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1. INTRODUCTION

This note is based on our talk in Kinosaki Algebraic Geometry Symposium 2020. We
prove that there exists a family of smoothings of a simple normal crossing compact complex
surface X with triple points. Since our differential geometric proof also includes the case
where X is neither Kählerian nor H1(X,OX) = 0, this generalizes Friedman’s result on
degenerations of K3 surfaces in algebraic geometry [Fr83]. As an application, we provide
an example of a simple normal crossing surface with triple points which is smoothable to a
quartic K3 surface. We refer the reader to the forthcoming paper [DY21] for more details.

Throughout this note, X =
⋃N

i=1Xi denotes a compact connected complex surface with
normal crossings with dimC Xi = 2 for each i, unless otherwise specified. Furthermore
we will assume that each Xi is smooth and X has no 4-fold intersection, which means that
Xi ∩ Xj ∩ Xk ∩ X! = ∅ for distinct i, j, k and !. More precisely, let X be a compact
complex analytic surface with irreducible components X1, . . . , XN . Then we say that X
is a simple normal crossing (SNC) complex surface if X is locally embedded in C3 as
{ (ζ1, ζ2, ζ3) ∈ C3 | ζ1 · · · ζ! = 0 } for some ! ∈ { 1, 2, 3 } and each Xi is smooth. We call
a SNC compact complex surface X is d-semistable if

(1.1)

(
⊗

i

IXi/IXiID

)∗

∼= OD

for the singular locus D on X , where IXi and ID are the ideal sheaves of Xi and D in X
respectively. Let Dij = Xi∩Xj with i %= j be the set of double curves. We will also assume
that each connected component of Dij defines a smooth irreducible divisor on both Xi and
Xj . Let us denote Nij the holomorphic normal bundle NDij/Xi to Dij in Xi. When X is
a SNC compact complex surface with at most double curves (i.e. no 3-fold intersection),
then d-semistablity condition (1.1) is equivalent to

(1.2) Nij ⊗Nji
∼= ODij .

Now we consider the case where X =
⋃N

i=1 Xi is a SNC compact complex surface with
triple points. Let Tijk = Xi ∩Xj ∩Xk a set of triple points, Tij =

∑
k("=i,j) Tijk a divisor

on Dij , and Ti =
⋃

j "=k Tijk the union of the set of triple points on Xi. For each Dij , we
consider

(1.3) Nij ⊗Nji ⊗ [Tij] ∼= ODij
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which is equivalent to the condition that X to be d-semistable (1.1). X is called a d-
smistable K3 surface if X is a d-semistable SNC Kähler surface with trivial canonical
bundle and H1(X,OX) = 0. It is known that d-semistable K3 surface are classified into
Type I, II and III due to the works of Friedman [Fr83, FS86]. In particular, Friedman showed
that any d-semistable K3 surface has a family of smoothings # : X → ∆ ⊂ C of X with
KX = OX , where X is a 3-dimensional complex manifold and # is a holomorphic
map between X and a domain ∆ in C (see also [KN94], Corollary 2.5). We remark that
if X is a d-semistable K3 surface at most double curves, then X is either of Type I or
of Type II. Meanwhile X is of Type III when a d-semistable K3 surface X admits triple
points [FS86]. In 2009, Doi generalized Friedman’s result in the following sense. That is,
even in the case where a SNC complex surface X with at most double curves is neither
Kählerian nor H1(X,OX) = 0, there still exists a family of smoothings # : X → ∆ of
X in a weak sense (Theorem 5.5 in [D09]). He constructed compact complex surfaces with
trivial canonical bundle in a differential geometric method by gluing together two compact
complex surfaces with an anticanonical divisor under suitable conditions. The purpose of
our joint work [DY21] is to generalize this smoothability result to the case where X is a
SNC complex surface with triple points. More precisely, we shall prove the following.

Theorem 1.1. Let X =
⋃N

i=1Xi be a simple normal crossing complex surface. Assume the
following conditions:

(i) X is d-semistable;
(ii) each Di is an anticanonical divisor on Xi; and

(iii) there exists a meromorphic volume form Ωi on each Xi with a pole along Di such
that the Poincaré residue resDij Ωi of Ωi on Dij is minus the Poincaré residue
resDij Ωj of Ωj on Dij for all i, j. (For the definition of Poincaré residues, see
[GH], pp. 147–148).

Then there exist ε > 0 and a surjective mapping # : X → ∆ = { ζ ∈ C | |ζ| < ε } such
that the following statements hold.

(a) X is a smooth 6-dimensional manifold and # is a smooth mapping.
(b) X0 = #−1(0) = X .
(c) For each ζ ∈ ∆∗ = ∆\{ 0 } , Xζ = #−1(ζ) is a smooth compact complex surface

with trivial canonical bundle.
(d) The complex structure on Xζ depends continuously on ζ outside the singular locus

D =
⋃N

i=1 Di ⊂ X0. More precisely, for any point p ∈ X \ D there exist a
neighborhood U of p and a diffeomophism U ) V ×D with D ⊂ ∆, such that the
induced complex structures on V depend continuously on ζ ∈ D.

