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Abstract

The original McKay correspondence was observed by John McKay
for finite subgroup G of SL(2,C) and developed as a geometric corre-
spondence with the quotient singularity C2

/G. In Kinosaki, the author
introduced the McKay correspondence in dimension three and showed
recent progress and open problems with some examples.

1 Introduction

In this section, we introduce McKay correspondence which was originally

observed by McKay in 1979 [20]. This is a bijective correspondence between

the exceptional divisors of the minimal resolution of simple singularities and

non-trivial representations of the group G ⇢ SL(2,C).

(i) Let G be a finite subgroup of SL(2,C) and X := C2
/G. Then we call

the singularities of X as simple singularities and there is a unique minimal

resolution of X,

f : eX �! X.

Then we can see the correspondence between the exceptional divisors and

the non-trivial representations:

1) Take irreducible representations of the group G up to the isomorphism

⇢1, · · · , ⇢k

i.e., ⇢i : G 7! GL(ni,C), and let ⇢ be a regular representation of G in

SL(2,C).
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2) Take tensor product:

⇢i ⌦ ⇢ =
X

aij⇢j , (1  i, j  k).

Then we obtain the coe�cients aij .

3) Construct the extended Dynkin diagram by the following manner:

(i) If aij = 0, then there are no edge between vertices i and j.

(ii) If aij = 1, then there are an edge between vertices i and j.

If we forget one vertex which corresponds to the trivial representation,

then we get a dual graph e� of the exceptional divisors of the minimal reso-

lution.

Theorem 1 (McKay[20]). e� is isomorphic to the a�ne Dynkin diagram of

an irreducible root system. This root system is of type An if G is cyclic of

order n+1, of type Dn if G is binary dihedral of order 4(n� 2), and of type

E6 (resp. E7 resp. E8) if G is the binary tetrahedral (resp. octahedral resp.

icosahedral) group.

(ii) Gonzalez-Springberg and Verdier construct a direct geometric cor-

respondence between the set Irr(G) of irreducible representations of G and

the set Irr(D) of irreducible components of the exceptional divisor D in

the minimal resolution f : eX ! X of the singularity of X = C2
/G [9].

Let ⇢ : G ! GL(E) be a non-trivial irreducible representation of G. By

E ! C2, we denote the associated G-equivariant vector bundle on C2. So

the associated locally free sheaf on C2 is equal to OC2 ⌦C E with canonical

G-action. Since G acts freely on C2
� {0} and E is a G-vector bundle. E

defines a vector bundle E
0 on the quotient X � {0} = (C2

� {0})/G. Let
eE := f

⇤(E 0) be the pull-buck of this bundle on eX�D ⇠= X�{0}, and denote

by i : eX � D ! eX the inclusion map. If s is a global section of E , then s

induces a global section of E 0 and eE , so a defines a section ⇡(s) of the sheaf

i⇤(eE) on eX. Denote ⇡(E) or ⇡(⇢) the subsheaf of i⇤(eE) generated by the

sections ⇡(s).

Now the correspondence between the graph � and the resolution graph

of the singularity X is given by the first Chern classes of the sheaves ⇡(⇢).

Denote by Irr0(G) ⇢ Irr(G) the set of non-trivial irreducible representation

of G. Then

Theorem 2 (Gonzalez-Springberg and Verdier[9]). For each ⇢ 2 Irr0(G)

the sheaf ⇡(⇢) on eX is locally free of rank deg(⇢). There is a bijection
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� : Irr0(G) ! Irr(G) such that for all d 2 Irr(D)

c1 (⇡(⇢)) · d =

(
0 d 6= �(⇢)

1 d = �(⇢)

Furthermore

�(⇢i)�(⇢j) = aij ,

for all ⇢i, ⇢j 2 Irr0(G), ⇢i 6= ⇢j .

Artin and Verdier [1] proved this more generally with reflexive modules

and this theory was developed by Esnault and Knörrer ([7], [8]) for more

general quotient surface singularities. After Riemenchneider’s definition of

speciality [23], Wunram [28] constructed a nice generalized McKay corre-

spondence for any quotient surface singularities in 1988.

