: \mathscr{X} \rightarrow \Delta$ of X in a weak sense (Theorem 5.5 in [D09]). He constructed compact complex surfaces with trivial canonical bundle in a differential geometric method by gluing together two compact complex surfaces with an anticanonical divisor under suitable conditions. The purpose of our joint work [DY21] is to generalize this smoothability result to the case where X is a SNC complex surface with triple points. More precisely, we shall prove the following.
Theorem 1.1. Let $X=\bigcup_{i=1}^{N} X_{i}$ be a simple normal crossing complex surface. Assume the following conditions:
(i) X is d-semistable;
(ii) each D_{i} is an anticanonical divisor on X_{i}; and
(iii) there exists a meromorphic volume form Ω_{i} on each X_{i} with a pole along D_{i} such that the Poincaré residue $\operatorname{res}_{D_{i j}} \Omega_{i}$ of Ω_{i} on $D_{i j}$ is minus the Poincaré residue $\operatorname{res}_{D_{i j}} \Omega_{j}$ of Ω_{j} on $D_{i j}$ for all i, j. (For the definition of Poincaré residues, see [GH], pp. 147-148).
Then there exist $\varepsilon>0$ and a surjective mapping $\varpi: \mathscr{X} \rightarrow \Delta=\{\zeta \in \mathbb{C}| | \zeta \mid<\varepsilon\}$ such that the following statements hold.
(a) \mathscr{X} is a smooth 6 -dimensional manifold and ϖ is a smooth mapping.
(b) $X_{0}=\varpi^{-1}(0)=X$.
(c) For each $\zeta \in \Delta^{*}=\Delta \backslash\{0\}, X_{\zeta}=\varpi^{-1}(\zeta)$ is a smooth compact complex surface with trivial canonical bundle.
(d) The complex structure on X_{ζ} depends continuously on ζ outside the singular locus $D=\bigcup_{i=1}^{N} D_{i} \subset X_{0}$. More precisely, for any point $p \in \mathscr{X} \backslash D$ there exist a neighborhood U of p and a diffeomophism $U \simeq V \times D$ with $D \subset \Delta$, such that the induced complex structures on V depend continuously on $\zeta \in D$.
Note that conditions (ii) and (iii) are equivalent to the condition that the canonical bundle of the SNC complex surface X is trivial.

Comparing Theorem 1.1 with the result of R. Friedman in [Fr83], we see that even when X is not Kählerian or $H^{1}\left(X, \mathcal{O}_{X}\right)$ does not vanish, there still exists a family of smoothings $\varpi: \mathscr{X} \rightarrow \Delta$ of X in a weak sense (or a fibration), whose general fiber is a smooth compact complex surface with trivial canonical bundle. This result strongly suggests that X as in Theorem 1.1 admits a family of smoothings in the standard holomorphic sense, although the proof seems difficult.

The Bogomolov-Tian-Todorov theorem states that a Calabi-Yau manifold has unobstructed deformations and the first proof of this theorem is analytic. The second proof
is algebraic which were given by Ran [Ran92] and Kawamata [Kaw92] where they used T^{1}-lifting property effectively. However T^{1}-lifting property requires the cohomological condition $H^{n-1}\left(X, \mathcal{O}_{X}\right)=0$ when we obtain a flat deformation \mathscr{X} of a SNC variety X. Meanwhile, our differential geometric proof does not assume the cohomological condition $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, though it only works in the case of a complex surface. Bearing in mind that the advantage of differential geometric approach, it is crucial to construct examples of compact complex surfaces X with trivial canonical bundle satisfying $H^{1}\left(X, \mathcal{O}_{X}\right) \neq 0$. Hence it is natural to ask the following question.

Problem 1.2. Can we construct either a complex torus or a primary Kodaira surface by applying Theorem 1.1?

For the moment we can construct such examples in the case where SNC varieties have only two components (i.e. doubling construction), due to Doi's work (see [D09], Example 5.3), where he used Hirzebruch surfaces as ingredients of the construction. We will deal with this example in the last section (see Example 4.4).

The proof of Theorem 1.1 is based on the results obtained in [D09] and an explicit construction of local smoothings around the double curves. We will give a sketch of proof in this article. A complete proof Theorem 1.1 and an explicit example of degenerate $K 3$ surface with triple points are given in [DY21].

2. A BRIEF REVIEW OF COMPACT COMPLEX SURFACES

2.1. $\operatorname{SL}(2, \mathbb{C})$-structures and $\mathrm{SU}(2)$-structures. For later use we recall the definition of SL $(2, \mathbb{C})$-structure on an oriented manifold of real dimension 4. See [G04, D09] for more details.

To begin let V be an oriented real vector space of dimension 4. Taking $\psi_{0} \in \wedge^{2} V^{*} \otimes \mathbb{C}$, we call ψ_{0} an $\operatorname{SL}(2, \mathbb{C})$-structure on V if ψ_{0} satisfies

$$
\psi_{0} \wedge \bar{\psi}_{0}>0, \quad \psi_{0} \wedge \psi_{0}=0
$$

Each $\mathrm{SL}(2, \mathbb{C})$-structure ψ_{0} on V defines complex subspaces

$$
V^{0,1}=\left\{\zeta \in V \otimes \mathbb{C} \mid \iota_{\zeta} \psi_{0}=0\right\}, \quad V^{1,0}=\overline{V^{1,0}}
$$

where ι_{ζ} denotes the inner multiplication by ζ. Then the decomposition

$$
V \otimes \mathbb{C}=V^{1,0} \oplus V^{0,1}
$$

gives a complex structure $I_{\psi_{0}}$ on V so that ψ_{0} is a complex differential form of type (2,0) with respect to $I_{\psi_{0}}$.

Analogously we can extend this concept to an oriented 4-manifold M as follows. We call $\psi \in C^{\infty}\left(\wedge^{2} T^{*} M \otimes \mathbb{C}\right)$ an $\operatorname{SL}(2, \mathbb{C})$-structure on M if ψ satisfies

$$
\psi \wedge \bar{\psi}>0, \quad \psi \wedge \psi=0
$$

Observe that an $\operatorname{SL}(2, \mathbb{C})$-structure ψ on M induces an $\operatorname{SL}(2, \mathbb{C})$-structure on $T_{x} M$ for each $x \in M$. Hence we see that ψ defines an almost complex structure I_{ψ} on M so that ψ is a type $(2,0)$ complex differential form with respect to I_{ψ}.

The following lemma gives a geometric characterization of complex surfaces with trivial canonical bundle. We refer to [D09], Lemma 2.3 for a proof.

Lemma 2.1 (Grauert, Goto [G04]). Let M be an oriented 4 -manifold and ψ be an $\operatorname{SL}(2, \mathbb{C})$ structure on M. If ψ is d-closed, then I_{ψ} is an integrable complex structure on M with trivial canonical bundle. Furthermore ψ is a holomorphic volume form on M with respect to I_{ψ}.

The above lemma gives the following characterization of complex surfaces with trivial canonical bundle by d-closed $\mathrm{SL}(2, \mathbb{C})$-structures.
Proposition 2.2. Let M be an oriented 4-manifold. Then M admits a complex structure with trivial canonical bundle if and only if M admits a d-closed $\mathrm{SL}(2, \mathbb{C})$-structure.

