Uniruledness of some unitary Shimura varieties

京都大学・数学教室 前田 洋太 Yota Maeda Department of Mathematics, Faculty of Science, Kyoto University 城崎代数幾何学シンポジウム 2020

October 21, 2020

Introduction

Today, I will talk about *uniruledness* of unitary Shimura varieties.

- Give some sufficient conditions for uniruledness of unitary Shimura varieties in terms of Hermitian lattices.
- Construct certain uniruled unitary Shimura varieties for U(1, n) ($n = 3, 4, 5, F = \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$).

We use modular forms constructed by Borcherds lifts and Gritsenko lifts. An irreducible variety X over \mathbb{C} is called <u>uniruled</u> if there exists a dominant rational map $Y \times \mathbb{P}^1 \dashrightarrow X$ where Y is an irreducible variety over \mathbb{C} with $\dim Y = \dim X - 1$.

Remark

Uniruled varieties have Kodaira dimension $-\infty$. The converse is conjectured, but it is not known in dimension > 3.

$$\begin{split} F &:= \mathbb{Q}(\sqrt{d}) \ (d < 0), \\ \langle \ , \ \rangle \colon L \times L \to F \ : \ \text{Hermitian lattice of sign} \ (1, n) \ \text{over} \ \mathscr{O}_F \ (n > 0). \\ \mathrm{U}(L) \ : \ \text{unitary group of} \ (L, \langle \ , \ \rangle) \end{split}$$

$$D_L := \{ w \in \mathbb{P}(L \otimes_{\mathscr{O}_F} \mathbb{C}) \mid \langle w, w \rangle > 0 \}$$
$$\cong \{ (z_1, \dots, z_n) \in \mathbb{C}^n \mid |z_1|^2 + \dots + |z_n|^2 < 1 \}$$

: Hermitian symmetric domain associated with $U(L)(\mathbb{R}) \cong U(1, n)$. For a finite index subgroup $\Gamma \subset U(L)$, we define

 $\mathscr{F}_{L}(\Gamma) := \Gamma \backslash D_{L}$ (unitary Shimura variety).

This is a quasi-projective variety of dimension n over \mathbb{C} .

Unitary Shimura varieties

For a quadratic lattice M over \mathbb{Z} , we define

$$\mathscr{D}_{M} := \{ w \in \mathbb{P}(M \otimes_{\mathbb{Z}} \mathbb{C}) \mid (w, w) = 0, \ (w, \overline{w}) > 0 \}^{+}.$$

We say a quadratic lattice M over \mathbb{Z} is 2-elementary if

$$M^{\vee}/M \cong (\mathbb{Z}/2\mathbb{Z})^{\ell(M)}.$$

$$\delta(M) := \begin{cases} 0 & ((v,v) \in \mathbb{Z} \text{ for any } v \in M^{\vee}) \\ 1 & ((v,v) \notin \mathbb{Z} \text{ for some } v \in M^{\vee}). \end{cases}$$

 (L, \langle , \rangle) : Hermitian lattice of sign (1, n) over \mathscr{O}_F $(L_Q, (,))$: quadratic lattice of signature (2, 2n) associated with L over \mathbb{Z} Here L_Q is L considered as a free \mathbb{Z} -module and $(,) := \operatorname{Tr}_{F/\mathbb{Q}}\langle , \rangle$. We have an embedding

$$U(L)(\mathbb{R}) \cong U(1, n) \hookrightarrow O^+(L_Q)(\mathbb{R}) \cong O^+(2, 2n)$$
$$\iota \colon D_L \hookrightarrow \mathscr{D}_{L_Q}.$$

Main results

Theorem ([M, arXiv:2008.13106])

Let (L, \langle , \rangle) be a Hermitian lattice over \mathcal{O}_F of signature (1,5) and let $(L_Q, (,))$ be the associated quadratic lattice over \mathbb{Z} of signature (2, 10). Assume that

• L_Q is even 2-elementary, $\delta(L_Q) = 0$ and $\ell(L_Q) \leq 8$. Moreover, $\ell(L_Q) \leq 6$ if $F = \mathbb{Q}(\sqrt{-3})$.

2 $\langle \ell, r \rangle \in \mathcal{O}_F$ for any $\ell, r \in L$ with $\langle r, r \rangle = -1$.

Then $\mathscr{F}_{L}(\mathrm{U}(L)(\mathbb{Z}))$ is uniruled.

Remark

- To prove this Theorem, we use reflective modular forms constructed by Yoshikawa.
- Using reflective modular forms constructed by Gritsenko-Hulek, we can give 3 more sufficient conditions for uniruledness in terms of Hermitian lattices.

