Double covers and vector bundles of rank two

Taketo Shirane

Introduction

In this article, we discuss the correspondence between vector bundles of rank 2 (say 2-bundles for short) and line bundles on double covers.

In the study of the embedded topology of curves on the complex projective plane \mathbb{P}^2 , it is effective to consider the irreducibility of $\phi^* C$ for an irreducible curve $C \subset \mathbb{P}^2$ and a Galois cover $\phi: X \to \mathbb{P}^2$ (cf. [3], [15], [16]). For example, let $B, C \subset \mathbb{P}^2$ be two plane curves such that deg B is even and C is irreducible with deg $B \neq$ deg C, and let $\phi : X \rightarrow \mathbb{P}^2$ be the double cover branched at B; then the embedded topology of B + C changes depending on whether ϕ^*C is irreducible or not. In the case where ϕ is a cyclic cover and C is smooth, a criterion for irreducibility of $\phi^* C$ is known in [8]. This criterion is intensively used to distinguish embedded topology of plane curves (cf. [1], [2], [4], [16]). In the case where ϕ is the double cover branched at a smooth conic and C is a nodal curve, a criterion for irreducibility of $\phi^* C$ is known in [5]. However, for general $C \subset \mathbb{P}^2$, it is still a problem to determine the irreducibility of $\phi^* C$ even if ϕ is a double cover. We consider a new approach to the problem, which is constructing various curves on X (which correspond to irreducible components of ϕ^*C and studying property of their images (which correspond to C). The purpose of this article is a preparation for this new approach by studying a correspondence between line bundles on X and vector bundles of rank 2 (say 2-bundles for short) on Y in the case where ϕ is a double cover. As bi-products, we obtain approaches to studying the Picard group of double covers and to constructing 2-bundles. This article gives statements of results without proofs. For the proofs, see [17].

Acknowledgement. The author would like to thank the organizers for giving him the opportunity to talk at Kinosaki Algebraic Geometry Symposium 2020.

1 Setting

Let $\phi: X \to Y$ be a non-singular double cover, i.e., a finite morphism of degree two between non-singular complex varieties X, Y. Let $B_{\phi} \subset Y$ and $R_{\phi} \subset X$ be the branch locus and the ramification locus of $\phi: X \to Y$, respectively. Let $F \in H^0(Y, \mathcal{O}_Y(B_{\phi}))$ and $t \in H^0(X, \mathcal{O}_X(R_{\phi}))$ be sections defining B_{ϕ} and R_{ϕ} , respectively, such that $t^2 = F$. There is a divisor L on Y such that $2L \sim B_{\phi}$ and $\phi_* \mathcal{O}_X \cong \mathcal{O}_Y \oplus \mathcal{O}_Y(-L)$ as \mathcal{O}_Y -modules. Note that we have

$$\phi_* \mathcal{O}_X \cong \left(\bigoplus_{n=0}^{\infty} t^n \mathcal{O}_Y(-nL) \right) / (t^2 - F)$$

as \mathcal{O}_Y -algebras. In 2017, Catanese–Perroni proved the following lemma.

Lemma 1.1 ([7]). If \mathcal{M} is a 2-bundle on Y, and $M : \mathcal{M}(-L) \to \mathcal{M}$ is a morphism satisfying $M^2 = F \cdot \operatorname{id}_{\mathcal{M}}$ (i.e., the composition of $M(-L) : \mathcal{M}(-2L) \to \mathcal{M}(-L)$ and $M : \mathcal{M}(-L) \to \mathcal{M}$ is the multiplication by F), then the pair (\mathcal{M}, M) determines naturally a line bundle $\mathcal{L}_{(\mathcal{M}, M)}$ on X such that $\phi_* \mathcal{L}_{(\mathcal{M}, M)} \cong \mathcal{M}$, and M corresponds to the multiplication by t in $\mathcal{L}_{(\mathcal{M}, M)}$.

Definition 1.2. Let (\mathcal{M}, M) be a pair of a 2-bundle \mathcal{M} on Y and a morphism $M : \mathcal{M}(-L) \to \mathcal{M}$.

- (i) We call (\mathcal{M}, M) an admissible pair for ϕ if $M^2 = F \cdot \mathrm{id}_{\mathcal{M}} : \mathcal{M}(-2L) \to \mathcal{M}$.
- (ii) Two admissible pairs (\mathcal{M}, M) and (\mathcal{N}, N) are *equivalent* if there exists an isomorphism $\Psi : \mathcal{M} \to \mathcal{N}$ such that $\Psi \circ M = N \circ \Psi(-L)$, and write $(\mathcal{M}, M) \sim (\mathcal{N}, N)$.
- (iii) $AD_{\phi}(Y) := \{(\mathcal{M}, M) : \text{ an admissible pair for } \phi \} / \sim.$

Remark 1.3. We have the following facts.

