The McKay correspondence

Yukari Ito (Kavli IPMU) *

Abstract

The original McKay correspondence was observed by John McKay for finite subgroup G of $\mathrm{SL}(2, \mathbb{C})$ and developed as a geometric correspondence with the quotient singularity \mathbb{C}^{2} / G. In Kinosaki, the author introduced the McKay correspondence in dimension three and showed recent progress and open problems with some examples.

1 Introduction

In this section, we introduce McKay correspondence which was originally observed by McKay in 1979 [20]. This is a bijective correspondence between the exceptional divisors of the minimal resolution of simple singularities and non-trivial representations of the group $G \subset \operatorname{SL}(2, \mathbb{C})$.
(i) Let G be a finite subgroup of $\operatorname{SL}(2, \mathbb{C})$ and $X:=\mathbb{C}^{2} / G$. Then we call the singularities of X as simple singularities and there is a unique minimal resolution of X,

$$
f: \widetilde{X} \longrightarrow X
$$

Then we can see the correspondence between the exceptional divisors and the non-trivial representations:

1) Take irreducible representations of the group G up to the isomorphism

$$
\rho_{1}, \cdots, \rho_{k}
$$

i.e., $\rho_{i}: G \mapsto \operatorname{GL}\left(n_{i}, \mathbb{C}\right)$, and let ρ be a regular representation of G in $\mathrm{SL}(2, \mathbb{C})$.

[^0]2) Take tensor product:
$$
\rho_{i} \otimes \rho=\sum a_{i j} \rho_{j}, \quad(1 \leq i, j \leq k)
$$

Then we obtain the coefficients $a_{i j}$.
3) Construct the extended Dynkin diagram by the following manner:
(i) If $a_{i j}=0$, then there are no edge between vertices i and j.
(ii) If $a_{i j}=1$, then there are an edge between vertices i and j.

If we forget one vertex which corresponds to the trivial representation, then we get a dual graph $\widetilde{\Gamma}$ of the exceptional divisors of the minimal resolution.

Theorem 1 (McKay[20]). $\widetilde{\Gamma}$ is isomorphic to the affine Dynkin diagram of an irreducible root system. This root system is of type A_{n} if G is cyclic of order $n+1$, of type D_{n} if G is binary dihedral of order $4(n-2)$, and of type E_{6} (resp. E_{7} resp. E_{8}) if G is the binary tetrahedral (resp. octahedral resp. icosahedral) group.
(ii) Gonzalez-Springberg and Verdier construct a direct geometric correspondence between the set $\operatorname{Irr}(G)$ of irreducible representations of G and the set $\operatorname{Irr}(D)$ of irreducible components of the exceptional divisor D in the minimal resolution $f: \widetilde{X} \rightarrow X$ of the singularity of $X=\mathbb{C}^{2} / G[9]$. Let $\rho: G \rightarrow G L(E)$ be a non-trivial irreducible representation of G. By $\mathcal{E} \rightarrow \mathbb{C}^{2}$, we denote the associated G-equivariant vector bundle on \mathbb{C}^{2}. So the associated locally free sheaf on \mathbb{C}^{2} is equal to $\mathcal{O}_{\mathbb{C}^{2}} \otimes_{\mathbb{C}} E$ with canonical G-action. Since G acts freely on $\mathbb{C}^{2}-\{0\}$ and \mathcal{E} is a G-vector bundle. \mathcal{E} defines a vector bundle \mathcal{E}^{\prime} on the quotient $X-\{0\}=\left(\mathbb{C}^{2}-\{0\}\right) / G$. Let $\widetilde{\mathcal{E}}:=f^{*}\left(\mathcal{E}^{\prime}\right)$ be the pull-buck of this bundle on $\widetilde{X}-D \cong X-\{0\}$, and denote by $i: \widetilde{X}-D \rightarrow \widetilde{X}$ the inclusion map. If s is a global section of \mathcal{E}, then s induces a global section of \mathcal{E}^{\prime} and $\widetilde{\mathcal{E}}$, so a defines a section $\pi(s)$ of the sheaf $i_{*}(\widetilde{\mathcal{E}})$ on \widetilde{X}. Denote $\pi(\mathcal{E})$ or $\pi(\rho)$ the subsheaf of $i_{*}(\widetilde{\mathcal{E}})$ generated by the sections $\pi(s)$.

