Double covers and vector bundles of rank two

Taketo Shirane

Introduction

In this article, we discuss the correspondence between vector bundles of rank 2 (say 2-bundles for short) and line bundles on double covers.

In the study of the embedded topology of curves on the complex projective plane \mathbb{P}^{2}, it is effective to consider the irreducibility of $\phi^{*} C$ for an irreducible curve $C \subset \mathbb{P}^{2}$ and a Galois cover $\phi: X \rightarrow \mathbb{P}^{2}$ (cf. [3], [15], [16]). For example, let $B, C \subset \mathbb{P}^{2}$ be two plane curves such that $\operatorname{deg} B$ is even and C is irreducible with $\operatorname{deg} B \neq \operatorname{deg} C$, and let $\phi: X \rightarrow \mathbb{P}^{2}$ be the double cover branched at B; then the embedded topology of $B+C$ changes depending on whether $\phi^{*} C$ is irreducible or not. In the case where ϕ is a cyclic cover and C is smooth, a criterion for irreducibility of $\phi^{*} C$ is known in [8]. This criterion is intensively used to distinguish embedded topology of plane curves (cf. [1], [2], [4], [16]). In the case where ϕ is the double cover branched at a smooth conic and C is a nodal curve, a criterion for irreducibility of $\phi^{*} C$ is known in [5]. However, for general $C \subset \mathbb{P}^{2}$, it is still a problem to determine the irreducibility of $\phi^{*} C$ even if ϕ is a double cover. We consider a new approach to the problem, which is constructing various curves on X (which correspond to irreducible components of $\phi^{*} C$) and studying property of their images (which correspond to C). The purpose of this article is a preparation for this new approach by studying a correspondence between line bundles on X and vector bundles of rank 2 (say 2-bundles for short) on Y in the case where ϕ is a double cover. As bi-products, we obtain approaches to studying the Picard group of double covers and to constructing 2 -bundles. This article gives statements of results without proofs. For the proofs, see [17].

Acknowledgement. The author would like to thank the organizers for giving him the opportunity to talk at Kinosaki Algebraic Geometry Symposium 2020.

1 Setting

Let $\phi: X \rightarrow Y$ be a non-singular double cover, i.e., a finite morphism of degree two between non-singular complex varieties X, Y. Let $B_{\phi} \subset Y$ and $R_{\phi} \subset X$ be the branch locus and the ramification locus of $\phi: X \rightarrow Y$, respectively. Let $F \in H^{0}\left(Y, \mathcal{O}_{Y}\left(B_{\phi}\right)\right)$ and $t \in H^{0}\left(X, \mathcal{O}_{X}\left(R_{\phi}\right)\right)$ be sections defining B_{ϕ} and R_{ϕ}, respectively, such that $t^{2}=F$. There is a divisor L on Y such that $2 L \sim B_{\phi}$
and $\phi_{*} \mathcal{O}_{X} \cong \mathcal{O}_{Y} \oplus \mathcal{O}_{Y}(-L)$ as \mathcal{O}_{Y}-modules. Note that we have

$$
\phi_{*} \mathcal{O}_{X} \cong\left(\bigoplus_{n=0}^{\infty} t^{n} \mathcal{O}_{Y}(-n L)\right) /\left(t^{2}-F\right)
$$

as \mathcal{O}_{Y}-algebras. In 2017, Catanese-Perroni proved the following lemma.
Lemma 1.1 ([7]). If \mathcal{M} is a 2-bundle on Y, and $M: \mathcal{M}(-L) \rightarrow \mathcal{M}$ is a morphism satisfying $M^{2}=F \cdot \mathrm{id}_{\mathcal{M}}$ (i.e., the composition of $M(-L): \mathcal{M}(-2 L) \rightarrow$ $\mathcal{M}(-L)$ and $M: \mathcal{M}(-L) \rightarrow \mathcal{M}$ is the multiplication by $F)$, then the pair (\mathcal{M}, M) determines naturally a line bundle $\mathcal{L}_{(\mathcal{M}, M)}$ on X such that $\phi_{*} \mathcal{L}_{(\mathcal{M}, M)} \cong$ \mathcal{M}, and M corresponds to the multiplication by t in $\mathcal{L}_{(\mathcal{M}, M)}$.

Definition 1.2. Let (\mathcal{M}, M) be a pair of a 2-bundle \mathcal{M} on Y and a morphism $M: \mathcal{M}(-L) \rightarrow \mathcal{M}$.
(i) We call (\mathcal{M}, M) an admissible pair for ϕ if $M^{2}=F \cdot \mathrm{id}_{\mathcal{M}}: \mathcal{M}(-2 L) \rightarrow \mathcal{M}$.
(ii) Two admissible pairs (\mathcal{M}, M) and (\mathcal{N}, N) are equivalent if there exists an isomorphism $\Psi: \mathcal{M} \rightarrow \mathcal{N}$ such that $\Psi \circ M=N \circ \Psi(-L)$, and write $(\mathcal{M}, M) \sim(\mathcal{N}, N)$.
(iii) $\mathrm{AD}_{\phi}(Y):=\{(\mathcal{M}, M)$: an admissible pair for $\phi\} / \sim$.

