RELATIONS BETWEEN TWO LOG MINIMAL MODELS OF LOG CANONICAL PAIRS

KENTA HASHIZUME

1. Introduction

Throughout this paper we will work over the complex number field \mathbb{C}.
In the birational geometry, for a given smooth projective variety, it is expected that there exists a "good" birational model. The birational model is called minimal model, and an inductive procedure called minimal model program is expected to construct a minimal model. The existence of a minimal model for smooth projective varieties is one of the most important conjectures in the birational geometry. Currently, the conjecture is studied in the framework of pairs of a normal projective variety and an effective divisor such that the pairs have mild singularity, called log canonical pairs (in this framework minimal models are called log minimal models). Various special cases of the conjecture are known in all dimensions (see, for example, BCHM , HH).

Suppose that a given log canonical pair has at least one log minimal model. In the case of \log canonical surface, the \log minimal model is uniquely determined. On the other hand, when the underlying variety of the \log canonical pair has dimension at least 3 , the \log minimal model is not uniquely determined. For any given two log minimal model for the log canonical pair, it is interesting to study common properties that the two \log minimal model have. In the case of \mathbb{Q}-factorial Kawamata log terminal pairs, which is a special class of \log canonical pairs, it is known that the two log minimal models of a \mathbb{Q}-factorial Kawamata log terminal pair is connected by a sequence of flops (BCHM , $[\mathrm{K}]$).

In this article, we explain a generalization of the result to not necessarily \mathbb{Q}-factorial \log canonical pairs. We also introduce an example which illustrates gaps between the class of \mathbb{Q}-factorial Kawamata log terminal pairs and the class of (not necessarily \mathbb{Q} factorial) \log canonical pairs.

2. Background and known results

We start with the definition of singularities of pairs.
A pair (X, Δ) consist of a normal quasi-projective variety X and a \mathbb{Q}-divisor Δ on X whose coefficients belong to $[0,1]$ such that $K_{X}+\Delta$ is \mathbb{Q}-Cartier. The divisor Δ in (X, Δ) is called a boundary divisor, and $K_{X}+\Delta$ is called the log canonical divisor.

Definition 2.1 (Log canonical pairs and Kawamata log terminal pairs). Let (X, Δ) be a pair. For any projective birational morphism $f: Y \rightarrow X$, we can write

$$
K_{Y}=f^{*}\left(K_{X}+\Delta\right)+\sum_{j} a\left(E_{j}, X, \Delta\right) E_{j},
$$

where $a\left(E_{j}, X, \Delta\right)$ are rational numbers and E_{j} are distinct prime divisors. Then $a\left(E_{j}, X, \Delta\right)$ is called the discrepancy of E_{j} with respect to (X, Δ). The pair (X, Δ) is a log canonical pair (resp. a Kawamata log terminal pair) if $a\left(E_{j}, X, \Delta\right) \geq-1$ (resp. >-1) for all f and all E_{j}. When the underlying variety X is \mathbb{Q}-factorial, Kawamata log terminal pairs (X, Δ) are called \mathbb{Q}-factorial Kawamata log terminal pair.

We denote by $(X, \Delta) / Z$ a \log canonical pair (X, Δ) equipped with a projective morphism $X \rightarrow Z$ of normal quasi-projective varieties. If there is no risk of confusion, $(X, \Delta) / Z$ is also called a \log canonical pair.

In the birational geometry, the following conjecture on the existence of log minimal model for log canonical pairs is one of the most important open problems.

Conjecture 2.2. Let $(X, \Delta) / Z$ be a log canonical pair equipped with a projective morphism $X \rightarrow Z$ such that $K_{X}+\Delta$ is pseudo-effective over Z. Then, there is a sequence of steps of a $\left(K_{X}+\Delta\right)$-minimal model program over Z

$$
(X, \Delta) \rightarrow\left(X^{\prime}, \Delta^{\prime}\right)
$$

such that $K_{X^{\prime}}+\Delta^{\prime}$ is nef over Z.
By construction of $\left(K_{X}+\Delta\right)$-minimal model program, it follows that $\left(X^{\prime}, \Delta^{\prime}\right)$ is a log canonical pair. We call $\left(X^{\prime}, \Delta^{\prime}\right) / Z$ a log minimal model of (X, Δ) over Z.

