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1. Introduction

Throughout this paper we will work over the complex number field C.
In the birational geometry, for a given smooth projective variety, it is expected that

there exists a “good” birational model. The birational model is called minimal model,
and an inductive procedure called minimal model program is expected to construct a
minimal model. The existence of a minimal model for smooth projective varieties is one
of the most important conjectures in the birational geometry. Currently, the conjecture
is studied in the framework of pairs of a normal projective variety and an e↵ective
divisor such that the pairs have mild singularity, called log canonical pairs (in this
framework minimal models are called log minimal models). Various special cases of the
conjecture are known in all dimensions (see, for example, [BCHM], [HH]).

Suppose that a given log canonical pair has at least one log minimal model. In the
case of log canonical surface, the log minimal model is uniquely determined. On the
other hand, when the underlying variety of the log canonical pair has dimension at least
3, the log minimal model is not uniquely determined. For any given two log minimal
model for the log canonical pair, it is interesting to study common properties that the
two log minimal model have. In the case of Q-factorial Kawamata log terminal pairs,
which is a special class of log canonical pairs, it is known that the two log minimal
models of a Q-factorial Kawamata log terminal pair is connected by a sequence of flops
([BCHM], [K]).

In this article, we explain a generalization of the result to not necessarily Q-factorial
log canonical pairs. We also introduce an example which illustrates gaps between the
class of Q-factorial Kawamata log terminal pairs and the class of (not necessarily Q-
factorial) log canonical pairs.

2. Background and known results

We start with the definition of singularities of pairs.
A pair (X,�) consist of a normal quasi-projective variety X and a Q-divisor � on

X whose coe�cients belong to [0, 1] such that KX +� is Q-Cartier. The divisor � in
(X,�) is called a boundary divisor, and KX +� is called the log canonical divisor.

Definition 2.1 (Log canonical pairs and Kawamata log terminal pairs). Let (X,�) be
a pair. For any projective birational morphism f : Y ! X, we can write

KY = f
⇤(KX +�) +

X

j

a(Ej, X,�)Ej,
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where a(Ej, X,�) are rational numbers and Ej are distinct prime divisors. Then
a(Ej, X,�) is called the discrepancy of Ej with respect to (X,�). The pair (X,�) is a
log canonical pair (resp. a Kawamata log terminal pair) if a(Ej, X,�) � �1 (resp.> �1)
for all f and all Ej. When the underlying variety X is Q-factorial, Kawamata log ter-
minal pairs (X,�) are called Q-factorial Kawamata log terminal pair.

We denote by (X,�)/Z a log canonical pair (X,�) equipped with a projective mor-
phism X ! Z of normal quasi-projective varieties. If there is no risk of confusion,
(X,�)/Z is also called a log canonical pair.

In the birational geometry, the following conjecture on the existence of log minimal
model for log canonical pairs is one of the most important open problems.

Conjecture 2.2. Let (X,�)/Z be a log canonical pair equipped with a projective mor-
phism X ! Z such that KX +� is pseudo-e↵ective over Z. Then, there is a sequence
of steps of a (KX +�)-minimal model program over Z

(X,�) 99K (X 0
,�0)

such that KX0 +�0 is nef over Z.

By construction of (KX + �)-minimal model program, it follows that (X 0
,�0) is a

log canonical pair. We call (X 0
,�0)/Z a log minimal model of (X,�) over Z.

Conjecture 2.2 for log canonical pairs (X,�)/Z with dimX  3 is known by Kawa-
mata, Kollár, Mori, Reid, Shokurov, and others. In higher-dimensional case, we can run
a minimal model program for all log canonical pairs ([F], [B2], [HX]) and Conjecture
2.2 is known in the following cases.

• dimX = 4 ([B1]),
• (X,�) is a Kawamata log terminal pair andKX+� or� is big over Z ([BCHM]),
• � = B + A such that B � 0, A � 0, and A is ample over Z ([HH]), and
• a Q-factorial dlt model of (X,�) has a log minimal model over Z ([HH]).

