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Abstract. This is a brief report of the author’s talk at the Kinosaki Algebraic
Geometry Symposium 2020 on his joint work with Y. Nakamura and Y. Gongyo.
Complements for generalized Fano pairs play an important role a series of pa-
pers by Birkar proving the BAB Theorem. Applying ACC for generalized lct
and perturbing the coefficients the boundaries Q-linearly, we generalize Birkar’s
construction of bounded complements for generalized lc Fano pairs.

1. Introduction

Throughout this paper, we work over an uncountable algebraically closed field of
characteristic 0, for instance, the complex number field C.

In [1], Birkar showed the following existence of bounded complements for gener-
alized Fano pairs.

Theorem 1.1. [1, Theorem 1.10] Let d and p be natural numbers and I ∈ [0, 1] be a
finite set of rational numbers. Then there exists a natural number n depending only
on d, p and I satisfying the following. Assume (X,B+M) is a generalized pair such
that

• (X,B +M) is generalized lc of dimension d,
• the coefficients of B ∈ I and pM ′ is Cartier,
• X is of Fano type, and
• −(KX +B +M) is nef.

Then there is a strong n-complement KX +B+ +M of KX +B +M .

Following [1], Birkar proved the following Theorem in [2].

Theorem 1.2. Fix a positive integer d and a positive real number ε. The projective
varieties X satisfying

(1) dimX = d,
(2) there exists a boundary B such that (X,B) is ε-lc, and
(3) KX +B ∼R 0 and B is big,

form a bounded family.

Theorem 1.2 was known as the Borisov-Alexeev-Borisov (BAB) Conjecture for
decades before Birkar proved it.

Using ACC for generalized lct (Theorem 2.5) and Theorem 1.2, Filipazzi and
Moraga generalized Theorem 1.1 into the following theorem in [4].

Theorem 1.3. [4, Theorem 1.3]
Fix a natural number d, a closed DCC set of rational numbers Λ ⊆ [0, 1] ∩ Q, a

natural number p, and a non-negative real number ε. Then there exists a natural
number n depending only on d, Λ, p and ε, such that if (X,B +M) is a generalized
ε-lc generalized pair of dimension d, X is of Fano type, the coefficients of B ∈ Λ,
−(KX + B + M) is nef, pM ′ is Cartier, and either Λ is finite, or M ′ = 0 or
ε = 0, then there exists a generalized strong ε-lc n-complement KX + B+ + M of
KX +B +M .
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The original definition of boundedness of (generalized) complements is only for
pairs or generalized pairs with rational coefficients of the boundaries. Han, Liu
and Shokurov generalized this definition for usual pairs with boundaries of real
coefficients, and showed the following theorem.

Theorem 1.4. [5, Theorem 1.3]
Fix a natural number d and a closed DCC set of non-negative real numbers Λ ⊆

[0, 1] ∩ Q. Then there exists a natural number n depending only on d and Λ, such
that if (X,B) is an lc pair of dimension d, X is of Fano type, the coefficients of
B ∈ Λ and −(KX +B) is nef, then there exists a strong lc n-complement KX +B+

of KX +B.

We remark that in [5], generalized pairs are not considered.
Combining the theorems above, we have the following theorems, which are the

main results of this article.

Theorem 1.5. Fix a natural number d, a finite set of real numbers I ⊆ [0, 1], and
a non-negative real number ε. Then there exists a natural number n and a finite set
Γ ⊆ [0, 1] depending only on d, I and ε, such that if (X,B+M) is a generalized ε-lc
generalized pair of dimension d, X is of Fano type, the coefficients of B and M ′ ∈ I
and −(KX+B+M) is nef, then there exists a strong generalized (ε, n,Γ)-complement
KX +B+ +M of KX +B +M . In particular, (X,B +M) is R-complementary.

Theorem 1.6. Fix a natural number d, a DCC set of real numbers Λ ⊆ [0, 1], and
a non-nagetive real number ε. Suppose that either

• ε = 0,
• M = 0, or
• d = 2.

