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Introduction

In this article, we discuss the correspondence between vector bundles of rank 2
(say 2-bundles for short) and line bundles on double covers.

In the study of the embedded topology of curves on the complex projective
plane P2, it is effective to consider the irreducibility of φ∗C for an irreducible
curve C ⊂ P2 and a Galois cover φ : X → P2 (cf. [3], [15], [16]). For example,
let B,C ⊂ P2 be two plane curves such that degB is even and C is irreducible
with degB #= degC, and let φ : X → P2 be the double cover branched at B;
then the embedded topology of B + C changes depending on whether φ∗C is
irreducible or not. In the case where φ is a cyclic cover and C is smooth, a
criterion for irreducibility of φ∗C is known in [8]. This criterion is intensively
used to distinguish embedded topology of plane curves (cf. [1], [2], [4], [16]).
In the case where φ is the double cover branched at a smooth conic and C is a
nodal curve, a criterion for irreducibility of φ∗C is known in [5]. However, for
general C ⊂ P2, it is still a problem to determine the irreducibility of φ∗C even
if φ is a double cover. We consider a new approach to the problem, which is
constructing various curves on X (which correspond to irreducible components
of φ∗C) and studying property of their images (which correspond to C). The
purpose of this article is a preparation for this new approach by studying a
correspondence between line bundles on X and vector bundles of rank 2 (say
2-bundles for short) on Y in the case where φ is a double cover. As bi-products,
we obtain approaches to studying the Picard group of double covers and to
constructing 2-bundles. This article gives statements of results without proofs.
For the proofs, see [17].

Acknowledgement. The author would like to thank the organizers for giving
him the opportunity to talk at Kinosaki Algebraic Geometry Symposium 2020.

1 Setting

Let φ : X → Y be a non-singular double cover, i.e., a finite morphism of degree
two between non-singular complex varieties X,Y . Let Bφ ⊂ Y and Rφ ⊂ X
be the branch locus and the ramification locus of φ : X → Y , respectively. Let
F ∈ H0(Y,OY (Bφ)) and t ∈ H0(X,OX(Rφ)) be sections defining Bφ and Rφ,
respectively, such that t2 = F . There is a divisor L on Y such that 2L ∼ Bφ
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and φ∗ OX
∼= OY ⊕OY (−L) as OY -modules. Note that we have

φ∗ OX
∼=

( ∞⊕

n=0

tn OY (−nL)

)/
(t2 − F )

as OY -algebras. In 2017, Catanese–Perroni proved the following lemma.

Lemma 1.1 ([7]). If M is a 2-bundle on Y , and M : M(−L) → M is a mor-
phism satisfying M2 = F · idM (i.e., the composition of M(−L) : M(−2L) →
M(−L) and M : M(−L) → M is the multiplication by F ), then the pair
(M,M) determines naturally a line bundle L(M,M) on X such that φ∗L(M,M)

∼=
M, and M corresponds to the multiplication by t in L(M,M).

Definition 1.2. Let (M,M) be a pair of a 2-bundle M on Y and a morphism
M : M(−L) → M.

(i) We call (M,M) an admissible pair for φ ifM2 = F · idM : M(−2L) → M.

(ii) Two admissible pairs (M,M) and (N , N) are equivalent if there exists
an isomorphism Ψ : M → N such that Ψ ◦ M = N ◦ Ψ(−L), and write
(M,M) ∼ (N , N).

(iii) ADφ(Y ) := {(M,M) : an admissible pair for φ }/ ∼.

Remark 1.3. We have the following facts.

(i) In [7], it is shown that (M,M) ∼ (N , N) if and only if L(M,M)
∼= L(N ,N).

(ii) ADφ(Y ) has a group structure induced by Pic(X).