But, Conjecture 2.2 is currently widely open for higher-dimensional log canonical pairs.
From now on, we pay attention to log canonical pairs (X,�)/Z for which Conjecture

2.2 holds. For simplicity, pick a log canonical pair (X,�)/Z with Z = SpecC for which
Conjecture 2.2 holds. Let  1 : (X,�) 99K (X 0

1,�
0
1) and  2 : (X,�) 99K (X 0

2,�
0
2) be two

sequences of steps of (KX+�)-minimal model program to log minimal models (X 0
1,�

0
1)

and (X 0
2,�

0
2), respectively. If dimX = 2, then the negativity lemma and construction

of  i (i = 1, 2) implies that the induced birational map � : X 0
1 99K X

0
2 is an isomorphism

and �⇤�0
1 = �0

2. But, when dimX � 3, we only know that the induced birational map
� : X 0

1 99K X
0
2 is isomorphic in codimension one and �⇤�0

1 = �0
2. Therefore, it is very

natural to consider the following question.

Question 2.3. Let (X,�)/Z be a log canonical pair equipped with a projective mor-
phism X ! Z. Suppose that there are two sequences of steps of (KX+�)-minimal model
program  1 : (X,�) 99K (X 0

1,�
0
1) and  2 : (X,�) 99K (X 0

2,�
0
2) to log minimal models

(X 0
1,�

0
1) and (X 0

2,�
0
2). Under the situation, what common properties do (X 0

1,�
0
1) and

(X 0
2,�

0
2) have?

To introduce known result concerned with Question 2.3, we define flops.
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Definition 2.4 (Flop). Let (X,�)/Z be a log canonical pair equipped with a projective
morphism X ! Z. A flop for KX +� over Z is the following diagram over Z

X

f   

�
// X+

f+
}}

V

such that

• the diagram is a D-flip for some Q-Cartier divisor D, more precisely,
– f is a small birational morphism, �D is f -ample, and ⇢(X/V ) = 1, and
– f

+ is a small birational morphism and �⇤D is an f
+-ample Q-Cartier divi-

sor,
and

• KX +� is numerically trivial over V .

In the case of Q-factorial Kawamata log terminal pairs, as shown below, it is known
that the birational map between two log minimal models are sequences of flops.

Theorem 2.5 (cf. [BCHM]). Let (X1,�1)/Z and (X2,�2)/Z be two Q-factorial Kawa-
mata log terminal pairs such that KX1 + �1 and KX2 + �2 are nef over Z. Let
� : X1 99K X2 be a small birational map over Z such that �⇤�1 = �2. Then, � is
a composition of flops for KX +� over Z.

Remark 2.6. Kawamata [K] proved a similar result for Q-factorial terminal pairs (a
special class of Kawamata log terminal pairs) and a birational map with a weaker as-
sumption. More precisely, given Q-factorial terminal pairs (X1,�1)/Z and (X2,�2)/Z
such that KX1+�1 and KX2+�2 are nef over Z and a (not necessarily small) birational
map � : X1 99K X2 such that �⇤�1 = �2, then � is a composition of flops for KX +�
over Z.

We note the underlying varieties of Kawamata log terminal pairs have only rational
singularity. By this fact and Theorem 2.5, we obtain a partial answer to Question 2.3.

Theorem 2.7. Let (X1,�1)/Z, (X2,�2)/Z and � : X1 99K X2 be as in Theorem 2.5.
For i = 1, 2, we denote the morphism Xi ! Z by ⇡i. Then the followings hold.

• R
p
⇡1⇤OX1 ' R

p
⇡2⇤OX2 for every p > 0, and

• the Cartier index of KX1 +�1 and the Cartier index of KX2 +�2 coincide.

We will discuss the generalization of Theorem 2.7 to log canonical pairs.

3. Log canonical case

Before introducing the main results, we define extremal contractions and log canonical
centers.

Definition 3.1 (Extremal contraction). A contraction f : X ! Y of normal quasi-
projective varieties is an extremal contraction if for any two Cartier divisors D1 and D2,
there are a1, a2 2 Z which are not both zero and a Cartier divisor DY on Y such that
a1D1 � a2D2 ⇠ f

⇤
DY .
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Note that isomorphisms are extremal contractions in this article. By definition, any
non-isomorphic extremal contraction X ! Y satisfies ⇢(X/Y ) = 1, but the converse
is not true in general. For example, let X be an elliptic curve and Y a point. Then
⇢(X/Y ) = 1 but there exists a numerically trivial Cartier divisor on X which is not a
torsion.