Note that conditions (ii) and (iii) are equivalent to the condition that the canonical bundle
of the SNC complex surface X is trivial.

Comparing Theorem 1.1 with the result of R. Friedman in [Fr83], we see that even when
X is not Kählerian or H1(X,OX) does not vanish, there still exists a family of smoothings
# : X → ∆ of X in a weak sense (or a fibration), whose general fiber is a smooth compact
complex surface with trivial canonical bundle. This result strongly suggests that X as in
Theorem 1.1 admits a family of smoothings in the standard holomorphic sense, although
the proof seems difficult.

The Bogomolov-Tian-Todorov theorem states that a Calabi-Yau manifold has unob-
structed deformations and the first proof of this theorem is analytic. The second proof
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is algebraic which were given by Ran [Ran92] and Kawamata [Kaw92] where they used
T 1-lifting property effectively. However T 1-lifting property requires the cohomological
condition Hn−1(X,OX) = 0 when we obtain a flat deformation X of a SNC variety X .
Meanwhile, our differential geometric proof does not assume the cohomological condition
H1(X,OX) = 0, though it only works in the case of a complex surface. Bearing in mind
that the advantage of differential geometric approach, it is crucial to construct examples
of compact complex surfaces X with trivial canonical bundle satisfying H1(X,OX) %= 0.
Hence it is natural to ask the following question.

Problem 1.2. Can we construct either a complex torus or a primary Kodaira surface by
applying Theorem 1.1 ?

For the moment we can construct such examples in the case where SNC varieties have
only two components (i.e. doubling construction), due to Doi’s work (see [D09], Example
5.3), where he used Hirzebruch surfaces as ingredients of the construction. We will deal
with this example in the last section (see Example 4.4).

The proof of Theorem 1.1 is based on the results obtained in [D09] and an explicit
construction of local smoothings around the double curves. We will give a sketch of proof
in this article. A complete proof Theorem 1.1 and an explicit example of degenerate K3
surface with triple points are given in [DY21].

2. A BRIEF REVIEW OF COMPACT COMPLEX SURFACES

2.1. SL(2,C)-structures and SU(2)-structures. For later use we recall the definition of
SL(2,C)-structure on an oriented manifold of real dimension 4. See [G04, D09] for more
details.

To begin let V be an oriented real vector space of dimension 4. Taking ψ0 ∈ ∧2V ∗ ⊗ C,
we call ψ0 an SL(2,C)-structure on V if ψ0 satisfies

ψ0 ∧ ψ0 > 0, ψ0 ∧ ψ0 = 0.

Each SL(2,C)-structure ψ0 on V defines complex subspaces

V 0,1 = { ζ ∈ V ⊗ C | ιζψ0 = 0 } , V 1,0 = V 1,0

where ιζ denotes the inner multiplication by ζ . Then the decomposition

V ⊗ C = V 1,0 ⊕ V 0,1

gives a complex structure Iψ0 on V so that ψ0 is a complex differential form of type (2, 0)
with respect to Iψ0 .

Analogously we can extend this concept to an oriented 4-manifold M as follows. We
call ψ ∈ C∞(∧2T ∗M ⊗ C) an SL(2,C)-structure on M if ψ satisfies

ψ ∧ ψ > 0, ψ ∧ ψ = 0.

Observe that an SL(2,C)-structure ψ on M induces an SL(2,C)-structure on TxM for each
x ∈ M . Hence we see that ψ defines an almost complex structure Iψ on M so that ψ is a
type (2, 0) complex differential form with respect to Iψ.

The following lemma gives a geometric characterization of complex surfaces with trivial
canonical bundle. We refer to [D09], Lemma 2.3 for a proof.
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Lemma 2.1 (Grauert, Goto [G04]). Let M be an oriented 4-manifold andψ be an SL(2,C)-
structure on M . If ψ is d-closed, then Iψ is an integrable complex structure on M with
trivial canonical bundle. Furthermore ψ is a holomorphic volume form on M with respect
to Iψ.

The above lemma gives the following characterization of complex surfaces with trivial
canonical bundle by d-closed SL(2,C)-structures.

Proposition 2.2. Let M be an oriented 4-manifold. Then M admits a complex structure
with trivial canonical bundle if and only if M admits a d-closed SL(2,C)-structure.

Thus if we say that X is a complex surface with trivial canonical bundle, then we un-
derstand that X consists of an underlying oriented 4-manifold M and a d-closed SL(2,C)-
structure ψ on M such that ψ induces a complex structure Iψ on M and becomes a holo-
morphic volume form on X = (M, Iψ).

Let X be a compact complex surface with trivial canonical bundle. If X is simply-
connected or H1(X,OX) = 0, then X is called a K3 surface. According to the Enriques
Kodaira classification of compact complex surfaces, it is known that a compact complex
surface with trivial canonical bundle is either a complex torus, a Kodaira surface, or a K3
surface (see [BHPV], Chapter 6).