Conjecture 2.2 for \log canonical pairs $(X, \Delta) / Z$ with $\operatorname{dim} X \leq 3$ is known by Kawamata, Kollár, Mori, Reid, Shokurov, and others. In higher-dimensional case, we can run a minimal model program for all log canonical pairs ([F], [B2], HX]) and Conjecture 2.2 is known in the following cases.

- $\operatorname{dim} \mathrm{X}=4([$ B1] $)$,
- (X, Δ) is a Kawamata \log terminal pair and $K_{X}+\Delta$ or Δ is big over Z ([BCHM]),
- $\Delta=B+A$ such that $B \geq 0, A \geq 0$, and A is ample over $Z([\mathrm{HH})$, and
- a \mathbb{Q}-factorial dlt model of (X, Δ) has a log minimal model over $Z([\mathrm{HH})$.

But, Conjecture 2.2 is currently widely open for higher-dimensional log canonical pairs.
From now on, we pay attention to \log canonical pairs $(X, \Delta) / Z$ for which Conjecture 2.2 holds. For simplicity, pick a log canonical pair $(X, \Delta) / Z$ with $Z=\operatorname{Spec} \mathbb{C}$ for which Conjecture 2.2 holds. Let $\psi_{1}:(X, \Delta) \rightarrow\left(X_{1}^{\prime}, \Delta_{1}^{\prime}\right)$ and $\psi_{2}:(X, \Delta) \rightarrow\left(X_{2}^{\prime}, \Delta_{2}^{\prime}\right)$ be two sequences of steps of $\left(K_{X}+\Delta\right)$-minimal model program to \log minimal models $\left(X_{1}^{\prime}, \Delta_{1}^{\prime}\right)$ and ($X_{2}^{\prime}, \Delta_{2}^{\prime}$), respectively. If $\operatorname{dim} X=2$, then the negativity lemma and construction of $\psi_{i}(i=1,2)$ implies that the induced birational map $\phi: X_{1}^{\prime} \rightarrow X_{2}^{\prime}$ is an isomorphism and $\phi_{*} \Delta_{1}^{\prime}=\Delta_{2}^{\prime}$. But, when $\operatorname{dim} X \geq 3$, we only know that the induced birational map $\phi: X_{1}^{\prime} \rightarrow X_{2}^{\prime}$ is isomorphic in codimension one and $\phi_{*} \Delta_{1}^{\prime}=\Delta_{2}^{\prime}$. Therefore, it is very natural to consider the following question.

Question 2.3. Let $(X, \Delta) / Z$ be a log canonical pair equipped with a projective morphism $X \rightarrow Z$. Suppose that there are two sequences of steps of $\left(K_{X}+\Delta\right)$-minimal model program $\psi_{1}:(X, \Delta) \rightarrow\left(X_{1}^{\prime}, \Delta_{1}^{\prime}\right)$ and $\psi_{2}:(X, \Delta) \rightarrow\left(X_{2}^{\prime}, \Delta_{2}^{\prime}\right)$ to log minimal models $\left(X_{1}^{\prime}, \Delta_{1}^{\prime}\right)$ and $\left(X_{2}^{\prime}, \Delta_{2}^{\prime}\right)$. Under the situation, what common properties do $\left(X_{1}^{\prime}, \Delta_{1}^{\prime}\right)$ and ($X_{2}^{\prime}, \Delta_{2}^{\prime}$) have?

To introduce known result concerned with Question 2.3 we define flops.

Definition 2.4 (Flop). Let $(X, \Delta) / Z$ be a \log canonical pair equipped with a projective morphism $X \rightarrow Z$. A flop for $K_{X}+\Delta$ over Z is the following diagram over Z

such that

- the diagram is a D-flip for some \mathbb{Q}-Cartier divisor D, more precisely,
- f is a small birational morphism, $-D$ is f-ample, and $\rho(X / V)=1$, and
$-f^{+}$is a small birational morphism and $\phi_{*} D$ is an f^{+}-ample \mathbb{Q}-Cartier divisor,
and
- $K_{X}+\Delta$ is numerically trivial over V.