Thus if we say that X is a complex surface with trivial canonical bundle, then we understand that X consists of an underlying oriented 4-manifold M and a d-closed $\operatorname{SL}(2, \mathbb{C})$ structure ψ on M such that ψ induces a complex structure I_{ψ} on M and becomes a holomorphic volume form on $X=\left(M, I_{\psi}\right)$.

Let X be a compact complex surface with trivial canonical bundle. If X is simplyconnected or $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, then X is called a $K 3$ surface. According to the Enriques Kodaira classification of compact complex surfaces, it is known that a compact complex surface with trivial canonical bundle is either a complex torus, a Kodaira surface, or a $K 3$ surface (see [BHPV], Chapter 6).

Next we will give the definition of $\mathrm{SU}(2)$-structure. Again let V be an oriented real vector space of dimension 4 . For each $\left(\psi_{0}, \kappa_{0}\right) \in\left(\wedge^{2} V^{*} \otimes \mathbb{C}\right) \oplus \wedge^{2} V^{*}$, we denote an inner product on V by $g_{\left(\psi_{0}, \kappa_{0}\right)}$ which is defined by $g_{\left(\psi_{0}, \kappa_{0}\right)}\left(I_{\psi} \cdot, \cdot\right)=\kappa_{0}(\cdot, \cdot)$. Then $\left(\psi_{0}, \kappa_{0}\right)$ is said to be an $\mathrm{SU}(2)$-structure on V if it satisfies the following conditions:
(i) ψ_{0} is an $\operatorname{SL}(2, \mathbb{C})$-structure on V (i.e. $\psi_{0} \wedge \bar{\psi}_{0}>0, \psi_{0} \wedge \psi_{0}=0$),
(ii) $\psi_{0} \wedge \kappa_{0}=0$,
(iii) $g_{\left(\psi_{0}, \kappa_{0}\right)}$ is positive definite, and
(iv) $2 \kappa_{0}^{2}=\psi_{0} \wedge \bar{\psi}_{0}$.

Definition 2.3. Let M be an oriented 4-manifold. Then

$$
(\psi, \kappa) \in C^{\infty}\left(\wedge^{2} T^{*} M \otimes \mathbb{C}\right) \oplus C^{\infty}\left(\wedge^{2} T^{*} M\right)
$$

is said to be an $\mathrm{SU}(2)$-structure on M if the restriction $\left.(\psi, \kappa)\right|_{T_{x} M}$ is an $\mathrm{SU}(2)$-structure on $T_{x} M$ for any $x \in M$.
If ψ and κ of an $\mathrm{SU}(2)$-structure on M are both d-closed, then $X=\left(M, I_{\psi}, \kappa\right)$ is a Kähler surface with trivial canonical bundle by Lemma 2.1. Hence $\mathrm{SU}(2)$-structures have an important role in the proof of Theorem 1.1.
2.2. Compact complex surfaces with anticanonical divisors. Next we recall some results on compact complex manifolds with an anticanonical divisor which were already used in [D09] and [DY14]. For simplicity, we only consider the case of complex surfaces although it is possible to extend the most part of results into arbitrary dimension.

Let X be a compact complex surface and D a smooth anticanonical divisor on X. Taking an open covering $\left\{U_{\alpha}\right\}$ of X, we define $V_{\alpha}=U_{\alpha} \cap D$. Then $\left\{V_{\alpha}\right\}$ is an open covering of D. Furthermore, we can show the following.
Lemma 2.4. There is a local coordinate system $\left\{U_{\alpha},\left(z_{\alpha}, w_{\alpha}\right)\right\}$ on X such that
(i) w_{α} is a local defining function of D on U_{α}, i.e. $V_{\alpha}=\left\{w_{\alpha}=0\right\}$.
(ii) the 2-forms $\Omega_{\alpha}=\frac{d w_{\alpha}}{w_{\alpha}} \wedge d z_{\alpha}$ on U_{α} together yield a holomorphic volume form Ω on $X \backslash D$.

Proof. The statement (i) is obvious. Hence it suffices to prove (ii).
Let $\phi_{\alpha \beta}$ and $f_{\alpha \beta}$ be non-vanishing holomorphic functions on $U_{\alpha} \cap U_{\beta}$ which determine the coordinate transformation of X by

$$
\begin{equation*}
z_{\alpha}=\phi_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right) \quad \text { and } \quad w_{\alpha}=f_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right) w_{\beta} . \tag{2.1}
\end{equation*}
$$

On $U_{\alpha} \cap U_{\beta}$, we recall that the canonical bundle K_{X} is given by transition function

$$
\begin{equation*}
h_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right)=\frac{d w_{\beta} \wedge d z_{\beta}}{d w_{\alpha} \wedge d z_{\alpha}} . \tag{2.2}
\end{equation*}
$$

Also the line bundle $[D]$ on X is given by transition functions

$$
\begin{equation*}
f_{\alpha \beta}=\frac{w_{\alpha}}{w_{\beta}} . \tag{2.3}
\end{equation*}
$$

(See [GH], p.145). Since we take $[D]$ to be an anticanonical divisor on X, we can choose the local coordinates $\left(z_{\alpha}, w_{\alpha}\right)$ satisfying

$$
\begin{equation*}
f_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right) h_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right)=1 \tag{2.4}
\end{equation*}
$$

Substituting (2.2) and (2.3) into (2.4), we see that the local holomorphic volume forms

$$
\Omega_{\alpha}=\frac{d w_{\alpha}}{w_{\alpha}} \wedge d z_{\alpha}
$$

together yield a holomorphic volume form Ω on $X \backslash D$.
Next we shall consider the holomorphic normal bundle $N_{D / X}$ to D in X which is defined as the quotient line bundle

$$
N_{D / X}=\frac{\left.T_{X}^{\prime}\right|_{D}}{T_{D}^{\prime}}
$$

where T_{X}^{\prime} (resp. T_{D}^{\prime}) is the holomorphic tangent bundle of X (resp. D). We often denote $N_{D / X}$ by N for simplicity. Let $\pi: N \rightarrow D$ be the projection and $i_{0}: X \rightarrow N$ the zero section. We may identify $i_{0}(D)$ of N with D in X. Restricting z_{α} to $V_{\alpha}=U_{\alpha} \cap D$, we obtain a local coordinate system $\left\{\left(V_{\alpha}, x_{\alpha}\right)\right\}$ on D, with $x_{\alpha}=\left.z_{\alpha}\right|_{V_{\alpha}}$. On $\pi^{-1}\left(V_{\alpha}\right) \simeq V_{\alpha} \times \mathbb{C}$, we have local coordinates (x_{α}, y_{α}) of the normal bundle $N=\left.[D]\right|_{D}$ where $x_{\alpha} \in V_{\alpha}$ and $y_{\alpha} \in \mathbb{C}$ is the fiber coordinate. Analogous to (2.1), the coordinate transformation of N is given by

$$
\begin{equation*}
x_{\alpha}=\psi_{\alpha \beta}\left(x_{\beta}\right) \quad \text { and } \quad y_{\alpha}=g_{\alpha \beta}\left(x_{\beta}\right) y_{\beta}, \tag{2.5}
\end{equation*}
$$

where $\psi_{\alpha \beta}$ and $g_{\alpha \beta}$ are holomorphic functions on $\pi^{-1}\left(V_{\alpha} \cap V_{\beta}\right)$ defined by