Next we will give the definition of SU(2)-structure. Again let V be an oriented real
vector space of dimension 4. For each (ψ0,κ0) ∈ (∧2V ∗ ⊗C)⊕∧2V ∗, we denote an inner
product on V by g(ψ0,κ0) which is defined by g(ψ0,κ0)(Iψ·, ·) = κ0(·, ·). Then (ψ0,κ0) is said
to be an SU(2)-structure on V if it satisfies the following conditions:

(i) ψ0 is an SL(2,C)-structure on V (i.e. ψ0 ∧ ψ0 > 0, ψ0 ∧ ψ0 = 0),
(ii) ψ0 ∧ κ0 = 0,

(iii) g(ψ0,κ0) is positive definite, and
(iv) 2κ20 = ψ0 ∧ ψ0.

Definition 2.3. Let M be an oriented 4-manifold. Then

(ψ,κ) ∈ C∞(∧2T ∗M ⊗ C)⊕ C∞(∧2T ∗M)

is said to be an SU(2)-structure on M if the restriction (ψ,κ)|TxM is an SU(2)-structure on
TxM for any x ∈ M .

If ψ and κ of an SU(2)-structure on M are both d-closed, then X = (M, Iψ,κ) is a Kähler
surface with trivial canonical bundle by Lemma 2.1. Hence SU(2)-structures have an im-
portant role in the proof of Theorem 1.1.

2.2. Compact complex surfaces with anticanonical divisors. Next we recall some re-
sults on compact complex manifolds with an anticanonical divisor which were already
used in [D09] and [DY14]. For simplicity, we only consider the case of complex surfaces
although it is possible to extend the most part of results into arbitrary dimension.

Let X be a compact complex surface and D a smooth anticanonical divisor on X . Taking
an open covering {Uα } of X , we define Vα = Uα ∩D. Then {Vα } is an open covering of
D. Furthermore, we can show the following.

Lemma 2.4. There is a local coordinate system {Uα, (zα, wα) } on X such that
(i) wα is a local defining function of D on Uα, i.e. Vα = {wα = 0 }.
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(ii) the 2-forms Ωα =
dwα
wα

∧ dzα on Uα together yield a holomorphic volume form Ω

on X \D.

Proof. The statement (i) is obvious. Hence it suffices to prove (ii).
Let φαβ and fαβ be non-vanishing holomorphic functions on Uα ∩ Uβ which determine

the coordinate transformation of X by

zα = φαβ(zβ, wβ) and wα = fαβ(zβ, wβ)wβ.(2.1)

On Uα ∩ Uβ , we recall that the canonical bundle KX is given by transition function

(2.2) hαβ(zβ, wβ) =
dwβ ∧ dzβ
dwα ∧ dzα

.

Also the line bundle [D] on X is given by transition functions

(2.3) fαβ =
wα
wβ

.

(See [GH], p.145). Since we take [D] to be an anticanonical divisor on X , we can choose
the local coordinates (zα, wα) satisfying

(2.4) fαβ(zβ, wβ)hαβ(zβ, wβ) = 1.

Substituting (2.2) and (2.3) into (2.4), we see that the local holomorphic volume forms

Ωα =
dwα
wα

∧ dzα

together yield a holomorphic volume form Ω on X \D. !
Next we shall consider the holomorphic normal bundle ND/X to D in X which is defined

as the quotient line bundle

ND/X =
T ′
X|D
T ′
D

where T ′
X (resp. T ′

D) is the holomorphic tangent bundle of X (resp. D). We often denote
ND/X by N for simplicity. Let π : N → D be the projection and i0 : X → N the zero
section. We may identify i0(D) of N with D in X . Restricting zα to Vα = Uα ∩ D, we
obtain a local coordinate system { (Vα, xα) } on D, with xα = zα|Vα . On π−1(Vα) ) Vα×C,
we have local coordinates (xα, yα) of the normal bundle N = [D]|D where xα ∈ Vα and
yα ∈ C is the fiber coordinate. Analogous to (2.1), the coordinate transformation of N is
given by

xα = ψαβ(xβ) and yα = gαβ(xβ)yβ,(2.5)

where ψαβ and gαβ are holomorphic functions on π−1(Vα ∩ Vβ) defined by

ψαβ(xβ) = φαβ(xβ, 0) and gαβ(xβ) = fαβ(xβ, 0)(2.6)

respectively. By restricting (2.2) to Vα ∩ Vβ , we see that

hαβ(zβ, wβ)
∣∣∣
Vα∩Vβ

=
dwβ ∧ dzβ
dwα ∧ dzα

∣∣∣∣∣
Vα∩Vβ
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which becomes

(2.7) hαβ(xβ, 0) = gαβ(xβ)
−1 dxβ

dxα

because gαβ(xβ)−1 = yβ/yα by (2.5).
On the other hand, restricting (2.4) to Vα ∩ Vβ , we have

fαβ(xβ, 0)hαβ(xβ, 0) = 1

which yields
dxβ
dxα

= 1

by (2.6) and (2.7). Hence we showed that the local holomorphic volume form ΩD,α = dxα
on Vα together yield a holomorphic volume form ΩD on D so that the canonical bundle
KD of D is trivial. Note that this agrees with a consequence of the adjunction formula
KD = (KX ⊗ [D])|D ∼= OD.