In the case of \mathbb{Q}-factorial Kawamata log terminal pairs, as shown below, it is known that the birational map between two log minimal models are sequences of flops.
Theorem 2.5 (cf. [BCHM]). Let $\left(X_{1}, \Delta_{1}\right) / Z$ and $\left(X_{2}, \Delta_{2}\right) / Z$ be two \mathbb{Q}-factorial Kawamata log terminal pairs such that $K_{X_{1}}+\Delta_{1}$ and $K_{X_{2}}+\Delta_{2}$ are nef over Z. Let $\phi: X_{1} \rightarrow X_{2}$ be a small birational map over Z such that $\phi_{*} \Delta_{1}=\Delta_{2}$. Then, ϕ is a composition of flops for $K_{X}+\Delta$ over Z.
Remark 2.6. Kawamata [K] proved a similar result for \mathbb{Q}-factorial terminal pairs (a special class of Kawamata log terminal pairs) and a birational map with a weaker assumption. More precisely, given \mathbb{Q}-factorial terminal pairs $\left(X_{1}, \Delta_{1}\right) / Z$ and $\left(X_{2}, \Delta_{2}\right) / Z$ such that $K_{X_{1}}+\Delta_{1}$ and $K_{X_{2}}+\Delta_{2}$ are nef over Z and a (not necessarily small) birational map $\phi: X_{1} \rightarrow X_{2}$ such that $\phi_{*} \Delta_{1}=\Delta_{2}$, then ϕ is a composition of flops for $K_{X}+\Delta$ over Z.

We note the underlying varieties of Kawamata log terminal pairs have only rational singularity. By this fact and Theorem [2.5, we obtain a partial answer to Question 2.3.
Theorem 2.7. Let $\left(X_{1}, \Delta_{1}\right) / Z,\left(X_{2}, \Delta_{2}\right) / Z$ and $\phi: X_{1} \rightarrow X_{2}$ be as in Theorem 2.5. For $i=1,2$, we denote the morphism $X_{i} \rightarrow Z$ by π_{i}. Then the followings hold.

- $R^{p} \pi_{1 *} \mathcal{O}_{X_{1}} \simeq R^{p} \pi_{2 *} \mathcal{O}_{X_{2}}$ for every $p>0$, and
- the Cartier index of $K_{X_{1}}+\Delta_{1}$ and the Cartier index of $K_{X_{2}}+\Delta_{2}$ coincide.

We will discuss the generalization of Theorem 2.7 to \log canonical pairs.

3. Log canonical case

Before introducing the main results, we define extremal contractions and log canonical centers.

Definition 3.1 (Extremal contraction). A contraction $f: X \rightarrow Y$ of normal quasiprojective varieties is an extremal contraction if for any two Cartier divisors D_{1} and D_{2}, there are $a_{1}, a_{2} \in \mathbb{Z}$ which are not both zero and a Cartier divisor D_{Y} on Y such that $a_{1} D_{1}-a_{2} D_{2} \sim f^{*} D_{Y}$.

Note that isomorphisms are extremal contractions in this article. By definition, any non-isomorphic extremal contraction $X \rightarrow Y$ satisfies $\rho(X / Y)=1$, but the converse is not true in general. For example, let X be an elliptic curve and Y a point. Then $\rho(X / Y)=1$ but there exists a numerically trivial Cartier divisor on X which is not a torsion.

Definition 3.2 (Log canonical centers). Let (X, Δ) be a \log canonical pair. Then a log canonical center of (X, Δ) is the image of a prime divisor P appearing in a birational model $Y \rightarrow X$ whose discrepancy $a(P, X, \Delta)$ (see Definition 2.1) is -1 .

When (X, Δ) is a Kawamata \log terminal pair, then there is no \log canonical center by Definition 2.1.