$$
\begin{equation*}
\psi_{\alpha \beta}\left(x_{\beta}\right)=\phi_{\alpha \beta}\left(x_{\beta}, 0\right) \quad \text { and } \quad g_{\alpha \beta}\left(x_{\beta}\right)=f_{\alpha \beta}\left(x_{\beta}, 0\right) \tag{2.6}
\end{equation*}
$$

respectively. By restricting (2.2) to $V_{\alpha} \cap V_{\beta}$, we see that

$$
\left.h_{\alpha \beta}\left(z_{\beta}, w_{\beta}\right)\right|_{V_{\alpha} \cap V_{\beta}}=\left.\frac{d w_{\beta} \wedge d z_{\beta}}{d w_{\alpha} \wedge d z_{\alpha}}\right|_{V_{\alpha} \cap V_{\beta}}
$$

which becomes

$$
\begin{equation*}
h_{\alpha \beta}\left(x_{\beta}, 0\right)=g_{\alpha \beta}\left(x_{\beta}\right)^{-1} \frac{d x_{\beta}}{d x_{\alpha}} \tag{2.7}
\end{equation*}
$$

because $g_{\alpha \beta}\left(x_{\beta}\right)^{-1}=y_{\beta} / y_{\alpha}$ by (2.5).
On the other hand, restricting (2.4) to $V_{\alpha} \cap V_{\beta}$, we have

$$
f_{\alpha \beta}\left(x_{\beta}, 0\right) h_{\alpha \beta}\left(x_{\beta}, 0\right)=1
$$

which yields

$$
\frac{d x_{\beta}}{d x_{\alpha}}=1
$$

by (2.6) and (2.7). Hence we showed that the local holomorphic volume form $\Omega_{D, \alpha}=d x_{\alpha}$ on V_{α} together yield a holomorphic volume form Ω_{D} on D so that the canonical bundle K_{D} of D is trivial. Note that this agrees with a consequence of the adjunction formula $K_{D}=\left.\left(K_{X} \otimes[D]\right)\right|_{D} \cong \mathcal{O}_{D}$.

As in [GH] p.147, we consider Ω as a meromorphic 2 -form on X with a single pole along D. Then the holomorphic volume form Ω_{D} obtained from Ω in the above is said to be the Poincaré residue of Ω which is denoted by $\operatorname{res}(\Omega)$. We readily see that $\operatorname{res}(\Omega)$ is not depend on the choice of local coordinates of Ω.
2.3. Semistable degenerations of $K 3$ surfaces. Next we reall a summary of the classification of degenerations of $K 3$ surfaces. Let $\varpi: \mathscr{X} \rightarrow \Delta$ be a proper map from a compact complex 3-dimensional manifold \mathscr{X} to a domain $\Delta=\{\zeta \in \mathbb{C}| | \zeta \mid<\varepsilon\}$ such that
(1) $\mathscr{X} \backslash \varpi^{-1}(0)$ is smooth, and
(2) the fiber $X_{\zeta}=\varpi^{-1}(\zeta)$ is a smooth compact Kähler surface for each $\zeta \in \Delta^{*}=$ $\Delta \backslash\{0\}$.
We call ϖ a degeneration of complex surfaces. Furthermore, a degeneration ϖ is said to be semistable if
(3) the total space \mathscr{X} is smooth, and
(4) the central fiber $X_{0}=\varpi^{-1}(0)$ is a Kähler surface with simple normal crossings.

In the study of the degenerations of $K 3$ surfaces, the following results due to Kulikov and Personn-Pinkham are important.

Theorem 2.5 ([Fr83], Theorem 5.1). Let $\varpi: \mathscr{X} \rightarrow \Delta$ be a semistable degeneration of $K 3$ surfaces. If all components X_{i} of the central fiber $X_{0}=\varpi^{-1}(0)$ are algebraic, then there exists a birational isomorphism $\rho: \mathscr{X} \rightarrow \mathscr{X}^{\prime}$ with a commutative diagram

such that
(a) ρ is an isomorphism $\mathscr{X} \backslash \varpi^{-1}(0) \cong \mathscr{X}^{\prime} \backslash\left(\varpi^{\prime}\right)^{-1}(0)$, and
(b) $\varpi^{\prime}: \mathscr{X}^{\prime} \rightarrow \Delta^{\prime}$ is a semistable degeneration with $K_{\mathscr{X}^{\prime}}=\mathcal{O}_{\mathscr{X}^{\prime}}$ where $K_{\mathscr{X}^{\prime}}$ is the canonical line bundle of \mathscr{X}^{\prime}.

Theorem 2.6 ([Fr83], Theorem 5.2). Let $\varpi: \mathscr{X} \rightarrow \Delta$ be a semistable degeneration of $K 3$ surfaces with $K_{\mathscr{X}}=\mathcal{O}_{\mathscr{X}}$ as in Theorem 2.5. Then $X_{0}=\varpi^{-1}(0)$ is one of the following three types:

Type I: X is a smooth $K 3$ surface.
Type II: $X=X_{1} \cup \cdots \cup X_{N}$ is a chain of surfaces, where X_{1} and X_{N} are rational surfaces, X_{2}, \cdots, X_{N-1} are elliptic ruled surfaces and $X_{i} \cap X_{i+1}, i=1, \cdots N-1$ are smooth elliptic curves.
Type III: $X=\bigcup_{i=1}^{N} X_{i}$, where each X_{i} is a rational surface and the double curves $D_{i j}=X_{i} \cap X_{j} \subseteq X_{i}$ are cycles of rational curves.

We call X a d-semistable $K 3$ surface if

- X is a d-semistable SNC compact Kähler surface with trivial canonical bundle, and
- $H^{1}\left(X, \mathcal{O}_{X}\right)=0$.

It is well-known that any d-semistable $K 3$ surfaces are classified into Type I-III in Theorem 2.6 (cf. [Fr83], Definition 5.5).

3. Global smoothings of simple normal crossing complex surfaces

3.1. Local coordinates on SNC complex surfaces. Let $X=\bigcup_{i=1}^{N} X_{i}$ be a SNC complex surface satisfying conditions (i)-(iii) of Theorem 1.1. We can find a local holomorphic coordinate system $\left\{U_{i, \alpha},\left(z_{i, \alpha}^{1}, z_{i, \alpha}^{2}\right)\right\}$ on $X_{i}=\bigcup_{\alpha \in \Lambda_{i}} U_{i, \alpha}$ with Λ_{i} a finite subset of \mathbb{N}, satisfying the following conditions:
(A) $U_{i, \alpha}=\left\{\left(z_{i, \alpha}^{1}, z_{i, \alpha}^{2}\right) \in \mathbb{C}^{2}| | z_{i, \alpha}^{1}\left|<1,\left|z_{i, \alpha}^{2}\right|<1\right\}\right.$;
(B) if $U_{i, \alpha} \cap D_{i} \neq \emptyset$ and $U_{i, \alpha} \cap T_{i}=\emptyset$, then $U_{i, \alpha} \cap D_{i}=\left\{z_{i, \alpha}^{2}=0\right\}$; and
(C) if $U_{i, \alpha} \cap T_{i} \neq \emptyset$, then $U_{i, \alpha} \cap D_{i}=\left\{z_{i, \alpha}^{1} z_{i, \alpha}^{2}=0\right\}$, so that $U_{i, \alpha} \cap T_{i}=\left\{z_{i, \alpha}^{1}=z_{i, \alpha}^{2}=\right.$ $0\}$.
In particular, each $U_{i, \alpha}$ contains at most one triple point. Now we set