Remark 1.3. We have the following facts.
(i) In [7], it is shown that $(\mathcal{M}, M) \sim(\mathcal{N}, N)$ if and only if $\mathcal{L}_{(\mathcal{M}, M)} \cong \mathcal{L}_{(\mathcal{N}, N)}$.
(ii) $\mathrm{AD}_{\phi}(Y)$ has a group structure induced by $\operatorname{Pic}(X)$.

2 The group structure of $\mathrm{AD}_{\phi}(Y)$

To describe a correspondence between admissible pairs for a non-singular double cover $\phi: X \rightarrow Y$ and line bundles on X, we introduce some notation. Let (\mathcal{M}, M) be an admissible pair for ϕ, and let $\mathfrak{U}:=\left\{U_{i}\right\}_{i \in I}$ be an affine open covering of Y such that

$$
\begin{array}{r}
\left.\phi_{*} \mathcal{O}_{X}\right|_{U_{i}} \cong \mathcal{O}_{U_{i}} \oplus \mathcal{O}_{U_{i}} t_{i} \quad \text { as } \mathcal{O}_{U_{i}} \text {-algebras }, \\
\varphi_{i}: \mathcal{M}_{i}:=\left.\mathcal{M}\right|_{U_{i}} \xrightarrow[\rightarrow]{\sim} \mathcal{O}_{U_{i}}^{\oplus 2} \quad \text { as } \mathcal{O}_{U_{i}} \text {-modules }
\end{array}
$$

for any $i \in I$, where $t_{i}:=\left.t\right|_{U_{i}}$. Note that $t_{j}=t_{i} \xi_{i j}$ for $i, j \in I$, where $\xi_{i j} \in$ $\mathcal{O}_{U_{i} \cap U_{j}}^{\times}$correspond to transition functions of $\mathcal{O}_{Y}(-L)$:

Then we have transition functions $G_{i j} \in \operatorname{GL}\left(2, \mathcal{O}_{U_{i} \cap U_{j}}\right)$ of \mathcal{M} for $i, j \in I$:

$$
G_{i j}=\left(\begin{array}{ll}
g_{i j, 11} & g_{i j, 12} \tag{1}\\
g_{i j, 21} & g_{i j, 22}
\end{array}\right):=\varphi_{i} \circ \varphi_{j}^{-1}:\left.\left.\mathcal{O}_{U_{j}}^{\oplus 2}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{O}_{U_{i}}^{\oplus 2}\right|_{U_{i} \cap U_{j}}
$$

satisfying $G_{i k}=G_{i j} G_{j k}$ and $G_{i i}=E$ for each $i, j, k \in I$, where E is the identity matrix. The restriction of $M: \mathcal{M}(-L) \rightarrow \mathcal{M}$ to U_{i} corresponds to a matrix M_{i} :

$$
M_{i}=\left(\begin{array}{cc}
a_{i 0} & a_{i 2} \tag{2}\\
a_{i 1} & -a_{i 0}
\end{array}\right):=\varphi_{i} \circ\left(\varphi_{i}(-L)\right)^{-1}: \mathcal{O}_{U_{i}}^{\oplus 2} \rightarrow \mathcal{O}_{U_{i}}^{\oplus 2}
$$

satisfying $a_{i 0}^{2}+a_{i 1} a_{i 2}=F_{i}:=\left.F\right|_{U_{i}}$ and $M_{j}=\xi_{i j} G_{i j}^{-1} M_{i} G_{i j}$ as elements of $\mathrm{GL}(2, \mathbb{C}(X))$ for each $i, j \in I$:

Definition 2.1. With the above notation, we call $\left(\left\{G_{i j}\right\},\left\{M_{i}\right\}\right)_{\mathfrak{U}}$ a representation of the admissible pair (\mathcal{M}, M). A representation $\left(\left\{G_{i j}\right\},\left\{M_{i}\right\}\right)_{\mathfrak{U}}$ of (\mathcal{M}, M) is said to be good if $a_{i 1}$ is a unit on U_{i} for each $i \in I$.

We can prove the following lemma by taking a 'fine' affine open covering of Y and a certain local basis of \mathcal{M}.
Lemma 2.2 ([17, Lemma 1.3]). Any admissible pair (M, M) for ϕ has a good representation.