2 Three dimensional McKay correspondence

2.1 Existence of a crepant resolution

As an analogue of two dimensional McKay correspondence, let us consider fi-

nite subgroup G of SL(3,C). The quotient singularity C3
/G is canonical but

not terminal. Around 1985, Calabi-Yau manifold appeared in Super String

theory and they considered Orbifold Euler characteristic �(M,G). When

M = C3 and G is a finite subgroup of SL(3,C), �(C3
, G) = #{conjugacy

class of G} and Hirzebruch and Höfer conjectured existence of a crepant

resolution of C3
/G ([10]) and it was proved positively:

Theorem 3 (Markushevich[19, 2, 18], Roan[24, 25, 26], Ito[13, 14]). Let G

be a finite subgroup of SL(3,C). Then there exists a resolution of singulari-

ties ⇡ : eX �! C3
/G with ! eX ' O eX and �( eX) = ]{conjugacy classes of G}.

When a group G is abelian, the quotient C3
/G s a toric variety, whose

corresponding cone � is

� = {x1e1 + x2e2 + x3e3|xi � 0} in NR = R3
,

where N = Z3 + 1
r (a, b, c)Z and NR = N ⌦Z R. Toric crepant resolution can

be given by a triangulation of the triangle 4 with vertices {e1, e2, e3} and
1
r (a, b, c) is corresponding to g = diag(✏a, ✏b, ✏c) of G (✏ = r-th root of 1).
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Example 4. When G is a cyclic group of order 6 generated by a ma-

trix diag(✏, ✏2, ✏3) where ✏ is 6-th root of 1. It is called singularity of type
1
6(1, 2, 3). The triangle 4 can be drawn as follows and you can obtain crepant

resolution by subdivision of the triangle 4 with vertices e1, e2, e3,
1
6(1, 2, 3),

1
6(2, 4, 0),

1
6(3, 0, 3) and 1

6(4, 2, 0). And there are five crepant resolutions of

this quotient singularity.

Figure 1: crepant resolutions of 1
6(1, 2, 3)

2.2 G-Hilbert Scheme

For one quotient C3
/G, we can obtain several crepant resolutions in general.

In particular, we have one good projective crepant resolution, so-called G-

Hilbert scheme.

Definition 5. G-Hilbert scheme G-Hilb(Cn) is a set of G-invariant ideals

I in C[x1, · · · , xn] such that C[x1, · · · , xn]/I ⇠= C[G].

When n = 2, the G-Hilbert scheme G-Hilb(C2) is the minimal resolution

of C2
/G for G ⇢ GL(2,C). It was proved by Ito and Nakamura for G ⇢

SL(2,C)[15], Kidoh for cyclic G ⇢ GL(2,C) [17] and Ishii for any small

groups in GL(2,C) [11].
When n = 3, G-Hilb(C3) is a projective crepant resolution of C3

/G for

G ⇢ SL(3,C). It was proved by Nakamura for abelian groups [21] and by
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Bridgeland, King and Reid for general and they also showed ”Mukai implies

McKay”, that is, the McKay correspondence is a derived equivalence in [3]

The G-Hilbert scheme G-Hilb(Cn) is also a moduli space of G-clusters Z,

where Z is a G-invariant subscheme of Cn such that H0(OZ) = RG regular

representation as C[G] module. Moreover it is isomorphic toM✓(Q,R) which

is a moduli space of McKay quiver with relations where ✓ is 0-generated.

Then Craw and Ishii stated the following conjecture and proved it for

abelian groups in [4].

Conjecture 6 (Craw and Ishii [4]). For any finite subgroup G ⇢ SL(3,C),
all projective crepant resolutions is isomorphic to M✓, where ✓ is some GIT

stability parameter.

Theorem 7 (Craw and Ishii [4]). The above conjecture is true for abelian

subgroups of SL(3,C).