$$
\begin{aligned}
& \Lambda_{i}^{(0)}=\left\{\alpha \in \Lambda_{i} \mid U_{i, \alpha} \cap D_{i}=\emptyset\right\}, \\
& \Lambda_{i}^{(1)}=\left\{\alpha \in \Lambda_{i} \mid U_{i, \alpha} \cap D_{i} \neq \emptyset \text { and } U_{i, \alpha} \cap T_{i}=\emptyset\right\}, \\
& \Lambda_{i}^{(2)}=\left\{\alpha \in \Lambda_{i} \mid U_{i, \alpha} \cap T_{i} \neq \emptyset\right\}, \\
& \Lambda_{i j}=\left\{\alpha \in \Lambda_{i} \mid U_{i, \alpha} \cap D_{i j} \neq \emptyset\right\}, \quad \Lambda_{i j}^{(1)}=\Lambda_{i j} \cap \Lambda_{i}^{(1)}, \quad \Lambda_{i j}^{(2)}=\Lambda_{i j} \cap \Lambda_{i}^{(2)}, \quad \text { and } \\
& \Lambda_{i j k}=\Lambda_{i j} \cap \Lambda_{i k} \subset \Lambda_{i}^{(2)} .
\end{aligned}
$$

From condition (ii) of Theorem 1.1, we can choose the above coordinate system so that
(D) the meromorphic volume form Ω_{i} in (iii) of Theorem 1.1 can be locally represented as

$$
\Omega_{i}= \begin{cases}\mathrm{d} z_{i, \alpha}^{1} \wedge \mathrm{~d} z_{i, \alpha}^{2} & \text { if } \alpha \in \Lambda_{i}^{(0)}, \\ \mathrm{d} z_{i, \alpha}^{1} \wedge \frac{\mathrm{~d} z_{i, \alpha}^{2}}{z_{i, \alpha}^{2}} & \text { if } \alpha \in \Lambda_{i}^{(1)}, \\ \sigma_{i, \alpha} \frac{\mathrm{~d} z_{i, \alpha}^{1}}{z_{i, \alpha}^{1}} \wedge \frac{\mathrm{~d} z_{i, \alpha}^{2}}{z_{i, \alpha}^{2}} & \text { if } \alpha \in \Lambda_{i}^{(2)},\end{cases}
$$

where $\sigma_{i, \alpha}$ for $\alpha \in \Lambda_{i}^{(2)}$ is a complex number.
In terms of the above coordinate system, we define a new one $\left\{U_{i, \alpha},\left(z_{i j, \alpha}, w_{i j, \alpha}\right)\right\}$ associated with $D_{i j}$ as follows:
(E) if $\alpha \notin \Lambda_{i j}^{(2)}$, then we set $z_{i j, \alpha}=z_{i, \alpha}^{1}, w_{i j, \alpha}=z_{i, \alpha}^{2}$;
(F) if $\alpha \in \Lambda_{i j}^{(2)}$, then between $z_{i, \alpha}^{1}$ and $z_{i, \alpha}^{2}$, we choose as $w_{i j, \alpha}$ the coordinate which is a defining function of $D_{i j}$ on $U_{i, \alpha}$, and define $z_{i j, \alpha}$ as the remainder, so that $U_{i, \alpha} \cap D_{i j}=\left\{w_{i j, \alpha}=0\right\}$ and $U_{i, \alpha} \cap D_{i k}=\left\{z_{i j, \alpha}=0\right\}$ for some $k \neq i, j$.
In particular, we have

$$
\begin{equation*}
z_{i k, \alpha}=w_{i j, \alpha}, \quad w_{i k, \alpha}=z_{i j, \alpha} \quad \text { for } \alpha \in \Lambda_{i j k} . \tag{3.1}
\end{equation*}
$$

We can further choose the coordinate system so that the following condition holds.
(G) Let $V_{i j, \alpha}=U_{i, \alpha} \cap D_{i j}$ and $x_{i j, \alpha}=\left.z_{i j, \alpha}\right|_{V_{i j, \alpha}}$ for $\alpha \in \Lambda_{i j}$. Then we have $\Lambda_{i j}=\Lambda_{j i}$, $V_{i j, \alpha}=V_{j i, \alpha}$ and $x_{i j, \alpha}=x_{j i, \alpha}$ for all $i \neq j$ and $\alpha \in \Lambda_{i j}$.
Let $\left(x_{i j, \alpha}, y_{i j, \alpha}\right)$ be local coordinates of $\pi_{i j}^{-1}\left(V_{i j, \alpha}\right) \subset N_{i j}$, where $\pi_{i j}$ is the projection from $N_{i j}$ to $D_{i j}$ and $y_{i j, \alpha}$ are fiber coordinates. Then from condition (i) of Theorem 1.1, we may further assume that
(H) the map $h_{i j, \zeta}: N_{i j} \backslash\left(D_{i j} \cup \pi_{i j}^{-1}\left(T_{i j}\right)\right) \rightarrow N_{j i} \backslash\left(D_{j i} \cup \pi_{j i}^{-1}\left(T_{j i}\right)\right)$ locally defined by

$$
h_{i j, \zeta}:\left(x_{i j, \alpha}, y_{i j, \alpha}\right) \mapsto\left(x_{j i, \alpha}, y_{j i, \alpha}\right)=\left\{\begin{array}{l}
\left(x_{i j, \alpha}, \zeta / y_{i j, \alpha}\right) \quad \text { for } \alpha \in \Lambda_{i j}^{(1)}, \tag{3.2}\\
\left(x_{i j, \alpha}, \zeta /\left(x_{i j, \alpha} y_{i j, \alpha}\right)\right) \quad \text { for } \alpha \in \Lambda_{i j}^{(2)} .
\end{array}\right.
$$

is a well-defined isomorphism for $\zeta \in \mathbb{C}^{*}$.
Now by the tubular neighborhood theorem, there exists a diffeomorphism $\Phi_{i j}$ from a neighborhood $V_{i j}$ of the zero section of $N_{i j}$ to a neighborhood $U_{i j} \subset \bigcup_{\alpha \in \Lambda_{i j}} U_{i, \alpha}$ of $D_{i j}$ in X_{i} such that $\Phi_{i j}$ is locally represented as

$$
\begin{array}{cl}
z_{i j, \alpha}=x_{i j, \alpha}+O\left(\left|y_{i j, \alpha}\right|^{2}\right), & w_{i j, \alpha}=y_{i j, \alpha}+O\left(\left|y_{i j, \alpha}\right|^{2}\right) \quad \text { for } \alpha \in \Lambda_{i j}^{(1)}, \text { and } \tag{3.3}\\
z_{i j, \alpha}=x_{i j, \alpha}, & w_{i j, \alpha}=y_{i j, \alpha} \quad \text { for } \alpha \in \Lambda_{i j}^{(2)} .
\end{array}
$$