Then there exists a natural number n and a finite set Γ ⊆ [0, 1] depending only on d,
Λ and ε, such that if (X,B +M) is a generalized ε-lc generalized pair of dimension
d, X is of Fano type, the coefficients of B and M ∈ Λ and −(KX +B +M) is nef,
then there exists a strong (ε, n,Γ)-complement KX +B+M+ of KX +B +M .

2. Preliminaries

We first define generalized pairs and their singularities.

2.1. Generalized Pairs.

Definition 2.1. A generalized pair (X,B +M) consists of

• a normal variety X with a projective morphism X → Z,
• an effective R-divisor B on X, and
• a b-R-Cartier b-divisor over X represented by some projective birational
morphism ϕ : X ′ → X and R-Cartier divisor M ′ on X ′

such that M ′ is nef over Z and that KX +B +M is R-Cartier, where M := ϕ∗M ′.
We call the sum B +M the generalized boundary of (X,B +M).

Since M ′ is viewed as a b-divisor over X, we may always replace it by its pullback
on any birational model over X ′ and replace X ′ accordingly without changing the
generalized pair (X,B + M). In this article, the base variety Z will always be
assumed to be a point and omitted.

2.2. Generalized Log Discrepancies.

Definition 2.2. For a prime divisor E over X, we define the generalized log dis-
crepancy aE(X,B + M) as follows. Possibly replacing X ′ by a higher model, we
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may assume that ϕ is a log resolution of (X,B) and that E is a divisor on X ′. We
define an R-divisor B′ on X ′ by

KX′ +B′ +M ′ = ϕ∗(KX +B +M).

Then we define aE(X,B + M) := 1 − coeffE B′. The image ϕ(E) is called the
center of E on X and we denote it by cX(E). We define the generalized minimal
log discrepancy mld(X,B +M) as

mld(X,B +M) := inf
E

aE(X,B +M),

where the infimum is taken over all prime divisors E overX. We say that (X,B+M)
is generalized log canonical (generalized lc for short) if mld(X,B + M) ≥ 0 holds.
For ε ∈ R≥0 we say that (X,B +M) is generalized ε-lc if mld(X,B +M) ≥ ε holds.

We remark that a (usual) pairs can be view as a generalized pair with M = 0. In
this way, Definition 2.2 extends the definition of the singularities for pairs.

2.3. Fano pairs. A projective pair (X,B) is a Fano (resp. weak Fano) pair if it is
lc and −(KX +B) is ample (resp. −(KX +B) is nef and big). A projective variety
X is called Fano, if (X, 0) is Fano. It is called Q-Fano if it is klt and Fano. It is
called of Fano type if (X,B) is klt weak Fano for some boundary B.

2.4. Bounded pairs. A collection of varieties D is said to be bounded (resp. bi-
rationally bounded) if there exists h : Z → S a projective morphism of schemes of
finite type such that each X ∈ D is isomorphic (resp. birational) to Zs for some
closed point s ∈ S.

2.5. Descending Chain Condition (DCC) and Ascending Chain Condition
(ACC).

Definition 2.3. A set of real numbers S is said to satisfy descending chain con-
dition (DCC for short) if for every non-empty subset S of S , there is a minimum
element in S. A set of real numbers S is said to satisfy ascending chain condition
(ACC for short) if −S satisfies DCC. S is called a DCC (resp. ACC) set if it
satisfies DCC (resp. ACC).

We then define the generalized log canonical thresholds.

Definition 2.4. Suppose that (X,B +M) is generalized lc. Let D be an effective
R-divisor on X and N ′ be an R-Cartier divisor on X ′. We assume that N ′ is nef
over Z, and D +N is R-Cartier where N := ϕ∗N ′. Then for each t ∈ R≥0, the pair(
X, (B + tD) + (M + tN)

)
becomes a generalized pair. We define the generalized lc

threshold of D +N with respect to (X,B +M) as

sup
{
t ∈ R≥0

∣∣ (X, (B + tD) + (M + tN)
)
is generalized lc

}
.