We describe the group structure of $\mathrm{AD}_{\phi}(Y)$. Let $\left(\mathcal{M}^{(k)}, M^{(k)}\right)$ be an admissible pair for a non-singular double cover $\phi: X \rightarrow Y$ for each $k=1, \ldots, m$. Let $\left(\left\{G_{i j}^{(k)}\right\},\left\{M_{i}^{(k)}\right\}\right)_{\mathfrak{U}}$ be a good representation of $\left(\mathcal{M}^{(k)}, M^{(k)}\right)$ for each $k=$ $1, \ldots, m$, where

$$
G_{i j}^{(k)}=\left(\begin{array}{cc}
g_{i j, 11}^{(k)} & g_{i j, 12}^{(k)} \\
g_{i j, 21}^{(k)} & g_{i j, 22}^{(k)}
\end{array}\right), \quad M_{i}^{(k)}=\left(\begin{array}{cc}
a_{i 0}^{(k)} & a_{i 2}^{(k)} \\
a_{i 1}^{(k)} & -a_{i 0}^{(k)}
\end{array}\right) \quad(k=1, \ldots, m)
$$

Let $\left(\left\{G_{i j}^{(0)}\right\},\left\{M_{i}^{(0)}\right\}\right)_{\mathfrak{U}}$ be the good representation corresponding to \mathcal{O}_{X}, where

$$
G_{i j}^{(0)}=\left(\begin{array}{cc}
1 & 0 \\
0 & \xi_{i j}
\end{array}\right), \quad \quad M_{i}^{(0)}=\left(\begin{array}{cc}
0 & F_{i} \\
1 & 0
\end{array}\right)
$$

For 2×2 matrices A_{1}, \ldots, A_{m}, put $\prod_{k=1}^{m} A_{k}:=A_{1} A_{2} \ldots A_{m}$. Then the following theorem holds.

Theorem 2.3 ([17, Theorem 2.1]). With the above notation, put

$$
\begin{align*}
K_{i j}^{(k)+} & :=\frac{1}{a_{i 1}^{(k)}}\left(\left(a_{i 1}^{(k)} g_{i j, 11}^{(k)}-a_{i 0}^{(k)} g_{i j, 21}^{(k)}\right) E+g_{i j, 21}^{(k)} M_{i}^{(0)}\right) \tag{3}\\
K_{i j}^{(k)-} & :=\frac{\xi_{i j}}{a_{i 1}^{(k)} \operatorname{det}\left(G_{i j}\right)}\left(\left(a_{i 1}^{(k)} g_{i j, 11}^{(k)}-a_{i 0}^{(k)} g_{i j, 21}^{(k)}\right) E-g_{i j, 21}^{(k)} M_{i}^{(0)}\right) \tag{4}
\end{align*}
$$

for each $k=1, \ldots, m$. Let n_{1}, \ldots, n_{m} be m integers, and let $[n]$ be the list $\left[n_{1}, \ldots, n_{m}\right]$. Then $\mathcal{L}^{[n]}:=\mathcal{L}_{\left(\mathcal{M}^{(1)}, M^{(1)}\right)}^{\otimes n_{1}} \otimes \cdots \otimes \mathcal{L}_{\left(\mathcal{M}^{(m)}, M^{(m)}\right)}^{\otimes n_{m}}$ is associated to the normal representation $\left(\left\{G_{i j}^{[n]}\right\},\left\{M_{i}^{[n]}\right\}\right)_{\mathfrak{U}}$ with

$$
G_{i j}^{[n]}:=\prod_{k=1}^{m}\left(K_{i j}^{(k)}\left(n_{k}\right)\right)^{\left|n_{k}\right|} G_{i j}^{(0)}, \quad M_{i}^{[n]}:=M_{i}^{(0)}
$$

where $K_{i j}^{(k)}\left(n_{k}\right):=K_{i j}^{(k)+}{ }_{\text {if }} n_{k} \geq 0$, and $K_{i j}^{(k)}\left(n_{k}\right):=K_{i j}^{(k)-}$ otherwise.
In the proof of Theorem 2.3, we have the following proposition.
Proposition 2.4 ([17, Proposition 2.5]). Let ($\mathcal{M}, M)$ be an admissible pair for a non-singular double cover $\phi: X \rightarrow Y$, and let $\left(\left\{G_{i j}\right\},\left\{M_{i}\right\}\right)_{\mathfrak{U}}$ be a good representation of (\mathcal{M}, M). Let $\iota: X \rightarrow X$ be the covering transformation of ϕ. Then the followings hold:

$$
\begin{align*}
& \iota^{*} \mathcal{L}_{(\mathcal{M}, M)} \cong \mathcal{L}_{(\mathcal{M},-M)} \tag{5}\\
& \mathcal{L}_{(\mathcal{M}, M)} \otimes \iota^{*} \mathcal{L}_{(\mathcal{M}, M)} \cong \phi^{*}\left((\operatorname{det} \mathcal{M}) \otimes \mathcal{O}_{Y}(L)\right) \tag{6}\\
& \mathcal{L}_{(\mathcal{M}, M)}^{-1} \cong \phi^{*}\left((\operatorname{det} \mathcal{M})^{-1} \otimes \mathcal{O}_{Y}(-L)\right) \otimes \mathcal{L}_{(\mathcal{M},-M)} \tag{7}
\end{align*}
$$

Moreover, $\mathcal{L}_{(\mathcal{M}, M)}^{-1}$ is associated to

$$
\left(\left\{\frac{\xi_{i j}}{\operatorname{det}\left(G_{i j}\right)} G_{i j}\right\},\left\{-M_{i}\right\}\right)_{\mathfrak{U}}
$$

