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1. Introduction

Let X be a normal Q-factorial klt projective variety over an algebraically closed
field k of characteristic zero. We say that a surjective endomorphism f : X Ñ X

over k is int-amplified if there exists an ample Cartier divisor H on X such that
f

˚
H ´ H is ample. For example, non-invertible polarized endomorphisms are int-

amplified. Admitting an int-amplified endomorphism imposes strong conditions
on the structure of X. Indeed, Nakayama [Nak02] proved that if X is a smooth
rational surface admitting a non-invertible surjective endomorphism, then X is toric.
Recently, Meng [Men17] proved the following theorem.

Theorem 1.1 ([Men17], cf. [MZ18a]). We assume that X has an int-amplified
endomorphism. There exists a quasi-étale finite cover µ : rX Ñ X, that is, µ is an
étale in codimension one finite morphism such that the albanese morphism alb rX is
a fiber space whose general fiber is rationally connected.

Following the above results, we discuss the next question.

Question 1.2 (cf. [MZ18b, Question 6.6]). We assume that X has an int-amplified
endomorphism. After replacing with a quasi-étale finite cover, is a general fiber of
the albanese morphism of X toric? In particular, if X is smooth and rationally
connected, then is X toric?

First, we recall the notion of Fano type. Given a projective morphism Z Ñ B of
normal varieties, we say that Z is of Fano type over B if there exists an e↵ective
Q-Weil divisor D on Z such that pZ,Dq is klt and ´pKZ ` Dq is ample over B (see
§ 2 for the details). When B is a point, we simply say that Z is of Fano type. We
note that if Z is of Fano type over B, then a general fiber is of Fano type. For
example, toric varieties are of Fano type and projective bundles over a variety B

are of Fano type over B. Zhang [Zha06] and Hacon-Mckernan [HM07] proved that
varieties of Fano type are rationally connected. On the other hand, smooth and
rationally connected varieties are not necessarily of Fano type in general. Hence the
following theorem strengthens Theorem 1.1 and gives a partial answer to Question
1.2.

Theorem 1.3. We assume that X has an int-amplified endomorphism. There exists
a quasi-étale finite cover µ : rX Ñ X such that the albanese morphism alb rX : rX Ñ A

is a fiber space and rX is of Fano type over A.

Furthermore, ifX is smooth and rationally connected, then rX has to coincide with
X and A has to coincide with a point. Hence, as a corollary of Theorem 1.3, we
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obtain the following result, which gives an a�rmative answer to [BG17, Conjecture
1.2] in the smooth and rationally connected case.

Corollary 1.4. We assume that X has an int-amplified endomorphism. If X is
smooth and rationally connected, then it is of Fano type.

2. Key example

Before explaining the proof of Theorem 1.3, we observe the following example,
which appears in [MY19, Section 7].

Example 2.1. Let E be an elliptic curve and rms a multiplication by m for all
integers m. Since rms is r´1s-equivariant, we obtain the following commutative
diagram

E
µ
//

rms
✏✏

P1

h
✏✏

E
µ
// P1

,

where µ is the quotient map by r´1s and h is the endomorphism induced by rms.
Let Q1, . . . , Q4 be the 2-torsion points on E and P1 “ µpQ1q, . . . , P4 “ µpQ4q. Let

� “ 1

2
pP1 ` P2 ` P3 ` P4q,

then pP1
,�q satisfies the condition

Rh,� :“ Rh ` � ´ h
˚� • 0,

indeed, Rh,� “ 0. We note that

Rh,� „ pKP1 ` �q ´ h
˚pKP1 ` �q,

thus we regard Rh,� as the ramification divisor of the pair pX,�q with respect to h.
Pairs with e↵ective ramification divisor play important role of the proof of Theorem
1.3.

Furthermore, we consider the following commutative diagram

g

œ P1 ˆ E
r⇡
//

rµ
✏✏

E ö rms
µ

✏✏

f

œ

X ⇡
// P1 ö h,

where rµ is the quotient by the involution

prx : ys, aq fiÑ pry : xs,´aq,
g is the int-amplified endomorphism with

gprx : ys, aq “ prxm : yms,maq,
and ⇡ is the induced morphism. Then rµ is quasi-étale and ⇡ is a Mori fiber space.
We note that X is not of Fano type and P1 ˆ E is of Fano type over E, thus this
diagram is desire one in Theorem 1.3. In other words, if ⇡ appear in the steps of
MMP, we have to take the cover µ and rµ.
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In order to take a cover we use the triviality of the ramification divisor of pP1
,�q.