2 The group structure of ADφ(Y )

To describe a correspondence between admissible pairs for a non-singular double
cover φ : X → Y and line bundles on X, we introduce some notation. Let
(M,M) be an admissible pair for φ, and let U := {Ui}i∈I be an affine open
covering of Y such that

φ∗ OX |Ui
∼= OUi ⊕OUi ti as OUi -algebras,

ϕi : Mi := M|Ui

∼→ O⊕2
Ui

as OUi -modules

for any i ∈ I, where ti := t|Ui . Note that tj = tiξij for i, j ∈ I, where ξij ∈
O×

Ui∩Uj
correspond to transition functions of OY (−L):

OY (−L)|Uj OY (−L)|Ui

OUj OUi

×ξij

∼ ∼
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Then we have transition functions Gij ∈ GL(2,OUi∩Uj ) of M for i, j ∈ I:

Gij =

(
gij,11 gij,12
gij,21 gij,22

)
:= ϕi ◦ ϕ−1

j : O⊕2
Uj

|Ui∩Uj → O⊕2
Ui

|Ui∩Uj (1)

satisfying Gik = GijGjk and Gii = E for each i, j, k ∈ I, where E is the identity
matrix. The restriction of M : M(−L) → M to Ui corresponds to a matrix Mi:

Mi =

(
ai0 ai2
ai1 −ai0

)
:= ϕi ◦

(
ϕi(−L)

)−1
: O⊕2

Ui
→ O⊕2

Ui
(2)

satisfying a2i0 + ai1ai2 = Fi := F |Ui and Mj = ξijG
−1
ij MiGij as elements of

GL(2,C(X)) for each i, j ∈ I:

Mj(−L) Mj

Mi(−L) Mi

O⊕2
Uj

O⊕2
Uj

O⊕2
Ui

O⊕2
Ui

ϕj (−L)

ϕi(−L
)

ϕj

ϕi

Mj

Mi

ξijGij Gij

M

M

Definition 2.1. With the above notation, we call ({Gij}, {Mi})U a representa-
tion of the admissible pair (M,M). A representation ({Gij}, {Mi})U of (M,M)
is said to be good if ai1 is a unit on Ui for each i ∈ I.

We can prove the following lemma by taking a ‘fine’ affine open covering of
Y and a certain local basis of M.

Lemma 2.2 ([17, Lemma 1.3]). Any admissible pair (M,M) for φ has a good
representation.

We describe the group structure of ADφ(Y ). Let
(
M(k),M (k)

)
be an ad-

missible pair for a non-singular double cover φ : X → Y for each k = 1, . . . ,m.

Let
(
{G(k)

ij }, {M (k)
i }

)
U
be a good representation of

(
M(k),M (k)

)
for each k =

1, . . . ,m, where

G(k)
ij =

(
g(k)ij,11 g(k)ij,12

g(k)ij,21 g(k)ij,22

)
, M (k)

i =

(
a(k)i0 a(k)i2

a(k)i1 −a(k)i0

)
(k = 1, . . . ,m).

Let
(
{G(0)

ij }, {M (0)
i }

)
U
be the good representation corresponding to OX , where

G(0)
ij =

(
1 0
0 ξij

)
, M (0)

i =

(
0 Fi

1 0

)
.

For 2×2 matrices A1, . . . , Am, put
∏m

k=1 Ak := A1A2 . . . Am. Then the following
theorem holds.
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Theorem 2.3 ([17, Theorem 2.1]). With the above notation, put

K(k)+
ij :=

1

a(k)i1

((
a(k)i1 g(k)ij,11 − a(k)i0 g(k)ij,21

)
E + g(k)ij,21M

(0)
i

)
, (3)

K(k)−
ij :=

ξij

a(k)i1 det(Gij)

((
a(k)i1 g(k)ij,11 − a(k)i0 g(k)ij,21

)
E − g(k)ij,21M

(0)
i

)
(4)

for each k = 1, . . . ,m. Let n1, . . . , nm be m integers, and let [n] be the list
[n1, . . . , nm]. Then L[n] := L⊗n1

(M(1),M(1))
⊗ · · ·⊗L⊗nm

(M(m),M(m))
is associated to the

normal representation
(
{G[n]

ij }, {M [n]
i }

)
U
with

G[n]
ij :=

m∏

k=1

(
K(k)

ij (nk)
)|nk|

G(0)
ij , M [n]

i := M (0)
i ,

where K(k)
ij (nk) := K(k)+

ij if nk ≥ 0, and K(k)
ij (nk) := K(k)−

ij otherwise.