5/11

Main results

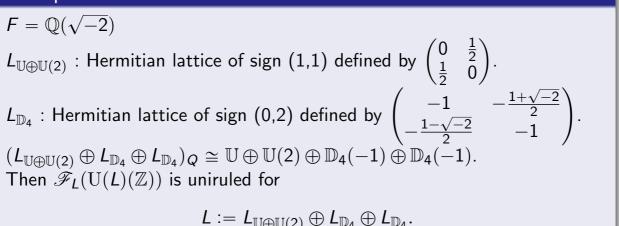
Theorem (Uniruledness [M2, arXiv:2008.13106])

- For $F = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-2})$, there exist Hermitian lattices *L* over \mathcal{O}_F of signature (1,5) such that $\mathscr{F}_L(\mathrm{U}(L)(\mathbb{Z}))$ are uniruled.
- Por F = Q(√−1), there exist Hermitian lattices L over 𝒫_F of signature (1,4) such that 𝒫_L(U(L)(Z)) are uniruled.
- **3** For $F = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-2})$, there exist Hermitian lattices *L* over \mathscr{O}_F of signature (1,3) such that $\mathscr{F}_L(\mathrm{U}(L)(\mathbb{Z}))$ are uniruled.

Remark

Gritsenko-Hulek (2014) proved certain orthogonal Shimura varieties are uniruled.

Example



Uniruled unitary Shimura varieties

A modular form $F_k \in M_k(\Gamma, \chi)$ on D_L is called reflective if $\operatorname{Supp}(\operatorname{div}(F_k))$ is contained in the ramification divisors of $D_L \to \mathscr{F}_L(\Gamma)$. A reflective modular form F_k is called strongly reflective if the multiplicity of each irreducible component of $\operatorname{div}(F_k)$ is 1.

For modular forms on $\mathscr{D}_{L_{\mathcal{O}}}$, we define the notions similarly.

Theorem (Uniruledness criterion [GH])

Let n > 1. Let a, k > 0 be positive integers satisfying k > an. If there exists a non-zero reflective modular form $F_{a,k} \in M_k(\Gamma, \chi)$ of weight k for which the multiplicity of every irreducible component of $\operatorname{div}(F_{a,k})$ is less than or equal to a, then $\mathscr{F}_L(\Gamma)$ is uniruled.

Proof.

Use the numerical criterion of uniruledness due to Miyaoka and Mori.

Uniruled unitary Shimura varieties

Reflective modular forms are very rare. In some special cases, we can construct reflective modular forms by Borcherds lifts and Gritsenko lifts.

Theorem (Yoshikawa (2013))

Let M be an even 2-elementary quadratic lattice over \mathbb{Z} of signature (2, 10) and $\delta(M) = 0$. There exists a strongly reflective modular form Ψ_M of weight $2^{(16-\ell(M))/2} - 4$ on \mathscr{D}_M for $O^+(M)$.

Theorem ([M, arXiv:2008.13106])

Let (L, \langle , \rangle) be a Hermitian lattice over \mathscr{O}_F of signature (1,5) and let $(L_Q, (,))$ be the associated quadratic lattice over \mathbb{Z} of signature (2,10). Assume that

• L_Q is even 2-elementary, $\delta(L_Q) = 0$ and $\ell(L_Q) \leq 8$. Moreover, $\ell(L_Q) \leq 6$ if $F = \mathbb{Q}(\sqrt{-3})$.

2 $\langle \ell, r \rangle \in \mathcal{O}_F$ for any $\ell, r \in L$ with $\langle r, r \rangle = -1$.

Then $\mathscr{F}_L(\mathrm{U}(L)(\mathbb{Z}))$ is uniruled.

Uniruled unitary Shimura varieties

Quadratic lattices of sign (2,10)	$\ell(L_Q)$	$\delta(L_Q)$	F
$\mathbb{U}\oplus\mathbb{U}(2)\oplus\mathbb{E}_8(-2)$	10	0	$\mathbb{Q}(\sqrt{-1})$
$\mathbb{U}\oplus\mathbb{U}\oplus\mathbb{E}_8(-2)$	8	0	$\mathbb{Q}(\sqrt{-1})$
$\mathbb{U} \oplus \mathbb{U}(2) \oplus \mathbb{D}_4(-1) \oplus \mathbb{D}_4(-1)$	6	0	$\mathbb{Q}(\sqrt{-2})$
$\mathbb{U}\oplus\mathbb{U}\oplus\mathbb{D}_4(-1)\oplus\mathbb{D}_4(-1)$	4	0	$\mathbb{Q}(\sqrt{-1})$
$\mathbb{U}\oplus\mathbb{U}\oplus\mathbb{D}_8(-1)$	2	0	$\mathbb{Q}(\sqrt{-1})$
$\mathbb{U}\oplus\mathbb{U}\oplus\mathbb{E}_8(-1)$	0	0	$\mathbb{Q}(\sqrt{-1})$

9/11

Summary

- Give some sufficient conditions for uniruledness of unitary Shimura varieties in terms of Hermitian lattices.
- Construct certain uniruled unitary Shimura varieties for U(1, n) ($n = 3, 4, 5, F = \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$).

To construct reflective modular forms on D_L , we need $F = \mathbb{Q}(\sqrt{-1})$, $\mathbb{Q}(\sqrt{-2})$.

Problem.

- Unitary Shimura varieties having non-negative Kodaira dimension
- The Kodaira dimension of unitary Shimura varieties over
- $F \neq \mathbb{Q}(\sqrt{-1}), \ \mathbb{Q}(\sqrt{-2})$