- (i) In [7], it is shown that $(\mathcal{M}, M) \sim (\mathcal{N}, N)$ if and only if $\mathcal{L}_{(\mathcal{M}, M)} \cong \mathcal{L}_{(\mathcal{N}, N)}$.
- (ii) $AD_{\phi}(Y)$ has a group structure induced by Pic(X).

2 The group structure of $AD_{\phi}(Y)$

To describe a correspondence between admissible pairs for a non-singular double cover $\phi : X \to Y$ and line bundles on X, we introduce some notation. Let (\mathcal{M}, M) be an admissible pair for ϕ , and let $\mathfrak{U} := \{U_i\}_{i \in I}$ be an affine open covering of Y such that

$$\begin{split} \phi_* \mathcal{O}_X |_{U_i} &\cong \mathcal{O}_{U_i} \oplus \mathcal{O}_{U_i} t_i \quad \text{ as } \mathcal{O}_{U_i}\text{-algebras}, \\ \varphi_i : \mathcal{M}_i &:= \mathcal{M}|_{U_i} \xrightarrow{\sim} \mathcal{O}_{U_i}^{\oplus 2} \quad \text{ as } \mathcal{O}_{U_i}\text{-modules} \end{split}$$

for any $i \in I$, where $t_i := t|_{U_i}$. Note that $t_j = t_i \xi_{ij}$ for $i, j \in I$, where $\xi_{ij} \in \mathcal{O}_{U_i \cap U_i}^{\times}$ correspond to transition functions of $\mathcal{O}_Y(-L)$:

Then we have transition functions $G_{ij} \in GL(2, \mathcal{O}_{U_i \cap U_j})$ of \mathcal{M} for $i, j \in I$:

$$G_{ij} = \begin{pmatrix} g_{ij,11} & g_{ij,12} \\ g_{ij,21} & g_{ij,22} \end{pmatrix} := \varphi_i \circ \varphi_j^{-1} : \mathcal{O}_{U_j}^{\oplus 2} |_{U_i \cap U_j} \to \mathcal{O}_{U_i}^{\oplus 2} |_{U_i \cap U_j}$$
(1)

satisfying $G_{ik} = G_{ij}G_{jk}$ and $G_{ii} = E$ for each $i, j, k \in I$, where E is the identity matrix. The restriction of $M : \mathcal{M}(-L) \to \mathcal{M}$ to U_i corresponds to a matrix M_i :

$$M_i = \begin{pmatrix} a_{i0} & a_{i2} \\ a_{i1} & -a_{i0} \end{pmatrix} := \varphi_i \circ \left(\varphi_i(-L)\right)^{-1} : \mathcal{O}_{U_i}^{\oplus 2} \to \mathcal{O}_{U_i}^{\oplus 2}$$
(2)

satisfying $a_{i0}^2 + a_{i1}a_{i2} = F_i := F|_{U_i}$ and $M_j = \xi_{ij}G_{ij}^{-1}M_iG_{ij}$ as elements of $\operatorname{GL}(2, \mathbb{C}(X))$ for each $i, j \in I$:

Definition 2.1. With the above notation, we call $(\{G_{ij}\}, \{M_i\})_{\mathfrak{U}}$ a representation of the admissible pair $(\mathcal{M}, \mathcal{M})$. A representation $(\{G_{ij}\}, \{M_i\})_{\mathfrak{U}}$ of $(\mathcal{M}, \mathcal{M})$ is said to be good if a_{i1} is a unit on U_i for each $i \in I$.

We can prove the following lemma by taking a 'fine' affine open covering of Y and a certain local basis of \mathcal{M} .

Lemma 2.2 ([17, Lemma 1.3]). Any admissible pair (\mathcal{M}, M) for ϕ has a good representation.