In the proof of Theorem 2.3, we have the following proposition.

Proposition 2.4 ([17, Proposition 2.5]). Let (M,M) be an admissible pair
for a non-singular double cover φ : X → Y , and let ({Gij}, {Mi})U be a good
representation of (M,M). Let ι : X → X be the covering transformation of φ.
Then the followings hold:

ι∗L(M,M)
∼= L(M,−M), (5)

L(M,M) ⊗ ι∗L(M,M)
∼= φ∗

(
(detM)⊗OY (L)

)
, (6)

L−1
(M,M)

∼= φ∗
(
(detM)−1 ⊗OY (−L)

)
⊗ L(M,−M). (7)

Moreover, L−1
(M,M) is associated to

({
ξij

det(Gij)
Gij

}
, {−Mi}

)

U

.

3 A subgroup of Pic(X)

We have seen the correspondence between admissible pairs for a non-singular
double cover φ : X → Y and line bundles on X. Hence it is effective for
understanding Pic(X) to study ADφ(Y ). However, it seems difficult to find a
morphism M : M(−L) → M satisfying M2 = F · idM for a general 2-bundle
M on Y . In the case where M ∼= OY (D1)⊕OY (D2) for some divisors D1, D2

on Y , such a morphism M can be represented as

M =

(
a0 a2
a1 −a0

)
: OY (D1 − L)⊕OY (D2 − L) → OY (D1)⊕OY (D2), (8)

where a0, a1 and a2 are global sections of OY (L), OY (L−D1+D2) and OY (L+
D1 −D2), respectively, satisfying a20 + a1a2 = F .
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Definition 3.1. Let φ : X → Y be a non-singular double cover.

(i) We say that a line bundle L on X splits with respect to φ if φ∗L is the
direct sum of two line bundles on Y .

(ii) Let sPicφ(X) denote the subgroup of Pic(X) generated by line bundles
which split with respect to φ (“s” of sPic means “sub” or “split”);

sPicφ(X) :=
〈
[L] ∈ Pic(X)

∣∣∣ L splits with respect to φ
〉
.

Remark 3.2. If φ∗L ∼= OY (D1)⊕OY (D2), then

φ∗
(
L⊗ φ∗ OY (−D2)

) ∼= OY (D1 −D2)⊕OY

by projection formula. Since φ∗ OY (D2) ∈ sPicφ(X), the subgroup sPicφ(X) is
generated by φ∗(Pic(Y )) and line bundles L satisfying φ∗L ∼= OY (D′)⊕OY on
X for some divisor D′ on Y .

Lemma 3.3 ([17, Lemma 3.3]). If Y is an open subset of a smooth projective
variety Y with codimY (Y \ Y ) ≥ 2, then H0(Y,OY ) = C, and sPicφ(X) is
generated by φ∗(Pic(Y )) and line bundles L with φ∗L ∼= OY (D′)⊕OY such that
either OY (D′) ∼= OY or H0(Y,OY (D′)) = 0.

Proof. For an irreducible divisor C on Y , let C denote the closure of C on Y .
Let D be a divisor on Y , and put D :=

∑k
i=1 Ci, where D =

∑k
i=1 Ci is the irre-

ducible decomposition of D. Then OY (D) = OY (D)|Y . By [9, Proposition 1.6],
we have H0

(
Y,OY (D)

)
= H0

(
Y ,OY (D)

)
. Thus

H0(Y,OY ) = H0
(
Y ,OY

)
= C.

For a line bundle L on X with φ∗L ∼= OY (D) ⊕ OY , if OY (D) #∼= OY and
H0(Y,OY (D)) #= 0, then H0(Y,OY (−D)) = 0 and

φ∗
(
L⊗ φ∗

(
OY (−D)

)) ∼= OY (−D)⊕OY .