We are ready to state the main results.
Theorem 3.3 (Main result I, [H, Theorem 1.1]). Let $(X, \Delta) / Z$ and $\left(X^{\prime}, \Delta^{\prime}\right) / Z$ be log canonical pairs such that $K_{X}+\Delta$ and $K_{X^{\prime}}+\Delta^{\prime}$ are nef over Z. Suppose that there is a small birational map $\phi: X \rightarrow X^{\prime}$ over Z such that

- $\phi_{*} \Delta=\Delta^{\prime}$, and
- there is an open subset $U \subset X$ such that ϕ is an isomorphism on U and all \log canonical centers of (X, Δ) intersect U.
Then, there are projective small birational morphisms $f: \bar{X} \rightarrow X$ and $f^{\prime}: \bar{X}^{\prime} \rightarrow X^{\prime}$ from normal quasi-projective varieties such that f and f^{\prime} are compositions of extremal contractions and the induced birational map $f^{\prime-1} \circ \phi \circ f: \bar{X} \rightarrow \bar{X}^{\prime}$ is a composition of flops for $K_{\bar{X}}+f_{*}^{-1} \Delta$ over Z

$$
\bar{X}=\bar{X}_{0}---\varphi_{0}-->\bar{X}_{1}-\cdots \cdots-\cdots \bar{X}_{i}--\varphi_{i}^{\varphi_{i}}->\bar{X}_{i+1}-->\cdots-->\bar{X}_{l}=\bar{X}^{\prime}
$$

satisfying the following property:
(*) \bar{X}_{i} is \mathbb{Q}-factorial if and only if \bar{X}_{i+1} is \mathbb{Q}-factorial for any $0 \leq i<l$, and each φ_{i} induces an isomorphic linear map $\varphi_{i *}: N^{1}\left(\bar{X}_{i} / Z\right)_{\mathbb{R}} \rightarrow N^{1}\left(\bar{X}_{i+1} / Z\right)_{\mathbb{R}}$.
Theorem 3.4 (Main result II, see [H] Theorem 1.2]). Let $(X, \Delta) / Z,\left(X^{\prime}, \Delta^{\prime}\right) / Z$ and $\phi: X \rightarrow X^{\prime}$ be as in Theorem 3.3. We denote $X \rightarrow Z$ and $X^{\prime} \rightarrow Z$ by π and π^{\prime}, respectively. Then the followings hold.

- $R^{p} \pi_{*} \mathcal{O}_{X} \xrightarrow{\sim} R^{p} \pi_{*}^{\prime} \mathcal{O}_{X^{\prime}}$ for every $p>0$, and
- for any Cartier divisor D on X such that $D \equiv_{Z} r\left(K_{X}+\Delta\right)$ for some $r \in \mathbb{R}$, the birational transform $\phi_{*} D$ is Cartier and $\phi_{*} D \equiv_{Z} r\left(K_{X^{\prime}}+\Delta^{\prime}\right)$. In particular, for every integer l, the divisor $l\left(K_{X}+\Delta\right)$ is Cartier if and only if $l\left(K_{X^{\prime}}+\Delta^{\prime}\right)$ is Cartier.
Remark 3.5. The second assertion of Theorem 3.4 implies the following fact: With notation as in Theorem 3.4 when Z is a point, the natural morphism $\operatorname{Pic}(X)_{\mathbb{R}} \rightarrow N^{1}(X)_{\mathbb{R}}$ is an isomorphism if and only if $\operatorname{Pic}\left(X^{\prime}\right)_{\mathbb{R}} \rightarrow N^{1}\left(X^{\prime}\right)_{\mathbb{R}}$ is so. Moreover, [H, Theorem 1.2] shows that X has a small \mathbb{Q}-factorialization (i.e., a small projective birational morphism from a \mathbb{Q}-factorial variety) if and only if X^{\prime} has a small \mathbb{Q}-factorialization.