3 A subgroup of $\operatorname{Pic}(X)$

We have seen the correspondence between admissible pairs for a non-singular double cover $\phi: X \rightarrow Y$ and line bundles on X. Hence it is effective for understanding $\operatorname{Pic}(X)$ to study $\operatorname{AD}_{\phi}(Y)$. However, it seems difficult to find a morphism $M: \mathcal{M}(-L) \rightarrow \mathcal{M}$ satisfying $M^{2}=F \cdot \operatorname{id}_{\mathcal{M}}$ for a general 2-bundle \mathcal{M} on Y. In the case where $\mathcal{M} \cong \mathcal{O}_{Y}\left(D_{1}\right) \oplus \mathcal{O}_{Y}\left(D_{2}\right)$ for some divisors D_{1}, D_{2} on Y, such a morphism M can be represented as

$$
M=\left(\begin{array}{cc}
a_{0} & a_{2} \tag{8}\\
a_{1} & -a_{0}
\end{array}\right): \mathcal{O}_{Y}\left(D_{1}-L\right) \oplus \mathcal{O}_{Y}\left(D_{2}-L\right) \rightarrow \mathcal{O}_{Y}\left(D_{1}\right) \oplus \mathcal{O}_{Y}\left(D_{2}\right)
$$

where a_{0}, a_{1} and a_{2} are global sections of $\mathcal{O}_{Y}(L), \mathcal{O}_{Y}\left(L-D_{1}+D_{2}\right)$ and $\mathcal{O}_{Y}(L+$ $\left.D_{1}-D_{2}\right)$, respectively, satisfying $a_{0}^{2}+a_{1} a_{2}=F$.

Definition 3.1. Let $\phi: X \rightarrow Y$ be a non-singular double cover.
(i) We say that a line bundle \mathcal{L} on X splits with respect to ϕ if $\phi_{*} \mathcal{L}$ is the direct sum of two line bundles on Y.
(ii) Let $\operatorname{sPic}_{\phi}(X)$ denote the subgroup of $\operatorname{Pic}(X)$ generated by line bundles which split with respect to ϕ ("s" of sPic means "sub" or "split");

$$
\left.\operatorname{sPic}_{\phi}(X):=\langle[\mathcal{L}] \in \operatorname{Pic}(X)| \mathcal{L} \text { splits with respect to } \phi\right\rangle
$$

Remark 3.2. If $\phi_{*} \mathcal{L} \cong \mathcal{O}_{Y}\left(D_{1}\right) \oplus \mathcal{O}_{Y}\left(D_{2}\right)$, then

$$
\phi_{*}\left(\mathcal{L} \otimes \phi^{*} \mathcal{O}_{Y}\left(-D_{2}\right)\right) \cong \mathcal{O}_{Y}\left(D_{1}-D_{2}\right) \oplus \mathcal{O}_{Y}
$$

by projection formula. Since $\phi^{*} \mathcal{O}_{Y}\left(D_{2}\right) \in \operatorname{sPic}_{\phi}(X)$, the subgroup $\operatorname{sPic}_{\phi}(X)$ is generated by $\phi^{*}(\operatorname{Pic}(Y))$ and line bundles \mathcal{L} satisfying $\phi_{*} \mathcal{L} \cong \mathcal{O}_{Y}\left(D^{\prime}\right) \oplus \mathcal{O}_{Y}$ on X for some divisor D^{\prime} on Y.

Lemma 3.3 ([17, Lemma 3.3]). If Y is an open subset of a smooth projective variety \bar{Y} with $\operatorname{codim}_{\bar{Y}}(\bar{Y} \backslash Y) \geq 2$, then $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\right)=\mathbb{C}$, and $\operatorname{sPic}_{\phi}(X)$ is generated by $\phi^{*}(\operatorname{Pic}(Y))$ and line bundles \mathcal{L} with $\phi_{*} \mathcal{L} \cong \mathcal{O}_{Y}\left(D^{\prime}\right) \oplus \mathcal{O}_{Y}$ such that either $\mathcal{O}_{Y}\left(D^{\prime}\right) \cong \mathcal{O}_{Y}$ or $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\left(D^{\prime}\right)\right)=0$.

Proof. For an irreducible divisor C on Y, let \bar{C} denote the closure of C on \bar{Y}. Let D be a divisor on Y, and put $\bar{D}:=\sum_{i=1}^{k} \bar{C}_{i}$, where $D=\sum_{i=1}^{k} C_{i}$ is the irreducible decomposition of D. Then $\mathcal{O}_{Y}(D)=\left.\mathcal{O}_{\bar{Y}}(\bar{D})\right|_{Y}$. By [9, Proposition 1.6], we have $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}(D)\right)=\mathrm{H}^{0}\left(\bar{Y}, \mathcal{O}_{\bar{Y}}(\bar{D})\right)$. Thus

$$
\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\right)=\mathrm{H}^{0}\left(\bar{Y}, \mathcal{O}_{\bar{Y}}\right)=\mathbb{C}
$$