3.2. Local smoothings of $X_{i} \cup X_{j}$ around $D_{i j}$ without a triple point. Here we suppose $D_{12} \neq \emptyset$ is a double curve without a triple point, so that $\Lambda_{12}^{(2)}=\emptyset$. The indices i, j will take 1 or 2 . For $D_{i j}$ with $i<j$, we replace 1,2 with i, j respectively. We have chosen the coordinate system $\left\{U_{i, \alpha},\left(z_{i j, \alpha}, w_{i j, \alpha}\right)\right\}$ on X_{i} so that $w_{i j, \alpha}$ is a defining function of $D_{i j}$ on $U_{i, \alpha}$ and $\Omega_{i}=\epsilon_{i j} \mathrm{~d} z_{i j, \alpha} \wedge \frac{\mathrm{~d} w_{i j, \alpha}}{w_{i j, \alpha}}$ on $U_{i, \alpha}$ for $\alpha \in \Lambda_{i j}$, where $\epsilon_{i j}=(i-j) /|i-j|$. By condition (ii) of Theorem 1.1 and the adjunction formula,

$$
K_{D_{i j}}=\left.\left(K_{X_{i}} \otimes\left[D_{i j}\right]\right)\right|_{D_{i j}} \cong \mathcal{O}_{D_{i j}} .
$$

Thus $\mathrm{d} x_{i j, \alpha}$ defines a holomorphic volume form and $\frac{\sqrt{-1}}{2} \mathrm{~d} x_{i j, \alpha} \wedge \mathrm{~d} \bar{x}_{i j, \alpha}$ a Hermitian form on $D_{i j}$. We define a complex 2-form $\Omega_{i j}^{\infty}$ and a real 2-form $\omega_{i j}^{\infty}$ on $N_{i j} \backslash D_{i j}$ by

$$
\begin{aligned}
& \Omega_{i j}^{\infty}=\epsilon_{i j} \pi_{i j}^{*} \mathrm{~d} x_{i j, \alpha} \wedge \frac{\mathrm{~d} y_{i j, \alpha}}{y_{i j, \alpha}} \\
& \omega_{i j}^{\infty}=\pi_{i j}^{*}\left(\mathrm{~d} x_{i j, \alpha} \wedge \mathrm{~d} \bar{x}_{i j, \alpha}\right)+\frac{\sqrt{-1}}{2} \partial t_{i j} \wedge \bar{\partial} t_{i j} .
\end{aligned}
$$

By Lemma 3.2 in [D09], $\left(\Omega_{i j}^{\infty}, \omega_{i j}^{\infty}\right)$ defines an $\mathrm{SU}(2)$-structure on $N_{i j} \backslash D_{i j}$ such that the associated metric is cylindrical. If we regard $\Omega_{i j}^{\infty}$ and $\omega_{i j}^{\infty}$ as defined on $t_{i j}$, then we can prove that

$$
\begin{equation*}
\left|\Omega_{i}-\Omega_{i j}^{\infty}\right|=O\left(e^{-t_{i j} / 2}\right), \quad\left|\omega_{i j}-\omega_{i j}^{\infty}\right|=O\left(e^{-t_{i j} / 2}\right), \tag{3.4}
\end{equation*}
$$

where $\omega_{i j}$ is the (1,1)-part of $\omega_{i j}^{\infty}$, normalized so that $\Omega_{i} \wedge \bar{\Omega}_{i}=2 \omega_{i j} \wedge \omega_{i j}$, and the norm is measured by the cylindrical metric associated with $\left(\Omega_{i j}^{\infty}, \omega_{i j}^{\infty}\right)$. We also see that

$$
h_{i j, \zeta}^{*} \Omega_{j i}^{\infty}=\Omega_{i j}^{\infty}, \quad h_{i j, \zeta}^{*} \omega_{j i}^{\infty}=\omega_{i j}^{\infty} .
$$

Then one can construct local smoothings of $X_{1} \cup X_{2}$ around D_{12} in the same manner as [D09], Section 5.3.
3.3. Local smoothings of $X_{i} \cup X_{j} \cap X_{k}$ around $D_{i j} \cap D_{j k} \cap D_{k i}$. Here we suppose $T_{123} \neq \emptyset$ and consider local smoothing of $X_{1} \cup X_{2} \cup X_{3}$ around $D_{12} \cup D_{23} \cup D_{31}$. The indices i, j, k will take 1,2 or 3 . For general i, j, k with $i<j<k$, we will be done if we replace $1,2,3$ with i, j, k respectively. For later convenience, let $\epsilon_{i j k}$ denote the Levi-Civita symbol $\epsilon_{i j k}=\frac{1}{2}(i-j)(j-k)(k-i), \epsilon_{i j}=(i-j) /|i-j|$ as before, and define $\nu_{i j}$ by $\nu_{i j}=\sum_{k=1}^{3} k\left|\epsilon_{i j k}\right|$, so that $\nu_{i j} \in\{1,2,3\}$ is the unique number such that $\epsilon_{i j \nu_{i j}} \neq 0$. By condition (ii) of Theorem 1.1 and the adjunction formula, we have

$$
K_{D_{i j}}=\left.\left(K_{X_{i}} \otimes\left[D_{i j}\right]\right)\right|_{D_{i j}}=\left.\left.\left.\left[-\sum_{\ell \neq i} D_{i \ell}\right]\right|_{D_{i j}} \otimes\left[D_{i j}\right]\right|_{D_{i j}} \cong\left[-\sum_{\ell \neq i, j} D_{i \ell}\right]\right|_{D_{i j}}=\left[-T_{i j}\right] .
$$

Thus $\left\{\mathrm{d} x_{i j, \alpha}\right\}_{\alpha \in \Lambda_{i j}^{(1)}}$ and $\left\{\frac{\mathrm{d} x_{i j, \alpha}}{x_{i j, \alpha}}\right\}_{\alpha \in \Lambda_{i j}^{(2)}}$ together define a holomorphic volume form $\psi_{D_{i j}^{0}}$ on $D_{i j}^{0}=D_{i j} \backslash T_{i j}$. We also have a Hermitian form $\omega_{D_{i j}^{0}}=\frac{\sqrt{-1}}{2} \psi_{D_{i j}^{0}} \wedge \bar{\psi}_{D_{i j}^{0}}$ on $D_{i j}^{0}$. Let $N_{i j}^{0}=\left.N_{i j}\right|_{D_{i j}^{0}}$. We define a holomorphic volume form $\Omega_{i j}^{\infty}$ and a Hermitian form $\omega_{i j}^{\infty}$ on $N_{i j}^{0} \backslash D_{i j}^{0}$ by

$$
\begin{align*}
\Omega_{i j}^{\infty}= & -\sigma_{i j} \pi_{i j}^{*} \psi_{D_{i j}^{0}} \wedge \partial t_{i j} \tag{3.5}\\
\omega_{i j}^{\infty}= & \frac{\left|\sigma_{i j}\right|}{\sqrt{3}}\left\{\pi_{i j}^{*} \omega_{D_{i j}^{0}}+\frac{\sqrt{-1}}{2} \partial t_{i j} \wedge \bar{\partial} t_{i j}\right. \\
& \left.+\frac{\sqrt{-1}}{2}\left(\pi_{i j}^{*} \psi_{D_{i j}^{0}}-\epsilon_{i j} \partial t_{i j}\right) \wedge\left(\pi_{i j}^{*} \bar{\psi}_{D_{i j}^{0}}-\epsilon_{i j} \bar{\partial} t_{i j}\right)\right\}, \tag{3.6}
\end{align*}
$$