To check that Theorem 3.3 is a generalization of Theorem [2.5, we consider the \mathbb{Q} factorial Kawamata \log terminal case of Theorem 3.3 Let $(X, \Delta) / Z$ and $\left(X^{\prime}, \Delta^{\prime}\right) / Z$ be \mathbb{Q}-factorial Kawamata log terminal pairs such that $K_{X}+\Delta$ and $K_{X^{\prime}}+\Delta^{\prime}$ are nef over Z. Since there is no \log canonical center of (X, Δ) and ($X^{\prime}, \Delta^{\prime}$), the existence of $\phi: X \rightarrow X^{\prime}$ implies that X and X^{\prime} are isomorphic in codimension one and Δ^{\prime} is the birational transform of Δ on X^{\prime}. Then there exist small birational morphisms $f: \bar{X} \rightarrow X$ and $f^{\prime}: \bar{X}^{\prime} \rightarrow X^{\prime}$ as in Theorem 3.3 such that the induced birational map $f^{\prime-1} \circ \phi \circ f: \bar{X} \longrightarrow \bar{X}^{\prime}$ is a composition of flops. Because X (resp. X^{\prime}) is \mathbb{Q}-factorial and f (resp. f^{\prime}) is small, it follows that f (resp. f^{\prime}) is an isomorphism. This shows that ϕ is a composition of flops. Therefore, we see that Theorem 3.3 is a generalization of Theorem [2.5. By a similar way, we see that Theorem 3.4 is a generalization of Theorem 2.7

We compare Theorem 3.3 and Theorem 2.5 In Theorem 3.3, the small birational map ϕ between the given two log canonical pairs need to have a good property related to log canonical centers. Moreover, we have to take small birational modifications to connect the \log canonical pairs by a sequence of flops. On the other hand, in Theorem 2.5, we do not need any special assumption of the small birational map between the given two \mathbb{Q}-factorial Kawamata log terminal pairs, and the birational map can be decomposed to flops. These differences come from gaps between (not necessarily \mathbb{Q}-factorial) log canonical pairs and \mathbb{Q}-factorial Kawamata log terminal pairs. The following example shows that \mathbb{Q}-factoriality is necessary to decompose the birational map $\phi: X \rightarrow X^{\prime}$ as in Theorem 3.3 into flops.

Example 3.6 ([H, Example 4.1]). Let (X, Δ) be a Kawamata log terminal pair such that X is projective and not \mathbb{Q}-factorial, $K_{X}+\Delta$ is nef and $\rho(X)=1$. For example, take X as a normal projective cone over $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and (X, Δ) as a Kawamata log terminal pair such that $K_{X}+\Delta \sim_{\mathbb{Q}} 0$. Let X^{\prime} be a small \mathbb{Q}-factorialization of X, and let Δ^{\prime} be the birational transform of Δ on X^{\prime}. Then (X, Δ) and ($X^{\prime}, \Delta^{\prime}$) cannot be connected by flops because $\rho(X)=1$ which implies that there is no non-trivial contraction from X.

An important gap between log canonical pairs and Kawamata log terminal pairs is the existence of \log canonical centers. The gap appears in the second condition of the birational map $\phi: X \rightarrow X^{\prime}$ in the main results. The second condition of $\phi: X \rightarrow X^{\prime}$ in the main results looks technical, so it is natural to expect that the same conclusions as in the main results hold true without the second condition of the birational map. Unfortunately, the expectation cannot be realized in general.

Theorem 3.7 (cf. [H], Section 4]). There exist log canonical pairs $\left(X_{1}, \Delta_{1}\right)$ and (X_{2}, Δ_{2}) such that X_{1} and X_{2} are projective, $K_{X_{1}}+\Delta_{1}$ and $K_{X_{2}}+\Delta_{2}$ are both nef, and there is a small birational map $\phi: X_{1} \rightarrow X_{2}$ satisfying the following properties:

- $\phi_{*} \Delta_{1}=\Delta_{2}$,
- X_{1} is \mathbb{Q}-factorial but X_{2} has no small \mathbb{Q}-factorialization,
- $\operatorname{dim} H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \neq \operatorname{dim} H^{1}\left(X_{2}, \mathcal{O}_{X_{2}}\right)$, and
- $\phi_{*} D$ is not \mathbb{Q}-Cartier for a numerically trivial Cartier divisor D on X_{1}.