Therefore the assertion holds true by Remark 3.2.

Theorem 3.4 is a criterion for splitting of the push-forward for a line bundle
on X (see Remark 3.2 and Lemma 3.3).

Theorem 3.4 ([17, Theorem 2]). Let D+ be an effective divisor on X, and let
D be the effective divisor on Y defined by f = 0 for f ∈ H0

(
Y,OY (D)

)
such that

φ∗D = D+ + ι∗D+. Assume that H0(Y,OY ) = C. If φ∗ OX(D+) ∼= OY (D′) ⊕
OY for a divisor D′ on Y satisfying either OY (D′) ∼= OY or H0

(
Y,OY (D′)

)
=

0, then D and D′ satisfy the following two conditions;

(i) D′ is linearly equivalent to D − L, i.e., OY (D′) ∼= OY (D − L); and

(ii) there are global sections a0 and a1 of OY (L) and OY (2L−D), respectively,
such that F = a20 + fa1.
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Moreover, in the case where D+ is irreducible, the converse holds true.

Remark 3.5. In the case of Y = P1, Jacobi [10] have studied the correspon-
dence between line bundles on the hyperelliptic curve X and equations of the
form F = a20+a1a2 via the Jacobian variety. The study of [10] relates to Hitchin
theory (cf. [18]).

Theorem 3.4 implies that generators of sPicφ(X) correspond to equations
of the form F = a20 + a1a2. Hence we can expect that sPicφ(X) reflects the
arrangement of Bφ in Y enough to describe the structure of Pic(X). In several
examples below, the equation sPicφ(X) = Pic(X) holds.

Example 3.6. Let X be a hyperelliptic curve, and let φ : X → P1 be a non-
singular double cover. Since any rank 2-bundle on P1 splits, we have Pic(X) =
sPicφ(X).

Example 3.7. Let φ : X → P2 be a double cover branched along a smooth
conic Bφ. Note that deg(L) = 1. Then X ∼= P1 × P1 and Pic(X) ∼= Z ⊕ Z.
Let D+ be a ruling of X ∼= P1 × P1. The image D = φ(D+) is a tangent line
of Bφ. Let f ∈ H0

(
P2,OP2(1)

)
be a section defining D. Then Bφ is given

by a20 + fa1 = 0 for some a0, a1 ∈ H0
(
P2,OP2(1)

)
. By Proposition 2.4 and

Theorem 3.4, we obtain φ∗ OX(D+) ∼= φ∗ OX(ι∗D+) ∼= O⊕2
Y . Since Pic(X) is

generated by OX(D+) and OX(ι∗D+), we have Pic(X) = sPicφ(X).

Example 3.8. Let φ : X → P2 be a double cover branched along a smooth
quartic Bφ. Note that deg(L) = 2. Then X is isomorphic to the blowing-up
of P2 at 7 points in general position. Moreover Pic(X) is generated by 8 (−1)-
curves E0, . . . , E7, where E0 is the strict transform of a line passing through
two bowing-up centers, and E1, . . . , E7 are the exceptional divisors. The images
φ(E0), . . . ,φ(E7) are 8 of 28 bitangent lines of Bφ. Let fj ∈ H0

(
P2,OP2(1)

)
be

a section defining φ(Ej) for each j = 0, . . . , 7. Then there exist global sections
aj,k (k = 0, 1) of OP2(k+2) such that Bφ is defined by a2j,0 + fjaj,1 = 0. Hence
φ∗ OX(Ej) ∼= OP2(−1) ⊕ OP2 for each j = 0, . . . , 7 by Theorem 3.4. Therefore
we obtain Pic(X) = sPicφ(X).

The following conjecture arises.

Conjecture 3.9. If H0(Y,OY ) = C, then Pic(X) = sPicφ(X).

Remark 3.10. In the cases of Examples 3.7 and 3.8, it is known that φ∗L is
indecomposable for general line bundles L on X in [13].

4 An idea to generate 2-bundles

In this section, we give an idea to generate 2-bundles through double covers.
Schwarzenberger proved the following theorem.