so that $\Omega_{i j}^{\infty} \wedge \bar{\Omega}_{i j}^{\infty}=2 \omega_{i j}^{\infty} \wedge \omega_{i j}^{\infty}$. In particular, if $\alpha \in \Lambda_{i j}^{(2)}$, then $\Omega_{i j}^{\infty}$ and $\omega_{i j}^{\infty}$ are locally represented as

$$
\begin{align*}
\Omega_{i j}^{\infty}= & \sigma_{i j} \frac{\mathrm{~d} x_{i j, \alpha}}{x_{i j, \alpha}} \wedge \frac{\mathrm{~d} y_{i j, \alpha}}{y_{i j, \alpha}} \tag{3.7}\\
\omega_{i j}^{\infty}= & \frac{\sqrt{-1}}{2 \sqrt{3}}\left|\sigma_{i j}\right|\left\{\frac{\mathrm{d} x_{i j, \alpha}}{x_{i j, \alpha}} \wedge \frac{\mathrm{~d} \bar{x}_{i j, \alpha}}{\bar{x}_{i j, \alpha}}+\frac{\mathrm{d} y_{i j, \alpha}}{y_{i j, \alpha}} \wedge \frac{\mathrm{~d} \bar{y}_{i j, \alpha}}{\bar{y}_{i j, \alpha}}\right. \tag{3.8}\\
& \left.+\left(\frac{\mathrm{d} x_{i j, \alpha}}{x_{i j, \alpha}}+\frac{\mathrm{d} y_{i j, \alpha}}{y_{i j, \alpha}}\right) \wedge\left(\frac{\mathrm{d} \bar{x}_{i j, \alpha}}{\bar{x}_{i j, \alpha}}+\frac{\mathrm{d} \bar{y}_{i j, \alpha}}{\bar{y}_{i j, \alpha}}\right)\right\} .
\end{align*}
$$

We regard $\Omega_{i j}^{\infty}$ and $\omega_{i j}^{\infty}$ as defined on $\Phi_{i j}\left(t_{i j}^{-1}((0, \infty)) \cap V_{i j}\right) \backslash D_{i}$ via $\Phi_{i j}$. Then we see from (3.1), (3.3), (3.7) and (3.8) that

$$
\begin{align*}
& \left|\Omega_{i}-\Omega_{i j}^{\infty}\right|=O\left(e^{-t_{i j} / 2}\right), \quad\left|\omega_{i j}-\omega_{i j}^{\infty}\right|=O\left(e^{-t_{i j} / 2}\right) \quad \text { and } \tag{3.9}\\
& \Omega_{i j}^{\infty}=\Omega_{i}=\Omega_{i k}^{\infty}, \quad \omega_{i j}^{\infty}=\omega_{i j}=\omega_{i k}=\omega_{i k}^{\infty} \quad \text { on } U_{i, \alpha} \text { for } \alpha \in \Lambda_{i j k}, \tag{3.10}
\end{align*}
$$

where $\omega_{i j}$ is the $(1,1)$-part of $\omega_{i j}^{\infty}$, normalized so that $\Omega_{i} \wedge \bar{\Omega}_{i}=2 \omega_{i j} \wedge \omega_{i j}$, and $|\cdot|$ is measured by the cylindrical metric $g_{i j}^{\infty}$ associated with $\omega_{i j}^{\infty}$. We also see from (3.2), (3.5) and (3.6) that

$$
h_{i j, \zeta}^{*} \Omega_{j i}^{\infty}=\Omega_{i j}^{\infty}, \quad h_{i j, \zeta}^{*} \omega_{j i}^{\infty}=\omega_{i j}^{\infty} .
$$

We are now ready to construct a family of local smoothings of $X_{1} \cup X_{2} \cup X_{3}$ around $D_{12} \cup D_{23} \cup D_{31}$. The construction consists of the following three steps:
Step 1. Following Section 3.2, we consider local smoothings of $X_{i} \cup X_{j}$ around $D_{i j}$ to obtain a family of local smoothings $\varpi_{i j}: \mathcal{V}_{i j} \rightarrow \Delta$.
Step 2. To consider local smoothings of $X_{1} \cup X_{2} \cup X_{3}$ around T_{123}, we define projections $\varpi_{123, \alpha}: \mathcal{V}_{123, \alpha} \rightarrow \Delta$.
Step 3. Using appropriate injective diffeomorphisms $\Psi_{i j, \alpha}: \mathcal{V}_{123, \alpha} \rightarrow \mathcal{V}_{i j}$ compatible with the projections to Δ, we glue together $\mathcal{V}_{i j}$ in Step 1 along $\mathcal{V}_{123, \alpha}$ in Step 2.
For more details, we refer the reader to [DY21] Sections 3.1-3.3.

3.4. Existence of holomorphic volume forms on global smoothings.

Sketch of the Proof of Theorem 1.1. In the previous two sections we obtained partial smoothings of X around each normal crossing. Now we glue all pieces together and construct a family $\varpi: \mathscr{X}=\left\{X_{\zeta} \mid \zeta \in \Delta\right\} \rightarrow \Delta$ of global smoothings of $X=X_{0}$.

For each double curve $D_{i j} \subset X_{i}$, we obtained a Hermitian form $\omega_{i j}$ on $\left\{0<t_{i j}\right\} \subset U_{i j}$ satisfying $\omega_{i j}=\omega_{i k}$ on $U_{i, \alpha}$ for $\alpha \in \Lambda_{i j k}$. Thus there exists a Hermitian form ω_{i} on $X_{i} \backslash D_{i}$ such that $\Omega_{i} \wedge \bar{\Omega}_{i}=2 \omega_{i} \wedge \omega_{i}$ on $X_{i} \backslash D_{i}$ and $\omega_{i}=\omega_{i j}$ on $\left\{1 \leqslant t_{i j}\right\}$ for all j. Then it follows from (3.4), (3.9) and [D09], Proposition 3.4 that there exists a complex 1-form $\xi_{i j}$ on $\left\{0<t_{i j}\right\}$ such that

$$
\Omega_{i}-\Omega_{i j}^{\infty}=\mathrm{d} \xi_{i j}, \quad \text { and }\left|\nabla^{k} \xi_{i j}\right|=O\left(e^{-t_{i j} / 2}\right) \quad \text { for all } k \geqslant 0 .
$$

As a differentiable manifold X_{ζ} is constructed from the ingredients

- $X_{i} \backslash \bigcup_{j(\neq i)}\left\{t_{i j} \geqslant T+1\right\}$ with the pair $\left(\Omega_{i, \zeta}, \omega_{i, \zeta}\right)$ of 2-forms,
- $\left\{t_{i j}>T-1\right\} \subset N_{i j}^{0} \subset \mathcal{V}_{i j}$ with the $\mathrm{SU}(2)$-structure $\left(\Omega_{i j}^{\infty}, \omega_{i j}^{\infty}\right)$, and
- $\mathcal{V}_{i j k, \alpha}$ with the $\operatorname{SU}(2)$-structure $\left(\Omega_{i j k, \alpha}^{\infty}, \omega_{i j k, \alpha}^{\infty}\right)$ for $\alpha \in \Lambda_{i j k}$
via the appropriate gluing maps. Since the gluing maps preserve the associated forms, they together define a pair $\left(\widetilde{\Omega}_{\zeta}, \widetilde{\omega}_{\zeta}\right)$ of 2 -forms on X_{ζ}. Let $\mathscr{A}_{\mathrm{SU}(2)}\left(X_{\zeta}\right)$ be the set of $\mathrm{SU}(2)$ structures on X_{ζ}. We take $\mathscr{T}_{\mathrm{SU}(2)}\left(X_{\zeta}\right)$ as a neighborhood of $\mathscr{A}_{\mathrm{SU}(2)}\left(X_{\zeta}\right)$ so that the projection $\Theta: \mathscr{T}_{\mathrm{SU}(2)}\left(X_{\zeta}\right) \rightarrow \mathscr{A}_{\mathrm{SU}(2)}\left(X_{\zeta}\right)$ is well-defined (see [D09], Lemma 2.8). Then by a similar argument as in [D09], Section 3, one can define an $\mathrm{SU}(2)$-structure on X_{ζ} by

$$
\left(\psi_{\zeta}, \kappa_{\zeta}\right)=\Theta\left(\widetilde{\Omega}_{\zeta}, \widetilde{\omega}_{\zeta}\right) .
$$