To construct bounded strong complements, we will need the following theorem.

Theorem 2.5 ([3]). Let d be a positive integer and let I ⊂ [0,+∞) be a DCC subset.
Then there exists an ACC set J with the following conditions: if X,B,M,D and N
satisfy

• (X,B +M) is a generalized pair with dimX = d,
•
(
X, (B +D) + (M +N)

)
is also a generalized pair, and

• B,D ∈ I and M,N ∈ I,

then the the generalized lc thresholds of D +N with respect to (X,B +M) belongs
to J .

Theorem 2.5 is a generalization of its original version in [6] dealing with usual
pairs.

The following theorem follows from Theorem 2.5 (c.f.[4] and [5]).
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Theorem 2.6. Fix d ∈ N and a closed DCC set of real numbers Λ ⊆ [0,∞)
Then there exists a discrete subset Λ0 ⊆ Λ and a projection function (i.e. g◦g = g)

g : Λ → Λ0 which preserves the odder ”≤” on Λ depending only on d, Λ and ε, such
that if (X,B +M) is a generalized lc generalized pair of dimension d satisfying the
following conditions

• we can write B =
∑

j bjBj and M ′ =
∑

j mjM ′
j for some Q-Cartier Weil

divisors Bj and some Cartier divisors M ′
j with their push-forwards Mj on

X being Q-Cartier, and
• bj ∈ Λ and mj ∈ Λ for all j,

then (X, g(B +M)) := (X,
∑

i g(bi)Bi +
∑

i g(mi)Mi) is generalized lc.

2.6. Complements. We now define complements for generalized pairs

Definition 2.7. [1, 2.18] Let (X,B + M) be generalized pair with coefficients of
B ∈ [0, 1]. Let n be a natural number. An (generalized) n-complement (resp. R-
complement) of KX +B+M is of the form KX +B++M (resp. (KX +B++M+),
such that

• (X,B+ +M) is generalized lc (resp. (X,B+ +M+) is generalized lc),
• n(KX + B+ + M) ∼ 0 and nM ′ is Cartier (resp. KX + B+ + M+ ∼R 0),
and

• n(B+) ≥ n{B}+ ,(n+ 1)B- (resp. B+ ≥ B and M ′+ −M ′ is nef).

An n-complement is strong if moreover B+ ≥ B. Let ε be a non-negative real num-
ber. A complement KX + B+ + M+ is called (generalized) ε-lc or klt if the corre-
sponding generalized pair (X,B++M+) is. We say (X,B+M) is R-complementary
if there exits an R-complement of KX +B +M .

We remark that in the origin version of Definition 2.7, n-complements are defined
only when M is of rational coefficients. We extent this definition in order to deal
with generalized pairs with possible irrational coefficients. In the following, we will
consider only strong complements. We remark that if n(KX +B++M) ∼ 0, nM is
integral and B+ ≥ B, then nB+ ≥ n{B}+ ,(n+ 1)B- ([1, 6.1]).

The following definition of strong (generalized) (ε, n,Γ)-complements for general-
ized pairs is modified from [5, Definition 1.9] for generalized pairs.

Definition 2.8. Let (X,B +M) be a generalized pair, ε a non-negative real num-
ber and Γ = {a1, a2, ..., ak} ⊆ [0, 1] a finite set such that

∑k
i=1 ai = 1. A strong

(generalized) (ε, n,Γ)-complement of KX +B +M is of the form KX +B+ +M+,
such that

• (X,B+ +M+) is an R-complement of KX +B +M ,
•
∑k

i=1 ai(B
+
i +M+

i ) = B++M+ for some generalized boundaries B+
i +M+

i ,
and

• for each i = 1, 2, ..., k, KX +B+
i +M+

i is an ε-lc n-complement of itself.