Now the correspondence between the graph Γ and the resolution graph of the singularity X is given by the first Chern classes of the sheaves $\pi(\rho)$. Denote by $\operatorname{Irr}^{0}(G) \subset \operatorname{Irr}(G)$ the set of non-trivial irreducible representation of G. Then

Theorem 2 (Gonzalez-Springberg and Verdier[9]). For each $\rho \in \operatorname{Irr}^{0}(G)$ the sheaf $\pi(\rho)$ on \widetilde{X} is locally free of rank $\operatorname{deg}(\rho)$. There is a bijection
$\phi: \operatorname{Irr}^{0}(G) \rightarrow \operatorname{Irr}(G)$ such that for all $d \in \operatorname{Irr}(D)$

$$
c_{1}(\pi(\rho)) \cdot d= \begin{cases}0 & d \neq \phi(\rho) \\ 1 & d=\phi(\rho)\end{cases}
$$

Furthermore

$$
\phi\left(\rho_{i}\right) \phi\left(\rho_{j}\right)=a_{i j}
$$

for all $\rho_{i}, \rho_{j} \in \operatorname{Irr}^{0}(G), \rho_{i} \neq \rho_{j}$.
Artin and Verdier [1] proved this more generally with reflexive modules and this theory was developed by Esnault and Knörrer ([7], [8]) for more general quotient surface singularities. After Riemenchneider's definition of speciality [23], Wunram [28] constructed a nice generalized McKay correspondence for any quotient surface singularities in 1988.

2 Three dimensional McKay correspondence

2.1 Existence of a crepant resolution

As an analogue of two dimensional McKay correspondence, let us consider finite subgroup G of $\operatorname{SL}(3, \mathbb{C})$. The quotient singularity \mathbb{C}^{3} / G is canonical but not terminal. Around 1985, Calabi-Yau manifold appeared in Super String theory and they considered Orbifold Euler characteristic $\chi(M, G)$. When $M=\mathbb{C}^{3}$ and G is a finite subgroup of $\operatorname{SL}(3, \mathbb{C}), \chi\left(\mathbb{C}^{3}, G\right)=\#\{$ conjugacy class of $G\}$ and Hirzebruch and Höfer conjectured existence of a crepant resolution of $\mathbb{C}^{3} / G([10])$ and it was proved positively:

Theorem 3 (Markushevich[19, 2, 18], Roan[24, 25, 26], Ito[13, 14]). Let G be a finite subgroup of $\mathrm{SL}(3, \mathbb{C})$. Then there exists a resolution of singularities $\pi: \widetilde{X} \longrightarrow \mathbb{C}^{3} / G$ with $\omega_{\widetilde{X}} \simeq \mathcal{O}_{\widetilde{X}}$ and $\chi(\widetilde{X})=\sharp\{$ conjugacy classes of $G\}$.

When a group G is abelian, the quotient \mathbb{C}^{3} / G s a toric variety, whose corresponding cone σ is

$$
\sigma=\left\{x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3} \mid x_{i} \geq 0\right\} \text { in } N_{\mathbb{R}}=\mathbb{R}^{3}
$$

where $N=\mathbb{Z}^{3}+\frac{1}{r}(a, b, c) \mathbb{Z}$ and $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. Toric crepant resolution can be given by a triangulation of the triangle \triangle with vertices $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\frac{1}{r}(a, b, c)$ is corresponding to $g=\operatorname{diag}\left(\epsilon^{a}, \epsilon^{b}, \epsilon^{c}\right)$ of $G(\epsilon=r$-th root of 1$)$.