As in [GH] p.147, we consider Ω as a meromorphic 2-form on X with a single pole
along D. Then the holomorphic volume form ΩD obtained from Ω in the above is said to
be the Poincaré residue of Ω which is denoted by res(Ω). We readily see that res(Ω) is not
depend on the choice of local coordinates of Ω.

2.3. Semistable degenerations of K3 surfaces. Next we reall a summary of the classifi-
cation of degenerations of K3 surfaces. Let # : X → ∆ be a proper map from a compact
complex 3-dimensional manifold X to a domain ∆ = { ζ ∈ C | |ζ| < ε } such that

(1) X \#−1(0) is smooth, and
(2) the fiber Xζ = #−1(ζ) is a smooth compact Kähler surface for each ζ ∈ ∆∗ =

∆ \ { 0 }.
We call # a degeneration of complex surfaces. Furthermore, a degeneration # is said to
be semistable if

(3) the total space X is smooth, and
(4) the central fiber X0 = #−1(0) is a Kähler surface with simple normal crossings.

In the study of the degenerations of K3 surfaces, the following results due to Kulikov
and Personn-Pinkham are important.

Theorem 2.5 ([Fr83], Theorem 5.1). Let # : X → ∆ be a semistable degeneration of K3
surfaces. If all components Xi of the central fiber X0 = #−1(0) are algebraic, then there
exists a birational isomorphism ρ : X → X ′ with a commutative diagram

X

'
!!!

!!
!!

!!
!

ρ
""""""""" X ′

'′
####
##
##
##

∆

such that
(a) ρ is an isomorphism X \#−1(0) ∼= X ′ \ (#′)−1(0), and
(b) #′ : X ′ → ∆′ is a semistable degeneration with KX ′ = OX ′ where KX ′ is the

canonical line bundle of X ′.
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Theorem 2.6 ([Fr83], Theorem 5.2). Let # : X → ∆ be a semistable degeneration of K3
surfaces with KX = OX as in Theorem 2.5. Then X0 = #−1(0) is one of the following
three types:

Type I: X is a smooth K3 surface.

Type II: X = X1 ∪ · · · ∪ XN is a chain of surfaces, where X1 and XN are rational
surfaces, X2, · · · , XN−1 are elliptic ruled surfaces and Xi ∩ Xi+1, i = 1, · · ·N − 1 are
smooth elliptic curves.

Type III: X =
⋃N

i=1 Xi, where each Xi is a rational surface and the double curves
Dij = Xi ∩Xj ⊆ Xi are cycles of rational curves.

We call X a d-semistable K3 surface if
• X is a d-semistable SNC compact Kähler surface with trivial canonical bundle,

and
• H1(X,OX) = 0.

It is well-known that any d-semistable K3 surfaces are classified into Type I–III in Theorem
2.6 (cf. [Fr83], Definition 5.5).

3. GLOBAL SMOOTHINGS OF SIMPLE NORMAL CROSSING COMPLEX SURFACES

3.1. Local coordinates on SNC complex surfaces. Let X =
⋃N

i=1 Xi be a SNC complex
surface satisfying conditions (i)–(iii) of Theorem 1.1. We can find a local holomorphic
coordinate system {Ui,α, (z1i,α, z

2
i,α) } on Xi =

⋃
α∈Λi

Ui,α with Λi a finite subset of N,
satisfying the following conditions:

(A) Ui,α =
{
(z1i,α, z

2
i,α) ∈ C2

∣∣z1i,α
∣∣ < 1,

∣∣z2i,α
∣∣ < 1

}
;

(B) if Ui,α ∩Di %= ∅ and Ui,α ∩ Ti = ∅, then Ui,α ∩Di = { z2i,α = 0 }; and
(C) if Ui,α∩Ti %= ∅, then Ui,α∩Di = {z1i,αz2i,α = 0}, so that Ui,α∩Ti = {z1i,α = z2i,α =

0}.
In particular, each Ui,α contains at most one triple point. Now we set

Λ(0)
i = {α ∈ Λi Ui,α ∩Di = ∅},

Λ(1)
i = {α ∈ Λi Ui,α ∩Di %= ∅ and Ui,α ∩ Ti = ∅},

Λ(2)
i = {α ∈ Λi Ui,α ∩ Ti %= ∅},

Λij = {α ∈ Λi Ui,α ∩Dij %= ∅}, Λ(1)
ij = Λij ∩ Λ(1)

i , Λ(2)
ij = Λij ∩ Λ(2)

i , and

Λijk = Λij ∩ Λik ⊂ Λ(2)
i .