Definition 3.2 (Log canonical centers). Let (X,�) be a log canonical pair. Then a log
canonical center of (X,�) is the image of a prime divisor P appearing in a birational
model Y ! X whose discrepancy a(P,X,�) (see Definition 2.1) is �1.

When (X,�) is a Kawamata log terminal pair, then there is no log canonical center
by Definition 2.1.

We are ready to state the main results.

Theorem 3.3 (Main result I, [H, Theorem 1.1]). Let (X,�)/Z and (X 0
,�0)/Z be log

canonical pairs such that KX +� and KX0 +�0 are nef over Z. Suppose that there is
a small birational map � : X 99K X

0 over Z such that

• �⇤� = �0, and
• there is an open subset U ⇢ X such that � is an isomorphism on U and all log
canonical centers of (X,�) intersect U .

Then, there are projective small birational morphisms f : X ! X and f
0 : X

0
! X

0

from normal quasi-projective varieties such that f and f
0 are compositions of extremal

contractions and the induced birational map f
0�1

� � � f : X 99K X
0
is a composition of

flops for KX + f
�1
⇤ � over Z

X = X0
'0 //

!!

X1
//

}}

· · · // X i
'i //

!!

X i+1
//

{{

· · · // X l = X
0

V0 Vi

satisfying the following property:

(⇤) X i is Q-factorial if and only if X i+1 is Q-factorial for any 0  i < l, and each
'i induces an isomorphic linear map 'i⇤ : N1(X i/Z)R ! N

1(X i+1/Z)R.

Theorem 3.4 (Main result II, see [H, Theorem 1.2]). Let (X,�)/Z, (X 0
,�0)/Z and

� : X 99K X
0 be as in Theorem 3.3. We denote X ! Z and X

0
! Z by ⇡ and ⇡

0,
respectively. Then the followings hold.

• R
p
⇡⇤OX

⇠
�! R

p
⇡
0
⇤OX0 for every p > 0, and

• for any Cartier divisor D on X such that D ⌘Z r(KX +�) for some r 2 R, the
birational transform �⇤D is Cartier and �⇤D ⌘Z r(KX0 + �0). In particular,
for every integer l, the divisor l(KX +�) is Cartier if and only if l(KX0 +�0)
is Cartier.

Remark 3.5. The second assertion of Theorem 3.4 implies the following fact: With no-
tation as in Theorem 3.4, when Z is a point, the natural morphism Pic(X)R ! N

1(X)R
is an isomorphism if and only if Pic(X 0)R ! N

1(X 0)R is so. Moreover, [H, Theorem 1.2]
shows thatX has a small Q-factorialization (i.e., a small projective birational morphism
from a Q-factorial variety) if and only if X 0 has a small Q-factorialization.
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To check that Theorem 3.3 is a generalization of Theorem 2.5, we consider the Q-
factorial Kawamata log terminal case of Theorem 3.3. Let (X,�)/Z and (X 0

,�0)/Z
be Q-factorial Kawamata log terminal pairs such that KX + � and KX0 + �0 are nef
over Z. Since there is no log canonical center of (X,�) and (X 0

,�0), the existence
of � : X 99K X

0 implies that X and X
0 are isomorphic in codimension one and �0

is the birational transform of � on X
0. Then there exist small birational morphisms

f : X ! X and f
0 : X

0
! X

0 as in Theorem 3.3 such that the induced birational map
f
0�1

� � � f : X 99K X
0
is a composition of flops. Because X (resp. X 0) is Q-factorial

and f (resp. f 0) is small, it follows that f (resp. f 0) is an isomorphism. This shows that
� is a composition of flops. Therefore, we see that Theorem 3.3 is a generalization of
Theorem 2.5. By a similar way, we see that Theorem 3.4 is a generalization of Theorem
2.7.

We compare Theorem 3.3 and Theorem 2.5. In Theorem 3.3, the small birational map
� between the given two log canonical pairs need to have a good property related to log
canonical centers. Moreover, we have to take small birational modifications to connect
the log canonical pairs by a sequence of flops. On the other hand, in Theorem 2.5, we
do not need any special assumption of the small birational map between the given two
Q-factorial Kawamata log terminal pairs, and the birational map can be decomposed
to flops. These di↵erences come from gaps between (not necessarily Q-factorial) log
canonical pairs and Q-factorial Kawamata log terminal pairs. The following example
shows that Q-factoriality is necessary to decompose the birational map � : X 99K X

0 as
in Theorem 3.3 into flops.