An (n,Γ)-complement means a (0, n,Γ)-complement.

3. Complements for Generalized Pairs with Real Coefficients

In this section we introduce our main tools and give a sketch of proof of our main
results. First, we have the following theorem of uniform perturbation preserving lc
property.

3.1. Uniform Perturbations Perserving Generalized Log Canonicity.

Theorem 3.1. Fix d ∈ Z>0. Let r1, . . . , r! be positive real numbers and let r0 = 1.
Assume that r0, r1, . . . , r! are Q-linearly independent. Let sB1 , . . . , s

B
cB : R!+1 → R

(resp. sM1 , . . . , sMcM : R!+1 → R) be Q-linear functions (that is, the extensions of

82



Q-linear functions from Q!+1 to Q by taking the tensor product ⊗QR). Assume
that sBi (r0, . . . , r!) ≥ 0 and sMj (r0, . . . , r!) ≥ 0 for each i and j. Then there exists
a positive real number ε > 0 such that the following holds: For any Q-Gorenstein
normal variety X of dimension d, a birational contraction f : X ′ → X, Q-Cartier
effective Weil divisors B1, . . . , BcB on X, and nef Cartier divisors M ′

1, . . . ,M
′
cM on

X ′, if the generalized pair
(
X,

∑

1≤i≤cB

sBi (r0, . . . , r!)Bi +
∑

1≤i≤cM

sMi (r0, . . . , r!)Mi

)

is generalized lc, then the pair
(
X,

∑

1≤i≤cB

sBi (r0, . . . , r!−1, t)Bi +
∑

1≤i≤cM

sMi (r0, . . . , r!−1, t)Mi

)

is also generalized lc for any t ∈ [r! − ε, r! + ε].

Applying Theorem 3.1 inductively we have the following theorem.

Theorem 3.2. Let d ∈ N and let I ⊂ [0,+∞) be a finite set. Then there exists
δ > 0 such that every Q-linear function f : SpanQ I → Q with max{|f(a)−a|}a∈I ≤ δ
satisfies the following. If (X,B +M) is a generalized lc pair such that

• dimX = d,
• B =

∑
i biBi for some bi ∈ I and effective Cartier divisor Bi, and

• M ′ =
∑

imiM ′
i for some mi ∈ I and some nef Cartier divisor M ′

i ,

then (X, f(B +M)) := (X,
∑

i f(bi)Bi +
∑

i f(mi)Mi) is also generalized lc.

3.2. Discreteness of Generalized Log Discrepancies.

Theorem 3.3. Let d, r ∈ Z>0 and let I ⊂ [0,+∞) be a finite set. Let P (d, r, I) be
the set of all generalized lc pairs (X,B +M) with the following conditions:

• dimX = d,
• rKX is Cartier,
• B =

∑
i biBi for some bi ∈ I and effective Cartier divisor Bi.

• M =
∑

imiMi for some mi ∈ I and divisors Mi such that Mi = f∗M ′
i for

some birational contraction f : X ′ → X and a nef Cartier divisor M ′
i .

Then the following set

Bgen(d, r, I) :=

{
aE(X,B +M)

∣∣∣∣
(X,B +M) ∈ P (d, r, I),
E is a divisor over X.

}

is a discrete subset of [0,+∞).
In particular, the set

A′
gen(d, r, I) :=

{
mld(X,B +M)

∣∣ (X,B +M) ∈ P (d, r, I).
}

is a discrete subset of [0,+∞).

Theorem 3.1 and Theorem 3.3 was first showed by Nakamura in [7] for usual pairs.

3.3. Uniform Perturbations Perturbing MLD Consistently. Using Theorem
3.2 and Theorem 3.3, by the linearity of log discrepancies with respect to the coef-
ficients of the generalized boundaries, we have the following lemma immediately.