From condition (ii) of Theorem 1.1, we can choose the above coordinate system so that
(D) the meromorphic volume form Ωi in (iii) of Theorem 1.1 can be locally represented

as

Ωi =






dz1i,α ∧ dz2i,α if α ∈ Λ(0)
i ,

dz1i,α ∧
dz2i,α
z2i,α

if α ∈ Λ(1)
i ,

σi,α
dz1i,α
z1i,α

∧
dz2i,α
z2i,α

if α ∈ Λ(2)
i ,
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where σi,α for α ∈ Λ(2)
i is a complex number.

In terms of the above coordinate system, we define a new one {Ui,α, (zij,α, wij,α)} asso-
ciated with Dij as follows:

(E) if α /∈ Λ(2)
ij , then we set zij,α = z1i,α, wij,α = z2i,α;

(F) if α ∈ Λ(2)
ij , then between z1i,α and z2i,α, we choose as wij,α the coordinate which

is a defining function of Dij on Ui,α, and define zij,α as the remainder, so that
Ui,α ∩Dij = {wij,α = 0} and Ui,α ∩Dik = {zij,α = 0} for some k %= i, j.

In particular, we have

(3.1) zik,α = wij,α, wik,α = zij,α for α ∈ Λijk.

We can further choose the coordinate system so that the following condition holds.
(G) Let Vij,α = Ui,α ∩Dij and xij,α = zij,α|Vij,α

for α ∈ Λij . Then we have Λij = Λji,
Vij,α = Vji,α and xij,α = xji,α for all i %= j and α ∈ Λij .

Let (xij,α, yij,α) be local coordinates of π−1
ij (Vij,α) ⊂ Nij , where πij is the projection

from Nij to Dij and yij,α are fiber coordinates. Then from condition (i) of Theorem 1.1, we
may further assume that

(H) the map hij,ζ : Nij \ (Dij ∪ π−1
ij (Tij)) → Nji \ (Dji ∪ π−1

ji (Tji)) locally defined by

(3.2) hij,ζ : (xij,α, yij,α) 0→ (xji,α, yji,α) =

{
(xij,α, ζ/yij,α) for α ∈ Λ(1)

ij ,

(xij,α, ζ/(xij,αyij,α)) for α ∈ Λ(2)
ij .

is a well-defined isomorphism for ζ ∈ C∗.
Now by the tubular neighborhood theorem, there exists a diffeomorphism Φij from a

neighborhood Vij of the zero section of Nij to a neighborhood Uij ⊂
⋃
α∈Λij

Ui,α of Dij in
Xi such that Φij is locally represented as

(3.3)
zij,α = xij,α +O(|yij,α|2), wij,α = yij,α +O(|yij,α|2) for α ∈ Λ(1)

ij , and

zij,α = xij,α, wij,α = yij,α for α ∈ Λ(2)
ij .

3.2. Local smoothings of Xi ∪Xj around Dij without a triple point. Here we suppose
D12 %= ∅ is a double curve without a triple point, so that Λ(2)

12 = ∅. The indices i, j will
take 1 or 2. For Dij with i < j, we replace 1, 2 with i, j respectively. We have chosen
the coordinate system {Ui,α, (zij,α, wij,α)} on Xi so that wij,α is a defining function of Dij

on Ui,α and Ωi = εijdzij,α ∧ dwij,α

wij,α
on Ui,α for α ∈ Λij , where εij = (i − j)/ |i− j|. By

condition (ii) of Theorem 1.1 and the adjunction formula,

KDij = (KXi ⊗ [Dij])|Dij

∼= ODij .

Thus dxij,α defines a holomorphic volume form and
√
−1

2
dxij,α ∧ dxij,α a Hermitian form

on Dij . We define a complex 2-form Ω∞
ij and a real 2-form ω∞

ij on Nij \Dij by

Ω∞
ij = εijπ

∗
ijdxij,α ∧

dyij,α
yij,α

,

ω∞
ij = π∗

ij(dxij,α ∧ dxij,α) +

√
−1

2
∂tij ∧ ∂tij.
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By Lemma 3.2 in [D09], (Ω∞
ij ,ω

∞
ij ) defines an SU(2)-structure on Nij \ Dij such that the

associated metric is cylindrical. If we regard Ω∞
ij and ω∞

ij as defined on tij , then we can
prove that

(3.4)
∣∣Ωi − Ω∞

ij

∣∣ = O(e−tij/2),
∣∣ωij − ω∞

ij

∣∣ = O(e−tij/2),

where ωij is the (1, 1)-part of ω∞
ij , normalized so that Ωi ∧ Ωi = 2ωij ∧ ωij , and the norm

is measured by the cylindrical metric associated with (Ω∞
ij ,ω

∞
ij ). We also see that

h∗
ij,ζΩ

∞
ji = Ω∞

ij , h∗
ij,ζω

∞
ji = ω∞

ij .