Example 4. When G is a cyclic group of order 6 generated by a matrix $\operatorname{diag}\left(\epsilon, \epsilon^{2}, \epsilon^{3}\right)$ where ϵ is 6 -th root of 1 . It is called singularity of type $\frac{1}{6}(1,2,3)$. The triangle \triangle can be drawn as follows and you can obtain crepant resolution by subdivision of the triangle \triangle with vertices $e_{1}, e_{2}, e_{3}, \frac{1}{6}(1,2,3)$, $\frac{1}{6}(2,4,0), \frac{1}{6}(3,0,3)$ and $\frac{1}{6}(4,2,0)$. And there are five crepant resolutions of this quotient singularity.

Figure 1: crepant resolutions of $\frac{1}{6}(1,2,3)$

2.2 G-Hilbert Scheme

For one quotient \mathbb{C}^{3} / G, we can obtain several crepant resolutions in general. In particular, we have one good projective crepant resolution, so-called G Hilbert scheme.

Definition 5. G-Hilbert scheme G-Hilb $\left(\mathbb{C}^{n}\right)$ is a set of G-invariant ideals I in $\mathbb{C}\left[x_{1}, \cdots, x_{n}\right]$ such that $\mathbb{C}\left[x_{1}, \cdots, x_{n}\right] / I \cong \mathbb{C}[G]$.

When $n=2$, the G-Hilbert scheme G - $\operatorname{Hilb}\left(\mathbb{C}^{2}\right)$ is the minimal resolution of \mathbb{C}^{2} / G for $G \subset \operatorname{GL}(2, \mathbb{C})$. It was proved by Ito and Nakamura for $G \subset$ $\mathrm{SL}(2, \mathbb{C})[15]$, Kidoh for cyclic $G \subset \mathrm{GL}(2, \mathbb{C})[17]$ and Ishii for any small groups in $\operatorname{GL}(2, \mathbb{C})$ [11].

When $n=3, G$ - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ is a projective crepant resolution of \mathbb{C}^{3} / G for $G \subset \operatorname{SL}(3, \mathbb{C})$. It was proved by Nakamura for abelian groups [21] and by

Bridgeland, King and Reid for general and they also showed "Mukai implies McKay", that is, the McKay correspondence is a derived equivalence in [3]

The G-Hilbert scheme G - $\operatorname{Hilb}\left(\mathbb{C}^{n}\right)$ is also a moduli space of G-clusters Z, where Z is a G-invariant subscheme of \mathbb{C}^{n} such that $H^{0}\left(\mathcal{O}_{Z}\right)=R_{G}$ regular representation as $\mathbb{C}[G]$ module. Moreover it is isomorphic to $M_{\theta}(Q, R)$ which is a moduli space of McKay quiver with relations where θ is 0 -generated.

Then Craw and Ishii stated the following conjecture and proved it for abelian groups in [4].

Conjecture 6 (Craw and Ishii [4]). For any finite subgroup $G \subset \operatorname{SL}(3, \mathbb{C})$, all projective crepant resolutions is isomorphic to M_{θ}, where θ is some GIT stability parameter.

Theorem 7 (Craw and Ishii [4]). The above conjecture is true for abelian subgroups of $\mathrm{SL}(3, \mathbb{C})$.

2.3 Reid's recipe

When G is an abelian finite subgroup of $\operatorname{SL}(3, \mathbb{C})$, there is a recipe for geometric correspondence, so-called Reid's recipe ([22], [5]). This is a correspondence between a set of non-trivial irreducible representations and a set of exceptional divisors and curves.

Example 8. In case of $\frac{1}{6}(1,2,3)$, the corresponding representations ρ_{i} are appear in the figure 2. ρ_{5} corresponds to the exceptional divisor and each $\rho_{i}(i=1,2,3,4)$ corresponds to an exceptional curves.

Figure 2: Reid's recipe for $\frac{1}{6}(1,2,3)$

3 Next steps

As we saw, many examples can be seen by toric geometry and we can see the geometric structure concretely. However, we would like to know more about non-abelian cases, higher dimensional crepant resolutions and the McKay correspondence.