We describe the group structure of $AD_{\phi}(Y)$. Let $(\mathcal{M}^{(k)}, M^{(k)})$ be an admissible pair for a non-singular double cover $\phi : X \to Y$ for each $k = 1, \ldots, m$. Let $(\{G_{ij}^{(k)}\}, \{M_i^{(k)}\})_{\mathfrak{U}}$ be a good representation of $(\mathcal{M}^{(k)}, M^{(k)})$ for each $k = 1, \ldots, m$, where

$$G_{ij}^{(k)} = \begin{pmatrix} g_{ij,11}^{(k)} & g_{ij,12}^{(k)} \\ g_{ij,21}^{(k)} & g_{ij,22}^{(k)} \end{pmatrix}, \qquad M_i^{(k)} = \begin{pmatrix} a_{i0}^{(k)} & a_{i2}^{(k)} \\ a_{i1}^{(k)} & -a_{i0}^{(k)} \end{pmatrix} \quad (k = 1, \dots, m).$$

Let $(\{G_{ij}^{(0)}\}, \{M_i^{(0)}\})_{\mathfrak{U}}$ be the good representation corresponding to \mathcal{O}_X , where

$$G_{ij}^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & \xi_{ij} \end{pmatrix}, \qquad \qquad M_i^{(0)} = \begin{pmatrix} 0 & F_i \\ 1 & 0 \end{pmatrix}$$

For 2×2 matrices A_1, \ldots, A_m , put $\prod_{k=1}^m A_k := A_1 A_2 \ldots A_m$. Then the following theorem holds.

Theorem 2.3 ([17, Theorem 2.1]). With the above notation, put

$$K_{ij}^{(k)+} := \frac{1}{a_{i1}^{(k)}} \left(\left(a_{i1}^{(k)} g_{ij,11}^{(k)} - a_{i0}^{(k)} g_{ij,21}^{(k)} \right) E + g_{ij,21}^{(k)} M_i^{(0)} \right), \tag{3}$$

$$K_{ij}^{(k)-} := \frac{\xi_{ij}}{a_{i1}^{(k)} \det(G_{ij})} \left(\left(a_{i1}^{(k)} g_{ij,11}^{(k)} - a_{i0}^{(k)} g_{ij,21}^{(k)} \right) E - g_{ij,21}^{(k)} M_i^{(0)} \right)$$
(4)

for each k = 1, ..., m. Let $n_1, ..., n_m$ be m integers, and let [n] be the list $[n_1, ..., n_m]$. Then $\mathcal{L}^{[n]} := \mathcal{L}_{(\mathcal{M}^{(1)}, \mathcal{M}^{(1)})}^{\otimes n_1} \otimes \cdots \otimes \mathcal{L}_{(\mathcal{M}^{(m)}, \mathcal{M}^{(m)})}^{\otimes n_m}$ is associated to the normal representation $(\{G_{ij}^{[n]}\}, \{M_i^{[n]}\})_{\mathfrak{U}}$ with

$$G_{ij}^{[n]} := \prod_{k=1}^{m} \left(K_{ij}^{(k)}(n_k) \right)^{|n_k|} G_{ij}^{(0)}, \qquad \qquad M_i^{[n]} := M_i^{(0)}$$

where $K_{ij}^{(k)}(n_k) := K_{ij}^{(k)+}$ if $n_k \ge 0$, and $K_{ij}^{(k)}(n_k) := K_{ij}^{(k)-}$ otherwise.

In the proof of Theorem 2.3, we have the following proposition.

Proposition 2.4 ([17, Proposition 2.5]). Let (\mathcal{M}, M) be an admissible pair for a non-singular double cover $\phi : X \to Y$, and let $(\{G_{ij}\}, \{M_i\})_{\mathfrak{U}}$ be a good representation of (\mathcal{M}, M) . Let $\iota : X \to X$ be the covering transformation of ϕ . Then the followings hold:

$$\iota^* \mathcal{L}_{(\mathcal{M},M)} \cong \mathcal{L}_{(\mathcal{M},-M)},\tag{5}$$

$$\mathcal{L}_{(\mathcal{M},M)} \otimes \iota^* \mathcal{L}_{(\mathcal{M},M)} \cong \phi^* \Big((\det \mathcal{M}) \otimes \mathcal{O}_Y(L) \Big), \tag{6}$$

$$\mathcal{L}_{(\mathcal{M},M)}^{-1} \cong \phi^* \Big((\det \mathcal{M})^{-1} \otimes \mathcal{O}_Y(-L) \Big) \otimes \mathcal{L}_{(\mathcal{M},-M)}.$$
⁽⁷⁾

Moreover, $\mathcal{L}_{(\mathcal{M},M)}^{-1}$ is associated to

$$\left(\left\{\frac{\xi_{ij}}{\det(G_{ij})}G_{ij}\right\}, \{-M_i\}\right)_{\mathfrak{U}}.$$