For a line bundle \mathcal{L} on X with $\phi_{*} \mathcal{L} \cong \mathcal{O}_{Y}(D) \oplus \mathcal{O}_{Y}$, if $\mathcal{O}_{Y}(D) \nsubseteq \mathcal{O}_{Y}$ and $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}(D)\right) \neq 0$, then $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}(-D)\right)=0$ and

$$
\phi_{*}\left(\mathcal{L} \otimes \phi^{*}\left(\mathcal{O}_{Y}(-D)\right)\right) \cong \mathcal{O}_{Y}(-D) \oplus \mathcal{O}_{Y}
$$

Therefore the assertion holds true by Remark 3.2.
Theorem 3.4 is a criterion for splitting of the push-forward for a line bundle on X (see Remark 3.2 and Lemma 3.3).

Theorem 3.4 ([17, Theorem 2]). Let D^{+}be an effective divisor on X, and let D be the effective divisor on Y defined by $f=0$ for $f \in \mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}(D)\right)$ such that $\phi^{*} D=D^{+}+\iota^{*} D^{+}$. Assume that $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\right)=\mathbb{C}$. If $\phi_{*} \mathcal{O}_{X}\left(D^{+}\right) \cong \mathcal{O}_{Y}\left(D^{\prime}\right) \oplus$ \mathcal{O}_{Y} for a divisor D^{\prime} on Y satisfying either $\mathcal{O}_{Y}\left(D^{\prime}\right) \cong \mathcal{O}_{Y}$ or $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\left(D^{\prime}\right)\right)=$ 0 , then D and D^{\prime} satisfy the following two conditions;
(i) D^{\prime} is linearly equivalent to $D-L$, i.e., $\mathcal{O}_{Y}\left(D^{\prime}\right) \cong \mathcal{O}_{Y}(D-L)$; and
(ii) there are global sections a_{0} and a_{1} of $\mathcal{O}_{Y}(L)$ and $\mathcal{O}_{Y}(2 L-D)$, respectively, such that $F=a_{0}^{2}+f a_{1}$.

Moreover, in the case where D^{+}is irreducible, the converse holds true.
Remark 3.5. In the case of $Y=\mathbb{P}^{1}$, Jacobi [10] have studied the correspondence between line bundles on the hyperelliptic curve X and equations of the form $F=a_{0}^{2}+a_{1} a_{2}$ via the Jacobian variety. The study of [10] relates to Hitchin theory (cf. [18]).

Theorem 3.4 implies that generators of $\operatorname{sPic}_{\phi}(X)$ correspond to equations of the form $F=a_{0}^{2}+a_{1} a_{2}$. Hence we can expect that $\operatorname{sPic}_{\phi}(X)$ reflects the arrangement of B_{ϕ} in Y enough to describe the structure of $\operatorname{Pic}(X)$. In several examples below, the equation $\operatorname{sPic}_{\phi}(X)=\operatorname{Pic}(X)$ holds.
Example 3.6. Let X be a hyperelliptic curve, and let $\phi: X \rightarrow \mathbb{P}^{1}$ be a nonsingular double cover. Since any rank 2-bundle on \mathbb{P}^{1} splits, we have $\operatorname{Pic}(X)=$ $\operatorname{sPic}_{\phi}(X)$.

Example 3.7. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be a double cover branched along a smooth conic B_{ϕ}. Note that $\operatorname{deg}(L)=1$. Then $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$ and $\operatorname{Pic}(X) \cong \mathbb{Z} \oplus \mathbb{Z}$. Let D^{+}be a ruling of $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. The image $D=\phi\left(D^{+}\right)$is a tangent line of B_{ϕ}. Let $f \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ be a section defining D. Then B_{ϕ} is given by $a_{0}^{2}+f a_{1}=0$ for some $a_{0}, a_{1} \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)$. By Proposition 2.4 and Theorem 3.4, we obtain $\phi_{*} \mathcal{O}_{X}\left(D^{+}\right) \cong \phi_{*} \mathcal{O}_{X}\left(\iota^{*} D^{+}\right) \cong \mathcal{O}_{Y}^{\oplus 2}$. Since $\operatorname{Pic}(X)$ is generated by $\mathcal{O}_{X}\left(D^{+}\right)$and $\mathcal{O}_{X}\left(\iota^{*} D^{+}\right)$, we have $\operatorname{Pic}(X)=\operatorname{sPic}_{\phi}(X)$.
Example 3.8. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be a double cover branched along a smooth quartic B_{ϕ}. Note that $\operatorname{deg}(L)=2$. Then X is isomorphic to the blowing-up of \mathbb{P}^{2} at 7 points in general position. Moreover $\operatorname{Pic}(X)$ is generated by $8(-1)$ curves E_{0}, \ldots, E_{7}, where E_{0} is the strict transform of a line passing through two bowing-up centers, and E_{1}, \ldots, E_{7} are the exceptional divisors. The images $\phi\left(E_{0}\right), \ldots, \phi\left(E_{7}\right)$ are 8 of 28 bitangent lines of B_{ϕ}. Let $f_{j} \in \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ be a section defining $\phi\left(E_{j}\right)$ for each $j=0, \ldots, 7$. Then there exist global sections $a_{j, k}(k=0,1)$ of $\mathcal{O}_{\mathbb{P}^{2}}(k+2)$ such that B_{ϕ} is defined by $a_{j, 0}^{2}+f_{j} a_{j, 1}=0$. Hence $\phi_{*} \mathcal{O}_{X}\left(E_{j}\right) \cong \mathcal{O}_{\mathbb{P}^{2}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{2}}$ for each $j=0, \ldots, 7$ by Theorem 3.4. Therefore we obtain $\operatorname{Pic}(X)=\operatorname{sPic}_{\phi}(X)$.