3.1 Non-abelian cases

Even if G is non-abelian finite subgroup of $\operatorname{SL}(3, \mathbb{C})$, Ishii, Ito and Nolla de Celis showed that an iterated G-Hilbert schemes "Hilb of Hilb" is also a moduli space which satisfies Conjecture 6 ([4]).

Theorem 9 (Ishii, Ito and Nolla de Celis [12]). Let G be a finite subgroup of $\operatorname{SL}(3, \mathbb{C}), N$ be the abelian normal subgroup of G. Then $G / N-\operatorname{Hilb}(N-$ Hilb $\left(\mathbb{C}^{3}\right)$ is a projective crepant resolution of \mathbb{C}^{3} / G and isomorphic to a moduli space M_{θ}, where θ is some GIT stablity parameter.

By this theorem, we can check the conjecture partially, and there are more crepant resolutions that are not "Hilb of Hilb". Moreover, when G is a simple group, we cannot use this construction.
Example 10. In case $\frac{1}{6}(1,2,3)$, there are five crepant resolutions. One of them is the $G-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ and two of them are iterated G - $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$, they are \mathbb{Z}_{2} -$\operatorname{Hilb}\left(\mathbb{Z}_{3}-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)\right)$ and $\mathbb{Z}_{3}-\operatorname{Hilb}\left(\mathbb{Z}_{2}-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)\right)$. The remaining two crepant resolutions cannot be obtained as a G-Hilbert scheme or an iterated G-Hilbert scheme. (cf. Figure 1)

When G in non-abelian, we would also like to know more about the geometric correspondence like Reid's recipe.

3.2 Higher dimensional cases

Existence of a crepant resolution is not known in general in higher dimension even if G is abelian. Moreover, G-Hilbert schemes are not crepant resolution in general.

Dais, Henk and Zieglar found some conditions to admit a crepant resolutions for four dimensional Gorenstein abelian quotient singularities [6].

Recently, Kohei Saito and Yusuke Sato constructed higher dimensional crepant resolutions using with Fujiki-Oka resolution [27].

3.3 Reid's recipe for non-abelian quotients

This part is a joint work with Ben Wormleighton and work in progress, We show one example which gives a good geometric correspondence for a non-ablelian quotient.

Example 11. Let G be a trihedral group generated by

$$
\left(\begin{array}{ccc}
\epsilon & 0 & 0 \\
0 & \epsilon^{2} & 0 \\
0 & 0 & \epsilon^{4}
\end{array}\right)\left(\epsilon^{7}=1\right) \text { and } T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

We can take the normal abelian subgroup N of type $\frac{1}{7}(1,2,4)$ and the crepant resolution is unique. Then Reid's recipe gives the geometric correspondence between non-trivial irreducible representations and exceptional divisors and curves as follows.
ρ_{1}, ρ_{2} and ρ_{4} correspond to the exceptional curves and ρ_{3}, ρ_{5} and ρ_{6} corresponds to three exceptional divisors in the crepant resolution of \mathbb{C}^{3} / N.

Figure 3: Reid's recipe for $\frac{1}{7}(1,2,4)$
To consider a crepant resolution of \mathbb{C}^{3} / G, we can identify three curves and three divisors and we have two more exceptional curves. On the other hand, there are 2 three-dimensional irreducible representations for G which are induced from N. Then the geometric correspondence for a crepant resolution of \mathbb{C}^{3} / G become as follows.

One three dimensional representation $\rho_{1} \oplus \rho_{2} \oplus \rho_{4}$ corresponds to exceptional curve, the other three dimensional representation $\rho_{3} \oplus \rho_{5} \oplus \rho_{6}$ corresponds to the exceptional divisor and there are two more one dimensional irreducible representations which correspond to two other exceptional curves.