Let $\left(X_{1}, \Delta_{1}\right)$ and $\left(X_{2}, \Delta_{2}\right)$ be as in Theorem 3.7. The third and fourth properties of Theorem 3.7 implies that the same conclusion of Theorem 3.4 does not hold for $\left(X_{1}, \Delta_{1}\right)$ and $\left(X_{2}, \Delta_{2}\right)$. Furthermore, the second condition of Theorem 3.7 shows that \widetilde{X}_{1} is \mathbb{Q} factorial and \widetilde{X}_{2} is not \mathbb{Q}-factorial for all small birational morphisms $f_{1}: \widetilde{X}_{1} \rightarrow X_{1}$ and $f_{2}: \widetilde{X}_{2} \rightarrow X_{2}$. Therefore, the condition $(*)$ of Theorem 3.3 does not hold for all induced small birational morphisms $f_{2}^{-1} \circ \phi \circ f_{1}: \widetilde{X}_{1} \rightarrow \widetilde{X}_{2}$. From them, the same conclusion of Theorem 3.3 does not hold for $\left(X_{1}, \Delta_{1}\right)$ and $\left(X_{2}, \Delta_{2}\right)$ in Theorem 3.7 .

We explain the idea of construction of $\left(X_{1}, \Delta_{1}\right)$ and $\left(X_{2}, \Delta_{2}\right)$ as in Theorem 3.7.
Idea of proof of Theorem 3.7, see [H, Section 4]. We put $V=\mathbb{P}^{n}$, and let W be an elliptic curve. We define $p_{V}: V \times W \rightarrow V$ and $p_{W}: V \times W \rightarrow W$ by natural projections. Fix an ample \mathbb{Q}-divisor $H_{V} \sim_{\mathbb{Q}}-K_{V}$ and fix an ample \mathbb{Q}-divisor H_{W} on W, then put $H_{V \times W}=p_{V}^{*} H_{V}+p_{W}^{*} H_{W}$. We pick an integer $m>0$ such that $m H_{V \times W}$ is a very ample Cartier divisor. We consider a \mathbb{P}^{1}-bundle

$$
f: Y=\mathbb{P}_{V \times W}\left(\mathcal{O}_{V \times W} \oplus \mathcal{O}_{V \times W}\left(-m H_{V \times W}\right)\right) \rightarrow V \times W
$$

Let T be the unique section corresponding to $\mathcal{O}_{Y}(1)$, and put $A_{Y}=T+m f^{*} H_{V \times W}$. Since $-K_{V \times W} \sim_{\mathbb{Q}} p_{V}^{*} H_{V}$, we obtain $K_{Y}+T+A_{Y}+f^{*} p_{V}^{*} H_{V} \sim_{\mathbb{Q}} 0$. By construction, we also see that $A_{Y}, A_{Y}+f^{*} p_{V}^{*} H_{V}$ and $A_{Y}+f^{*} p_{W}^{*} H_{W}$ are all semi-ample, Y is smooth, and the pair (Y, T) is a log canonical pair. Let $g: Y \rightarrow X, g_{V}: Y \rightarrow X_{V}$ and $g_{W}: Y \rightarrow X_{W}$ be contractions induced by $A_{Y}, A_{Y}+f^{*} p_{V}^{*} H_{V}$ and $A_{Y}+f^{*} p_{W}^{*} H_{W}$, respectively. These morphisms are isomorphisms outside T. Furthermore, the induced birational maps $\pi_{V}: X_{V} \rightarrow X$ and $\pi_{W}: X_{W} \rightarrow X$ are morphism. We have constructed the following diagram.

By construction, the morphisms π_{V} and π_{W} are small birational morphisms. Then the induced birational map $X_{V} \rightarrow X_{W}$ is small.