3 A subgroup of Pic(X)

We have seen the correspondence between admissible pairs for a non-singular double cover $\phi : X \to Y$ and line bundles on X. Hence it is effective for understanding $\operatorname{Pic}(X)$ to study $\operatorname{AD}_{\phi}(Y)$. However, it seems difficult to find a morphism $M : \mathcal{M}(-L) \to \mathcal{M}$ satisfying $M^2 = F \cdot \operatorname{id}_{\mathcal{M}}$ for a general 2-bundle \mathcal{M} on Y. In the case where $\mathcal{M} \cong \mathcal{O}_Y(D_1) \oplus \mathcal{O}_Y(D_2)$ for some divisors D_1, D_2 on Y, such a morphism M can be represented as

$$M = \begin{pmatrix} a_0 & a_2 \\ a_1 & -a_0 \end{pmatrix} : \mathcal{O}_Y(D_1 - L) \oplus \mathcal{O}_Y(D_2 - L) \to \mathcal{O}_Y(D_1) \oplus \mathcal{O}_Y(D_2), \quad (8)$$

where a_0 , a_1 and a_2 are global sections of $\mathcal{O}_Y(L)$, $\mathcal{O}_Y(L-D_1+D_2)$ and $\mathcal{O}_Y(L+D_1-D_2)$, respectively, satisfying $a_0^2 + a_1a_2 = F$.

Definition 3.1. Let $\phi : X \to Y$ be a non-singular double cover.

- (i) We say that a line bundle \mathcal{L} on X splits with respect to ϕ if $\phi_*\mathcal{L}$ is the direct sum of two line bundles on Y.
- (ii) Let $\operatorname{sPic}_{\phi}(X)$ denote the subgroup of $\operatorname{Pic}(X)$ generated by line bundles which split with respect to ϕ ("s" of sPic means "sub" or "split");

$$\operatorname{sPic}_{\phi}(X) := \left\langle [\mathcal{L}] \in \operatorname{Pic}(X) \mid \mathcal{L} \text{ splits with respect to } \phi \right\rangle.$$

Remark 3.2. If $\phi_* \mathcal{L} \cong \mathcal{O}_Y(D_1) \oplus \mathcal{O}_Y(D_2)$, then

$$\phi_*(\mathcal{L}\otimes\phi^*\mathcal{O}_Y(-D_2))\cong\mathcal{O}_Y(D_1-D_2)\oplus\mathcal{O}_Y$$

by projection formula. Since $\phi^* \mathcal{O}_Y(D_2) \in \operatorname{sPic}_{\phi}(X)$, the subgroup $\operatorname{sPic}_{\phi}(X)$ is generated by $\phi^*(\operatorname{Pic}(Y))$ and line bundles \mathcal{L} satisfying $\phi_*\mathcal{L} \cong \mathcal{O}_Y(D') \oplus \mathcal{O}_Y$ on X for some divisor D' on Y.

Lemma 3.3 ([17, Lemma 3.3]). If Y is an open subset of a smooth projective variety \overline{Y} with $\operatorname{codim}_{\overline{Y}}(\overline{Y} \setminus Y) \geq 2$, then $\operatorname{H}^0(Y, \mathcal{O}_Y) = \mathbb{C}$, and $\operatorname{sPic}_{\phi}(X)$ is generated by $\phi^*(\operatorname{Pic}(Y))$ and line bundles \mathcal{L} with $\phi_*\mathcal{L} \cong \mathcal{O}_Y(D') \oplus \mathcal{O}_Y$ such that either $\mathcal{O}_Y(D') \cong \mathcal{O}_Y$ or $\operatorname{H}^0(Y, \mathcal{O}_Y(D')) = 0$.

Proof. For an irreducible divisor C on Y, let \overline{C} denote the closure of C on \overline{Y} . Let D be a divisor on Y, and put $\overline{D} := \sum_{i=1}^{k} \overline{C}_i$, where $D = \sum_{i=1}^{k} C_i$ is the irreducible decomposition of D. Then $\mathcal{O}_Y(D) = \mathcal{O}_{\overline{Y}}(\overline{D})|_Y$. By [9, Proposition 1.6], we have $\operatorname{H}^0(Y, \mathcal{O}_Y(D)) = \operatorname{H}^0(\overline{Y}, \mathcal{O}_{\overline{Y}}(\overline{D}))$. Thus

$$\mathrm{H}^{0}(Y, \mathcal{O}_{Y}) = \mathrm{H}^{0}(\overline{Y}, \mathcal{O}_{\overline{Y}}) = \mathbb{C}.$$

For a line bundle \mathcal{L} on X with $\phi_*\mathcal{L} \cong \mathcal{O}_Y(D) \oplus \mathcal{O}_Y$, if $\mathcal{O}_Y(D) \not\cong \mathcal{O}_Y$ and $\mathrm{H}^0(Y, \mathcal{O}_Y(D)) \neq 0$, then $\mathrm{H}^0(Y, \mathcal{O}_Y(-D)) = 0$ and

$$\phi_* \Big(\mathcal{L} \otimes \phi^* \big(\mathcal{O}_Y(-D) \big) \Big) \cong \mathcal{O}_Y(-D) \oplus \mathcal{O}_Y .$$

Therefore the assertion holds true by Remark 3.2.