References

[1] M. Artin and J.L. Verdier, Reflexive modules over rational double points, Math. Ann. 270 (1985), 79-82.
[2] J. Bertin and D. Markushevich, Singularités quotients non abéliennes de dimension 3 et variétés de Calabi-Yau, MathȦnn; 299, (1994), 105116.
[3] T. Bridgeland, A. King and M. Reid, The McKay correspondence as an equivalence of derived categories, J. AMS, 14, (2001), 535-554.
[4] A. Craw and A. Ishii, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J., 124 (2), (2004), 259-307.
[5] A. Craw, An explicit construction of the McKay correspondence for A-Hilb \mathbb{C}^{3}, Journal of Algebra 285 (2005), no. 2, 682-705.
[6] D. I. Dais, M. Henk, and G. M. Ziegler, All Abelian quotient c.i.singularities admit projective crepant resolutions in all dimensions, Adv. in Math. 139 (1998) 194-239.
[7] E. Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew Math, 362 (1985), 63-71.
[8] E. Esnault and H. Knörrer, Reflexive modules over rational double points, Math. Ann. 272 (1985), 545-548.
[9] G. Gonzalez-Sprinberg and J.-L. Verdier, Points doubles rationnels et représentations de groupes, C. R. Acad. Sci. Paris, Sér. I, Math. , 283, (1981), 111-113.
[10] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, MathȦnn; 286, (1990), 255-260.
[11] A. Ishii, On the McKay correspondence for a finite small subgroup of $G L(2, \mathbb{C})$, J.Reine Angew. Math. 549 (2002), 221-233.
[12] A. Ishii, Y. Ito and A. Nolla de Celis, On G / N-Hilb of N-Hilb, Kyoto J. Math. 53, no. 1 (2013), 91-130.
[13] Y. Ito, Crepant resolution of trihedral singularities and the orbifold Euler characteristic, InternJ̇ouröf Math; 6, (1995), 33-43.
[14] Y. Ito, Gorenstein quotient singularities of monomial type in dimension three, J. Math. Sci. Univ. Tokyo 2, (1995), 419-440.
[15] Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, New Trends in Algebraic Geometry, Proc. of EuroConference on Algebraic Geometry, Warwick 1996, ed. by K. Hulek et al., CUP, (1999), 151-233.
[16] Y. Ito and B. Wormleighton, in preparation.
[17] R. Kidoh, Hilbert schemes and cyclic quotient singularities, Hokkaido Mathematical Journal, 30 (2001), 91-103.
[18] D. Markushevich, Resolution of \mathbb{C}^{3} / H_{168}, Math. Ann. 308, (1997), 279289.
[19] D. G. Markushevich, M. A. Olshanetsky and A. M. Perelomov, Description of a class of superstring compactifications related to semi-simple Lie algebras, CommM்athṖhys; 111, (1987), 247-274.
[20] J. McKay, Graphs, singularities, and finite group, in Santa Cruz conference on finite groups (Santa Cruz, 1979), Proc. Symp. Pure Math. 37, AMS, (1980), 183-186.
[21] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom., 10, (2001), 757-779.
[22] M. Reid, McKay correspondence, Proc. of algebraic geometry symposium (Kinosaki, Nov 1996), T. Katsura (ed.), (1997), 14-41.
[23] O. Riemenchneider, Characterization and application of special reflexive modules on rational surface singularities, Institut Mittag-Leffler Report No. 3 (1987).
[24] S.-S. Roan, On the generalization of Kummer surfaces, J. Diff. Geometry 30, (1989), 523-537.
[25] S.-S. Roan, On $c_{1}=0$ resolution of quotient singularity, Intern. Jour. of Math., 5, (1994), 523-536.
[26] S.-S. Roan, Minimal Resolution of Gorenstein Orbifolds in Dimension Three, Topology, 35, (1996), 273-559.
[27] K. Sato and Y. Sato, Crepant Property of Fujiki-Oka Resolutions for Gorenstein Abelian Quotient Singularities, preprint, arXiv:2004.03522.
[28] J. Wunram, Reflexive modules on quotient surface singularities, Math ann. 279 (1988), 583-598.

[^0]: *yukari.ito@ipmu.jp, The author is partially supported by the Grant-in-aid for scientific research(C) (No. 18K03209) of JSPS in Japan.