The following conjecture arises.
Conjecture 3.9. If $\mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}\right)=\mathbb{C}$, then $\operatorname{Pic}(X)=\operatorname{sPic}_{\phi}(X)$.
Remark 3.10. In the cases of Examples 3.7 and 3.8, it is known that $\phi_{*} \mathcal{L}$ is indecomposable for general line bundles \mathcal{L} on X in [13].

4 An idea to generate 2-bundles

In this section, we give an idea to generate 2-bundles through double covers. Schwarzenberger proved the following theorem.

Theorem 4.1 (Schwarzenberger [13, Theorem 3]). Let Y be a non-singular surface. For any 2-bundle \mathcal{E} on Y, there exist a non-singular double cover $\phi: X \rightarrow Y$ and a line bundle \mathcal{L} on X such that $\phi_{*} \mathcal{L} \cong \mathcal{E}$.

We give a generalization of this theorem. We call $\phi: X \rightarrow Y$ a normal double cover if ϕ is a finite surjective morphism of degree two from a normal variety X to a smooth variety Y over \mathbb{C}. Let $\mathrm{Cl}(X)$ be the divisor class group of X. Note that there is a canonical one-to-one correspondence between $\mathrm{Cl}(X)$ and the set of divisorial sheaves on X (cf. [14]). See [9] for general results on reflexive sheaves. By modifying the proof of [13, Theorem 3], we can prove the following theorem which is a generalization of [13, Theorem 3].

Theorem 4.2 ([17, Theorem 3]). Let \mathcal{E} be a 2-bundle on a smooth projective variety Y of dimension n over \mathbb{C}. There exist a normal double cover $\phi: X \rightarrow Y$ and a divisorial sheaf \mathcal{L} on X such that $\mathcal{E} \cong \phi_{*} \mathcal{L}$.

Proof. Let $\mathbb{P}_{\mathcal{E}}$ be the \mathbb{P}^{1}-bundle $\operatorname{Proj}(S(\mathcal{E}))$, and let $p: \mathbb{P}_{\mathcal{E}} \rightarrow Y$ be the projection, where $S(\mathcal{E})$ is the symmetric algebra of \mathcal{E}. Let \mathcal{H} be a very ample line bundle on Y. The line bundle \mathcal{H} gives the embedding $\Phi_{\mathcal{H}}: Y \hookrightarrow \mathbb{P}^{s}$ with $s+1=\operatorname{dim} \mathrm{H}^{0}(Y, \mathcal{H})$. For k large enough, we have the following exact sequence:

$$
\mathcal{H}^{\oplus r+1} \rightarrow \mathcal{E} \otimes \mathcal{H}^{k} \rightarrow 0
$$

for some $r>0$. This induces an embedding $i: \mathbb{P}_{\mathcal{E}} \hookrightarrow \mathbb{P}^{N}$ for $N=r s+r+s$ via the Segre embedding $\mathbb{P}^{r} \times \mathbb{P}^{s} \hookrightarrow \mathbb{P}^{N}$. Put $\widetilde{\mathcal{L}}:=i^{*} \mathcal{O}_{\mathbb{P}^{N}}(1)$. Note that $i\left(p^{-1}(P)\right)$ is a line in \mathbb{P}^{N} for each $P \in Y$, and $p_{*} \widetilde{\mathcal{L}} \cong \mathcal{E} \otimes \mathcal{H}^{k}$. Hence $i: \mathbb{P}_{\mathcal{E}} \hookrightarrow \mathbb{P}^{N}$ induces an embedding $i^{\prime}: Y \hookrightarrow \operatorname{Gr}_{1}(N)$ by $P \mapsto i\left(p^{-1}(P)\right)$, where $\operatorname{Gr}_{1}(N)$ is the Grassmannian consisting of lines in \mathbb{P}^{N}.