For the main estimates of ψ_{ζ} and κ_{ζ}, we will discuss in [DY21], Section 3.4.

4. EXAMPLES

In this section, we apply Theorem 1.1 to a normal crossing Y to produce compact complex surfaces with trivial canonical bundle.
Example 4.1. (A $K 3$ surface) Let $Y_{i}(i=1,2)$ be two hyperplanes in $\mathbb{C} P^{3}$, and Y_{3} a quartic surface in $\mathbb{C} P^{3}$. For a SNC complex surface $Y=Y_{1} \cup Y_{2} \cup Y_{3}$, let us denote $Y_{i j}=Y_{i} \cap Y_{j}$ and $Y_{i j k}=Y_{i} \cap Y_{j} \cap Y_{k}$ respectively. Let $D_{1}=Y_{2} \cap Y_{3}, D_{2}=Y_{3} \cap Y_{1}, D_{3}=Y_{1} \cap Y_{2}$ and $\tau=Y_{1} \cap Y_{2} \cap Y_{3}$. Then we choose smooth points $P_{i} \in\left|\mathcal{O}_{D_{i}}(4)\right|$ for $i=1,2,3$, satisfying the condition

$$
P_{i} \cap \tau=\emptyset \quad i \in\{1,2,3\}
$$

so that each P_{i} and τ are distinct points. Next we consider the blow-ups of Y_{i} at P_{j} and take the proper transform of D_{i}. This is divided into the following steps.
Step 1. For $\{i, j\}=\{1,2\}$, let $\pi_{i}: Y_{i}^{\prime}:=\operatorname{Bl}_{P_{j}}\left(Y_{i}\right) \rightarrow Y_{i}$ be the blow-up of Y_{i} at P_{j} in D_{j}. Let us take the proper transform $Y_{3 i}^{\prime}$ of $Y_{3 i}$ and $Y_{j i}^{\prime}$ of $Y_{j i}$ under the blow-up π_{i}. Let P_{3}^{\prime} be the proper transform of $P_{3} \in D_{3}$ under the blow-up π_{1}.
Step 2. Next we take the blow-up of Y_{1}^{\prime} at P_{3}^{\prime} :

$$
\pi_{1}^{\prime}: Y_{1}^{\prime \prime}:=\mathrm{Bl}_{P_{3}^{\prime}} Y_{1}^{\prime} \longrightarrow Y_{1}^{\prime}
$$

Then we construct a SNC complex surface by gluing $Y_{1}^{\prime \prime}, Y_{2}^{\prime}$ and Y_{3} along their intersection. Consequently we obtain a SNC complex surface $\widetilde{Y}=\widetilde{Y}_{1} \cup \widetilde{Y}_{2} \cup \widetilde{Y}_{3}$ with a normalization $\nu: Y_{1}^{\prime \prime} \cap Y_{2}^{\prime} \cap Y_{3} \rightarrow \widetilde{Y}$ such that $\nu\left(Y_{1}^{\prime \prime}\right)=\widetilde{Y}_{1}, \nu\left(Y_{2}^{\prime}\right)=\widetilde{Y}_{2}$ and $\nu\left(Y_{3}\right)=\widetilde{Y}_{3}$. Then we can prove the following.
Proposition 4.2 ([DY21], Proposition 4.3). The above \widetilde{Y} is d-semistable.
By applying Theorem 1.1 to \widetilde{Y}, we obtain a family of smoothings $\varpi: \mathscr{X} \rightarrow \Delta$ of \widetilde{Y} whose general fibers $M_{\zeta}=\varpi^{-1}(\zeta)$ are compact complex surfaces with trivial canonical bundle. Moreover we prove the following.
Proposition 4.3 ([DY21], Proposition 4.5). \widetilde{Y} is a d-semistable K3 surface of type III. In particular the Euler characteristic of M_{ζ} is 24 .

For more details on this example, see [DY21] Section 4.
Example 4.4 ([D09], Example 5.3). This example is due to Doi [D09]. Let Σ_{n} denote the n-the Hirzebruch surface. Recall that the Hirzebruch surface is a toric surface which inherits the corresponding moment polytope (see Figure 1). In particular, Σ_{n} is a $\mathbb{C} P^{1}$ bundle over $\mathbb{C} P^{1}$ having the form $\mathbb{P}\left(\mathcal{O}_{\mathbb{C} P^{1}}(n) \oplus \mathcal{O}_{\mathbb{C} P^{1}}\right)$. Let $E_{0} \subset \Sigma_{n}$ be the image of the section $(0,1)$ of $\mathcal{O}_{\mathbb{C} P^{1}}(n) \oplus \mathcal{O}_{\mathbb{C} P^{1}}$, that is, the zero section of Σ_{n}. On the other hand, letting σ be any section of $\mathcal{O}_{\mathbb{C} P^{1}}(n)$, we consider the section $(\sigma, 0)$ of $\mathcal{O}_{\mathbb{C} P^{1}}(n) \oplus \mathcal{O}_{\mathbb{C} P^{1}}$. Away from zeros of σ, we take the image of $(\sigma, 0)$ in Σ_{n}. Then $(\sigma, 0)$ gives a curve $C_{\sigma} \subset \Sigma_{n}$. The infinity section E_{∞} is the closure of the curve C_{σ} which is independent of the choice of σ. Then we readily see that E_{0} and E_{∞} are irreducible curves with self-intersection

$$
\begin{equation*}
E_{0} \cdot E_{0}=n, \quad E_{\infty} \cdot E_{\infty}=-n \tag{4.1}
\end{equation*}
$$

respectively. Let C be a cubic curve in $\mathbb{C} P^{2}$ and $Y_{n}=\left.\Sigma_{n}\right|_{C}$ the restriction of Σ_{n} to C. Then we see that Y_{n} is a $\mathbb{C} P^{1}$-bundle over the elliptic curve C. By taking the restriction of E_{0} and E_{∞} to C, we obtain the zero section $D_{0}=\left.E_{0}\right|_{C}$ and the infinity section $D_{\infty}=\left.E_{\infty}\right|_{C}$

Figure 1
of Y_{n}. For example, in the case of $n=0, Y_{0}=C \times \mathbb{C} P^{1}$ is the trivial bundle while D_{0} and D_{∞} correspond to the points $[1: 0]$ and $[0: 1]$ in $\mathbb{C} P^{1}$ respectively.