Then one can construct local smoothings of X1 ∪ X2 around D12 in the same manner as
[D09], Section 5.3.

3.3. Local smoothings of Xi ∪ Xj ∩ Xk around Dij ∩ Djk ∩ Dki. Here we suppose
T123 %= ∅ and consider local smoothing of X1 ∪ X2 ∪ X3 around D12 ∪ D23 ∪ D31. The
indices i, j, k will take 1, 2 or 3. For general i, j, k with i < j < k, we will be done if we
replace 1, 2, 3 with i, j, k respectively. For later convenience, let εijk denote the Levi-Civita
symbol εijk = 1

2(i − j)(j − k)(k − i), εij = (i − j)/ |i− j| as before, and define νij by
νij =

∑3
k=1 k |εijk|, so that νij ∈ { 1, 2, 3 } is the unique number such that εijνij %= 0. By

condition (ii) of Theorem 1.1 and the adjunction formula, we have

KDij = (KXi ⊗ [Dij])|Dij
=

[
−
∑

!"=i

Di!

]∣∣∣∣∣
Dij

⊗ [Dij]|Dij

∼=

[
−
∑

!"=i,j

Di!

]∣∣∣∣∣
Dij

= [−Tij].

Thus {dxij,α}α∈Λ(1)
ij

and
{
dxij,α

xij,α

}

α∈Λ(2)
ij

together define a holomorphic volume form ψD0
ij

on D0
ij = Dij \ Tij . We also have a Hermitian form ωD0

ij
=

√
−1

2
ψD0

ij
∧ ψD0

ij
on D0

ij. Let
N0

ij = Nij|D0
ij

. We define a holomorphic volume form Ω∞
ij and a Hermitian form ω∞

ij on
N0

ij \D0
ij by

Ω∞
ij = −σijπ∗

ijψD0
ij
∧ ∂tij,(3.5)

ω∞
ij =

|σij|√
3

{
π∗
ijωD0

ij
+

√
−1

2
∂tij ∧ ∂tij

+

√
−1

2
(π∗

ijψD0
ij
− εij∂tij) ∧ (π∗

ijψD0
ij
− εij∂tij)

}
,

(3.6)

so that Ω∞
ij ∧ Ω

∞
ij = 2ω∞

ij ∧ ω∞
ij . In particular, if α ∈ Λ(2)

ij , then Ω∞
ij and ω∞

ij are locally
represented as

Ω∞
ij = σij

dxij,α

xij,α
∧ dyij,α

yij,α
,(3.7)

ω∞
ij =

√
−1

2
√
3
|σij|

{
dxij,α

xij,α
∧ dxij,α

xij,α
+

dyij,α
yij,α

∧
dyij,α
yij,α

+

(
dxij,α

xij,α
+

dyij,α
yij,α

)
∧
(
dxij,α

xij,α
+

dyij,α
yij,α

)}
.

(3.8)
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We regard Ω∞
ij and ω∞

ij as defined on Φij(t
−1
ij ((0,∞))∩Vij)\Di via Φij . Then we see from

(3.1), (3.3), (3.7) and (3.8) that
∣∣Ωi − Ω∞

ij

∣∣ = O(e−tij/2),
∣∣ωij − ω∞

ij

∣∣ = O(e−tij/2) and(3.9)
Ω∞

ij = Ωi = Ω∞
ik , ω∞

ij = ωij = ωik = ω∞
ik on Ui,α for α ∈ Λijk,(3.10)

where ωij is the (1, 1)-part of ω∞
ij , normalized so that Ωi ∧ Ωi = 2ωij ∧ ωij , and |·| is

measured by the cylindrical metric g∞ij associated with ω∞
ij . We also see from (3.2), (3.5)

and (3.6) that
h∗
ij,ζΩ

∞
ji = Ω∞

ij , h∗
ij,ζω

∞
ji = ω∞

ij .

We are now ready to construct a family of local smoothings of X1 ∪ X2 ∪ X3 around
D12 ∪D23 ∪D31. The construction consists of the following three steps:
Step 1. Following Section 3.2, we consider local smoothings of Xi ∪ Xj around Dij to

obtain a family of local smoothings #ij : Vij → ∆.
Step 2. To consider local smoothings of X1 ∪X2 ∪X3 around T123, we define projections

#123,α : V123,α → ∆.
Step 3. Using appropriate injective diffeomorphisms Ψij,α : V123,α → Vij compatible with

the projections to ∆, we glue together Vij in Step 1 along V123,α in Step 2.

For more details, we refer the reader to [DY21] Sections 3.1–3.3.

3.4. Existence of holomorphic volume forms on global smoothings.

Sketch of the Proof of Theorem 1.1. In the previous two sections we obtained partial smooth-
ings of X around each normal crossing. Now we glue all pieces together and construct a
family # : X = {Xζ | ζ ∈ ∆ } → ∆ of global smoothings of X = X0.