Theorem 3.4 is a criterion for splitting of the push-forward for a line bundle on X (see Remark 3.2 and Lemma 3.3).

Theorem 3.4 ([17, Theorem 2]). Let D^+ be an effective divisor on X, and let D be the effective divisor on Y defined by f = 0 for $f \in H^0(Y, \mathcal{O}_Y(D))$ such that $\phi^*D = D^+ + \iota^*D^+$. Assume that $H^0(Y, \mathcal{O}_Y) = \mathbb{C}$. If $\phi_* \mathcal{O}_X(D^+) \cong \mathcal{O}_Y(D') \oplus \mathcal{O}_Y$ for a divisor D' on Y satisfying either $\mathcal{O}_Y(D') \cong \mathcal{O}_Y$ or $H^0(Y, \mathcal{O}_Y(D')) = 0$, then D and D' satisfy the following two conditions;

- (i) D' is linearly equivalent to D L, i.e., $\mathcal{O}_Y(D') \cong \mathcal{O}_Y(D L)$; and
- (ii) there are global sections a_0 and a_1 of $\mathcal{O}_Y(L)$ and $\mathcal{O}_Y(2L-D)$, respectively, such that $F = a_0^2 + fa_1$.

Moreover, in the case where D^+ is irreducible, the converse holds true.

Remark 3.5. In the case of $Y = \mathbb{P}^1$, Jacobi [10] have studied the correspondence between line bundles on the hyperelliptic curve X and equations of the form $F = a_0^2 + a_1 a_2$ via the Jacobian variety. The study of [10] relates to Hitchin theory (cf. [18]).

Theorem 3.4 implies that generators of $\operatorname{sPic}_{\phi}(X)$ correspond to equations of the form $F = a_0^2 + a_1 a_2$. Hence we can expect that $\operatorname{sPic}_{\phi}(X)$ reflects the arrangement of B_{ϕ} in Y enough to describe the structure of $\operatorname{Pic}(X)$. In several examples below, the equation $\operatorname{sPic}_{\phi}(X) = \operatorname{Pic}(X)$ holds.

Example 3.6. Let X be a hyperelliptic curve, and let $\phi : X \to \mathbb{P}^1$ be a nonsingular double cover. Since any rank 2-bundle on \mathbb{P}^1 splits, we have $\operatorname{Pic}(X) = \operatorname{sPic}_{\phi}(X)$.

Example 3.7. Let $\phi : X \to \mathbb{P}^2$ be a double cover branched along a smooth conic B_{ϕ} . Note that deg(L) = 1. Then $X \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $\operatorname{Pic}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let D^+ be a ruling of $X \cong \mathbb{P}^1 \times \mathbb{P}^1$. The image $D = \phi(D^+)$ is a tangent line of B_{ϕ} . Let $f \in \operatorname{H}^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$ be a section defining D. Then B_{ϕ} is given by $a_0^2 + fa_1 = 0$ for some $a_0, a_1 \in \operatorname{H}^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$. By Proposition 2.4 and Theorem 3.4, we obtain $\phi_* \mathcal{O}_X(D^+) \cong \phi_* \mathcal{O}_X(\iota^*D^+) \cong \mathcal{O}_Y^{\oplus 2}$. Since $\operatorname{Pic}(X)$ is generated by $\mathcal{O}_X(D^+)$ and $\mathcal{O}_X(\iota^*D^+)$, we have $\operatorname{Pic}(X) = \operatorname{sPic}_{\phi}(X)$.