Indeed, by Rh,� “ 0, we have

KP1 ` � „ h
˚pKP1 ` �q

and KP1 `� „Q 0. Since µ
˚pKP1 `�q „ 0, µ coincides with the index one cover of

the pair pP1
,�q.

Remark 2.2. In the above example, the ramification divisor Rf of f does not
contains the pullback ⇡

˚
Rh of the ramification divisor of h. Indeed, since Rg has

only horizontal components and rµ is quasi-étale, Rf has only horizontal component.
However, h has ramification points, thus the pullback of such a point is not contained
in Rf . This observation implies that it is di�cult to understand the relation between
the ramification divisors of an equivariant Mori fiber space and a base variety. On
the other hand, we see the relation between the ramification divisors of suitable
pairs, for example, we have Rf • ⇡

˚
Rh,� “ 0 in Example 2.1. It is one of the

motivations to consider the notion of ramification divisors of pair.

3. Sketch of proof of Theorem 1.3

Next, we briefly explain how to prove Theorem 1.3. First suppose that KX is not
pseudo-e↵ective. Running a minimal model program (MMP, for short) for X, we
obtain a birational map �0 : X 99K X

1 and a Mori fiber space ⇡0 : X 1 Ñ X1. Then
we construct an e↵ective Q-Weil divisor �1 on X1 as follows,

ordEp�1q “ mE ´ 1

mE

for any prime divisor E on X1, where mE is a positive integer satisfying ⇡
˚
0E “

mEF for some prime divisor F on X
1. We note that this divisor coincides with

� in Example 2.1 if ⇡0 is ⇡ in the example. Then the birational map X 99K
X1 is equivariant under f up to replacing f into some power of f . The induced
endomorphism is denoted by f1. Then the ramification divisor Rf1,�1 of the pair
pX1,�1q with respect to f1 is e↵ective (see Example 2.1). Next, we further assume
that KX1 ` �1 is not pseudo-e↵ective. Running an MMP for pX1,�1q, we obtain
a birational map �1 : X1 99K X

1
1 and a pKX1 ` �1q-Mori fiber space ⇡1 : X 1

1 Ñ X2.
Then we construct an e↵ective Q-Weil divisor �2 on X2 as follows,

ordEp�2q “ mE ´ 1 ` ordF p�1
1q

mE

for any prime divisor E on X2, where F is a prime divisor on X
1
1 satisfying ⇡

˚
1E “

mEF with positive integer mE. Then this pair also has e↵ective ramification divisor.
Repeating such a process, we obtain the following sequence of rational maps and
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morphisms

X
�0

// X
1

⇡0
✏✏

pX1,�1q �1
// pX 1

1,�
1
1q

⇡1
✏✏

pX2,�2q �1
//

...
�r
// pX 1

r,�
1
rq

⇡r
✏✏

pW,�W q,
where KW ` �W is pseudo-e↵ective. If KX or KX1 ` �1 is pseudo-e↵ective, we
define pW,�W q as pX, 0q or pX1,�1q, respectively. After iterating f , we prove that
there exist an f -equivarient birational map X 99K Y and a sequence of Mori fiber
spaces from Y to W such that the following diagram commutes

X
�0

// X
1

⇡0
✏✏

// Y

✏✏

pX1,�1q �1
// pX 1

1,�
1
1q

⇡1
✏✏

Y1

✏✏

pX2,�2q �1
//

...

...

✏✏
�r
// pX 1

r,�
1
rq

⇡r
✏✏

pW,�W q.
Since the above rational maps and morphisms are f -equivariant, W has an int-

amplified endomorphism h and R�W :“ Rh ` �W ´ h
˚�W is an e↵ective divisor,

where Rh is the ramification divisor of h. The e↵ectivity of R�W implies that
´pKW `�W q is pseudo-e↵ective (see [Men17]), hence KW `�W is Q-linearly trivial.
Then we prove that W has a finite cover by an abelian variety A. Moreover we can
lift this cover to X as follows,

rX
µ

✏✏

r⇡
// A

✏✏

X ⇡
// W,

where µ is a quasi-étale finite morphism, and in particular, r⇡ and ⇡ are morphisms.
Finally, we prove that rX is of Fano type over A. Note that Y is of Fano type over

W . Since being of Fano type over W is invariant under every equivariant birational
map with respect to an int-amplified endomorphism, X is also of Fano type over
W . Moreover, since µ is quasi-étale, rX is also of Fano type over A. In conclusion,
we obtain Theorem 1.3.
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