Theorem 4.1 (Schwarzenberger [13, Theorem 3]). Let Y be a non-singular
surface. For any 2-bundle E on Y , there exist a non-singular double cover
φ : X → Y and a line bundle L on X such that φ∗L ∼= E.
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We give a generalization of this theorem. We call φ : X → Y a normal
double cover if φ is a finite surjective morphism of degree two from a normal
variety X to a smooth variety Y over C. Let Cl(X) be the divisor class group
of X. Note that there is a canonical one-to-one correspondence between Cl(X)
and the set of divisorial sheaves on X (cf. [14]). See [9] for general results on
reflexive sheaves. By modifying the proof of [13, Theorem 3], we can prove the
following theorem which is a generalization of [13, Theorem 3].

Theorem 4.2 ([17, Theorem 3]). Let E be a 2-bundle on a smooth projective
variety Y of dimension n over C. There exist a normal double cover φ : X → Y
and a divisorial sheaf L on X such that E ∼= φ∗L.

Proof. Let PE be the P1-bundle Proj(S(E)), and let p : PE → Y be the pro-
jection, where S(E) is the symmetric algebra of E . Let H be a very ample
line bundle on Y . The line bundle H gives the embedding ΦH : Y ↪→ Ps with
s+1 = dimH0(Y,H). For k large enough, we have the following exact sequence:

H⊕r+1 → E ⊗Hk → 0

for some r > 0. This induces an embedding i : PE ↪→ PN for N = rs+ r+ s via
the Segre embedding Pr × Ps ↪→ PN . Put L̃ := i∗ OPN (1). Note that i(p−1(P ))
is a line in PN for each P ∈ Y , and p∗L̃ ∼= E ⊗ Hk. Hence i : PE ↪→ PN

induces an embedding i′ : Y ↪→ Gr1(N) by P ,→ i(p−1(P )), where Gr1(N) is
the Grassmannian consisting of lines in PN .

For a quadratic hypersurface Q ⊂ PN , let V (Q) be the subscheme of Gr1(N)
consisting of lines on Q. Note that PGL(N,C) := Aut(PN ) acts transitively on
both of PN and Gr1(N) such that V (g(Q)) = g(V (Q)) for any g ∈ PGL(N,C)
and Q ⊂ PN . Since dimGr1(N) = 2N − 2, dimV (Q) = 2N − 5 (cf. [6]) and
dimY = n, we obtain dimY ∩V (Q) = n− 3 for a general hypersurface Q ⊂ PN

of degree 2 by [11, Theorem 2]. Put X ′ := PE ∩ Q for a general quadratic
hypersurface Q ⊂ PN such that dim i′(Y ) ∩ V (Q) = n − 3 and X ′ is smooth.
Let L′ be the restriction of L̃ to X ′. For an affine open set U of Y , the Künneth
formula for sheaves implies that

Rqp∗L̃−1(U) = Hq(U × P1,OU ⊗OP1(−1)) = 0

for all q ≥ 0. Since L̃ ⊗ JX′ ∼= L̃−1 for the ideal sheaf JX′ ∼= L̃−2 of X ′, we
have p′∗L′ ∼= E ⊗Hk by [13, Proposition 5].