In particular, D_{0} and D_{∞} are naturally isomorphic to the curve C, and $D:=D_{0}+D_{\infty}$ defines an anticanonical divisor on Y_{n}. Since Y_{n} is a $\mathbb{C} P^{1}$-bundle over $C, Y_{n} \backslash D$ is a \mathbb{C}^{*} bundle over C. Let (x, y) be a local coordinate of $Y_{n} \backslash D$. Then the fiber coordinate y can be written as

$$
\mathbb{C}^{*} \xrightarrow{\cong} S^{1} \times(0, \infty), \quad y=\exp (-T-\sqrt{-1} \theta) \mapsto(\theta, T)
$$

for $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$ and $T \in(0, \infty)$. As mentioned in the above, we see that $D_{0}=\{T=0\}$ and $D_{\infty}=\{T=\infty\}$. Hence we have the isomorphism

$$
Y_{n} \backslash D \cong S_{n} \times(0, \infty)
$$

where S_{n} is the S^{1}-bundle over C. Recall that D_{0} is a curve in Y_{n} with $D_{0} \cdot D_{0}=n$ by (4.1). Since $\left.N_{D_{0} / Y_{n}} \cong \mathcal{O}_{Y_{n}}\left(D_{0}\right)\right|_{D_{0}}$ from [BHPV, Proposition 6.3], we see that $N_{D_{0} / Y_{n}} \cong \mathcal{O}_{C}(n)$. Similarly the normal bundle of D_{∞} is computed as $N_{D_{\infty} / Y_{n}} \cong \mathcal{O}_{C}(-n)$. Then the gluing map h_{T} is locally given by

$$
\begin{aligned}
& h_{T}: Y_{n} \backslash D \cong S_{n} \times(0, \infty) \\
&(\underset{\Psi}{ } \longrightarrow Y_{n} \backslash D . \\
&(z, T) \longmapsto\left(z^{\prime}, T^{\prime}\right)=(z, 1 / T)
\end{aligned}
$$

as in [D09], Remark 3.5. Hence we can glue two copies of $Y_{n} \backslash D$ along a neighborhood U_{1} of 0 and a neighborhood U_{2} of ∞ to construct a compact complex surface

$$
\begin{equation*}
M_{n}=\left(Y_{n} \backslash D\right) \cup_{h_{T}}\left(Y_{n} \backslash D\right) \tag{4.2}
\end{equation*}
$$

with trivial canonical bundle. The above construction shows that M_{n} is homeomorphic to $S_{n} \times S^{1}$ (see [BHPV], p.196).

Let us compute the Betti numbers of the resulting compact complex manifold M_{n}. We use the following lemma on elliptic fiber bundles.

Lemma 4.5 ([BHPV] p.196, Proposition 5.3). Let $X \rightarrow B$ be a fiber bundle with a smooth compact connected curve B. Suppose that X is homeomorphic to $S \times S^{1}$, where S is the S^{1}-bundle over B. Then:
(A) $b_{1}(X)=b_{1}(B)+2$ and $b_{2}(X)=2 b_{1}(B)+2$ if the bundle $X \rightarrow B$ is topologically trivial.
(B) $b_{1}(X)=b_{1}(B)+1$ and $b_{2}(X)=2 b_{1}(B)$ if the bundle $X \rightarrow B$ is not topologically trivial.

Claim 4.6. Let M_{n} be a compact complex surface constructed in (4.2).
(A) For $n=0$, we find $b_{1}\left(M_{0}\right)=4, b_{2}\left(M_{0}\right)=6$. Thus the resulting complex manifold M_{0} is a complex torus.
(B) For $n>0$, we find $b_{1}\left(M_{n}\right)=3, b_{2}\left(M_{n}\right)=4$. Hence M_{n} is a primary Kodaira surface.
Proof. (i) For $n=0$, we see that $M_{0}=C \times \mathbb{C} P^{1}$. Hence M_{0} is the trivial $\mathbb{C} P^{1}$-bundle over C where $C \in\left|\mathcal{O}_{\mathbb{C} P^{2}(3)}\right|$ is the elliptic curve. Then Lemma 4.5 (i) implies that

$$
\begin{align*}
& b_{1}\left(M_{0}\right)=b_{1}(C)+2=2+2=4, \\
& b_{2}\left(M_{0}\right)=2 b_{1}(C)+2=2 \cdot 2+2=6 . \tag{4.3}
\end{align*}
$$

By the classification of compact complex surfaces with trivial canonical bundle (see [BHPV], p. 244 Table 10), we know that such a surface is a complex torus \mathbb{C}^{2} / Λ. In particular $h^{p, q}\left(\mathbb{C}^{2} / \Lambda\right)=\binom{2}{p}\binom{2}{q}$ which is consistent with (4.3).
(ii) For $n>0$, we know that M_{n} is a $\mathbb{C} P^{1}$-bundle over C which is not trivial bundle. Hence we see that

$$
b_{1}\left(M_{n}\right)=b_{1}(C)+1=3, \quad \text { and } \quad b_{2}\left(M_{n}\right)=2 b_{1}(C)=4
$$

by Lemma 4.5 (ii). Consequently the resulting compact complex manifold is a primary Kodaira surface. See [BHPV], p. 197 for their invariants.

References

[BHPV] W. Barth, K. Hulek, C. Peters and A. Van de Ven, Compact complex surfaces. Second edition, A Series of Modern Surveys in Mathematics, 4. Springer-Verlag, Berlin, 2004.
[D09] M. Doi, Gluing construction of compact complex surfaces with trivial canonical bundle, J. Math. Soc. Japan, 61 (2009), 853-884.
[DY14] M. Doi and N. Yotsutani, Doubling construction of Calabi-Yau threefolds, New York J. Math. 20, (2014), 1203-1235.
[DY21] M. Doi and N. Yotsutani, Global smoothings of normal crossing complex surfaces with trivial canonical bundle, In preparation.
[Fr83] R. Friedman, Global smoothings of varieties with normal crossings, Ann. Math. 118 (1983), 75-114.
[FS86] R. Friedman and F. Scattone, Type III degenerations of K3 surfaces, Invent. Math. 83 (1986), 1-39.
[G04] R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyperKähler, G_{2} and $\operatorname{Spin}(7)$ structures, Internat. J. Math., 15, (2004), 211-257.
[GH] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library. John Wiley and Sons, Inc., New York, 1994. xiv+813 pp.
[Kaw92] Y. Kawamata, Unobstructed deformations, J. Algebraic Geom., 1 (1992), no. 2, 183-190.
[KN94] Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math. 118 (1994), 395-409.
[Ran92] Z. Ran, Lifting of cohomology and unobstructedness of certain holomorphic maps, Bull. Amer. Math. Soc. (N.S.), 26 (1992), no. 1 113-117.

Kagawa University, Faculty of education, Mathematics, Saiwaicho 1-1, Takamatsu, Kagawa, 760-8522, Japan

Email address: yotsutani.naoto@kagawa-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary: 58J37, Secondary: 14J28, 32J15, 53C56.
 Key words and phrases. complex surface with trivial canonical bundle, normal crossing, smoothing.
 The author was supported partially by Grant-in-Aid for Young Scientists 18K13406 and Young Scientists Fund of Kagawa University Research Promotion Program 2020 (KURPP).