Example 3.6 ([H, Example 4.1]). Let (X,�) be a Kawamata log terminal pair such
that X is projective and not Q-factorial, KX + � is nef and ⇢(X) = 1. For example,
take X as a normal projective cone over P1

⇥P1 and (X,�) as a Kawamata log terminal
pair such that KX +� ⇠Q 0. Let X 0 be a small Q-factorialization of X, and let �0 be
the birational transform of � on X

0. Then (X,�) and (X 0
,�0) cannot be connected

by flops because ⇢(X) = 1 which implies that there is no non-trivial contraction from
X.

An important gap between log canonical pairs and Kawamata log terminal pairs is
the existence of log canonical centers. The gap appears in the second condition of the
birational map � : X 99K X

0 in the main results. The second condition of � : X 99K X
0

in the main results looks technical, so it is natural to expect that the same conclusions
as in the main results hold true without the second condition of the birational map.
Unfortunately, the expectation cannot be realized in general.

Theorem 3.7 (cf. [H, Section 4]). There exist log canonical pairs (X1,�1) and (X2,�2)
such that X1 and X2 are projective, KX1 +�1 and KX2 +�2 are both nef, and there is
a small birational map � : X1 99K X2 satisfying the following properties:

• �⇤�1 = �2,
• X1 is Q-factorial but X2 has no small Q-factorialization,
• dimH

1(X1,OX1) 6= dimH
1(X2,OX2), and

• �⇤D is not Q-Cartier for a numerically trivial Cartier divisor D on X1.
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Let (X1,�1) and (X2,�2) be as in Theorem 3.7. The third and fourth properties of
Theorem 3.7 implies that the same conclusion of Theorem 3.4 does not hold for (X1,�1)
and (X2,�2). Furthermore, the second condition of Theorem 3.7 shows that eX1 is Q-
factorial and eX2 is not Q-factorial for all small birational morphisms f1 : eX1 ! X1 and
f2 : eX2 ! X2. Therefore, the condition (⇤) of Theorem 3.3 does not hold for all induced
small birational morphisms f�1

2 � � � f1 : eX1 99K eX2. From them, the same conclusion
of Theorem 3.3 does not hold for (X1,�1) and (X2,�2) in Theorem 3.7.

We explain the idea of construction of (X1,�1) and (X2,�2) as in Theorem 3.7.

Idea of proof of Theorem 3.7, see [H, Section 4]. We put V = Pn, and let W be an
elliptic curve. We define pV : V ⇥W ! V and pW : V ⇥W ! W by natural projections.
Fix an ample Q-divisor HV ⇠Q �KV and fix an ample Q-divisor HW on W , then put
HV⇥W = p

⇤
VHV + p

⇤
WHW . We pick an integer m > 0 such that mHV⇥W is a very ample

Cartier divisor. We consider a P1-bundle

f : Y = PV⇥W (OV⇥W �OV⇥W (�mHV⇥W )) ! V ⇥W.

Let T be the unique section corresponding to OY (1), and put AY = T + mf
⇤
HV⇥W .

Since �KV⇥W ⇠Q p
⇤
VHV , we obtain KY +T +AY +f

⇤
p
⇤
VHV ⇠Q 0. By construction, we

also see that AY , AY +f
⇤
p
⇤
VHV and AY +f

⇤
p
⇤
WHW are all semi-ample, Y is smooth, and

the pair (Y, T ) is a log canonical pair. Let g : Y ! X, gV : Y ! XV and gW : Y ! XW

be contractions induced by AY , AY + f
⇤
p
⇤
VHV and AY + f

⇤
p
⇤
WHW , respectively. These

morphisms are isomorphisms outside T . Furthermore, the induced birational maps
⇡V : XV 99K X and ⇡W : XW 99K X are morphism. We have constructed the following
diagram.

V ⇥W
pV

{{

pW

$$

Y
f

oo

gV

}}
g

✏✏

gW

!!
V W XV

⇡V !!

XW

⇡W}}
X

By construction, the morphisms ⇡V and ⇡W are small birational morphisms. Then the
induced birational map XV 99K XW is small.