For a quadratic hypersurface $Q \subset \mathbb{P}^{N}$, let $V(Q)$ be the subscheme of $\operatorname{Gr}_{1}(N)$ consisting of lines on Q. Note that $\operatorname{PGL}(N, \mathbb{C}):=\operatorname{Aut}\left(\mathbb{P}^{N}\right)$ acts transitively on both of \mathbb{P}^{N} and $\operatorname{Gr}_{1}(N)$ such that $V(g(Q))=g(V(Q))$ for any $g \in \operatorname{PGL}(N, \mathbb{C})$ and $Q \subset \mathbb{P}^{N}$. Since $\operatorname{dim} \operatorname{Gr}_{1}(N)=2 N-2, \operatorname{dim} V(Q)=2 N-5$ (cf. [6]) and $\operatorname{dim} Y=n$, we obtain $\operatorname{dim} Y \cap V(Q)=n-3$ for a general hypersurface $Q \subset \mathbb{P}^{N}$ of degree 2 by [11, Theorem 2]. Put $X^{\prime}:=\mathbb{P}_{\mathcal{E}} \cap Q$ for a general quadratic hypersurface $Q \subset \mathbb{P}^{N}$ such that $\operatorname{dim} i^{\prime}(Y) \cap V(Q)=n-3$ and X^{\prime} is smooth. Let \mathcal{L}^{\prime} be the restriction of $\widetilde{\mathcal{L}}$ to X^{\prime}. For an affine open set U of Y, the Künneth formula for sheaves implies that

$$
R^{q} p_{*} \widetilde{\mathcal{L}}^{-1}(U)=\mathrm{H}^{q}\left(U \times \mathbb{P}^{1}, \mathcal{O}_{U} \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=0
$$

for all $q \geq 0$. Since $\widetilde{\mathcal{L}} \otimes \mathcal{J}_{X^{\prime}} \cong \widetilde{\mathcal{L}}^{-1}$ for the ideal sheaf $\mathcal{J}_{X^{\prime}} \cong \widetilde{\mathcal{L}}^{-2}$ of X^{\prime}, we have $p_{*}^{\prime} \mathcal{L}^{\prime} \cong \mathcal{E} \otimes \mathcal{H}^{k}$ by [13, Proposition 5].

Then the restriction $p^{\prime}:=\left.p\right|_{X^{\prime}}: X^{\prime} \rightarrow Y$ is a generically finite morphism of degree 2. Let $U^{\prime}:=\left\{P \in Y \mid\left(p^{\prime}\right)^{-1}(P)\right.$ is finite $\}$. By Stein factorization of p^{\prime}, we obtain a birational morphism $f^{\prime}: X^{\prime} \rightarrow X^{\prime \prime}$ and a finite morphism $g^{\prime}: X^{\prime \prime} \rightarrow Y$ such that $g^{\prime} \circ f^{\prime}=p^{\prime}$. Take the normalization $\kappa: X \rightarrow X^{\prime \prime}$, and put $\phi:=g^{\prime} \circ \kappa: X \rightarrow Y$, which is a normal double cover. Let \mathcal{L} be the double dual $\left(\kappa^{*} f_{*} \mathcal{L}^{\prime}\right)^{\vee \vee}$ of $\kappa^{*} f_{*} \mathcal{L}^{\prime}$. Then \mathcal{L} is a divisorial sheaf on X, and $\left.\left.\phi_{*} \mathcal{L}\right|_{U^{\prime}} \cong p_{*}^{\prime} \mathcal{L}^{\prime}\right|_{U^{\prime}}$ since f^{\prime} and κ are isomorphic over U^{\prime}. Since $\phi_{*} \mathcal{L}$ is reflexive by [9 , Corollary 1.7] and $\operatorname{codim}_{Y}\left(Y \backslash U^{\prime}\right)=3, \phi_{*} \mathcal{L} \cong p_{*}^{\prime} \mathcal{L}^{\prime} \cong \mathcal{E} \otimes \mathcal{H}^{k}$. Therefore, $\phi_{*}\left(\mathcal{L} \otimes \phi^{*} \mathcal{H}^{-k}\right) \cong \mathcal{E}$.

As the idea of [7], we can apply our method to divisorial sheaves on normal double covers as follows. Let $\phi: X \rightarrow Y$ be a normal double cover. Let X° be the smooth locus $X \backslash \operatorname{Sing}(X)$ of X, and put $Y^{\circ}:=\phi\left(X^{\circ}\right)$. Then the restriction $\phi^{\circ}: X^{\circ} \rightarrow Y^{\circ}$ of ϕ is a non-singular double cover. For a divisorial sheaf \mathcal{L} on X, the restriction \mathcal{L}° of \mathcal{L} to X° is a line bundle on X°, and $i_{*} \mathcal{L}^{\circ}=\mathcal{L}$ and $j_{*} \phi_{*}^{\circ} \mathcal{L}^{\circ}=\phi_{*} \mathcal{L}$ hold, where $i: X^{\circ} \rightarrow X$ and $j: Y^{\circ} \rightarrow Y$ are the inclusion maps. Hence computation of push-forwards of line bundles on X° can be applied to that of divisorial sheaves on X via j_{*}.