Then the restriction p′ := p|X′ : X ′ → Y is a generically finite morphism
of degree 2. Let U ′ := {P ∈ Y | (p′)−1(P ) is finite}. By Stein factorization
of p′, we obtain a birational morphism f ′ : X ′ → X ′′ and a finite morphism
g′ : X ′′ → Y such that g′ ◦ f ′ = p′. Take the normalization κ : X → X ′′,
and put φ := g′ ◦ κ : X → Y , which is a normal double cover. Let L be
the double dual (κ∗f∗L′)∨∨ of κ∗f∗L′. Then L is a divisorial sheaf on X, and
φ∗L|U ′ ∼= p′∗L′|U ′ since f ′ and κ are isomorphic over U ′. Since φ∗L is reflexive
by [9, Corollary 1.7] and codimY (Y \U ′) = 3, φ∗L ∼= p′∗L′ ∼= E⊗Hk. Therefore,
φ∗(L⊗ φ∗H−k) ∼= E .
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As the idea of [7], we can apply our method to divisorial sheaves on normal
double covers as follows. Let φ : X → Y be a normal double cover. Let X◦ be
the smooth locus X \Sing(X) of X, and put Y ◦ := φ(X◦). Then the restriction
φ◦ : X◦ → Y ◦ of φ is a non-singular double cover. For a divisorial sheaf L on
X, the restriction L◦ of L to X◦ is a line bundle on X◦, and i∗L◦ = L and
j∗φ◦∗L◦ = φ∗L hold, where i : X◦ → X and j : Y ◦ → Y are the inclusion maps.
Hence computation of push-forwards of line bundles on X◦ can be applied to
that of divisorial sheaves on X via j∗.

If Conjecture 3.9 is true, then Theorem 4.2 implies that any 2-bundle on Pn

can be generated by the following method:

(i) Take a reduced divisor B : F = 0 of even degree on Pn with several
representation of the form F = a20 + a1a2;

(ii) let φ : X → Pn be the normal double cover branched at B, and let
φ◦ : X◦ → Y ◦ be the non-singular double cover as above;

(iii) take several line bundles L1, . . . ,Lm on X◦ such that φ◦∗Li is split, and
compute 2-bundles φ◦∗(L

n1
1 ⊗ · · ·⊗ Lnm

m ) on Y ◦ by Theorem 2.3;

(iv) then j∗φ◦∗(L
n1
1 ⊗ · · ·⊗ Lnm

m ) are reflexive sheaves of rank two.

Remark 4.3. Let φ : X → P2 be a non-singular double cover branched along
smooth curve of degree 2r. In [13], φ∗L was studied for several line bundles L
on X in the case of r = 1, 2. Ottaviani [12] and Vallès [19] studied the direct
images of line bundles on X.

If φ : X → Pn is non-singular, then the reflexive sheaves in (iv) are 2-bundles.
A problem of this method is when a reflexive sheaf of (iv) is a 2-bundle.

Problem 4.4. Give a condition for a reflexive sheaf j∗φ◦∗(L
n1
1 ⊗ · · ·⊗ Lnm

m ) in
(iv) to be a 2-bundle.
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vollständigen algebraischen Integralgleichungen, J. Reine Angew. Math. 32
(1846), 220–226.

[11] Steven L. Kleiman, The transversality of a general translate, Compos.
Math. 28 (1974), 287–297.

[12] Giorgio Maria Ottaviani, Some properties of 2-bundles on P2, Boll. Unione
Mat. Ital., VI. Ser., D, Algebra Geom. 3 (1984), no. 1, 5–18.

[13] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc.
Lond. Math. Soc. (3) 11 (1961), 623–640.

[14] Karl Schwede, Generalized divisors and reflexive sheaves,
https://www.math.utah.edu/ schwede/Notes/GeneralizedDivisors.pdf.

[15] Taketo Shirane, A note on splitting numbers for Galois covers and π1-
equivalent Zariski k-plets, Proc. Am. Math. Soc. 145 (2017), no. 3, 1009–
1017.

[16] Taketo Shirane, Galois covers of graphs and embedded topology of plane
curves, Topology Appl. 257 (2019), 122–143.

[17] Taketo Shirane, Double covers and vector bundles of rank two,
arXiv:2010.09243.

[18] Tomohide Terasoma, Riemann-men no riron (Japanese), Morikita Shup-
pan, 2019.

[19] Jean Vallès, Fibrés vectoriels de rang deux sur P2 provenant d’un
revêtement double, Ann. Inst. Fourier 59 (2009), no. 5, 1897–1916.

53



Taketo SHIRANE
Department of Mathematical Sciences,
Faculty of Science and Technology,
Tokushima University,
2-1 Minamijyousanjima-cho,Tokushima 770-8506, JAPAN
shirane@tokushima-u.ac.jp

54