Put $H_{X_{V}}=g_{V *} f^{*} p_{V}^{*} H_{V}$ and $H_{X_{W}}=g_{W *} f^{*} p_{W}^{*} H_{W}$. Then it follows that $f^{*} p_{V}^{*} H_{V}=$ $g_{V}^{*} H_{X_{V}}$ and $f^{*} p_{W}^{*} H_{W}=g_{W}^{*} H_{X_{W}}$. Since H_{V} and H_{W} are ample, both $H_{X_{V}}$ and $H_{X_{W}}$ are semi-ample, and contractions induced by $H_{X_{V}}$ and $H_{X_{W}}$ are morphisms $h_{V}: X_{V} \rightarrow V$ and $h_{W}: X_{W} \rightarrow W$ satisfying $p_{V} \circ f=h_{V} \circ g_{V}$ and $p_{W} \circ f=h_{W} \circ g_{W}$, respectively. Then $H_{X_{V}}=h_{V}^{*} H_{V}$ and $H_{X_{W}}=h_{W}^{*} H_{W}$.

We have constructed the following diagram

and \mathbb{Q}-Cartier divisors

$$
\begin{array}{ll}
\text { - } H_{V} \sim_{\mathbb{Q}}-K_{V}, & \bullet H_{X_{V}}=g_{V *}\left(p_{V} \circ f\right)^{*} H_{V}, \\
\text { - } H_{W}, & \bullet H_{X_{W}}=g_{W *}\left(p_{W} \circ f\right)^{*} H_{W}, \quad \text { and } \\
\text { - } A_{Y}=T+m\left(p_{V} \circ f\right)^{*} H_{V}+m\left(p_{W} \circ f\right)^{*} H_{W}
\end{array}
$$

satisfying

- Y is smooth and (Y, T) is a \log canonical pair,
- $K_{Y}+T+A_{Y}+\left(p_{V} \circ f\right)^{*} H_{V} \sim_{\mathbb{Q}} 0$, and
- $\left(p_{V} \circ f\right)^{*} H_{V}=g_{V}^{*} H_{X_{V}}$ and $\left(p_{W} \circ f\right)^{*} H_{W}=g_{W}^{*} H_{X_{W}}$.

By [H) Proposition 4.2], the followings hold true.
(i) The pair $\left(X_{W}, 0\right)$ is \mathbb{Q}-factorial Kawamata log terminal pair,
(ii) the equality $\operatorname{dim} H^{p}\left(X_{W}, \mathcal{O}_{X_{W}}\right)=\operatorname{dim} H^{p}\left(W, \mathcal{O}_{W}\right)$ holds for every $p>0$, and
(iii) the variety X_{V} is \log canonical Fano.

Since X_{V} is log canonical Fano, there is a \mathbb{Q}-divisor $\Delta_{X_{V}} \geq 0$ on X_{V} such that $K_{X_{V}}+$ $\Delta_{X_{V}} \sim_{\mathbb{Q}} 0$ and the pair ($X_{V}, \Delta_{X_{V}}$) is a log canonical pair. Let $\Delta_{X_{W}}$ be the birational transform of $\Delta_{X_{V}}$ on X_{W}. Then $K_{X_{W}}+\Delta_{X_{W}} \sim_{\mathbb{Q}} 0$ and $\left(X_{W}, \Delta_{X_{W}}\right)$ is a log canonical pair.

We set $\left(X_{1}, \Delta_{1}\right)=\left(X_{W}, \Delta_{X_{W}}\right)$ and $\left(X_{2}, \Delta_{2}\right)=\left(X_{V}, \Delta_{X_{V}}\right)$. Then X_{1} and X_{2} are projective, $K_{X_{1}}+\Delta_{1}$ and $K_{X_{2}}+\Delta_{2}$ are \mathbb{Q}-linearly trivial, and there is a small birational map $\phi: X_{1} \rightarrow X_{2}$. We show that $\left(X_{1}, \Delta_{1}\right)$ and $\left(X_{2}, \Delta_{2}\right)$ satisfy the conditions of Theorem 3.7 Firstly, it is clear by construction that $\phi_{*} \Delta_{1}=\Delta_{2}$ which is the first condition of Theorem 3.7 Secondly, by (ii), we have $\operatorname{dim} H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\right)=\operatorname{dim} H^{1}\left(W, \mathcal{O}_{W}\right)=1$. On the other hand, by (iii) and [F. Theorem 8.1] (or [F. Theorem 6.3 (ii)]), we have $\operatorname{dim} H^{1}\left(X_{2}, \mathcal{O}_{X_{2}}\right)=0$. Thus