For each double curve Dij ⊂ Xi, we obtained a Hermitian form ωij on { 0 < tij } ⊂ Uij

satisfying ωij = ωik on Ui,α for α ∈ Λijk. Thus there exists a Hermitian form ωi on Xi \Di

such that Ωi ∧ Ωi = 2ωi ∧ ωi on Xi \ Di and ωi = ωij on { 1 " tij } for all j. Then it
follows from (3.4), (3.9) and [D09], Proposition 3.4 that there exists a complex 1-form ξij
on { 0 < tij } such that

Ωi − Ω∞
ij = dξij, and

∣∣∇kξij
∣∣ = O(e−tij/2) for all k # 0.

As a differentiable manifold Xζ is constructed from the ingredients

• Xi \
⋃

j("=i)

{ tij # T + 1 } with the pair (Ωi,ζ ,ωi,ζ) of 2-forms,

• { tij > T − 1 } ⊂ N0
ij ⊂ Vij with the SU(2)-structure (Ω∞

ij ,ω
∞
ij ), and

• Vijk,α with the SU(2)-structure (Ω∞
ijk,α,ω

∞
ijk,α) for α ∈ Λijk

via the appropriate gluing maps. Since the gluing maps preserve the associated forms, they
together define a pair (Ω̃ζ , ω̃ζ) of 2-forms on Xζ . Let ASU(2)(Xζ) be the set of SU(2)-
structures on Xζ . We take TSU(2)(Xζ) as a neighborhood of ASU(2)(Xζ) so that the projec-
tion Θ : TSU(2)(Xζ) → ASU(2)(Xζ) is well-defined (see [D09], Lemma 2.8). Then by a
similar argument as in [D09], Section 3, one can define an SU(2)-structure on Xζ by

(ψζ ,κζ) = Θ(Ω̃ζ , ω̃ζ).

For the main estimates of ψζ and κζ , we will discuss in [DY21], Section 3.4. !
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4. EXAMPLES

In this section, we apply Theorem 1.1 to a normal crossing Y to produce compact com-
plex surfaces with trivial canonical bundle.

Example 4.1. (A K3 surface) Let Yi (i = 1, 2) be two hyperplanes in CP 3, and Y3 a quartic
surface in CP 3. For a SNC complex surface Y = Y1 ∪ Y2 ∪ Y3, let us denote Yij = Yi ∩ Yj

and Yijk = Yi ∩ Yj ∩ Yk respectively. Let D1 = Y2 ∩ Y3, D2 = Y3 ∩ Y1, D3 = Y1 ∩ Y2 and
τ = Y1 ∩ Y2 ∩ Y3. Then we choose smooth points Pi ∈ |ODi(4)| for i = 1, 2, 3, satisfying
the condition

Pi ∩ τ = ∅ i ∈ { 1, 2, 3 }
so that each Pi and τ are distinct points. Next we consider the blow-ups of Yi at Pj and
take the proper transform of Di. This is divided into the following steps.
Step 1. For { i, j } = { 1, 2 }, let πi : Y ′

i := BlPj(Yi) $$% Yi be the blow-up of Yi at Pj in
Dj . Let us take the proper transform Y ′

3i of Y3i and Y ′
ji of Yji under the blow-up πi. Let P ′

3

be the proper transform of P3 ∈ D3 under the blow-up π1.
Step 2. Next we take the blow-up of Y ′

1 at P ′
3:

π′
1 : Y

′′
1 := BlP ′

3
Y ′
1 $$% Y ′

1 .

Then we construct a SNC complex surface by gluing Y ′′
1 , Y ′

2 and Y3 along their intersection.
Consequently we obtain a SNC complex surface Ỹ = Ỹ1 ∪ Ỹ2 ∪ Ỹ3 with a normalization
ν : Y ′′

1 ∩ Y ′
2 ∩ Y3 → Ỹ such that ν(Y ′′

1 ) = Ỹ1, ν(Y ′
2) = Ỹ2 and ν(Y3) = Ỹ3. Then we can

prove the following.

Proposition 4.2 ([DY21], Proposition 4.3). The above Ỹ is d-semistable.

By applying Theorem 1.1 to Ỹ , we obtain a family of smoothings # : X → ∆ of Ỹ
whose general fibers Mζ = #−1(ζ) are compact complex surfaces with trivial canonical
bundle. Moreover we prove the following.

Proposition 4.3 ([DY21], Proposition 4.5). Ỹ is a d-semistable K3 surface of type III. In
particular the Euler characteristic of Mζ is 24.

For more details on this example, see [DY21] Section 4.