Put HXV = gV ⇤f
⇤
p
⇤
VHV and HXW = gW⇤f

⇤
p
⇤
WHW . Then it follows that f ⇤

p
⇤
VHV =

g
⇤
VHXV and f

⇤
p
⇤
WHW = g

⇤
WHXW . Since HV and HW are ample, both HXV and HXW are

semi-ample, and contractions induced by HXV and HXW are morphisms hV : XV ! V

and hW : XW ! W satisfying pV � f = hV � gV and pW � f = hW � gW , respectively.
Then HXV = h

⇤
VHV and HXW = h

⇤
WHW .

We have constructed the following diagram

Y

pV �f

vv
gV}} gW ""

pW �f

((Pn = V XV
hV

oo

⇡V !!

// XW

⇡W||

hW

// W

X
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and Q-Cartier divisors

•HV ⇠Q �KV , •HXV = gV ⇤(pV � f)⇤HV ,

•HW , •HXW = gW⇤(pW � f)⇤HW , and

• AY = T +m(pV � f)⇤HV +m(pW � f)⇤HW

satisfying

• Y is smooth and (Y, T ) is a log canonical pair,
• KY + T + AY + (pV � f)⇤HV ⇠Q 0, and
• (pV � f)⇤HV = g

⇤
VHXV and (pW � f)⇤HW = g

⇤
WHXW .

By [H, Proposition 4.2], the followings hold true.

(i) The pair (XW , 0) is Q-factorial Kawamata log terminal pair,
(ii) the equality dimH

p(XW ,OXW ) = dimH
p(W,OW ) holds for every p > 0, and

(iii) the variety XV is log canonical Fano.

Since XV is log canonical Fano, there is a Q-divisor �XV � 0 on XV such that KXV +
�XV ⇠Q 0 and the pair (XV ,�XV ) is a log canonical pair. Let �XW be the birational
transform of �XV on XW . Then KXW +�XW ⇠Q 0 and (XW ,�XW ) is a log canonical
pair.

We set (X1,�1) = (XW ,�XW ) and (X2,�2) = (XV ,�XV ). Then X1 and X2 are pro-
jective, KX1 +�1 and KX2 +�2 are Q-linearly trivial, and there is a small birational
map � : X1 99K X2. We show that (X1,�1) and (X2,�2) satisfy the conditions of The-
orem 3.7. Firstly, it is clear by construction that �⇤�1 = �2 which is the first condition
of Theorem 3.7. Secondly, by (ii), we have dimH

1(X1,OX1) = dimH
1(W,OW ) = 1.

On the other hand, by (iii) and [F, Theorem 8.1] (or [F, Theorem 6.3 (ii)]), we have
dimH

1(X2,OX2) = 0. Thus

dimH
1(X1,OX1) 6= dimH

1(X2,OX2)

which is the third condition of Theorem 3.7. Thirdly, we pick a non-torsion M ⌘ 0 on
W and putD = h

⇤
WM . If �⇤D is Q-Cartier, then �⇤D ⌘ 0, so �⇤D ⇠Q 0 by [F, Theorem

13.1]. Then D ⇠Q 0, hence M ⇠Q 0 which contradicts our choice of M . Therefore, D
satisfies the fourth condition of Theorem 3.7. This also shows that X2 is not Q-factorial.
Finally, XW is Q–factorial by (i), and if X2 has a small Q-factorialization X̃ ! X2 then
the induced birational map X1 99K X̃ is small, so ⇢(X1) = ⇢(X̃). Since X̃ ! X2 is
not isomorphism, we have ⇢(X̃) > ⇢(X2). Furthermore, by explicit computations of
the Picard numbers, we have ⇢(Y ) = 3, ⇢(X1) = ⇢(X2) = 2 and ⇢(X) = 1. Therefore,
⇢(X1) = ⇢(X̃) > ⇢(X2) = ⇢(X1), a contradiction. So X1 is Q-factorial, but X2 does not
have any small Q-factorialization. ⇤

The above construction of the diagram

XV
//

⇡V !!

XW

⇡W}}
X

is an interesting example of log canonical flip (see [H, Remark 4.5]). Indeed, the fol-
lowing properties hold.
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• dimH
1(XV ,OXV ) = 0 6= 1 = dimH

1(XW ,OXW ), and
• XV is log canonical Fano but XW is not even of log canonical Fano type, i.e.,
there is no e↵ective R-divisor BW on XW such that (XW , BW ) is a log canonical
pair and �(KXW + BW ) is ample.
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