Lemma 3.4. Let d, r ∈ Z>0 and let I ⊆ [0, 1] be a finite subset. Let P (d, r, I) be
the set of generalized lc pairs defined in Theorem 3.3. Let f : SpanQ I → Q be
any Q-linear function. Then for any (X,B + M) ∈ P (d, r, I), and any divisor E
over X, aE(X,B + M) ∈ SpanQ I and f(aE(X,B + M)) = aE(X, f(B) + f(M)).
For any fixed positive real number ε ∈ SpanQ I, there is a positive real number δ,
depending only on d, r, ε and I such that if |f(a) − a| ≤ δ for every a ∈ I and
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mld(X,B + M) = ε, then f(mldx(X,B + M)) = mld(X, f(B) + f(M)) for any
x ∈ X. Moreover, for any divisor F on X, F computes mldx(X, f(B) + f(M)) if
and only if it computes mld(X,B +M).

Sketch of Proof of Theorem 1.5. We deal with the cases when ε > − and when ε = 0
respectively.

Assume ε > 0 first. By Theorem 1.2, we may assume that X is in a fixed bounded
family. So there is a fixed natural number r such that rD is Cartier for all prime
divisor D on X. Applying Lemma 3.4 on Theorem 1.3, we can show the theorem in
this case.

Now we assume that ε = 0. Applying Theorem 3.2 on Theorem 1.1, we can show
the theorem in this case. !
Conjecture 3.5. Fix a natural number d, a closed DCC set of real numbers Λ ⊆
[0,∞), and a non-negative real number ε.

Then there exists a discrete subset Λ0 ⊆ Λ and a projection function (i.e. g◦g = g)
g : Λ → Λ0 which preserves the odder ”≤” on Γ depending only on d, Λ and ε, such
that if (X,B+M) is a generalized ε-lc generalized pair of dimension d satisfying the
following conditions

• X is of Fano type,
• we can write B =

∑
j bjBj and M ′ =

∑
j mjM ′

j for some Q-Cartier Weil
divisors Bj and some Cartier divisors M ′

j with their push-forwards Mj on
X being Q-Cartier,

• bj ∈ Λ and mj ∈ Λ for all j, and
• −(KX +B +M) is nef

then (X, g(B) + g(M)) is ε-lc and −(KX + g(B) + g(M)) is nef. Moreover, there
exists a sequence of projection functions gk : Λ → Λ with discrete images, such that
gk(λ) − λ ∈ [0, 1k ] for any λ ∈ Λ, and we can take g above to be gk for any k large
enough.

Remark 3.6. We list the known cases of Conjecture 1.3.
The case when ε > 0 and M ′ = 0 is shown in the proof of [4, Theorem 1.3]. The

case when ε = 0 is shown in [4, Lemma 3.2]. Note that in [4], Λ ⊆ Q is assumed. We
observe from the proof that if we only want to show Conjecture 3.5, the rationality
assumption is not used and can be removed.

The case when M ′ = 0 and ε = 0 is shown separately in [5, Theorem 5.20, (6)].
We can show the case when d = 2 by applying Theorem 1.2 and the following

lemma.

Lemma 3.7. Fix integers n > 0 and c ≥ 0. Then there exists a positive number N
depending on n and c, such that the following holds.

Let (X,D) be a log smooth surface. Let ϕ : X ′ → X be a smooth birational model
over X. We can write ϕ∗(D) =

∑
i eiEi +D, where D is the strict transform of D

and Ei are the exceptional divisors of ϕ. Suppose A =
∑

i aiEi +D is an effective
nef Cartier divisor on X ′, and (D +H)2 ≤ n for some ample Cartier divisor H on
X. Suppose ai ≥ c for every i and aj = c for some aj. Then there exists ai = c
such that ei < N .

Proof. The proof is straightforward and is omitted. !
Proof of Theorem 1.6. Combining the know cases of Conjecture 3.5 and Theorem
1.5, the theorem follows. !
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