Example 3.8. Let $\phi : X \to \mathbb{P}^2$ be a double cover branched along a smooth quartic B_{ϕ} . Note that deg(L) = 2. Then X is isomorphic to the blowing-up of \mathbb{P}^2 at 7 points in general position. Moreover $\operatorname{Pic}(X)$ is generated by 8 (-1)-curves E_0, \ldots, E_7 , where E_0 is the strict transform of a line passing through two bowing-up centers, and E_1, \ldots, E_7 are the exceptional divisors. The images $\phi(E_0), \ldots, \phi(E_7)$ are 8 of 28 bitangent lines of B_{ϕ} . Let $f_j \in \operatorname{H}^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$ be a section defining $\phi(E_j)$ for each $j = 0, \ldots, 7$. Then there exist global sections $a_{j,k}$ (k = 0, 1) of $\mathcal{O}_{\mathbb{P}^2}(k + 2)$ such that B_{ϕ} is defined by $a_{j,0}^2 + f_j a_{j,1} = 0$. Hence $\phi_* \mathcal{O}_X(E_j) \cong \mathcal{O}_{\mathbb{P}^2}(-1) \oplus \mathcal{O}_{\mathbb{P}^2}$ for each $j = 0, \ldots, 7$ by Theorem 3.4. Therefore we obtain $\operatorname{Pic}(X) = \operatorname{sPic}_{\phi}(X)$.

The following conjecture arises.

Conjecture 3.9. If $\operatorname{H}^{0}(Y, \mathcal{O}_{Y}) = \mathbb{C}$, then $\operatorname{Pic}(X) = \operatorname{sPic}_{\phi}(X)$.

Remark 3.10. In the cases of Examples 3.7 and 3.8, it is known that $\phi_* \mathcal{L}$ is indecomposable for general line bundles \mathcal{L} on X in [13].

4 An idea to generate 2-bundles

In this section, we give an idea to generate 2-bundles through double covers. Schwarzenberger proved the following theorem.

Theorem 4.1 (Schwarzenberger [13, Theorem 3]). Let Y be a non-singular surface. For any 2-bundle \mathcal{E} on Y, there exist a non-singular double cover $\phi: X \to Y$ and a line bundle \mathcal{L} on X such that $\phi_* \mathcal{L} \cong \mathcal{E}$.

We give a generalization of this theorem. We call $\phi : X \to Y$ a normal double cover if ϕ is a finite surjective morphism of degree two from a normal variety X to a smooth variety Y over \mathbb{C} . Let $\operatorname{Cl}(X)$ be the divisor class group of X. Note that there is a canonical one-to-one correspondence between $\operatorname{Cl}(X)$ and the set of divisorial sheaves on X (cf. [14]). See [9] for general results on reflexive sheaves. By modifying the proof of [13, Theorem 3], we can prove the following theorem which is a generalization of [13, Theorem 3].

Theorem 4.2 ([17, Theorem 3]). Let \mathcal{E} be a 2-bundle on a smooth projective variety Y of dimension n over \mathbb{C} . There exist a normal double cover $\phi : X \to Y$ and a divisorial sheaf \mathcal{L} on X such that $\mathcal{E} \cong \phi_* \mathcal{L}$.

Proof. Let $\mathbb{P}_{\mathcal{E}}$ be the \mathbb{P}^1 -bundle $\operatorname{Proj}(S(\mathcal{E}))$, and let $p : \mathbb{P}_{\mathcal{E}} \to Y$ be the projection, where $S(\mathcal{E})$ is the symmetric algebra of \mathcal{E} . Let \mathcal{H} be a very ample line bundle on Y. The line bundle \mathcal{H} gives the embedding $\Phi_{\mathcal{H}} : Y \to \mathbb{P}^s$ with $s+1 = \dim \operatorname{H}^0(Y, \mathcal{H})$. For k large enough, we have the following exact sequence:

$$\mathcal{H}^{\oplus r+1} \to \mathcal{E} \otimes \mathcal{H}^k \to 0$$

for some r > 0. This induces an embedding $i : \mathbb{P}_{\mathcal{E}} \hookrightarrow \mathbb{P}^N$ for N = rs + r + s via the Segre embedding $\mathbb{P}^r \times \mathbb{P}^s \hookrightarrow \mathbb{P}^N$. Put $\widetilde{\mathcal{L}} := i^* \mathcal{O}_{\mathbb{P}^N}(1)$. Note that $i(p^{-1}(P))$ is a line in \mathbb{P}^N for each $P \in Y$, and $p_* \widetilde{\mathcal{L}} \cong \mathcal{E} \otimes \mathcal{H}^k$. Hence $i : \mathbb{P}_{\mathcal{E}} \hookrightarrow \mathbb{P}^N$ induces an embedding $i' : Y \hookrightarrow \operatorname{Gr}_1(N)$ by $P \mapsto i(p^{-1}(P))$, where $\operatorname{Gr}_1(N)$ is the Grassmannian consisting of lines in \mathbb{P}^N .