$$
\operatorname{dim} H^{1}\left(X_{1}, \mathcal{O}_{X_{1}}\right) \neq \operatorname{dim} H^{1}\left(X_{2}, \mathcal{O}_{X_{2}}\right)
$$

which is the third condition of Theorem 3.7. Thirdly, we pick a non-torsion $M \equiv 0$ on W and put $D=h_{W}^{*} M$. If $\phi_{*} D$ is \mathbb{Q}-Cartier, then $\phi_{*} D \equiv 0$, so $\phi_{*} D \sim_{\mathbb{Q}} 0$ by [\mathbb{F}, Theorem 13.1]. Then $D \sim_{\mathbb{Q}} 0$, hence $M \sim_{\mathbb{Q}} 0$ which contradicts our choice of M. Therefore, D satisfies the fourth condition of Theorem 3.7 . This also shows that X_{2} is not \mathbb{Q}-factorial. Finally, X_{W} is \mathbb{Q}-factorial by (i), and if X_{2} has a small \mathbb{Q}-factorialization $\tilde{X} \rightarrow X_{2}$ then the induced birational map $X_{1} \rightarrow \tilde{X}$ is small, so $\rho\left(X_{1}\right)=\rho(\tilde{X})$. Since $\tilde{X} \rightarrow X_{2}$ is not isomorphism, we have $\rho(\tilde{X})>\rho\left(X_{2}\right)$. Furthermore, by explicit computations of the Picard numbers, we have $\rho(Y)=3, \rho\left(X_{1}\right)=\rho\left(X_{2}\right)=2$ and $\rho(X)=1$. Therefore, $\rho\left(X_{1}\right)=\rho(\tilde{X})>\rho\left(X_{2}\right)=\rho\left(X_{1}\right)$, a contradiction. So X_{1} is \mathbb{Q}-factorial, but X_{2} does not have any small \mathbb{Q}-factorialization.

The above construction of the diagram

is an interesting example of \log canonical flip (see [H, Remark 4.5]). Indeed, the following properties hold.

- $\operatorname{dim} H^{1}\left(X_{V}, \mathcal{O}_{X_{V}}\right)=0 \neq 1=\operatorname{dim} H^{1}\left(X_{W}, \mathcal{O}_{X_{W}}\right)$, and
- X_{V} is \log canonical Fano but X_{W} is not even of \log canonical Fano type, i.e., there is no effective \mathbb{R}-divisor B_{W} on X_{W} such that (X_{W}, B_{W}) is a log canonical pair and $-\left(K_{X_{W}}+B_{W}\right)$ is ample.

Acknowledgments. The author would like to express his gratitude to the organizers Atsushi Ito, Hirokazu Nasu, and Hiroshi Sato for giving him the opportunity to talk at Kinosaki Algebraic Geometry Symposium 2020. The author was supported by JSPS KAKENHI Grant Number JP16J05875, JP19J00046.

References

[B1] C. Birkar, On existence of log minimal models, Compos. Math. 146 (2010), no. 4, 919-928.
[B2] C. Birkar, Existence of log canonical flips and a special LMMP, Publ. Math. Inst. Hautes Études Sci. 115 (2012), no. 1, 325-368.
[BCHM] C. Birkar, P. Cascini, C. D. Hacon, J. M ${ }^{c}$ Kernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405-468.
[F] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727-789.
[HX] C. D. Hacon, C. Xu, Existence of log canonical closures, Invent. Math. 192 (2013), no. 1, 161-195.
[H] K. Hashizume, Relations between two log minimal models of log canonical pairs, to appear in Internat. J. Math.
[HH] K. Hashizume, Z. Hu, On minimal model theory for log abundant lc pairs, J. Reine Angew. Math., 767 (2020), 109-159.
[K] Y. Kawamata, flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 419-423.

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan

E-mail address: hkenta@ms.u-tokyo.ac.jp