2.3 Reid’s recipe

When G is an abelian finite subgroup of SL(3,C), there is a recipe for

geometric correspondence, so-called Reid’s recipe ([22], [5]). This is a corre-

spondence between a set of non-trivial irreducible representations and a set

of exceptional divisors and curves.

Example 8. In case of 1
6(1, 2, 3), the corresponding representations ⇢i are

appear in the figure 2. ⇢5 corresponds to the exceptional divisor and each

⇢i (i = 1, 2, 3, 4) corresponds to an exceptional curves.

Figure 2: Reid’s recipe for 1
6(1, 2, 3)
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3 Next steps

As we saw, many examples can be seen by toric geometry and we can see the

geometric structure concretely. However, we would like to know more about

non-abelian cases, higher dimensional crepant resolutions and the McKay

correspondence.

3.1 Non-abelian cases

Even if G is non-abelian finite subgroup of SL(3,C), Ishii, Ito and Nolla

de Celis showed that an iterated G-Hilbert schemes ”Hilb of Hilb” is also a

moduli space which satisfies Conjecture 6 ([4]).

Theorem 9 (Ishii, Ito and Nolla de Celis [12]). Let G be a finite subgroup

of SL(3,C), N be the abelian normal subgroup of G. Then G/N -Hilb(N -

Hilb(C3) is a projective crepant resolution of C3
/G and isomorphic to a

moduli space M✓, where ✓ is some GIT stablity parameter.

By this theorem, we can check the conjecture partially, and there are

more crepant resolutions that are not ”Hilb of Hilb”. Moreover, when G is

a simple group, we cannot use this construction.

Example 10. In case 1
6(1, 2, 3), there are five crepant resolutions.One of

them is the G-Hilb(C3) and two of them are iterated G-Hilb(C3), they are Z2-

Hilb(Z3-Hilb(C3)) and Z3-Hilb(Z2-Hilb(C3)). The remaining two crepant

resolutions cannot be obtained as a G-Hilbert scheme or an iterated G-Hilbert

scheme. (cf. Figure 1)

When G in non-abelian, we would also like to know more about the

geometric correspondence like Reid’s recipe.

3.2 Higher dimensional cases

Existence of a crepant resolution is not known in general in higher dimension

even if G is abelian. Moreover, G-Hilbert schemes are not crepant resolution

in general.

Dais, Henk and Zieglar found some conditions to admit a crepant reso-

lutions for four dimensional Gorenstein abelian quotient singularities [6].

Recently, Kohei Saito and Yusuke Sato constructed higher dimensional

crepant resolutions using with Fujiki-Oka resolution [27].
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3.3 Reid’s recipe for non-abelian quotients

This part is a joint work with Ben Wormleighton and work in progress,

We show one example which gives a good geometric correspondence for a

non-ablelian quotient.

Example 11. Let G be a trihedral group generated by

0

@
✏ 0 0
0 ✏

2 0
0 0 ✏

4

1

A (✏7 = 1) and T =

0

@
0 1 0
0 0 1
1 0 0

1

A .

We can take the normal abelian subgroup N of type 1
7(1, 2, 4) and the

crepant resolution is unique. Then Reid’s recipe gives the geometric cor-

respondence between non-trivial irreducible representations and exceptional

divisors and curves as follows.

⇢1, ⇢2 and ⇢4 correspond to the exceptional curves and ⇢3, ⇢5 and ⇢6

corresponds to three exceptional divisors in the crepant resolution of C3
/N .

Figure 3: Reid’s recipe for 1
7(1, 2, 4)

To consider a crepant resolution of C3
/G, we can identify three curves

and three divisors and we have two more exceptional curves. On the other

hand, there are 2 three-dimensional irreducible representations for G which

are induced from N . Then the geometric correspondence for a crepant res-

olution of C3
/G become as follows.

One three dimensional representation ⇢1 � ⇢2 � ⇢4 corresponds to excep-

tional curve, the other three dimensional representation ⇢3 � ⇢5 � ⇢6 corre-

sponds to the exceptional divisor and there are two more one dimensional

irreducible representations which correspond to two other exceptional curves.
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