For a quadratic hypersurface $Q \subset \mathbb{P}^N$, let V(Q) be the subscheme of $\operatorname{Gr}_1(N)$ consisting of lines on Q. Note that $\operatorname{PGL}(N, \mathbb{C}) := \operatorname{Aut}(\mathbb{P}^N)$ acts transitively on both of \mathbb{P}^N and $\operatorname{Gr}_1(N)$ such that V(g(Q)) = g(V(Q)) for any $g \in \operatorname{PGL}(N, \mathbb{C})$ and $Q \subset \mathbb{P}^N$. Since dim $\operatorname{Gr}_1(N) = 2N - 2$, dim V(Q) = 2N - 5 (cf. [6]) and dim Y = n, we obtain dim $Y \cap V(Q) = n - 3$ for a general hypersurface $Q \subset \mathbb{P}^N$ of degree 2 by [11, Theorem 2]. Put $X' := \mathbb{P}_{\mathcal{E}} \cap Q$ for a general quadratic hypersurface $Q \subset \mathbb{P}^N$ such that dim $i'(Y) \cap V(Q) = n - 3$ and X' is smooth. Let \mathcal{L}' be the restriction of $\widetilde{\mathcal{L}}$ to X'. For an affine open set U of Y, the Künneth formula for sheaves implies that

$$R^{q} p_{*} \mathcal{L}^{-1}(U) = \mathrm{H}^{q}(U \times \mathbb{P}^{1}, \mathcal{O}_{U} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)) = 0$$

for all $q \geq 0$. Since $\widetilde{\mathcal{L}} \otimes \mathcal{J}_{X'} \cong \widetilde{\mathcal{L}}^{-1}$ for the ideal sheaf $\mathcal{J}_{X'} \cong \widetilde{\mathcal{L}}^{-2}$ of X', we have $p'_* \mathcal{L}' \cong \mathcal{E} \otimes \mathcal{H}^k$ by [13, Proposition 5].

Then the restriction $p' := p|_{X'} : X' \to Y$ is a generically finite morphism of degree 2. Let $U' := \{P \in Y \mid (p')^{-1}(P) \text{ is finite}\}$. By Stein factorization of p', we obtain a birational morphism $f' : X' \to X''$ and a finite morphism $g' : X'' \to Y$ such that $g' \circ f' = p'$. Take the normalization $\kappa : X \to X''$, and put $\phi := g' \circ \kappa : X \to Y$, which is a normal double cover. Let \mathcal{L} be the double dual $(\kappa^* f_* \mathcal{L}')^{\vee \vee}$ of $\kappa^* f_* \mathcal{L}'$. Then \mathcal{L} is a divisorial sheaf on X, and $\phi_* \mathcal{L}|_{U'} \cong p'_* \mathcal{L}'|_{U'}$ since f' and κ are isomorphic over U'. Since $\phi_* \mathcal{L}$ is reflexive by [9, Corollary 1.7] and $\operatorname{codim}_Y(Y \setminus U') = 3$, $\phi_* \mathcal{L} \cong p'_* \mathcal{L}' \cong \mathcal{E} \otimes \mathcal{H}^k$. Therefore, $\phi_* (\mathcal{L} \otimes \phi^* \mathcal{H}^{-k}) \cong \mathcal{E}$. As the idea of [7], we can apply our method to divisorial sheaves on normal double covers as follows. Let $\phi: X \to Y$ be a normal double cover. Let X° be the smooth locus $X \setminus \operatorname{Sing}(X)$ of X, and put $Y^{\circ} := \phi(X^{\circ})$. Then the restriction $\phi^{\circ}: X^{\circ} \to Y^{\circ}$ of ϕ is a non-singular double cover. For a divisorial sheaf \mathcal{L} on X, the restriction \mathcal{L}° of \mathcal{L} to X° is a line bundle on X° , and $i_*\mathcal{L}^{\circ} = \mathcal{L}$ and $j_*\phi^{\circ}_*\mathcal{L}^{\circ} = \phi_*\mathcal{L}$ hold, where $i: X^{\circ} \to X$ and $j: Y^{\circ} \to Y$ are the inclusion maps. Hence computation of push-forwards of line bundles on X° can be applied to that of divisorial sheaves on X via j_* .

If Conjecture 3.9 is true, then Theorem 4.2 implies that any 2-bundle on \mathbb{P}^n can be generated by the following method:

- (i) Take a reduced divisor B : F = 0 of even degree on \mathbb{P}^n with several representation of the form $F = a_0^2 + a_1 a_2$;
- (ii) let $\phi : X \to \mathbb{P}^n$ be the normal double cover branched at B, and let $\phi^\circ : X^\circ \to Y^\circ$ be the non-singular double cover as above;
- (iii) take several line bundles $\mathcal{L}_1, \ldots, \mathcal{L}_m$ on X° such that $\phi^\circ_* \mathcal{L}_i$ is split, and compute 2-bundles $\phi^\circ_* (\mathcal{L}_1^{n_1} \otimes \cdots \otimes \mathcal{L}_m^{n_m})$ on Y° by Theorem 2.3;
- (iv) then $j_*\phi^{\circ}_*(\mathcal{L}^{n_1}_1\otimes\cdots\otimes\mathcal{L}^{n_m}_m)$ are reflexive sheaves of rank two.