If Conjecture 3.9 is true, then Theorem 4.2 implies that any 2-bundle on \mathbb{P}^{n} can be generated by the following method:
(i) Take a reduced divisor $B: F=0$ of even degree on \mathbb{P}^{n} with several representation of the form $F=a_{0}^{2}+a_{1} a_{2}$;
(ii) let $\phi: X \rightarrow \mathbb{P}^{n}$ be the normal double cover branched at B, and let $\phi^{\circ}: X^{\circ} \rightarrow Y^{\circ}$ be the non-singular double cover as above;
(iii) take several line bundles $\mathcal{L}_{1}, \ldots, \mathcal{L}_{m}$ on X° such that $\phi_{*}^{\circ} \mathcal{L}_{i}$ is split, and compute 2-bundles $\phi_{*}^{\circ}\left(\mathcal{L}_{1}^{n_{1}} \otimes \cdots \otimes \mathcal{L}_{m}^{n_{m}}\right)$ on Y° by Theorem 2.3;
(iv) then $j_{*} \phi_{*}^{\circ}\left(\mathcal{L}_{1}^{n_{1}} \otimes \cdots \otimes \mathcal{L}_{m}^{n_{m}}\right)$ are reflexive sheaves of rank two.

Remark 4.3. Let $\phi: X \rightarrow \mathbb{P}^{2}$ be a non-singular double cover branched along smooth curve of degree $2 r$. In [13], $\phi_{*} \mathcal{L}$ was studied for several line bundles \mathcal{L} on X in the case of $r=1,2$. Ottaviani [12] and Vallès [19] studied the direct images of line bundles on X.

If $\phi: X \rightarrow \mathbb{P}^{n}$ is non-singular, then the reflexive sheaves in (iv) are 2-bundles. A problem of this method is when a reflexive sheaf of (iv) is a 2 -bundle.

Problem 4.4. Give a condition for a reflexive sheaf $j_{*} \phi_{*}^{\circ}\left(\mathcal{L}_{1}^{n_{1}} \otimes \cdots \otimes \mathcal{L}_{m}^{n_{m}}\right)$ in (iv) to be a 2-bundle.

References

[1] Enrique Artal Bartolo, Shinzo Bannai, Taketo Shirane, and Hiro-o Tokunaga, Torsion divisors of plane curves and Zariski pairs, arXiv:1910.06490.
[2] Enrique Artal Bartolo, Shinzo Bannai, Taketo Shirane, and Hiro-o Tokunaga, Torsion divisors of plane curves with maximal felxes and Zariski pairs, arXiv:2005.12673.
[3] Shinzo Bannai, A note on splitting curves of plane quartics and multisections of rational elliptic surfaces, Topology Appl. 202 (2106), 428-439.
[4] Shinzo Bannai, Benoît Guerville-Ballé, Taketo Shirane, and Hiro-o Tokunaga, On the topology of arrangements of a cubic and its inflectional tangents, Proc. Japan Acad., Ser. A 93 (2017), no. 6, 50-53.
[5] Shinzo Bannai and Taketo Shirane, Nodal curves with a contact-conic and Zariski pairs, Adv. Geom. 19 (2019), no. 4, 555-572.
[6] Roya Beheshti, Lines on projective hypersurfaces, J. Reine Angew. Math., 592 (2006), 1-21.
[7] Fabrizio Catanese and Fabio Perroni, Dihedral Galois covers of algebraic varieties and the simple cases, J. Geom. Phys. 118 (2017), 67-93.
[8] Benoît Guerville-Ballé and Taketo Shirane, Non-homotopicity of the linking set of algebraic plane curves, J. Knot Theory Ramifications 26 (2017), no. 13, 13, Id/No 1750089.
[9] Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), 121176.
[10] C. G. J. Jacobi, Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen, J. Reine Angew. Math. 32 (1846), 220-226.
[11] Steven L. Kleiman, The transversality of a general translate, Compos. Math. 28 (1974), 287-297.
[12] Giorgio Maria Ottaviani, Some properties of 2-bundles on \mathbb{P}^{2}, Boll. Unione Mat. Ital., VI. Ser., D, Algebra Geom. 3 (1984), no. 1, 5-18.
[13] R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. Lond. Math. Soc. (3) 11 (1961), 623-640.
[14] Karl Schwede, Generalized divisors and reflexive sheaves, https://www.math.utah.edu/ schwede/Notes/GeneralizedDivisors.pdf.
[15] Taketo Shirane, A note on splitting numbers for Galois covers and π_{1} equivalent Zariski k-plets, Proc. Am. Math. Soc. 145 (2017), no. 3, 10091017.
[16] Taketo Shirane, Galois covers of graphs and embedded topology of plane curves, Topology Appl. 257 (2019), 122-143.
[17] Taketo Shirane, Double covers and vector bundles of rank two, arXiv:2010.09243.
[18] Tomohide Terasoma, Riemann-men no riron (Japanese), Morikita Shuppan, 2019.
[19] Jean Vallès, Fibrés vectoriels de rang deux sur \mathbb{P}^{2} provenant d'un revêtement double, Ann. Inst. Fourier 59 (2009), no. 5, 1897-1916.

Taketo SHIRANE

Department of Mathematical Sciences, Faculty of Science and Technology,
Tokushima University,
2-1 Minamijyousanjima-cho,Tokushima 770-8506, JAPAN
shirane@tokushima-u.ac.jp