Example 4.4 ([D09], Example 5.3). This example is due to Doi [D09]. Let Σn denote
the n-the Hirzebruch surface. Recall that the Hirzebruch surface is a toric surface which
inherits the corresponding moment polytope (see Figure 1). In particular, Σn is a CP 1-
bundle over CP 1 having the form P(OCP 1(n) ⊕OCP 1). Let E0 ⊂ Σn be the image of the
section (0, 1) of OCP 1(n)⊕OCP 1 , that is, the zero section of Σn. On the other hand, letting
σ be any section of OCP 1(n), we consider the section (σ, 0) of OCP 1(n) ⊕ OCP 1 . Away
from zeros of σ, we take the image of (σ, 0) in Σn. Then (σ, 0) gives a curve Cσ ⊂ Σn.
The infinity section E∞ is the closure of the curve Cσ which is independent of the choice
of σ. Then we readily see that E0 and E∞ are irreducible curves with self-intersection

(4.1) E0 · E0 = n, E∞ · E∞ = −n

respectively. Let C be a cubic curve in CP 2 and Yn = Σn

∣∣
C

the restriction of Σn to C. Then
we see that Yn is a CP 1-bundle over the elliptic curve C. By taking the restriction of E0

and E∞ to C, we obtain the zero section D0 = E0

∣∣
C

and the infinity section D∞ = E∞
∣∣
C
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of Yn. For example, in the case of n = 0, Y0 = C ×CP 1 is the trivial bundle while D0 and
D∞ correspond to the points [1 : 0] and [0 : 1] in CP 1 respectively.

In particular, D0 and D∞ are naturally isomorphic to the curve C, and D := D0 +D∞
defines an anticanonical divisor on Yn. Since Yn is a CP 1-bundle over C, Yn \D is a C∗-
bundle over C. Let (x, y) be a local coordinate of Yn \D. Then the fiber coordinate y can
be written as

C∗ ∼=−→ S1 × (0,∞), y = exp(−T −
√
−1θ) 0→ (θ, T )

for θ ∈ R/2πZ and T ∈ (0,∞). As mentioned in the above, we see that D0 = {T = 0 }
and D∞ = {T = ∞ }. Hence we have the isomorphism

Yn \D ∼= Sn × (0,∞)

where Sn is the S1-bundle over C. Recall that D0 is a curve in Yn with D0 ·D0 = n by (4.1).
Since ND0/Yn

∼= OYn(D0)
∣∣
D0

from [BHPV, Proposition 6.3], we see that ND0/Yn
∼= OC(n).

Similarly the normal bundle of D∞ is computed as ND∞/Yn
∼= OC(−n). Then the gluing

map hT is locally given by

hT : Yn \D ∼= Sn × (0,∞) "" Yn \D.

∈ ∈

(z, T ) $ "" (z′, T ′) = (z, 1/T )

as in [D09], Remark 3.5. Hence we can glue two copies of Yn \ D along a neighborhood
U1 of 0 and a neighborhood U2 of ∞ to construct a compact complex surface

(4.2) Mn = (Yn \D) ∪hT (Yn \D)

with trivial canonical bundle. The above construction shows that Mn is homeomorphic to
Sn × S1 (see [BHPV], p.196).

Let us compute the Betti numbers of the resulting compact complex manifold Mn. We
use the following lemma on elliptic fiber bundles.

Lemma 4.5 ([BHPV] p.196, Proposition 5.3). Let X → B be a fiber bundle with a smooth
compact connected curve B. Suppose that X is homeomorphic to S × S1, where S is the
S1-bundle over B. Then:

(A) b1(X) = b1(B)+2 and b2(X) = 2b1(B)+2 if the bundle X → B is topologically
trivial.

(B) b1(X) = b1(B)+1 and b2(X) = 2b1(B) if the bundle X → B is not topologically
trivial.
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Claim 4.6. Let Mn be a compact complex surface constructed in (4.2).
(A) For n = 0, we find b1(M0) = 4, b2(M0) = 6. Thus the resulting complex manifold

M0 is a complex torus.
(B) For n > 0, we find b1(Mn) = 3, b2(Mn) = 4. Hence Mn is a primary Kodaira

surface.

Proof. (i) For n = 0, we see that M0 = C × CP 1. Hence M0 is the trivial CP 1-bundle
over C where C ∈ |OCP 2(3)| is the elliptic curve. Then Lemma 4.5 (i) implies that

b1(M0) = b1(C) + 2 = 2 + 2 = 4,

b2(M0) = 2b1(C) + 2 = 2 · 2 + 2 = 6.
(4.3)

By the classification of compact complex surfaces with trivial canonical bundle (see [BHPV],
p.244 Table 10), we know that such a surface is a complex torus C2/Λ. In particular

hp,q (C2/Λ) =

(
2
p

)(
2
q

)
which is consistent with (4.3).

(ii) For n > 0, we know that Mn is a CP 1-bundle over C which is not trivial bundle. Hence
we see that

b1(Mn) = b1(C) + 1 = 3, and b2(Mn) = 2b1(C) = 4

by Lemma 4.5 (ii). Consequently the resulting compact complex manifold is a primary
Kodaira surface. See [BHPV], p.197 for their invariants. !
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