Remark 4.3. Let $\phi : X \to \mathbb{P}^2$ be a non-singular double cover branched along smooth curve of degree 2r. In [13], $\phi_*\mathcal{L}$ was studied for several line bundles \mathcal{L} on X in the case of r = 1, 2. Ottaviani [12] and Vallès [19] studied the direct images of line bundles on X.

If $\phi : X \to \mathbb{P}^n$ is non-singular, then the reflexive sheaves in (iv) are 2-bundles. A problem of this method is when a reflexive sheaf of (iv) is a 2-bundle.

Problem 4.4. Give a condition for a reflexive sheaf $j_*\phi^{\circ}_*(\mathcal{L}_1^{n_1}\otimes\cdots\otimes\mathcal{L}_m^{n_m})$ in (iv) to be a 2-bundle.

References

- Enrique Artal Bartolo, Shinzo Bannai, Taketo Shirane, and Hiro-o Tokunaga, Torsion divisors of plane curves and Zariski pairs, arXiv:1910.06490.
- [2] Enrique Artal Bartolo, Shinzo Bannai, Taketo Shirane, and Hiro-o Tokunaga, Torsion divisors of plane curves with maximal felxes and Zariski pairs, arXiv:2005.12673.
- [3] Shinzo Bannai, A note on splitting curves of plane quartics and multisections of rational elliptic surfaces, Topology Appl. **202** (2106), 428–439.
- [4] Shinzo Bannai, Benoît Guerville-Ballé, Taketo Shirane, and Hiro-o Tokunaga, On the topology of arrangements of a cubic and its inflectional tangents, Proc. Japan Acad., Ser. A 93 (2017), no. 6, 50–53.

- [5] Shinzo Bannai and Taketo Shirane, Nodal curves with a contact-conic and Zariski pairs, Adv. Geom. 19 (2019), no. 4, 555–572.
- [6] Roya Beheshti, Lines on projective hypersurfaces, J. Reine Angew. Math., 592 (2006), 1–21.
- [7] Fabrizio Catanese and Fabio Perroni, Dihedral Galois covers of algebraic varieties and the simple cases, J. Geom. Phys. 118 (2017), 67–93.
- [8] Benoît Guerville-Ballé and Taketo Shirane, Non-homotopicity of the linking set of algebraic plane curves, J. Knot Theory Ramifications 26 (2017), no. 13, 13, Id/No 1750089.
- [9] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), 121– 176.
- [10] C. G. J. Jacobi, Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen, J. Reine Angew. Math. 32 (1846), 220–226.
- [11] Steven L. Kleiman, The transversality of a general translate, Compos. Math. 28 (1974), 287–297.
- [12] Giorgio Maria Ottaviani, Some properties of 2-bundles on P², Boll. Unione Mat. Ital., VI. Ser., D, Algebra Geom. 3 (1984), no. 1, 5–18.
- [13] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. Lond. Math. Soc. (3) 11 (1961), 623–640.
- [14] Karl Schwede, *Generalized divisors and reflexive sheaves*, https://www.math.utah.edu/ schwede/Notes/GeneralizedDivisors.pdf.
- [15] Taketo Shirane, A note on splitting numbers for Galois covers and π_1 -equivalent Zariski k-plets, Proc. Am. Math. Soc. **145** (2017), no. 3, 1009–1017.
- [16] Taketo Shirane, Galois covers of graphs and embedded topology of plane curves, Topology Appl. 257 (2019), 122–143.
- [17] Taketo Shirane, Double covers and vector bundles of rank two, arXiv:2010.09243.
- [18] Tomohide Terasoma, *Riemann-men no riron* (Japanese), Morikita Shuppan, 2019.
- [19] Jean Vallès, Fibrés vectoriels de rang deux sur \mathbb{P}^2 provenant d'un revêtement double, Ann. Inst. Fourier **59** (2009), no. 5, 1897–1916.

Taketo SHIRANE Department of Mathematical Sciences, Faculty of Science and Technology, Tokushima University, 2-1 Minamijyousanjima-cho,Tokushima 770-8506, JAPAN shirane@tokushima-u.ac.jp